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Abstra
t.

An identifying 
ode of a graph is a subset of its verti
es su
h that every vertex of the graph is uniquely

identi�ed by the set of its neighbours within the 
ode. We show a di
hotomy for the size of the smallest identifying


ode in 
lasses of graphs 
losed under indu
ed subgraphs. Our di
hotomy is derived from the VC-dimension of the


onsidered 
lass C, that is the maximum VC-dimension over the hypergraphs formed by the 
losed neighbourhoods

of elements of C. We show that hereditary 
lasses with in�nite VC-dimension have in�nitely many graphs with

an identifying 
ode of size logarithmi
 in the number of verti
es while 
lasses with �nite VC-dimension have a

polynomial lower bound.

We then turn to approximation algorithms. We show that Min Id Code (the problem of �nding a smallest

identifying 
ode in a given graph from some 
lass C) is log-APX-hard for any hereditary 
lass of in�nite VC-

dimension. For hereditary 
lasses of �nite VC-dimension, the only known previous results show that we 
an

approximate Min Id Code within a 
onstant fa
tor in some parti
ular 
lasses, e.g. line graphs, planar graphs

and unit interval graphs. We prove that Min Id Code 
an be approximate within a fa
tor 6 for interval graphs.

In 
ontrast, we show that Min Id Code on C4-free bipartite graphs (a 
lass of �nite VC-dimension) 
annot be

approximated to within a fa
tor of c log(|V |) for some c > 0.

Key words. Identifying 
ode, VC-dimension, Hereditary 
lass of graphs, Approximation, Interval graph

AMS subje
t 
lassi�
ations. 05C69, 05C85, 05C62

1. Introdu
tion. Let G = (V,E) be a graph. An identifying 
ode of G is a subset C of

verti
es of G su
h that, for ea
h vertex v ∈ V , the set of verti
es in C at distan
e at most 1 from

v, is non-empty and uniquely identi�es v. In other words, for ea
h vertex v ∈ V (G), we have

N [v]∩C 6= ∅ (C is a dominating set) and for ea
h pair u, v ∈ V (G), we have N [u]∩C 6= N [v]∩C

(C is a separating set), where N [v] denotes the 
losed neighbourhood of v in G (v and all its

neighbours). We say that a set X of verti
es distinguishes u ∈ V (G) from v ∈ V (G) if N [u]∩X 6=
N [v] ∩X. This 
on
ept was introdu
ed in 1998 by Karpovsky, Chakrabarty and Levitin [21℄ and

has appli
ations in various areas su
h as fault-diagnosis [21℄, routing in networks [23℄ or analysis

of RNA stru
tures [19℄. For a 
omplete survey on these results, the reader is referred to the online

bibliography of Lobstein [24℄.

Two verti
es u and v are twins if N [u] = N [v]. The whole vertex set V (G) is an identifying


ode if and only if G is twin-free. Sin
e supersets of identifying 
odes are identifying, an identifying


ode exists for G if and only if it is twin-free. A natural problem in the study of identifying 
odes

is to �nd one of a minimum size. Given a twin-free graph G, the smallest size of an identifying


ode of G is 
alled the identifying 
ode number of G and is denoted by γID(G). The problem of

determining γID is 
alled the Min Id Code problem, and its de
ision version is NP-
omplete [8℄.

Let X ⊆ V . We denote by G[X] the graph indu
ed by the subset of verti
es X. In this paper,

we fo
us on hereditary 
lasses of graphs, that is 
lasses 
losed under taking indu
ed subgraphs.

We 
onsider the two following problems: �nding good lower bounds and approximation algorithms

for the identifying 
ode number.

1.1. Previous work. In the 
lass of all graphs, the best lower bound is γID(G) ≥ log(|V (G)|+
1), sin
e all the verti
es of the graphs have distin
t non-empty neighbourhood within the 
ode.

Mon
el [27℄ 
hara
terized all graphs rea
hing this lower bound. As for approximation algorithms,
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the general problem Min Id Code is known to be log-APX-hard [22, 23, 33℄. In parti
ular, there

is no (1 − ε) log(|V |)-approximation algorithm for Min Id Code. The problem Min Id Code

remains log-APX-hard even in split graphs, bipartite graphs or 
o-bipartite graphs (
omplement

of bipartite graphs) [14℄.

On the positive side, there always exists a O(log |V (G)|) approximation forMin Id Code [33℄.

Moreover, even if in the general 
ase Min Id Code is hard to evaluate, there exist several 
on-

stant approximation algorithms for restri
ted 
lasses of graphs, su
h as planar graphs [29℄ or line

graphs [15℄.

For the remainder of this arti
le, n denotes the number of verti
es of G. Table 1 gives an

overview of the 
urrently known results for some restri
ted hereditary 
lasses of graphs. The order

of magnitude of all lower bounds are best possible (there are in�nite families of graphs rea
hing the

lower bounds). Min Id Code for line graphs and planar graphs have a polynomial time 
onstant

fa
tor approximation algorithm with the best known 
onstant written in parenthesis. From this

table, we observe two behaviours: a 
lass either

1. has a logarithmi
 lower bound on the size of identifying 
odes, and Min Id Code is

log-APX-hard in this 
lass (for example split, bipartite, 
o-bipartite graphs), or

2. there is a polynomial lower-bound on γID(G) and a 
onstant fa
tor approximation algo-

rithm to 
ompute γID(G).

Graph 
lass Lower bound Complexity Approximability Referen
es

All graphs Θ(log(n)) NP-
 log-APX-hard [21, 22℄

Chordal Θ(log(n)) NP-
 log-APX-hard [14℄

Split graphs Θ(log(n)) NP-
 log-APX-hard [14℄

Bipartite Θ(log(n)) NP-
 log-APX-hard [14℄

Co-bipartite Θ(log(n)) NP-
 log-APX-hard [14℄

Claw-free Θ(log(n)) NP-
 log-APX-hard [14℄

Interval Θ(n1/2) NP-
 open [16, 17℄

Unit interval Θ(n) open PTAS [13, 16℄

Permutation Θ(n1/2) NP-
 open [16, 17℄

Line graphs Θ(n1/2) NP-
 APX(4) [15℄

Planar Θ(n) NP-
 APX(7) [3, 29℄

Table 1

Known lower bounds on γID(G) and approximability of γID(G).

1.2. Our results. The aim of this paper is to shed some light on the validity of su
h a

di
hotomy for all 
lasses of graphs using the VC-dimension of the 
lass of graphs.

VC-dimension. Let H = (V, E) be a hypergraph. A subset X ⊆ V of verti
es is shattered if for

every subset S of X, there is some hyperedge e su
h that e∩X = S. The VC-dimension of H is the

size of the largest shattered set of H. We de�ne the VC-dimension of a graph as the VC-dimension

of the 
losed neighbourhood hypergraph of G (verti
es are the verti
es of G and hyperedges are

the 
losed neighbourhoods of verti
es of G), a 
lassi
al way to de�ne the VC-dimension of a graph

(see [1, 6℄).

By a shattered set of a graph G, we mean a shattered set of the hypergraph of the 
losed

neighbourhoods of G. The VC-dimension of a 
lass of graphs C, denoted by dim(C), is the

maximum of the VC-dimension of the graphs over C. If it is unbounded, we say that C has in�nite

VC-dimension.

