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Abstract

An identifying code of a graph is a subset of its vertices such that every vertex of

the graph is uniquely identi�ed by the set of its neighbours within the code. We show

a dichotomy for the size of the smallest identifying code in classes of graphs closed

under induced subgraphs. Our dichotomy is derived from the VC-dimension of the

considered class C, that is the maximum VC-dimension over the hypergraphs formed

by the closed neighbourhoods of elements of C. We show that hereditary classes

with in�nite VC-dimension have in�nitely many graphs with an identifying code of

size logarithmic in the number of vertices while classes with �nite VC-dimension have

a polynomial lower bound.

We then turn to approximation algorithms. We show that Min Id Code (the

problem of �nding a smallest identifying code in a given graph from some class C)
is log-APX-hard for any hereditary class of in�nite VC-dimension. For hereditary

classes of �nite VC-dimension, the only known previous results show that we can

approximate Min Id Code within a constant factor in some particular classes, e.g.

line graphs, planar graphs and unit interval graphs. We prove that Min Id Code

can be approximate within a factor 6 for interval graphs. In contrast, we show that

Min Id Code on C4-free bipartite graphs (a class of �nite VC-dimension) cannot be

approximated to within a factor of c log(|V |) for some c > 0.

∗Partially supported by ANR Project Stint under Contract ANR-13-BS02-0007.
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1 Introduction

Let G = (V,E) be a graph. An identifying code of G is a subset C of vertices of G such that,
for each vertex v ∈ V , the set of vertices in C at distance at most 1 from v, is non-empty
and uniquely identi�es v. In other words, for each vertex v ∈ V (G), we have N [v]∩C 6= ∅
(C is a dominating set) and for each pair u, v ∈ V (G), we have N [u] ∩ C 6= N [v] ∩ C (C
is a separating set), where N [v] denotes the closed neighbourhood of v in G (v and all its
neighbours). We say that a set X of vertices distinguishes u ∈ V (G) from v ∈ V (G) if
N [u] ∩X 6= N [v] ∩X. This concept was introduced in 1998 by Karpovsky, Chakrabarty
and Levitin [19] and has applications in various areas such as fault-diagnosis [19], routing
in networks [21] or analysis of RNA structures [17]. For a complete survey on these results,
the reader is referred to the online bibliography of Lobstein [22].

Two vertices u and v are twins if N [u] = N [v]. The whole vertex set V (G) is an
identifying code if and only if G is twin-free. Since supersets of identifying codes are
identifying, an identifying code exists for G if and only if it is twin-free. A natural problem
in the study of identifying codes is to �nd one of a minimum size. Given a twin-free graph
G, the smallest size of an identifying code of G is called the identifying code number of G
and is denoted by γID(G). The problem of determining γID is called the Min Id Code

problem, and its decision version is NP-complete [8].
Let X ⊆ V . We denote by G[X] the graph induced by the subset of vertices X. In

this paper, we focus on hereditary classes of graphs, that is classes closed under taking
induced subgraphs. We consider the two following problems: �nding good lower bounds
and approximation algorithms for the identifying code number.

1.1 Previous work

In the class of all graphs, the best lower bound is γID(G) ≥ log(|V (G)| + 1), since all the
vertices of the graphs have distinct non-empty neighbourhood within the code. Moncel [25]
characterized all graphs reaching this lower bound. As for approximation algorithms, the
general problem Min Id Code is known to be log-APX-hard [20, 21, 30]. In particular,
there is no (1 − ε) log(|V |)-approximation algorithm for Min Id Code. The problem
Min Id Code remains log-APX-hard even in split graphs, bipartite graphs or co-bipartite
graphs (complement of bipartite graphs) [13].

On the positive side, there always exists a O(log |V (G)|) approximation for Min Id

Code [30]. Moreover, even if in the general case Min Id Code is hard to evaluate, there
exist several constant approximation algorithms for restricted classes of graphs, such as
planar graphs [26] or line graphs [14].

For the remainder of this article, n denotes the number of vertices of G. Table 1 gives
an overview of the currently known results for some restricted hereditary classes of graphs.
The order of magnitude of all lower bounds are best possible (there are in�nite families of
graphs reaching the lower bounds). Min Id Code for line graphs and planar graphs have
a polynomial time constant factor approximation algorithm with the best known constant
written in parenthesis. From this table, we observe two behaviours: a class either
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1. has a logarithmic lower bound on the size of identifying codes, and Min Id Code is
log-APX-hard in this class (for example split, bipartite, co-bipartite graphs), or

2. there is a polynomial lower-bound on γID(G) and a constant factor approximation
algorithm to compute γID(G).

Graph class Lower bound Complexity Approximability References

All graphs Θ(log(n)) NP-c log-APX-hard [19, 20]
Chordal Θ(log(n)) NP-c log-APX-hard [13]

Split graphs Θ(log(n)) NP-c log-APX-hard [13]
Bipartite Θ(log(n)) NP-c log-APX-hard [13]

Co-bipartite Θ(log(n)) NP-c log-APX-hard [13]
Claw-free Θ(log(n)) NP-c log-APX-hard [13]

Interval Θ(n1/2) NP-c open [15]
Unit interval Θ(n) open PTAS [12, 15]

Permutation Θ(n1/2) NP-c open [15]

Line graphs Θ(n1/2) NP-c APX(4) [14]
Planar Θ(n) NP-c APX(7) [3, 26]

Table 1: Known lower bounds on γID(G) and approximability of γID(G).

1.2 Our results

The aim of this paper is to shed some light on the validity of such a dichotomy for all
classes of graphs using the VC-dimension of the class of graphs.

VC-dimension LetH = (V, E) be a hypergraph. A subset X ⊆ V of vertices is shattered
if for every subset S of X, there is some hyperedge e such that e ∩ X = S. The VC-
dimension of H is the size of the largest shattered set of H. We de�ne the VC-dimension
of a graph as the VC-dimension of the closed neighbourhood hypergraph of G (vertices
are the vertices of G and hyperedges are the closed neighbourhoods of vertices of G), a
classical way to de�ne the VC-dimension of a graph (see [1, 6]).

By a shattered set of a graph G, we mean a shattered set of the hypergraph of the closed
neighbourhoods of G. The VC-dimension of a class of graphs C, denoted by dim(C), is the
maximum of the VC-dimension of the graphs over C. If it is unbounded, we say that C has
in�nite VC-dimension.

Dichotomy for lower bounds First we will prove in Section 2 that there is indeed such
a dichotomy on the minimum size of identifying codes: it is always either logarithmic or
polynomial, where the exponent of the polynomial depends on the VC-dimension of the
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Graph class VC dim IC-lower bound IC-approx

Girth ≥ 5 2 Θ(n
1
2 ) (opt,new) open

Interval 2 Θ(n
1
2 ) (opt) 6 (Thm. 21)

Chordal bipartite 3 Ω(n
1
3 ) (new) open

Unit disk 3 Ω(n
1
3 ) (new) open

C4-free bipartite 2 Θ(n
1
2 ) (opt,new) no c log(n)-approx (Thm. 15)

Undirected path 3 Ω(n
1
3 )(new) open

Table 2: Overview of the results obtained in this paper.

class of graphs. In particular, our theorem provides new lower bounds for graphs of girth at
least 5, chordal bipartite graphs, unit disk graphs and undirected path graphs. Moreover,
these bounds are tight for interval graphs and graphs of girth at least 5.

Approximation hardness We then try to extend this dichotomy result for constant
factor approximations. First, we show in Section 3 that Min Id Code is log-APX-hard
for any hereditary class with a logarithmic lower bound. The proof essentially consists
in proving that a hereditary class with in�nite VC-dimension contains one of these three
classes, for which Min Id Code has been shown to be log-APX-hard [13]: the bipartite
graphs, the co-bipartite graphs, or the split graphs. Unfortunately, the dichotomy does
not extend to approximation since we show in Section 4 that C4-free bipartite graphs
have a polynomial lower bound on the size of identifying codes but Min Id Code is not
approximable to within a factor c log n for some c > 0 (under some complexity assumption)
in this class. Thus, a constant factor approximation is not always possible in the second
case.

Approximation algorithm Finally, in Section 5, we conclude the paper with some
positive result when the lower bound is polynomial by proving that there exists a 6-
approximation algorithm for interval graphs, a problem left open in [13].

The results obtained in this paper are detailed in Table 2.

2 Dichotomy for lower bound

Most of the results using VC-dimension consist in obtaining upper bounds. However, in the
last few years, several interesting lower bounds have been obtained using VC-dimension,
for instance in game theory (e.g. [?, ?]). All these proofs consist in an application of a
lemma, due to Sauer [27] and Shellah [29], or one of its variants. Our result has the same
�avour since we use this lemma to prove that the size of an identifying code cannot be too
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small if the VC-dimension is bounded. The trace of a set X on Y is X ∩ Y . By extension,
the trace of a vertex x on Y is the intersection of N [x] with Y .

Lemma 1 (Sauer's lemma [27, 29]). Let H = (V, E) be an hypergraph of VC-dimension d.
For every set X ⊆ V , the number of (distinct) traces of E on X is at most

d∑
i=0

(|X|
i

)
≤ |X|d + 1.

Let us now prove the main result of this section.

Theorem 2. For every hereditary class of graphs C, either
1. for every k ∈ N, there exists a graph Gk ∈ C with more than 2k − 1 vertices and an

identifying code of size 2k, or

2. there exists ε > 0 such that no twin-free graph G ∈ C with n vertices has an identifying
code of size smaller than nε.

Proof. Let C be an hereditary class of graphs. The class C either has �nite or in�nite VC-
dimension. First, suppose that C has in�nite VC-dimension. We will show that C satis�es
the �rst conclusion. By de�nition of in�nite VC-dimension, there is a graph Hk ∈ C with
VC-dimension k for each k. So there exists a set of vertices X of size k of Hk which is
shattered. Let Y be a set of 2k − 1 vertices whose closed neighbourhoods have all possible
traces on X except the empty set, meaning that for every X ′ ⊆ X, add a vertex y in Y
such that N [y] ∩X = X ′. Choose Y so that |X ∩ Y | is maximized. Let Gk = Hk[X ∪ Y ].
The graph Gk has at least 2k− 1 vertices since |Y | = 2k− 1. By choice of Y , X dominates
X ∪ Y and X distinguishes every pair of vertices of Y . By maximality of |X ∩ Y |, X also
distinguishes every vertex in X from every vertex in Y (otherwise a vertex of Y would
have the same neighbourhood in X as a vertex x ∈ X and thus can be replaced by x,
contradicting the maximality of |X ∩Y |). For each x ∈ X, the vertex yx ∈ Y whose closed
neighbourhood intersects X in exactly {x} distinguishes x from all vertices in X − x. So
X ∪ {yx|x ∈ X} is an identifying code of size at most 2k, as required.

Now suppose that the VC-dimension of C is bounded by d. For any identifying code
C of a twin-free graph G ∈ C, the traces of vertices of G on C are di�erent. Hence, by
Lemma 1, n ≤ ∑d

i=0

(|C|
i

)
≤ |C|d + 1. Therefore, |C| ≥ (n − 1)

1
d , proving that C satis�es

the second claim. �

The proof gives in fact the lower bound γID(G) ∈ Ω(n
1

dim(C) ) for the second item. So if
we can bound the VC-dimension of the class, then we immediately obtain lower bounds on
the size of identifying codes. Lemma 3 provides such bounds for several classes of graphs.

Let us give some de�nitions. The girth of a graph is the length of a shortest cycle.
A chordal bipartite graph is a bipartite graph without induced cycle of length at least 6.
A unit disk graph is a graph of intersection of unit disks in the plane. An interval graph
is a graph of intersection of segments on a line. An undirected path graph is a graph of
vertex-intersection of paths in an undirected tree (i.e. two vertices are adjacent if their
corresponding paths have at least one vertex in common).
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x1 x2

x3

Figure 1: The set x1, x2, x3 is shattered
in this chordal bipartite graph.

Figure 2: A set of three vertices shat-
tered by disks in the plane.

Lemma 3. The following upper bounds hold and are tight:

• The VC-dimension of graphs of girth at least 5 is at most 2.

• The VC-dimension of chordal bipartite graphs is at most 3.

• The VC-dimension of unit disk graphs is at most 3.

• The VC-dimension of interval graphs is at most 2.

• The VC-dimension of undirected path graphs is at most 3.

Proof.

• Let G be a graph of girth at least 5. Assume by contradiction that a set {x1, x2, x3} of
three vertices is shattered. Since the girth is at least 5, x1x2x3 is not a clique. We may
assume without loss of generality that x1 and x2 are not adjacent. Since {x1, x2, x3}
is shattered, there is a vertex y1 adjacent to both x1 and x2 and not x3 (one closed
neighbourhood must have trace {x1, x2} on {x1, x2, x3}) and a vertex y2 adjacent to
{x1, x2, x3} (one closed neighbourhood must have trace {x1, x2, x3}). Note that both
y1 and y2 are distinct from x1 and x2 since x1 and x2 are not adjacent. Moreover y1
and y2 are distinct since they do not have the same neighbourhood in {x1, x2, x3}.
So x1y1x2y2x1 is a cycle of length 4, a contradiction with the girth assumption.
This bound is tight, for instance with the path on six vertices.