Di
hotomy for lower bounds. First we will prove in Se
tion 2 that there is indeed su
h a

di
hotomy on the minimum size of identifying 
odes: it is always either logarithmi
 or polynomial,

where the exponent of the polynomial depends on the VC-dimension of the 
lass of graphs. In

parti
ular, our theorem provides new lower bounds for graphs of girth at least 5, 
hordal bipartite
graphs, unit disk graphs and undire
ted path graphs. Moreover, these bounds are tight for interval

graphs and graphs of girth at least 5.
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Graph 
lass VC dim IC-lower bound IC-approx

Girth ≥ 5 2 Θ(n
1
2 ) (opt,new) open

Interval 2 Θ(n
1
2 ) (opt) 6 (Thm. 5.3)

Chordal bipartite 3 Ω(n
1
3 ) (new) open

Unit disk 3 Ω(n
1
3 ) (new) open

C4-free bipartite 2 Θ(n
1
2 ) (opt,new) no c log(n)-approx (Thm. 4.3)

Undire
ted path 3 Ω(n
1
3 )(new) open

Table 2

Overview of the results obtained in this paper.

Approximation hardness. We then try to extend this di
hotomy result for 
onstant fa
tor

approximations. First, we show in Se
tion 3 thatMin Id Code is log-APX-hard for any hereditary

lass with a logarithmi
 lower bound. The proof essentially 
onsists in proving that a hereditary


lass with in�nite VC-dimension 
ontains one of these three 
lasses, for whi
h Min Id Code

has been shown to be log-APX-hard [14℄: the bipartite graphs, the 
o-bipartite graphs, or the

split graphs. Unfortunately, the di
hotomy does not extend to approximation sin
e we show in

Se
tion 4 that C4-free bipartite graphs have a polynomial lower bound on the size of identifying


odes but Min Id Code is not approximable to within a fa
tor c log n for some c > 0 (under

some 
omplexity assumption) in this 
lass. Thus, a 
onstant fa
tor approximation is not always

possible in the se
ond 
ase.

Approximation algorithm. Finally, in Se
tion 5, we 
on
lude the paper with some positive re-

sult when the lower bound is polynomial by proving that there exists a 6-approximation algorithm

for interval graphs, a problem left open in [14℄.

The results obtained in this paper are detailed in Table 2.

2. Di
hotomy for lower bound. Most of the results using VC-dimension 
onsist in ob-

taining upper bounds. However, in the last few years, several interesting lower bounds have been

obtained using VC-dimension, for instan
e in game theory (e.g. [10, 28℄). All these proofs 
onsist

in an appli
ation of a lemma, due to Sauer [30℄ and Shellah [32℄, or one of its variants. Our result

has the same �avour sin
e we use this lemma to prove that the size of an identifying 
ode 
annot

be too small if the VC-dimension is bounded. The tra
e of a set X on Y is X ∩ Y . By extension,

the tra
e of a vertex x on Y is the interse
tion of N [x] with Y .

Lemma 2.1 (Sauer's lemma [30, 32℄). Let H = (V, E) be an hypergraph of VC-dimension d.

For every set X ⊆ V , the number of (distin
t) tra
es of E on X is at most

d
∑

i=0

(

|X|

i

)

≤ |X|d + 1.

Let us now prove the main result of this se
tion.

Theorem 2.2. For every hereditary 
lass of graphs C, either
1. for every k ∈ N, there exists a graph Gk ∈ C with more than 2k − 1 verti
es and an

identifying 
ode of size 2k, or
2. there exists ε > 0 su
h that no twin-free graph G ∈ C with n verti
es has an identifying


ode of size smaller than nε
.

Proof. Let C be an hereditary 
lass of graphs. The 
lass C either has �nite or in�nite VC-

dimension. First, suppose that C has in�nite VC-dimension. We will show that C satis�es the �rst


on
lusion. By de�nition of in�nite VC-dimension, there is a graph Hk ∈ C with VC-dimension k
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x1 x2

x3

Fig. 1. The set x1, x2, x3 is shattered in this


hordal bipartite graph.

Fig. 2. A set of three verti
es shattered by

disks in the plane.

for ea
h k. So there exists a set of verti
es X of size k of Hk whi
h is shattered. Let Y be a set

of 2k − 1 verti
es whose 
losed neighbourhoods have all possible tra
es on X ex
ept the empty

set, meaning that for every X ′ ⊆ X, add a vertex y in Y su
h that N [y] ∩ X = X ′
. Choose Y

so that |X ∩ Y | is maximized. Let Gk = Hk[X ∪ Y ]. The graph Gk has at least 2k − 1 verti
es

sin
e |Y | = 2k − 1. By 
hoi
e of Y , X dominates X ∪Y and X distinguishes every pair of verti
es

of Y . By maximality of |X ∩ Y |, X also distinguishes every vertex in X from every vertex in Y
(otherwise a vertex of Y would have the same neighbourhood in X as a vertex x ∈ X and thus 
an

be repla
ed by x, 
ontradi
ting the maximality of |X ∩ Y |). For ea
h x ∈ X, the vertex yx ∈ Y
whose 
losed neighbourhood interse
ts X in exa
tly {x} distinguishes x from all verti
es in X−x.
So X ∪ {yx|x ∈ X} is an identifying 
ode of size at most 2k, as required.

Now suppose that the VC-dimension of C is bounded by d. For any identifying 
ode C of

a twin-free graph G ∈ C, the tra
es of verti
es of G on C are di�erent. Hen
e, by Lemma 2.1,

n ≤
∑d

i=0

(|C|
i

)

≤ |C|d + 1. Therefore, |C| ≥ (n − 1)
1
d
, proving that C satis�es the se
ond 
laim.

The proof gives in fa
t the lower bound γID(G) ∈ Ω(n
1

dim(C) ) for the se
ond item. So if we


an bound the VC-dimension of the 
lass, then we immediately obtain lower bounds on the size

of identifying 
odes. Lemma 2.3 provides su
h bounds for several 
lasses of graphs.

Let us give some de�nitions. The girth of a graph is the length of a shortest 
y
le. A 
hordal

bipartite graph is a bipartite graph without indu
ed 
y
le of length at least 6. A unit disk graph

is a graph of interse
tion of unit disks in the plane. An interval graph is a graph of interse
tion

of segments on a line. An undire
ted path graph is a graph of vertex-interse
tion of paths in an

undire
ted tree (i.e. two verti
es are adja
ent if their 
orresponding paths have at least one vertex

in 
ommon).

Lemma 2.3. The following upper bounds hold and are tight:

• The VC-dimension of graphs of girth at least 5 is at most 2.
• The VC-dimension of 
hordal bipartite graphs is at most 3.
• The VC-dimension of unit disk graphs is at most 3.
• The VC-dimension of interval graphs is at most 2.
• The VC-dimension of undire
ted path graphs is at most 3.

Proof.

• LetG be a graph of girth at least 5. Assume by 
ontradi
tion that a set {x1, x2, x3} of three
verti
es is shattered. Sin
e the girth is at least 5, x1x2x3 is not a 
lique. We may assume

without loss of generality that x1 and x2 are not adja
ent. Sin
e {x1, x2, x3} is shattered,

there is a vertex y1 adja
ent to both x1 and x2 and not x3 (one 
losed neighbourhood

must have tra
e {x1, x2} on {x1, x2, x3}) and a vertex y2 adja
ent to {x1, x2, x3} (one


losed neighbourhood must have tra
e {x1, x2, x3}). Note that both y1 and y2 are distin
t
from x1 and x2 sin
e x1 and x2 are not adja
ent. Moreover y1 and y2 are distin
t sin
e

they do not have the same neighbourhood in {x1, x2, x3}. So x1y1x2y2x1 is a 
y
le of

length 4, a 
ontradi
tion with the girth assumption.