• Let G = (A ∪ B,E) be a chordal bipartite graph. Assume by contradiction that
{x1, x2, x3, x4} is a shattered set of four vertices. Since there is a vertex whose closed
neighbourhood contains the whole set of vertices, it means that at least three vertices,
say x1, x2, x3 are on the same side of the bipartite graph. Since a subset of a shattered
set is shattered, {x1, x2, x3} is shattered. Thus there is a vertex incident to x1, x2
and not x3, a vertex incident to x1, x3 and not x2, and a vertex incident to x2, x3 and
not x1. It provides an induced cycle of length 6, a contradiction.
Moreover the bound is tight, see Figure 1.
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P1

P2 P3

Figure 3: Paths P1, P2, P3 are shattered by the eight points which are paths of length 0.

• Let G be a unit disk graph. Let us rephrase the adjacency and shattering conditions
in this class: let x1 and x2 be any two vertices of a unit disk graph and denote by c1
and c2 their respective centers in a representation of the unit disk graph in the plane.
The vertices x1 and x2 are adjacent if and only if c1 and c2 are at distance at most 2.
Thus if a set of unit disks is shattered then for every subset of centers, there exists a
point at distance at most 2 from these centers and more than 2 from the others. In
other words, there exist points in all possible intersections of balls of radius 2.
A classical result ensures that the VC-dimension of a hypergraph whose hyperedges
can be represented as a set of disks in the plane (and vertices as points of the plane)
has VC-dimension at most 3 (see [24] for instance). Thus unit disk graphs have
VC-dimension at most 3, and the bound can be reached (see Figure 2).

• Let G be an interval graph. Assume by contradiction that there is a shattered set
{I1, I2, I3} of G. Assume that I1 starts before I2 and that I2 starts before I3. Since
there is an interval J intersecting both I1 and I3 but not I2, J must start after
I2 and thus I1 contains I2. Then there is no interval intersecting I2 but not I1, a
contradiction. Thus interval graphs have VC-dimension at most 2, and the bound is
again reached with the path on six vertices.

• Let P = {P1, P2, P3, P4} be a shattered set of four paths of a tree T . Assume �rst
that P2, P3, P4 all intersect P1 and consider the restriction of T to P1, which is in fact
an interval graph. To ensure all possible intersections with P1, the set {P2, P3, P4} is
a shattered set of size three in an interval graph, a contradiction.

Thus at least one path, say P2, does not intersect P1 and lies in a connected com-
ponent C of the forest F = T \ P1. If P3 does not intersect C, then there is no
path intersecting both P2 and P3 but not P1. Thus P3 intersects C. If moreover P3

intersects P1, then no path can intersect both P1 and P2 but not P3. Thus P3 is
also included in C. Let P be a path intersecting P1, P2 and P3. Assume �rst that P
intersects the three paths in the order P1, P2 and P3 (the case P1, P3, P2) is the same.
Then no path can intersect P1 and P3 without intersecting P2. Assume now that P
intersects the three paths in the order P2, P1, P3. Similarly, no path can intersect
P2 and P3 without intersecting P1. Hence the path P cannot exist, a contradiction.
Finally the bound of 3 can be reached, as shown in Figure 3.

�
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Lemma 3 and Theorem 2 imply new lower bounds for many classes: Ω(n
1
2 ) for graphs

with girth at least 5, Ω(n
1
3 ) for chordal bipartite graphs, Ω(n

1
3 ) for unit-disk graphs, Ω(n

1
2 )

for interval graphs, Ω(n
1
3 ) for permutation graphs, and Ω(n

1
3 ) for undirected path graphs.

The exponent given by Theorem 2 is sharp for several classes of graphs. Indeed, Foucaud
et al. [15] proved that there are in�ntely many interval graphs with identifying codes of
size Θ(n1/2). The bound is also tight for C4-free bipartite graphs (which have girth at least
5): the following construction is a C4-free bipartite graphs with an identifying code of size

Θ(n
1
2 ). Let G = (X ∪ Y,E) be a bipartite graph where Y has size n, X has size n(n−1)

2
,

and edges satisfy the following rule: for every pair u, v of vertices of Y , there is exactly one
vertex of X adjacent to both u and v. The graph G does not contain any triangle (since
it is bipartite) nor C4 (since neighbourhoods intersect on at most one vertex). One can
easily check that the set Y is an identifying code of the graph. Indeed vertices of X are
adjacent to precisely two neighbours on Y and vertices of Y have precisely one neighbour
on Y in their closed neighbourhood. Finally, it is also sharp for the class of all graphs of
VC-dimension at most d. Indeed, consider the bipartite graph made with a stable set A of
size d and a stable set B of size

∑d
i=2

(
d
i

)
representing all the subsets of A of size at least 2.

Each vertex of B is adjacent to the vertices of A corresponding to its subset. This graph
has VC-dimension d and the set A is an identifying code of size of order n1/d.

Nevertheless, the bounds given by Theorem 2 are not necessarily tight. For instance,
permutations graphs can have VC-dimension 3 but Foucaud et al. [15] recently proved

that the exact lower bound is Ω(n
1
2 ).

3 Inapproximability in in�nite VC-dimension

Given a minimization problem P and a function f : N → N, a factor f approximation
algorithm (also called an f -approximation) is an algorithm that outputs a solution of value
at most f(n) ·OPT (I) for every instance I of P of size n, where OPT (I) is the value of an
optimal solution of I. The class log-APX is a class of problems consisting of all problems
that admit a logarithmic factor polynomial time approximation algorithm. We use the
AP-reductions introduced in [9] which have now become standard. Its de�nition restricted
to minimization problems is de�ned as follows:

De�nition 4 ([4]). Let P and Q be two minimization problems. An AP-reduction from
P to Q is a triple (f, g, α) where

1. α is a constant,

2. f maps pairs consisting of an instance of P and a constant r > 1 to instances of Q,
and

3. g maps triples consisting of a constant r > 1, an instance IP of P and a solution to
f(IP , r) to a solution of IP

in such a way that
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1. f(IP , r) has a solution if IP does,

2. f(·, r) and g(·, ·, r) are computable in polynomial time for all �xed r, and

3. if SOLQ is a solution of f(IP , r) of size at most r ·OPT (f(IP , r)), then the solution
g(f(IP , r), r, SOLQ) has size at most (1 + α(r − 1)) ·OPT (IP ).

A problem Q is log-APX-hard if any problem P in log-APX can be reduced to Q by
an AP-reduction.

Theorem 5 ([9]). Any optimization problem P that is log-APX-hard with respect to AP-
reduction is NP-hard to approximate within a factor c · log(n) where n is the size of the
input, for some constant c > 0.

We show that Min Id Code is log-APX-hard for classes with in�nite VC-dimension.
To prove this result, we will prove that a class with in�nite VC-dimension contains either
all the bipartite graphs, or all the co-bipartite graphs or all the split graphs. Since the
problem Min Id Code is log-APX-hard in these three classes (see [13]), it implies that it
is log-APX-hard for all classes with in�nite VC-dimension.

Theorem 6. Let C be an hereditary class. If C has in�nite VC-dimension, then C must
contain either all the bipartite graphs, or all the co-bipartite graphs or all the split graphs.

Note that this result implies the �rst part of Theorem 2. We say that a bipartite graph
H = (A ∪ B,E) is a bipartisation of G if removing all edges in A and in B in G yields H
for some partition A,B of V (G).

Lemma 7. For any hereditary class C of graphs with in�nite VC-dimension and any bi-
partite graph H, C contains a graph G whose bipartisation is H.

Proof. Let H = (A ∪ B,E) be a bipartite graph with |B| ≤ |A| = k. Since C has
in�nite VC-dimension, it contains a graph G with a shattered set S of size (at least)
` = k + dlog(2k)e. Let A′ be the �rst k vertices in S, and let us number Y1, . . . , Y2k some
2k distinct subsets of S \ A′ (they exists since |S \ A′| = dlog(2k)e).

By de�nition of a shattered set, for each i ∈ {1, . . . 2k} and for each X ⊆ A′ there
is a vertex xi of G such that N [xi] ∩ S = X ∪ Yi. Thus there are 2k vertices of G
whose closed neighbourhoods intersect A′ in exactly X. Hence there are at least k such
vertices in V (G) \ A′. Label the vertices of A′ by vertices in A, i.e. choose an arbitrary
bijection between A and A′. Now for each b ∈ B, choosing X = N(b) gives k vertices in
V (G) \ A′ whose closed neighbourhoods intersect A′ in exactly N(b). So we can choose
one "representative" for each b so that all the selected vertices are distinct (since |B| ≤ k).
Note that we need k vertices in V \ A′ since up to |B| vertices of B may have the same
neighbourhood in A.

Since C is closed under taking induced subgraphs, the subgraph of G induced by A′ and
the set B′ of all chosen vertices is in C. The bipartisation of this graph is H, as required.
�
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Next we show that we can further restrict H ′ and now require both sides of H ′ to be
stable sets or cliques. For a bipartite graph H = (A ∪ B,E), write H1,0 for the graph
obtained from H by adding a clique on A, H0,1 the graph obtained from H by adding a
clique on B and H1,1 the graph obtained from H by adding a clique on both A and B. We
also write sometimes H0,0 for H. We show that, for each bipartite graph H, C contains
one of these four graphs. To do so, we need the classical theorem of Erd®s and Hajnal [10]
as well as its bipartite version by Erd®s, Hajnal and Pach [11].

Theorem 8 (Erd®s, Hajnal [10]). For every graph H, there exists a constant c(H) such
that all graphs on n vertices contain either H as an induced subgraph, a stable set of size
at least 2c(H)

√
2 logn or a clique of size at least 2c(H)

√
2 logn.

Theorem 9 (Erd®s, Hajnal, Pach [11]). Let H be a bipartite graph with vertex classes U1

and U2, (k = |U1| ≤ |U2| = `) and let n > `k+1. Then in any bipartite graph G with vertex
classes V1 and V2 (|V1| = |V2| = n) which contains no two subsets U1 ⊆ V1, U2 ⊆ V2 that

induce an isomorphic copy of H, there exist V ′1 ⊆ V1 and V
′
2 ⊆ V2 of size

⌊(
n
`

) 1
k

⌋
such that

either all edges between V ′1 and V ′2 belong to G or none of them does.

We continue with the following technical lemmata:

Lemma 10. For n large enough, there exists a bipartite graph G0 = (A ∪ B,E0) with
2n vertices (|A| = |B| = n) such that there is no complete nor empty bipartite graphs
G0[A

′ ∪B′] with A′ ⊆ A and B′ ⊆ B and |A′| = |B′| = b2 log nc.

Proof. Let us show its existence with a probabilistic argument. Let A and B be two
stable sets each of size n and for every a ∈ A, b ∈ B, put the edge ab with probability 1

2
.

Given two subsets A′ ⊆ A, B′ ⊆ B with |A′| = |B′| = b2 log nc, the probability that A′∪B′
induces a complete bipartite graph is

(
1
2

)b2 lognc2
. The same probability holds for A′ ∪ B′

inducing an empty bipartite graph. Thus the probability that there exists a complete or
empty bipartite graph with each part of size 2 log n is at most

(
n

b2 log nc

)2
2

2b2 lognc2
≤
(

n · e
b2 log nc

)2·b2 lognc

· 2

2b2 lognc2
= 2−4 logn·log logn+O(logn)

using the inequality (
n

l

)
≤ nl

l!
≤
(n · e

l

)l
This probability is strictly less than 1 for n large enough, so there exists a graph

G0 = (A ∪B,E0) for which the event does not occur. �

Lemma 11. Let C be an hereditary class with in�nite VC-dimension. For any bipartite
graph H = (H` ∪Hr, E), one of the four graphs H0,0, H1,0, H0,1 or H1,1 is in C.
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Proof. Suppose by contradiction that Lemma 11 is false for H with |H`| ≤ |Hr| = k. Let
c(H) be the constant from Theorem 8 and pick n large enough so that 2c(H)

√
2 logn > kk+1,

and (2
c(H)
k

√
2 logn)/k

1
k > 2 log n and n satis�es the condition of Lemma 10. Let G0 be a

bipartite graph as in Lemma 10, i.e. G0 has n vertices on both sides and does not contain
a complete or an empty bipartite graph with 2 log n vertices on each side. By Lemma 7, C
contains a graph G whose bipartisation is G0. Let A,B certify this bipartisation.