This bound is tight, for instan
e with the path on six verti
es.

• LetG = (A∪B,E) be a 
hordal bipartite graph. Assume by 
ontradi
tion that {x1, x2, x3, x4}
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P1

P2 P3

Fig. 3. Paths P1, P2, P3 are shattered by the eight points whi
h are paths of length 0.

is a shattered set of four verti
es. Sin
e there is a vertex whose 
losed neighbourhood 
on-

tains the whole set of verti
es, it means that at least three verti
es, say x1, x2, x3 are

on the same side of the bipartite graph. Sin
e a subset of a shattered set is shattered,

{x1, x2, x3} is shattered. Thus there is a vertex in
ident to x1, x2 and not x3, a vertex

in
ident to x1, x3 and not x2, and a vertex in
ident to x2, x3 and not x1. It provides an

indu
ed 
y
le of length 6, a 
ontradi
tion.

Moreover the bound is tight, see Figure 1.

• Let G be a unit disk graph. Let us rephrase the adja
en
y and shattering 
onditions in

this 
lass: let x1 and x2 be any two verti
es of a unit disk graph and denote by c1 and

c2 their respe
tive 
enters in a representation of the unit disk graph in the plane. The

verti
es x1 and x2 are adja
ent if and only if c1 and c2 are at distan
e at most 2. Thus

if a set of unit disks is shattered then for every subset of 
enters, there exists a point at

distan
e at most 2 from these 
enters and more than 2 from the others. In other words,

there exist points in all possible interse
tions of balls of radius 2.
A 
lassi
al result ensures that the VC-dimension of a hypergraph whose hyperedges 
an

be represented as a set of disks in the plane (and verti
es as points of the plane) has VC-

dimension at most 3 (see [26℄ for instan
e). Thus unit disk graphs have VC-dimension at

most 3, and the bound 
an be rea
hed (see Figure 2).

• Let G be an interval graph. Assume by 
ontradi
tion that there is a shattered set

{I1, I2, I3} of G. Assume that I1 starts before I2 and that I2 starts before I3. Sin
e

there is an interval J interse
ting both I1 and I3 but not I2, J must start after I2 and

thus I1 
ontains I2. Then there is no interval interse
ting I2 but not I1, a 
ontradi
tion.

Thus interval graphs have VC-dimension at most 2, and the bound is again rea
hed with

the path on six verti
es.

• Let P = {P1, P2, P3, P4} be a shattered set of four paths of a tree T . Assume �rst that

P2, P3, P4 all interse
t P1 and 
onsider the restri
tion of T to P1, whi
h is in fa
t an interval

graph. To ensure all possible interse
tions with P1, the set {P2, P3, P4} is a shattered set

of size three in an interval graph, a 
ontradi
tion.

Thus at least one path, say P2, does not interse
t P1 and lies in a 
onne
ted 
omponent

C of the forest F = T \ P1. If P3 does not interse
t C, then there is no path interse
ting

both P2 and P3 but not P1. Thus P3 interse
ts C. If moreover P3 interse
ts P1, then no

path 
an interse
t both P1 and P2 but not P3. Thus P3 is also in
luded in C. Let P be

a path interse
ting P1, P2 and P3. Assume �rst that P interse
ts the three paths in the

order P1, P2 and P3 (the 
ase P1, P3, P2) is the same. Then no path 
an interse
t P1 and

P3 without interse
ting P2. Assume now that P interse
ts the three paths in the order

P2, P1, P3. Similarly, no path 
an interse
t P2 and P3 without interse
ting P1. Hen
e the

path P 
annot exist, a 
ontradi
tion. Finally the bound of 3 
an be rea
hed, as shown in

Figure 3.

Lemma 2.3 and Theorem 2.2 imply new lower bounds for many 
lasses: Ω(n
1
2 ) for graphs with

girth at least 5, Ω(n
1
3 ) for 
hordal bipartite graphs, Ω(n

1
3 ) for unit-disk graphs, Ω(n

1
2 ) for interval

graphs, Ω(n
1
3 ) for permutation graphs, and Ω(n

1
3 ) for undire
ted path graphs.

The exponent given by Theorem 2.2 is sharp for several 
lasses of graphs. Indeed, Fou
aud

et al. [16℄ proved that there are in�ntely many interval graphs with identifying 
odes of size
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Θ(n1/2). The bound is also tight for C4-free bipartite graphs (whi
h have girth at least 5): the

following 
onstru
tion is a C4-free bipartite graphs with an identifying 
ode of size Θ(n
1
2 ). Let

G = (X ∪ Y,E) be a bipartite graph where Y has size n, X has size

n(n−1)
2 , and edges satisfy

the following rule: for every pair u, v of verti
es of Y , there is exa
tly one vertex of X adja
ent

to both u and v. The graph G does not 
ontain any triangle (sin
e it is bipartite) nor C4 (sin
e

neighbourhoods interse
t on at most one vertex). One 
an easily 
he
k that the set Y is an

identifying 
ode of the graph. Indeed verti
es of X are adja
ent to pre
isely two neighbours on Y

and verti
es of Y have pre
isely one neighbour on Y in their 
losed neighbourhood. Finally, it is

also sharp for the 
lass of all graphs of VC-dimension at most d. Indeed, 
onsider the bipartite

graph made with a stable set A of size d and a stable set B of size

∑d
i=2

(

d
i

)

representing all the

subsets of A of size at least 2. Ea
h vertex of B is adja
ent to the verti
es of A 
orresponding to

its subset. This graph has VC-dimension d and the set A is an identifying 
ode of size of order

n1/d
.

Nevertheless, the bounds given by Theorem 2.2 are not ne
essarily tight. For instan
e, per-

mutations graphs 
an have VC-dimension 3 but Fou
aud et al. [16℄ re
ently proved that the exa
t

lower bound is Ω(n
1
2 ).

3. Inapproximability in in�nite VC-dimension. Given a minimization problem P and

a fun
tion f : N → N, a fa
tor f approximation algorithm (also 
alled an f -approximation)

is an algorithm that outputs a solution of value at most f(n) · OPT (I) for every instan
e I

of P of size n, where OPT (I) is the value of an optimal solution of I. The 
lass log-APX is

a 
lass of problems 
onsisting of all problems that admit a logarithmi
 fa
tor polynomial time

approximation algorithm. We use the AP-redu
tions introdu
ed in [9℄ whi
h have now be
ome

standard. Its de�nition restri
ted to minimization problems is de�ned as follows:

Definition 3.1 ([4℄). Let P and Q be two minimization problems. An AP-redu
tion from P

to Q is a triple (f, g, α) where

1. α is a 
onstant,

2. f maps pairs 
onsisting of an instan
e of P and a 
onstant r > 1 to instan
es of Q, and

3. g maps triples 
onsisting of a 
onstant r > 1, an instan
e IP of P and a solution to

f(IP , r) to a solution of IP
in su
h a way that

1. f(IP , r) has a solution if IP does,

2. f(·, r) and g(·, ·, r) are 
omputable in polynomial time for all �xed r, and

3. if SOLQ is a solution of f(IP , r) of size at most r · OPT (f(IP , r)), then the solution

g(f(IP , r), r, SOLQ) has size at most (1 + α(r − 1)) ·OPT (IP ).

A problem Q is log-APX-hard if any problem P in log-APX 
an be redu
ed to Q by an

AP-redu
tion.

Theorem 3.2 ([9℄). Any optimization problem P that is log-APX-hard with respe
t to AP-

redu
tion is NP-hard to approximate within a fa
tor c · log(n) where n is the size of the input, for

some 
onstant c > 0.

We show thatMin Id Code is log-APX-hard for 
lasses with in�nite VC-dimension. To prove

this result, we will prove that a 
lass with in�nite VC-dimension 
ontains either all the bipartite

graphs, or all the 
o-bipartite graphs or all the split graphs. Sin
e the problem Min Id Code

is log-APX-hard in these three 
lasses (see [14℄), it implies that it is log-APX-hard for all 
lasses

with in�nite VC-dimension.

Theorem 3.3. Let C be an hereditary 
lass. If C has in�nite VC-dimension, then C must


ontain either all the bipartite graphs, or all the 
o-bipartite graphs or all the split graphs.



IDENTIFYING CODES AND VC-DIMENSION 7

Note that this result implies the �rst part of Theorem 2.2. We say that a bipartite graph

H = (A∪B,E) is a bipartisation of G if removing all edges in A and in B in G yields H for some

partition A,B of V (G).

Lemma 3.4. For any hereditary 
lass C of graphs with in�nite VC-dimension and any bipartite

graph H, C 
ontains a graph G whose bipartisation is H.

Proof. Let H = (A ∪ B,E) be a bipartite graph with |B| ≤ |A| = k. Sin
e C has in�nite

VC-dimension, it 
ontains a graph G with a shattered set S of size (at least) ℓ = k + ⌈log(2k)⌉.
Let A′

be the �rst k verti
es in S, and let us number Y1, . . . , Y2k some 2k distin
t subsets of S \A′

(they exists sin
e |S \A′| = ⌈log(2k)⌉).

By de�nition of a shattered set, for ea
h i ∈ {1, . . . 2k} and for ea
h X ⊆ A′
there is a vertex

xi of G su
h that N [xi]∩S = X∪Yi. Thus there are 2k verti
es of G whose 
losed neighbourhoods

interse
t A′
in exa
tly X. Hen
e there are at least k su
h verti
es in V (G) \A′

. Label the verti
es

of A′
by verti
es in A, i.e. 
hoose an arbitrary bije
tion between A and A′

. Now for ea
h b ∈ B,


hoosing X = N(b) gives k verti
es in V (G) \ A′
whose 
losed neighbourhoods interse
t A′

in

exa
tly N(b). So we 
an 
hoose one "representative" for ea
h b so that all the sele
ted verti
es

are distin
t (sin
e |B| ≤ k). Note that we need k verti
es in V \ A′
sin
e up to |B| verti
es of B

may have the same neighbourhood in A.

Sin
e C is 
losed under taking indu
ed subgraphs, the subgraph of G indu
ed by A′
and the

set B′
of all 
hosen verti
es is in C. The bipartisation of this graph is H, as required.

Next we show that we 
an further restri
t H ′
and now require both sides of H ′

to be stable

sets or 
liques. For a bipartite graph H = (A ∪ B,E), write H1,0
for the graph obtained from

H by adding a 
lique on A, H0,1
the graph obtained from H by adding a 
lique on B and H1,1

the graph obtained from H by adding a 
lique on both A and B. We also write sometimes H0,0

for H. We show that, for ea
h bipartite graph H, C 
ontains one of these four graphs. To do so,

we need the 
lassi
al theorem of Erd®s and Hajnal [11℄ as well as its bipartite version by Erd®s,

Hajnal and Pa
h [12℄.

Theorem 3.5 (Erd®s, Hajnal [11℄). For every graph H, there exists a 
onstant c(H) su
h

that all graphs on n verti
es 
ontain either H as an indu
ed subgraph, a stable set of size at least

2c(H)
√
2 logn

or a 
lique of size at least 2c(H)
√
2 logn

.

Theorem 3.6 (Erd®s, Hajnal, Pa
h [12℄). Let H be a bipartite graph with vertex 
lasses U1

and U2, (k = |U1| ≤ |U2| = ℓ) and let n > ℓk+1
. Then in any bipartite graph G with vertex 
lasses

V1 and V2 (|V1| = |V2| = n) whi
h 
ontains no two subsets U1 ⊆ V1, U2 ⊆ V2 that indu
e an

isomorphi
 
opy of H, there exist V ′
1 ⊆ V1 and V ′

2 ⊆ V2 of size

⌊

(

n
ℓ

)
1
k

⌋

su
h that either all edges

between V ′
1 and V ′

2 belong to G or none of them does.

We 
ontinue with the following te
hni
al lemmata:

Lemma 3.7. For n large enough, there exists a bipartite graph G0 = (A ∪ B,E0) with 2n
verti
es (|A| = |B| = n) su
h that there is no 
omplete nor empty bipartite graphs G0[A

′∪B′] with
A′ ⊆ A and B′ ⊆ B and |A′| = |B′| = ⌊2 log n⌋.

Proof. Let us show its existen
e with a probabilisti
 argument. Let A and B be two stable sets

ea
h of size n and for every a ∈ A, b ∈ B, put the edge ab with probability

1
2 . Given two subsets

A′ ⊆ A, B′ ⊆ B with |A′| = |B′| = ⌊2 log n⌋, the probability that A′ ∪ B′
indu
es a 
omplete

bipartite graph is

(

1
2

)⌊2 logn⌋2
. The same probability holds for A′∪B′

indu
ing an empty bipartite

graph. Thus the probability that there exists a 
omplete or empty bipartite graph with ea
h part

of size 2 log n is at most
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(

n

⌊2 log n⌋

)2
2

2⌊2 logn⌋2 ≤

(

n · e

⌊2 log n⌋

)2·⌊2 logn⌋
·

2

2⌊2 logn⌋2 = 2−4 logn·log logn+O(logn)

using the inequality

(

n

l

)

≤
nl

l!
≤

(n · e

l

)l

This probability is stri
tly less than 1 for n large enough, so there exists a graph G0 =
(A ∪B,E0) for whi
h the event does not o

ur.

Lemma 3.8. Let C be an hereditary 
lass with in�nite VC-dimension. For any bipartite graph

H = (Hℓ ∪Hr, E), one of the four graphs H0,0
, H1,0

, H0,1
or H1,1

is in C.

Proof. Suppose by 
ontradi
tion that Lemma 3.8 is false for H with |Hℓ| ≤ |Hr| = k. Let

c(H) be the 
onstant from Theorem 3.5 and pi
k n large enough so that 2c(H)
√
2 logn > kk+1

,

and (2
c(H)

k

√
2 logn)/k

1
k > 2 log n and n satis�es the 
ondition of Lemma 3.7. Let G0 be a bipartite

graph as in Lemma 3.7, i.e. G0 has n verti
es on both sides and does not 
ontain a 
omplete or

an empty bipartite graph with 2 log n verti
es on ea
h side. By Lemma 3.4, C 
ontains a graph G
whose bipartisation is G0. Let A,B 
ertify this bipartisation.