Since G contains no copy of H0,0, neither does G[A]. So by Theorem 8, G[A] contains
a clique or stable set A′ of size at least n′ = 2c(H)

√
2 logn. Similarly, G[B] also contains a

clique or stable set B′ of this size. Assume that A′ and B′ induce stable sets (respectively,
A′ induce a stable set and B′ a clique1 and A′ and B′ induce cliques). By assumption,
since the class C is closed under induced subgraphs, G[A′ ∪ B′] contains no copy of H0,0

(respectively, H1,0 and H1,1). Hence the bipartisation of G[A′ ∪B′] contains no copy of H.
So by Theorem 9 and since n′ > kk+1, the bipartisation of G[A′ ∪ B′] contains a complete
bipartite graph or an empty bipartite graph where each bipartition has size(

n′

k

) 1
k

=
2

c(H)
k

√
2 logn

k
1
k

> 2 log n

which is a contradiction to G0 having no such subgraph. �

Proof of Theorem 6. Let Hn be the disjoint union of every bipartite graphs of size at
most n. For every n, Lemma 11 ensures that Han,bn

n is in C (for some an, bn ∈ {0, 1}) and
hence there exist a, b ∈ {0, 1} for which Ha,b

n is in C for in�nitely many values of n.
If a = b = 0, all bipartite graphs are in C; if a 6= b, all split graphs are in C and if

a = b = 1, all co-bipartite graphs are in C: indeed let Ha,b be a bipartite graph on n
vertices (resp. split graph, co-bipartite graph, depending on the value of a and b). Then
there exists n′ ≥ n such that Ha,b

n′ is in C. But Ha,b is an induced subgraph of Hn′ so Ha,b

is an induced subgraph of Ha,b
n′ . The theorem follows. �

Foucaud [13] proved that Min Id Code is log-APX-hard for bipartite graphs, split
graphs and co-bipartite graphs. So the following is a direct corollary of Theorem 6.

Corollary 12. Min Id Code is log-APX-hard when the input graph is restricted to an
hereditary class of graphs with in�nite VC-dimension.

4 Inapproximability for C4-free bipartite graphs

In this section, we examine the complexity of approximating Min Id Code in classes of
�nite VC-dimension. Previous results suggest that all these classes may have a constant
factor approximation algorithm : this is the case for line graphs [14], planar graphs [26] or
unit interval graphs (since any solution has size at least n

2
) for instance.

However, we show that this intuition is false: the class C of C4-free bipartite graphs
(whose VC-dimension is bounded by 2) does not admit such an approximation algorithm.

1The case with A′ a clique and B′ a stable set is symmetric.
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In fact, Min Id Code in C is hard to approximate to within a c log n factor (for some
c > 0) in polynomial time, unless NP ⊆ ZTIME(nO(log logn)).

Observation 13. The class of C4-free bipartite graphs has VC-dimension at most 2.

Proof. Let G be a C4-free bipartite graph. Then it has no triangle and no C4, so we can
apply the result of Lemma 3 for graphs of girth at least 5. �

We provide a polynomial time gap preserving reduction (in fact, an AP-reduction) from
the following minimization problem:

Problem 14. Set cover with intersection 1 (Set Cover1)
Instance: A set X and a family S of subsets of X where any two sets in S intersect in at
most one element.
Solution: A subset S ′ of sets in S whose union contain X.
Measure: The size of S ′.

Anil Kumar, Arya and Hariharan [2] have shown that this problem cannot be ap-
proximated to within a c log n factor (for some c > 0) in polynomial time, unless NP ⊆
ZTIME(nO(log logn)).

Theorem 15. Min Id Code with input restricted to C4-free bipartite graphs cannot be
approximated to within a c log n factor (for some c > 0) in polynomial time, unless NP ⊆
ZTIME(nO(log logn)) where n is the size of the input.

To give a �avour of our reduction from Set Cover1 to Min Id Code, we �rst give an
easier reduction to the Discriminating code problem [7]. The Discriminating code

is often a way to design reductions which gives an overview of most complicated ones for
Min Id Code : indeed a discriminating code consists in identifying vertices of a set X
using vertices of a set Y .

Problem 16. Discriminating code

Instance: A bipartite graph G = (X ∪ Y,E).
Solution: A subset Y ′ of Y which dominates X and such that for every pair of vertices
x1, x2 of X, N [x1] ∩ Y ′ 6= N [x2] ∩ Y ′. Such a set is called a discriminating code.
Measure: The size of Y ′.

Lemma 17. Discriminating code with input restricted to C4-free bipartite graphs can-
not be approximated to within a c log n factor (for some c > 0) in polynomial time, unless
NP ⊆ ZTIME(nO(log logn)).

Proof. Let ISC = (X,S) be an instance of Set Cover1. The proof is decomposed into
�ve steps: construct an instance IDC of discriminating code that has polynomial size in
|ISC |; check that this instance is indeed a C4-free bipartite graph; for every solution of ISC ,
construct a solution of IDC ; and vice-versa; �nally check that if the solution of IDC is not
too big with respect to the optimal one, then so is the solution of ISC .
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Construct the instance of Discriminating Code Let G = (X ∪ S,E) be the
membership bipartite graph of the instance ISC , that is to say that for every x ∈ X, s ∈ S,
there is an edge xs ∈ E if and only if x ∈ s. In the following, n denotes the size of X
and we assume that n ≥ 2 and that no s ∈ S is connected to all of X (meaning that the
optimal solution to ISC has size at least 2). Note that in the other case, we can compute
the optimal solution in polynomial time. Moreover, we assume that for every x ∈ X,
there exists s ∈ S such that x belong to s, otherwise there is no solution. The following
construction is illustrated on Figure 4. Let G1, . . . , G` be ` = 2n2 − 1 disjoint copies of G.
Denote by Xi∪Si the i-th copy of X∪S. Let X ′1 and X ′2 be copies of X. For each x′′ ∈ X ′2,
add an edge between x′′ and its copy x′ in X ′1, and add edges between x′′ and its copies in
all Gi for i ≤ `. In other words, G[Xi ∪X ′2] induces a matching for every i. Let GDC be
this bipartite graph with parts XDC = X1 ∪ ... ∪ X` ∪ X ′1 and YDC = S1 ∪ ... ∪ S` ∪ X ′2.
Clearly, the size of IDC is polynomial in n an thus in the size of ISC .