Sin
e G 
ontains no 
opy of H0,0
, neither does G[A]. So by Theorem 3.5, G[A] 
ontains a


lique or stable set A′
of size at least n′ = 2c(H)

√
2 logn

. Similarly, G[B] also 
ontains a 
lique

or stable set B′
of this size. Assume that A′

and B′
indu
e stable sets (respe
tively, A′

indu
e

a stable set and B′
a 
lique

1

and A′
and B′

indu
e 
liques). By assumption, sin
e the 
lass C
is 
losed under indu
ed subgraphs, G[A′ ∪ B′] 
ontains no 
opy of H0,0

(respe
tively, H1,0
and

H1,1
). Hen
e the bipartisation of G[A′ ∪ B′] 
ontains no 
opy of H. So by Theorem 3.6 and

sin
e n′ > kk+1
, the bipartisation of G[A′ ∪ B′] 
ontains a 
omplete bipartite graph or an empty

bipartite graph where ea
h bipartition has size

(

n′

k

)
1
k

=
2

c(H)
k

√
2 logn

k
1
k

> 2 log n

whi
h is a 
ontradi
tion to G0 having no su
h subgraph.

Proof of Theorem 3.3. Let Hn be the disjoint union of every bipartite graphs of size at most n.
For every n, Lemma 3.8 ensures that Han,bn

n is in C (for some an, bn ∈ {0, 1}) and hen
e there

exist a, b ∈ {0, 1} for whi
h Ha,b
n is in C for in�nitely many values of n.

If a = b = 0, all bipartite graphs are in C; if a 6= b, all split graphs are in C and if a = b = 1,
all 
o-bipartite graphs are in C: indeed let Ha,b

be a bipartite graph on n verti
es (resp. split

graph, 
o-bipartite graph, depending on the value of a and b). Then there exists n′ ≥ n su
h that

Ha,b
n′ is in C. But Ha,b

is an indu
ed subgraph of Hn′
so Ha,b

is an indu
ed subgraph of Ha,b
n′ . The

theorem follows. �

Fou
aud [14℄ proved that Min Id Code is log-APX-hard for bipartite graphs, split graphs

and 
o-bipartite graphs. So the following is a dire
t 
orollary of Theorem 3.3.

Corollary 3.9. Min Id Code is log-APX-hard when the input graph is restri
ted to an

hereditary 
lass of graphs with in�nite VC-dimension.

1

The 
ase with A′
a 
lique and B′

a stable set is symmetri
.
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4. Inapproximability for C4-free bipartite graphs. In this se
tion, we examine the


omplexity of approximating Min Id Code in 
lasses of �nite VC-dimension. Previous results

suggest that all these 
lasses may have a 
onstant fa
tor approximation algorithm : this is the


ase for line graphs [15℄, planar graphs [29℄ or unit interval graphs (sin
e any solution has size at

least

n

2 ) for instan
e.

However, we show that this intuition is false: the 
lass C of C4-free bipartite graphs (whose

VC-dimension is bounded by 2) does not admit su
h an approximation algorithm. In fa
t, Min

Id Code in C is hard to approximate to within a c log n fa
tor (for some c > 0) in polynomial

time, unless NP ⊆ ZTIME(nO(log logn)).

Observation 4.1. The 
lass of C4-free bipartite graphs has VC-dimension at most 2.

Proof. Let G be a C4-free bipartite graph. Then it has no triangle and no C4, so we 
an apply

the result of Lemma 2.3 for graphs of girth at least 5.

We provide a polynomial time gap preserving redu
tion (in fa
t, an AP-redu
tion) from the

following minimization problem:

Problem 4.2. Set 
over with interse
tion 1 (Set Cover1)

Instan
e: A set X and a family S of subsets of X where any two sets in S interse
t in at most

one element.

Solution: A subset S′
of sets in S whose union 
ontain X.

Measure: The size of S′
.

Anil Kumar, Arya and Hariharan [2℄ have shown that this problem 
annot be approximated

to within a c log n fa
tor (for some c > 0) in polynomial time, unless NP ⊆ ZTIME(nO(log logn)).

Theorem 4.3. Min Id Code with input restri
ted to C4-free bipartite graphs 
annot be

approximated to within a c log n fa
tor (for some c > 0) in polynomial time, unless NP ⊆
ZTIME(nO(log logn)) where n is the size of the input.

To give a �avour of our redu
tion from Set Cover1 to Min Id Code, we �rst give an easier

redu
tion to the Dis
riminating 
ode problem [7℄. The Dis
riminating 
ode is often a way

to design redu
tions whi
h gives an overview of most 
ompli
ated ones for Min Id Code : indeed

a dis
riminating 
ode 
onsists in identifying verti
es of a set X using verti
es of a set Y .

Problem 4.4. Dis
riminating 
ode

Instan
e: A bipartite graph G = (X ∪ Y,E).
Solution: A subset Y ′

of Y whi
h dominates X and su
h that for every pair of verti
es x1, x2 of

X, N [x1] ∩ Y ′ 6= N [x2] ∩ Y ′
. Su
h a set is 
alled a dis
riminating 
ode.

Measure: The size of Y ′
.

Lemma 4.5. Dis
riminating 
ode with input restri
ted to C4-free bipartite graphs 
annot

be approximated to within a c log n fa
tor (for some c > 0) in polynomial time, unless NP ⊆
ZTIME(nO(log logn)).

Proof. Let ISC = (X,S) be an instan
e of Set Cover1. The proof is de
omposed into �ve

steps: 
onstru
t an instan
e IDC of dis
riminating 
ode that has polynomial size in |ISC |; 
he
k
that this instan
e is indeed a C4-free bipartite graph; for every solution of ISC , 
onstru
t a solution

of IDC ; and vi
e-versa; �nally 
he
k that if the solution of IDC is not too big with respe
t to the

optimal one, then so is the solution of ISC .
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Constru
t the instan
e of Dis
riminating Code . Let G = (X ∪ S,E) be the membership

bipartite graph of the instan
e ISC , that is to say that for every x ∈ X, s ∈ S, there is an edge

xs ∈ E if and only if x ∈ s. In the following, n denotes the size of X and we assume that n ≥ 2 and
that no s ∈ S is 
onne
ted to all ofX (meaning that the optimal solution to ISC has size at least 2).

Note that in the other 
ase, we 
an 
ompute the optimal solution in polynomial time. Moreover,

we assume that for every x ∈ X, there exists s ∈ S su
h that x belong to s, otherwise there is

no solution. The following 
onstru
tion is illustrated on Figure 4. Let G1, . . . , Gℓ be ℓ = 2n2 − 1
disjoint 
opies of G. Denote by Xi ∪ Si the i-th 
opy of X ∪ S. Let X ′

1 and X ′
2 be 
opies of X.

For ea
h x′′ ∈ X ′
2, add an edge between x′′

and its 
opy x′
in X ′

1, and add edges between x′′
and

its 
opies in all Gi for i ≤ ℓ. In other words, G[Xi ∪X ′
2] indu
es a mat
hing for every i. Let GDC

be this bipartite graph with parts XDC = X1∪ ...∪Xℓ ∪X ′
1 and YDC = S1∪ ...∪Sℓ ∪X ′

2. Clearly,

the size of IDC is polynomial in n an thus in the size of ISC .

Che
k that the instan
e is C4-free. First note that the initial graph G is C4-free. Indeed every

C4 must have two verti
es in S and two verti
es in C, a 
ontradi
tion sin
e the neighbourhoods

of two verti
es of S interse
t on at most one vertex. Further, the graph GDC is C4-free. Indeed,

no C4 
an 
ontain two verti
es of S1 ∪ · · · ∪ Sl sin
e any vertex s ∈ Si only has neighbours in Xi,

and GDC [Xi ∪ Si] is a 
opy of the C4-free graph G. Moreover, two verti
es x′′ ∈ X ′
2 and s ∈ Si

have at most one 
ommon neighbour xi ∈ Xi, the 
opy of x′′
. Finally, ea
h pair of verti
es of X ′

2

have disjoint neighbourhoods. Thus no vertex 
an be part of a C4.

Transforming a solution of ISC into a solution of IDC . Let D be a set 
over of S of size

SOLSC . Constru
t C as the union of ℓ 
opies of D (one for ea
h Gi), and �nally add X ′
2. Then C

is dominating XDC sin
e X ′
2 is, moreover C is separating all the pair of verti
es of XDC . Indeed,

two verti
es xi, yj inherited from two di�erent elements x, y ∈ X are separated by x′′ ∈ X ′
2, the


opy of x in X ′
2. Two verti
es xi ∈ Xi, xj ∈ Xj with i 6= j, or two verti
es xi ∈ Xi, x

′ ∈ X ′
1

inherited from the same element x ∈ X are separated by a neighbour si ∈ Si of xi, where si is the
i-th 
opy of an element s ∈ D 
ontaining x. Consequently, C is indeed a dis
riminating 
ode. For

later use, observe that if D is the optimal solution of Set Cover1 of size OPTSC , we 
an derive

OPTDC ≤ n+ ℓ ·OPTSC .

Transforming a solution of IDC into a solution of ISC . Let C be a solution of IDC of size

SOLDC . We 
onstru
t a set 
over 
andidate D1 = S1∩C. Every vertex x1 ∈ X1 is dominated and

separated from its 
opy x′
in X ′

1, and x′′ ∈ X ′
2 
annot a
hieve this goal, thus there exists s ∈ S1∩C

whi
h is linked to x1. Thus D1 is a set 
over. The same 
an be done for ea
h i ≤ ℓ, and we 
hoose

D as the minimum size su
h 
onstru
ted set 
over. For later use, observe that X ′
2 ⊆ C sin
e X ′

1

is dominated. Consequently if SOLSC is the size of D, we have |X ′
2| + ℓ · SOLSC ≤ SOLDC or

equivalently SOLSC ≤ SOLDC−n
ℓ

.

Con
luding on the size of the solutions. Now suppose that we 
an obtain a solution SOLDC

of Dis
riminating Code satisfying SOLDC ≤ r ·OPTDC for some value r. The above dis
ussion
gives

SOLSC ≤
SOLDC − n

ℓ
≤

r ·OPTDC − n

ℓ
≤

r(n+ ℓ ·OPTSC)− n

ℓ
≤ 2r ·OPTSC

In parti
ular if r = c′ log n for some well-
hosen 
onstant c′, we obtain a 
ontradi
tion with

Set Cover1 approximation hardness.

Let us now adapt this redu
tion into a redu
tion to identifying 
odes.

Proof of Theorem 4.3. Let ISC be an instan
e of Set Cover1.
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X1 S1

X2 S2

X
′

1
X

′

2

. . . . . .

Fig. 4. Constru
tion of the proof of Lemma 4.5.

Constru
t the instan
e of Min Id Code. First 
onstru
t the same graph GDC as in the proof

of Lemma 4.5. Now for identifying 
odes, we need to identify verti
es in both sides and not only

on the side of XDC . For that, we add to GDC a set Z = {z1, . . . , z2n2} in part XDC . We have

to be 
areful when we 
onne
t the verti
es of Z to the verti
es of the graph sin
e we do not want

to 
reate a C4. We aim at 
hoosing edges between Z and S1 ∪ ... ∪ Sℓ su
h that ea
h vertex

s ∈ S1 ∪ ... ∪ Sℓ is adja
ent to exa
tly two verti
es of Z, and no two verti
es s, s′ ∈ Si share a

neighbour in Z. The following 
laim (whose proof is postponed at the end of the se
tion) rea
hes

the goal:

Claim 4.6. There exists a numbering of the verti
es in S1 ∪ ... ∪ Sℓ su
h that:

• Ea
h vertex s ∈ S1 ∪ ... ∪ Sℓ is numbered si,j with i < j ∈ {1, . . . , 2n2}, where the pair

{i, j} is distin
t for every vertex.

• Two verti
es sj,k and sj′,k′

annot both belong to the same set Si if one of j, k is equal to

one of j′, k′.

Using the numbering of the 
laim, we just have to add the edges zksk,l and zlsk,l for every

k, l ∈ {1, . . . , 2n2}. Note that every vertex of Si is 
onne
ted to pre
isely two verti
es of Z, and

that every vertex z ∈ Z has at most one neighbour in ea
h Si. Let GIC be this new graph. It has

polynomial size in n.

Che
k that the instan
e is C4-free. Sin
e we only add edges from Z ⊂ XDC to S1 ∪ · · · ∪ Sℓ ⊂
YDC , the graph is indeed bipartite. Sin
e GDC was C4-free, any hypotheti
al C4 must interse
t

Z, say in zk ∈ Z. zk share with any zl ∈ Z at most one 
ommon neighbour sk,l, so the C4 must

interse
t Xi for some i, or X ′
1. On the one hand, verti
es in X ′

1 have degree one. On the other

hand, xi only has neighbours in Si, and zk has one only neighbour in ea
h Si, so they 
annot be

in the same C4.

Transforming a solution of ISC into a solution of IIC . A set C 
ontaining X1 ∪X ′
2 ∪ Z is a

good 
andidate to be an identifying 
ode be
ause it has the following properties:

• For every zk ∈ Z, zk is identi�ed by zk being the only vertex of Z ∩N [zk] ∩ C.

• For every 
opy x′′ ∈ X ′
2 of an element x ∈ X, x′′

is dominated by {x′′, x1} in C a where

x1 ∈ X1 is the 
opy of x. Thus it is separated from all the other verti
es ex
ept maybe

x1.

• For every sk,l ∈ S1 ∪ . . . ∪ Sℓ, sk,l is identi�ed by {zk, zl}.
• For every x′ ∈ X ′

1, x
′
is dominated by x′′ ∈ X ′

2.

• For every xi ∈ Xi, xi is dominated by x′′ ∈ X ′
2
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Thus C is a dominating set, and the only sets of verti
es that may be not separated are of the

form {x′} ∪ {x2, . . . , xℓ} and {x′′, x1} for any element x ∈ X.

Let D be a set 
over of the initial instan
e and D1, ..., Dℓ be the respe
tive 
opies in the graphs

Gi. Then C = D1 ∪ ... ∪ Dℓ ∪ X1 ∪ X ′
2 ∪ Z is an identifying 
ode of GIC . Indeed, every vertex

xi is separated from x′
, x′′

and xj (i 6= j) by the element of Si that 
overs it in the set 
over

Di. Hen
e any solution for Set Cover1 of size SOLSC gives a solution for Min Id Code of size

SOLIC = ℓ · SOLSC + 2n+ 2n2
. In parti
ular OPTIC ≤ ℓ ·OPTSC + 2n+ 2n2

.