Check that the instance is C4-free First note that the initial graph G is C4-free.
Indeed every C4 must have two vertices in S and two vertices in C, a contradiction since
the neighbourhoods of two vertices of S intersect on at most one vertex. Further, the
graph GDC is C4-free. Indeed, no C4 can contain two vertices of S1 ∪ · · · ∪ Sl since any
vertex s ∈ Si only has neighbours in Xi, and GDC [Xi∪Si] is a copy of the C4-free graph G.
Moreover, two vertices x′′ ∈ X ′2 and s ∈ Si have at most one common neighbour xi ∈ Xi,
the copy of x′′. Finally, each pair of vertices of X ′2 have disjoint neighbourhoods. Thus no
vertex can be part of a C4.

Transforming a solution of ISC into a solution of IDC Let D be a set cover of S
of size SOLSC . Construct C as the union of ` copies of D (one for each Gi), and �nally
add X ′2. Then C is dominating XDC since X ′2 is, moreover C is separating all the pair of
vertices of XDC . Indeed, two vertices xi, yj inherited from two di�erent elements x, y ∈ X
are separated by x′′ ∈ X ′2, the copy of x in X ′2. Two vertices xi ∈ Xi, xj ∈ Xj with i 6= j,
or two vertices xi ∈ Xi, x

′ ∈ X ′1 inherited from the same element x ∈ X are separated
by a neighbour si ∈ Si of xi, where si is the i-th copy of an element s ∈ D containing x.
Consequently, C is indeed a discriminating code. For later use, observe that if D is the
optimal solution of Set Cover1 of size OPTSC , we can derive OPTDC ≤ n+ ` ·OPTSC .

Transforming a solution of IDC into a solution of ISC Let C be a solution of IDC
of size SOLDC . We construct a set cover candidate D1 = S1 ∩ C. Every vertex x1 ∈ X1

is dominated and separated from its copy x′ in X ′1, and x
′′ ∈ X ′2 cannot achieve this goal,

thus there exists s ∈ S1 ∩ C which is linked to x1. Thus D1 is a set cover. The same can
be done for each i ≤ `, and we choose D as the minimum size such constructed set cover.
For later use, observe that X ′2 ⊆ C since X ′1 is dominated. Consequently if SOLSC is the
size of D, we have |X ′2|+ ` · SOLSC ≤ SOLDC or equivalently SOLSC ≤ SOLDC−n

`
.
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X1 S1

X2 S2

X′
1 X′

2

. . . . . .

Figure 4: Construction of the proof of Lemma 17.

Concluding on the size of the solutions Now suppose that we can obtain a solution
SOLDC of Discriminating Code satisfying SOLDC ≤ r ·OPTDC for some value r. The
above discussion gives

SOLSC ≤
SOLDC − n

`
≤ r ·OPTDC − n

`
≤ r(n+ ` ·OPTSC)− n

`
≤ 2r ·OPTSC

In particular if r = c′ log n for some well-chosen constant c′, we obtain a contradiction
with Set Cover1 approximation hardness.

�

Let us now adapt this reduction into a reduction to identifying codes.

Proof of Theorem 15. Let ISC be an instance of Set Cover1.

Construct the instance of Min Id Code First construct the same graph GDC as
in the proof of Lemma 17. Now for identifying codes, we need to identify vertices in both
sides and not only on the side of XDC . For that, we add to GDC a set Z = {z1, . . . , z2n2}
in part XDC . We have to be careful when we connect the vertices of Z to the vertices of
the graph since we do not want to create a C4. We aim at choosing edges between Z and
S1 ∪ ...∪ S` such that each vertex s ∈ S1 ∪ ...∪ S` is adjacent to exactly two vertices of Z,
and no two vertices s, s′ ∈ Si share a neighbour in Z. The following claim (whose proof is
postponed at the end of the section) reaches the goal:

Claim 18. There exists a numbering of the vertices in S1 ∪ ... ∪ S` such that:

• Each vertex s ∈ S1 ∪ ... ∪ S` is numbered si,j with i < j ∈ {1, . . . , 2n2}, where the
pair {i, j} is distinct for every vertex.

14



• Two vertices sj,k and sj′,k′ cannot both belong to the same set Si if one of j, k is equal
to one of j′, k′.

Using the numbering of the claim, we just have to add the edges zksk,l and zlsk,l for
every k, l ∈ {1, . . . , 2n2}. Note that every vertex of Si is connected to precisely two vertices
of Z, and that every vertex z ∈ Z has at most one neighbour in each Si. Let GIC be this
new graph. It has polynomial size in n.

Check that the instance is C4-free Since we only add edges from Z ⊂ XDC to
S1∪· · ·∪S` ⊂ YDC , the graph is indeed bipartite. Since GDC was C4-free, any hypothetical
C4 must intersect Z, say in zk ∈ Z. zk share with any zl ∈ Z at most one common neighbour
sk,l, so the C4 must intersect Xi for some i, or X ′1. On the one hand, vertices in X ′1 have
degree one. On the other hand, xi only has neighbours in Si, and zk has one only neighbour
in each Si, so they cannot be in the same C4.

Transforming a solution of ISC into a solution of IIC A set C containing X1∪X ′2∪Z
is a good candidate to be an identifying code because it has the following properties:

• For every zk ∈ Z, zk is identi�ed by zk being the only vertex of Z ∩N [zk] ∩ C.

• For every copy x′′ ∈ X ′2 of an element x ∈ X, x′′ is dominated by {x′′, x1} in C a
where x1 ∈ X1 is the copy of x. Thus it is separated from all the other vertices except
maybe x1.

• For every sk,l ∈ S1 ∪ . . . ∪ S`, sk,l is identi�ed by {zk, zl}.

• For every x′ ∈ X ′1, x′ is dominated by x′′ ∈ X ′2.

• For every xi ∈ Xi, xi is dominated by x′′ ∈ X ′2
Thus C is a dominating set, and the only sets of vertices that may be not separated

are of the form {x′} ∪ {x2, . . . , x`} and {x′′, x1} for any element x ∈ X.
Let D be a set cover of the initial instance and D1, ..., D` be the respective copies in the

graphs Gi. Then C = D1∪...∪D`∪X1∪X ′2∪Z is an identifying code of GIC . Indeed, every
vertex xi is separated from x′, x′′ and xj (i 6= j) by the element of Si that covers it in the set
cover Di. Hence any solution for Set Cover1 of size SOLSC gives a solution for Min Id

Code of size SOLIC = ` ·SOLSC +2n+2n2. In particular OPTIC ≤ ` ·OPTSC +2n+2n2.

Transforming a solution of IIC into a solution of ISC Let C be an identifying code
of GIC . We de�ne Di = C ∩ Si as a set cover candidate. Unfortunately, Di may not be a
set cover, in which case we iteratively modify C until all Di meet the condition, starting
with D1. If Di is not a set cover of Xi, then there is a vertex xi not covered. This vertex
must be separated with its copy x′ in X ′1, hence xi (case 1) or x

′ (case 2) must belong to
C (if both occur, case 1 has priority on case 2). Then choose any neighbour s ∈ Si of xi,
add this vertex to C and remove xi (in case 1) or x′ (in case 2). We thus get a new set C ′
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and claim that C ′ ∪ Z ∪X1 ∪X ′2 is an identifying code. Thanks to the above discussion,
we just have to show that the sets {x′} ∪ {x2, . . . , x`} and {x′′, x1} are separated.

Observe �rst that xi is now separated from x′ and from xj by s for j 6= i. Moreover,
since C was separating xj1 from xj2 for j1, j2 6= i, then C ′ still does (because nothing
changed in their neighbourhood). We also have C ′ that separates x′ from xj for j 6= i: the
vertex separating those two vertices was not xi, so in case 1 it still belongs to C ′. In case
2, we have removed x′ but then xi was not in C, and C was separating xi and xj so there
exists a vertex in (N [xj] \ {x′})∩C, and this vertex separates xj from x′ in C ′. Finally, C ′

separates x1 from x′′ since we have started the process with D1, hence C
′ ∩ S1 dominates

x1.
Therefore we can assume that all the sets C ′ ∩ Si are set covers where C ′ has size at

most |C|+ 2n+ 2n2. Since there are at most |C| vertices of C ′ which are in S1 ∪ . . . ∪ S`,
it means that an identifying code with |C| = SOLIC vertices of GIC gives a solution of set
cover with SOLSC ≤ SOLIC

`
vertices.

Concluding on the size of the solutions Assume now that SOLIC ≤ r · OPTIC for
some value r, then:

SOLSC ≤
SOLIC

`
≤ r ·OPTIC

`
≤ r((2n2 − 1)OPTSC + 2n+ 2n2)

2n2 − 1
≤ 2r ·OPTSC

As before for discriminating codes, it achieves the proof of Theorem 15. �

An edge colouring of a graph with k colours is a function c : E → {1, . . . , k} such that
no two edges sharing an endpoint are given the same colour, that is c(uv) 6= c(uv′) for
every pair of edges uv, uv′.

Proof of Claim 18. We �rst need to convince ourselves that |S| ≤ n2 in the instance
(X,S) of Set Cover1. Indeed every pair of elements of X appears in at most one s ∈ S,
thus |S| ≤ n(n+1)

2
≤ n2 (one for each pair plus n additional singletons).

Now the idea of the proof is the following: we will represent our problem using a clique
on 2n2 vertices. The vertices of the clique represent vertices of Z and edges of the clique
represent vertices of S1 ∪ · · · ∪ S`.

The edges ofK2n2 can be partitioned into 2n2−1 perfect matchings, or equivalently there
exists an edge colouring c of K2n2 with 2n2− 1 colours such that each colour class contain
n2 edges. Then label the vertices by {z1, . . . , z2n2} and create a set S ′ = S ′1 ∪ · · · ∪ S ′2n2−1
of elements sj,k with j, k ∈ N according to the following rule:

S ′i = {sj,k|c(zjzk) = i} for every i ∈ {1, . . . 2n2 − 1}
Observe that |S ′i| = n2. Since a colour class is a matching, the indices of every pair of
edges in a same colour class are pairwise distinct. In other words, there cannot be two
vertices sj,k and sj′,k′ in the same set S ′i if one of j, k is equal to one of j′, k′. Now choose
arbitrarily |S| ≤ n2 vertices in S ′i to form Si. �
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5 Constant approximation algorithm for interval graphs

We now focus on the class of interval graphs and provide a constant factor approxima-
tion algorithm for Min Id Code via a linear programming approach. More precisely we
show that Min Id Code has a 6-approximation algorithm. The existence of a constant
approximation algorithm was left open in [13].

Let us recall that an interval graph is a graph which can be represented as an intersection
of segments in the real line. We put an arbitrary order on the real line. The begin date of
an interval x is the �rst point p of the real line (in the order) such that p ∈ x. The end
date of x is the last point which is in x. By abuse of notations, we will denote by v both
the vertex of the graph and the interval in the representation on the real line. Note that
there exist many representations as intersections of segments for a same interval graphs,
we choose arbitrarily one of them which can be found in linear time [5].

Let G be an interval graph together with an interval representation. We denote its
vertex set by {1, . . . , n} and U 5 U ′ stands for the symmetric di�erence of U and U ′ for
U,U ′ ⊆ V . Let us express Min Id Code in terms of an integer program P , where xi is
the decision variable corresponding to vertex i:

Integer program P

Objective function: min
∑
i∈V

xi

Separation constraint:
∑

i∈N [j]5N [k]

xi ≥ 1 ∀j 6= k ∈ V

Domination constraint:
∑
i∈N [j]

xi ≥ 1 ∀j ∈ V

Integrality : xi ∈ {0, 1} ∀i ∈ V
Let us denote by P ∗ the linear programming relaxation of P , where the integrality

constraint is replaced by a non-negativity constraint xi ≥ 0, ∀i ∈ V . Recall that even if an
integer linear program cannot be solved in polynomial time, its fractional relaxation can
on the contrary be solved, using for instance the ellipsoid method. Our goal is to construct
a feasible solution for P of value at most 6 ·OPT (P ∗). To achieve this goal, we decompose
P into two subproblems:
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Left

Rightj

k

Left Right

j

k

Figure 5: Given two intersecting intervals j and k, one can construct two areas Left and
Right partitioning N [j]5N [k] between Ljk the set of intervals that end in Left, and Rjk

the set of intervals that begin in Right. This �gure shows how to �nd Left and Right

depending on the con�guration of j and k: either one is included in the other, or not.

Pinter

min
∑
i∈V

xi

∀jk ∈ E
∑

i∈N [j]5N [k]

xi ≥ 1

(Separation constraints for inter-
secting pairs)

xi ∈ {0, 1} ∀i ∈ V

Pdisj

min
∑
i∈V

xi

∀jk /∈ E
∑

i∈N [j]5N [k]

xi ≥ 1

(Separation constraints for non-intersecting
pairs)∑
i∈N [j]

xi ≥ 1 ∀j ∈ V (Domination constraints)

xi ∈ {0, 1} ∀i ∈ V
The reason why intersecting intervals play a special role is that the symmetric di�erence

of N [j] and N [k] can be expressed in some sense by an union of 2 intervals which greatly
helps. We denote by P ∗inter (resp. P

∗
disj) the linear programming relaxation of Pinter (resp.