Transforming a solution of IIC into a solution of ISC . Let C be an identifying 
ode of GIC .

We de�ne Di = C ∩ Si as a set 
over 
andidate. Unfortunately, Di may not be a set 
over, in

whi
h 
ase we iteratively modify C until all Di meet the 
ondition, starting with D1. If Di is not

a set 
over of Xi, then there is a vertex xi not 
overed. This vertex must be separated with its


opy x′
in X ′

1, hen
e xi (
ase 1) or x
′
(
ase 2) must belong to C (if both o

ur, 
ase 1 has priority

on 
ase 2). Then 
hoose any neighbour s ∈ Si of xi, add this vertex to C and remove xi (in 
ase

1) or x′
(in 
ase 2). We thus get a new set C ′

and 
laim that C ′ ∪ Z ∪X1 ∪X ′
2 is an identifying


ode. Thanks to the above dis
ussion, we just have to show that the sets {x′} ∪ {x2, . . . , xℓ} and

{x′′, x1} are separated.

Observe �rst that xi is now separated from x′
and from xj by s for j 6= i. Moreover, sin
e

C was separating xj1 from xj2 for j1, j2 6= i, then C ′
still does (be
ause nothing 
hanged in their

neighbourhood). We also have C ′
that separates x′

from xj for j 6= i: the vertex separating those

two verti
es was not xi, so in 
ase 1 it still belongs to C ′
. In 
ase 2, we have removed x′

but then

xi was not in C, and C was separating xi and xj so there exists a vertex in (N [xj ] \ {x
′}) ∩ C,

and this vertex separates xj from x′
in C ′

. Finally, C ′
separates x1 from x′′

sin
e we have started

the pro
ess with D1, hen
e C ′ ∩ S1 dominates x1.

Therefore we 
an assume that all the sets C ′ ∩ Si are set 
overs where C ′
has size at most

|C| + 2n + 2n2
. Sin
e there are at most |C| verti
es of C ′

whi
h are in S1 ∪ . . . ∪ Sℓ, it means

that an identifying 
ode with |C| = SOLIC verti
es of GIC gives a solution of set 
over with

SOLSC ≤ SOLIC

ℓ
verti
es.

Con
luding on the size of the solutions. Assume now that SOLIC ≤ r ·OPTIC for some value

r, then:

SOLSC ≤
SOLIC

ℓ
≤

r ·OPTIC

ℓ
≤

r((2n2 − 1)OPTSC + 2n+ 2n2)

2n2 − 1
≤ 2r ·OPTSC

As before for dis
riminating 
odes, it a
hieves the proof of Theorem 4.3. �

An edge 
olouring of a graph with k 
olours is a fun
tion c : E → {1, . . . , k} su
h that no two

edges sharing an endpoint are given the same 
olour, that is c(uv) 6= c(uv′) for every pair of edges

uv, uv′.

Proof of Claim 4.6. We �rst need to 
onvin
e ourselves that |S| ≤ n2
in the instan
e (X,S) of Set

Cover1. Indeed every pair of elements of X appears in at most one s ∈ S, thus |S| ≤ n(n+1)
2 ≤ n2

(one for ea
h pair plus n additional singletons).

Now the idea of the proof is the following: we will represent our problem using a 
lique on

2n2
verti
es. The verti
es of the 
lique represent verti
es of Z and edges of the 
lique represent

verti
es of S1 ∪ · · · ∪ Sℓ.

The edges of K2n2

an be partitioned into 2n2 − 1 perfe
t mat
hings, or equivalently there

exists an edge 
olouring c of K2n2
with 2n2 − 1 
olours su
h that ea
h 
olour 
lass 
ontain n2

edges. Then label the verti
es by {z1, . . . , z2n2} and 
reate a set S′ = S′
1∪· · ·∪S′

2n2−1 of elements

sj,k with j, k ∈ N a

ording to the following rule:

S′
i = {sj,k|c(zjzk) = i} for every i ∈ {1, . . . 2n2 − 1}
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Observe that |S′
i| = n2

. Sin
e a 
olour 
lass is a mat
hing, the indi
es of every pair of edges in a

same 
olour 
lass are pairwise distin
t. In other words, there 
annot be two verti
es sj,k and sj′,k′

in the same set S′
i if one of j, k is equal to one of j′, k′. Now 
hoose arbitrarily |S| ≤ n2

verti
es

in S′
i to form Si. �

5. Constant approximation algorithm for interval graphs. We now fo
us on the 
lass

of interval graphs and provide a 
onstant fa
tor approximation algorithm for Min Id Code via a

linear programming approa
h. More pre
isely we show that Min Id Code has a 6-approximation

algorithm. The existen
e of a 
onstant approximation algorithm was left open in [14℄.

Let us re
all that an interval graph is a graph whi
h 
an be represented as an interse
tion of

segments in the real line. We put an arbitrary order on the real line. The begin date of an interval

x is the �rst point p of the real line (in the order) su
h that p ∈ x. The end date of x is the last

point whi
h is in x. By abuse of notations, we will denote by v both the vertex of the graph and

the interval in the representation on the real line. Note that there exist many representations as

interse
tions of segments for a same interval graphs, we 
hoose arbitrarily one of them whi
h 
an

be found in linear time [5℄.

Let G be an interval graph together with an interval representation. We denote its vertex

set by {1, . . . , n} and U ▽ U ′
stands for the symmetri
 di�eren
e of U and U ′

for U,U ′ ⊆ V .

Let us express Min Id Code in terms of an integer program P , where xi is the de
ision variable


orresponding to vertex i:

Integer program P

Obje
tive fun
tion: min
∑

i∈V

xi

Separation 
onstraint:

∑

i∈N [j]▽N [k]

xi ≥ 1 ∀j 6= k ∈ V

Domination 
onstraint:

∑

i∈N [j]

xi ≥ 1 ∀j ∈ V

Integrality : xi ∈ {0, 1} ∀i ∈ V

Let us denote by P ∗
the linear programming relaxation of P , where the integrality 
onstraint

is repla
ed by a non-negativity 
onstraint xi ≥ 0, ∀i ∈ V . Re
all that even if an integer linear

program 
annot be solved in polynomial time, its fra
tional relaxation 
an on the 
ontrary be

solved, using for instan
e the ellipsoid method. Our goal is to 
onstru
t a feasible solution for P
of value at most 6 ·OPT (P ∗). To a
hieve this goal, we de
ompose P into two subproblems:

Pinter

min
∑

i∈V

xi

∀jk ∈ E
∑

i∈N [j]▽N [k]

xi ≥ 1

(Separation 
onstraints for interse
ting

pairs)

xi ∈ {0, 1} ∀i ∈ V

Pdisj

min
∑

i∈V

xi

∀jk /∈ E
∑

i∈N [j]▽N [k]

xi ≥ 1

(Separation 
onstraints for non-interse
ting

pairs)

∑

i∈N [j]

xi ≥ 1 ∀j ∈ V (Domination 
onstraints)

xi ∈ {0, 1} ∀i ∈ V

The reason why interse
ting intervals play a spe
ial role is that the symmetri
 di�eren
e of

N [j] and N [k] 
an be expressed in some sense by an union of 2 intervals whi
h greatly helps. We

denote by P ∗
inter (resp. P ∗

disj) the linear programming relaxation of Pinter (resp. Pdisj).
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Left

Rightj

k

Left Right

j

k

Fig. 5. Given two interse
ting intervals j and k, one 
an 
onstru
t two areas Left and Right partitioning

N [j] ▽ N [k] between Ljk the set of intervals that end in Left, and Rjk the set of intervals that begin in Right.