Pdisj).

Lemma 19. Given an optimal solution (x∗1, . . . , x
∗
n) of P ∗inter of cost OPT (P ∗inter), there

exists a polynomial time algorithm that computes a solution of Pinter of value at most
4 ·OPT (P ∗inter).

Proof. We follow the ideas of the proof of [16] where the problem is translated in terms of
Rectangle Stabbing Problem. Note that our problem can also be viewed as the transversal
of 2-intervals (union of 2 intervals) and, in this respect, topological bounds can be found
in [18], even if this does not provide an approximation algorithm.

Le x∗ = (x∗1, . . . , x
∗
n) be an optimal solution of P ∗inter. For every jk ∈ E, Figure 5

shows how to partition N [j]5 N [k] into two parts Ljk (stands for Left) and Rjk (stands
for Right). The set Ljk is composed of the intervals that end between the begin dates of j
and k, and Rjk is composed of the intervals that begin between the end dates of j and k.
Ljk and Rjk are obviously disjoint subsets.
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Let us now de�ne two subsets of vertices L and R as follows:

L =

jk ∈ E ∑
i∈Ljk

x∗i ≥
1

2

 and R =

jk ∈ E ∑
i∈Rjk

x∗i ≥
1

2


Since all the constraints of P ∗inter are satis�ed by (x∗1, . . . , x

∗
n) and since for every edge

jk, we have Ljk ∪ Rjk = N [j]5N [k], all the edges are in L or in R (they can be in both
of them). Based on this, we de�ne now the following two integer linear programs:

PL

min
∑
i∈V

xi

∀jk ∈ L
∑
i∈Ljk

xi ≥ 1

xi ∈ {0, 1} ∀i ∈ V

PR

min
∑
i∈V

xi

∀jk ∈ R
∑
i∈Rjk

xi ≥ 1

xi ∈ {0, 1} ∀i ∈ V

According to the previous notations, we denote by P ∗L (resp. P ∗R) the linear program-
ming relaxation of PL (resp. PR). Consider now the 0/1 matrix M obtained from P ∗L,
where each row represents an edge jk ∈ L, each column represents a vertex i ∈ V , and
Mjk,i = 1 if i ∈ Ljk, 0 otherwise. By sorting the vertices of V (and thus, the columns of
the matrix) by interval end date, the 1's on each row become consecutive. Indeed the 1's
on the line of the constraint jk correspond to intervals that end between the begin dates
of j and k which are obviously consecutive if we sort the intervals by end date. A matrix
which has consecutive 1's on each row is said to have the interval property. Such a matrix
is totally unimodular (which means that all the squared determinants of the matrix have
values −1, 0 or 1) and this implies that there is an optimal solution of P ∗L where all the
variables are integer. In particular, OPT (P ∗L) = OPT (PL). (See [23, 28] for more details
about totally unimodular matrices and their use in linear programming.)

The same holds for P ∗R by sorting vertices by interval begin date. Solving P ∗L and
P ∗R can be done in polynomial time, this gives us integer solutions (xL1 , . . . , x

L
n) for P ∗L and

(xR1 , . . . , x
R
n ) for P ∗R and setting xi = xLi +xRi builds a feasible solution for Pinter of objective

value SOL(Pinter) = OPT (P ∗L) +OPT (P ∗R). Observe now that (2x∗1, . . . , 2x
∗
n) is a feasible

solution for both P ∗L and P
∗
R soOPT (P ∗L) ≤ 2·OPT (P ∗inter) andOPT (P ∗R) ≤ 2·OPT (P ∗inter).

This concludes the proof by SOL(Pinter) ≤ 4 ·OPT (P ∗inter). �

Let us now focus on the second subproblem:

Lemma 20. Given the interval representation of G, one can compute in polynomial time
a feasible solution for Pdisj of size at most 2 ·OPT (P ∗disj).
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Proof. We construct a set S of intervals in the following way. Initially, set S = ∅. While
V is not empty, do the following: select the interval v that ends �rst ; put it in S and
remove N [v] from V . Once V is empty, output S.

Observe that this algorithm compute a maximal (with respect to inclusion) independent
set S with the property that for every vertex v ∈ V , there exists s ∈ S such that the end
date of s is in the interval v (s is the vertex selected at the same step as v was deleted).
We now claim that on the one hand, S is a feasible solution for Pdisj and on the other hand
that |S| ≤ 2 ·OPT (P ∗disj).

Let j < k ∈ V, jk /∈ E. Up to symmetry, suppose that the interval j starts before k
(and thus, ends before k starts). Then there exists s ∈ S such that the end date of s is in
j, implying s ∈ N [j] \N [k]. As a maximal independent set, S is also a dominating set so
S is a feasible solution for Pdisj with objective value α ∈ N.

Let us number {s1, . . . , sα} the elements of S by order of interval end date. Then
observe that for every i ∈ V , there exist at most two distinct indices j such that i is in
N [sj]5 N [sj+1]. Indeed, this happens if and only if i begins between the end date of sj
and the end date of sj+1, or i ends between the begin date of sj and the begin date of sj+1.
Then consider an optimal solution (x∗1, . . . , x

∗
n) of P ∗disj, we can derive:

2 ·OPT (P ∗disj) =
∑
i∈V

2 · x∗i ≥
α∑
j=1

∑
i∈N [sj ]5N [sj+1]

x∗i ≥ α .

�

Theorem 21. There exists a polynomial time 6-approximation algorithm for Min Id

Code on interval graphs.

Proof. By Lemmata 19 and 20, we can construct in polynomial time a solution
Sinter for Pinter and a solution Sdisj for Pdisj of cost respectively at most 4 · OPT (P ∗inter)
and 2 · OPT (P ∗disj). The set Sinter ∪ Sdisj gives a feasible solution for P of cost at most
6 · OPT (P ∗) thus as most 6 · OPT (P ). Algorithm 1 sums up the di�erent steps of the
approximation algorithm. One can check that this algorithm runs in polynomial time since
computing an interval representation of an interval graph can be done in linear time [5]
and solving a linear programming relaxation can also be done in polynomial time using
the ellipsoid method for instance. �

Observe that the bound on the cost of the solution is in fact 6 · OPT (P ∗) which is
slightly tighter than 6 ·OPT (P ).
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