This �gure shows how to �nd Left and Right depending on the 
on�guration of j and k: either one is in
luded in

the other, or not.

Lemma 5.1. Given an optimal solution (x∗
1, . . . , x

∗
n) of P

∗
inter of 
ost OPT (P ∗

inter), there exists

a polynomial time algorithm that 
omputes a solution of Pinter of value at most 4 ·OPT (P ∗
inter).

Proof. We follow the ideas of the proof of [18℄ where the problem is translated in terms of

Re
tangle Stabbing Problem. Note that our problem 
an also be viewed as the transversal of

2-intervals (union of 2 intervals) and, in this respe
t, topologi
al bounds 
an be found in [20℄, even

if this does not provide an approximation algorithm.

Le x∗ = (x∗
1, . . . , x

∗
n) be an optimal solution of P ∗

inter. For every jk ∈ E, Figure 5 shows how

to partition N [j]▽N [k] into two parts Ljk (stands for Left) and Rjk (stands for Right). The set

Ljk is 
omposed of the intervals that end between the begin dates of j and k, and Rjk is 
omposed

of the intervals that begin between the end dates of j and k. Ljk and Rjk are obviously disjoint

subsets.

Let us now de�ne two subsets of verti
es L and R as follows:

L =







jk ∈ E
∑

i∈Ljk

x∗
i ≥

1

2







and R =







jk ∈ E
∑

i∈Rjk

x∗
i ≥

1

2







Sin
e all the 
onstraints of P ∗
inter are satis�ed by (x∗

1, . . . , x
∗
n) and sin
e for every edge jk, we

have Ljk ∪Rjk = N [j]▽N [k], all the edges are in L or in R (they 
an be in both of them). Based

on this, we de�ne now the following two integer linear programs:

PL

min
∑

i∈V

xi

∀jk ∈ L
∑

i∈Ljk

xi ≥ 1

xi ∈ {0, 1} ∀i ∈ V

PR

min
∑

i∈V

xi

∀jk ∈ R
∑

i∈Rjk

xi ≥ 1

xi ∈ {0, 1} ∀i ∈ V

A

ording to the previous notations, we denote by P ∗
L (resp. P ∗

R) the linear programming

relaxation of PL (resp. PR). Consider now the 0/1 matrix M obtained from P ∗
L, where ea
h row

represents an edge jk ∈ L, ea
h 
olumn represents a vertex i ∈ V , and Mjk,i = 1 if i ∈ Ljk,

0 otherwise. By sorting the verti
es of V (and thus, the 
olumns of the matrix) by interval

end date, the 1's on ea
h row be
ome 
onse
utive. Indeed the 1's on the line of the 
onstraint jk

orrespond to intervals that end between the begin dates of j and k whi
h are obviously 
onse
utive

if we sort the intervals by end date. A matrix whi
h has 
onse
utive 1's on ea
h row is said to

have the interval property. Su
h a matrix is totally unimodular (whi
h means that all the squared

determinants of the matrix have values −1, 0 or 1) and this implies that there is an optimal solution

of P ∗
L where all the variables are integer. In parti
ular, OPT (P ∗

L) = OPT (PL). (See [25, 31℄ for

more details about totally unimodular matri
es and their use in linear programming.)
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The same holds for P ∗
R by sorting verti
es by interval begin date. Solving P ∗

L and P ∗
R 
an be

done in polynomial time, this gives us integer solutions (xL
1 , . . . , x

L
n) for P

∗
L and (xR

1 , . . . , x
R
n ) for

P ∗
R and setting xi = xL

i +xR
i builds a feasible solution for Pinter of obje
tive value SOL(Pinter) =

OPT (P ∗
L)+OPT (P ∗

R). Observe now that (2x∗
1, . . . , 2x

∗
n) is a feasible solution for both P ∗

L and P ∗
R

so OPT (P ∗
L) ≤ 2 · OPT (P ∗

inter) and OPT (P ∗
R) ≤ 2 · OPT (P ∗

inter). This 
on
ludes the proof by

SOL(Pinter) ≤ 4 ·OPT (P ∗
inter).

Let us now fo
us on the se
ond subproblem:

Lemma 5.2. Given the interval representation of G, one 
an 
ompute in polynomial time a

feasible solution for Pdisj of size at most 2 ·OPT (P ∗
disj).

Proof. We 
onstru
t a set S of intervals in the following way. Initially, set S = ∅. While V
is not empty, do the following: sele
t the interval v that ends �rst ; put it in S and remove N [v]
from V . On
e V is empty, output S.

Observe that this algorithm 
ompute a maximal (with respe
t to in
lusion) independent set S
with the property that for every vertex v ∈ V , there exists s ∈ S su
h that the end date of s is in

the interval v (s is the vertex sele
ted at the same step as v was deleted). We now 
laim that on

the one hand, S is a feasible solution for Pdisj and on the other hand that |S| ≤ 2 ·OPT (P ∗
disj).

Let j < k ∈ V, jk /∈ E. Up to symmetry, suppose that the interval j starts before k (and

thus, ends before k starts). Then there exists s ∈ S su
h that the end date of s is in j, implying

s ∈ N [j] \ N [k]. As a maximal independent set, S is also a dominating set so S is a feasible

solution for Pdisj with obje
tive value α ∈ N.

Let us number {s1, . . . , sα} the elements of S by order of interval end date. Then observe

that for every i ∈ V , there exist at most two distin
t indi
es j su
h that i is in N [sj ]▽N [sj+1].
Indeed, this happens if and only if i begins between the end date of sj and the end date of sj+1, or

i ends between the begin date of sj and the begin date of sj+1. Then 
onsider an optimal solution

(x∗
1, . . . , x

∗
n) of P

∗
disj , we 
an derive:

2 ·OPT (P ∗
disj) =

∑

i∈V

2 · x∗
i ≥

α
∑

j=1

∑

i∈N [sj ]▽N [sj+1]

x∗
i ≥ α .

Theorem 5.3. There exists a polynomial time 6-approximation algorithm for Min Id Code

on interval graphs.

Proof. By Lemmata 5.1 and 5.2, we 
an 
onstru
t in polynomial time a solution Sinter for

Pinter and a solution Sdisj for Pdisj of 
ost respe
tively at most 4·OPT (P ∗
inter) and 2·OPT (P ∗

disj).
The set Sinter ∪ Sdisj gives a feasible solution for P of 
ost at most 6 · OPT (P ∗) thus as most

6 · OPT (P ). Algorithm 1 sums up the di�erent steps of the approximation algorithm. One 
an


he
k that this algorithm runs in polynomial time sin
e 
omputing an interval representation of

an interval graph 
an be done in linear time [5℄ and solving a linear programming relaxation 
an

also be done in polynomial time using the ellipsoid method for instan
e.

Observe that the bound on the 
ost of the solution is in fa
t 6 · OPT (P ∗) whi
h is slightly

tighter than 6 ·OPT (P ).
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