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Abstract

Although they have been widely studied for years, some aspects of the behaviour of flute-like musical
instruments remain poorly understood. The study of a physical model of the instrument has demonstrated
its interest in the understanding of various phenomena, such as the hysteresis related to regime changes
or the variations of the frequency with the blowing pressure. As it involves both nonlinear and delayed
terms, an indepth study of the state of the art flute model requires specific numerical methods, which
are often computationally expensive. The simplification of the model through its linearisation around a
non-oscillating trivial solution is thus particularly interesting, due to the simplicity of the calculations.
The information provided by such an analysis in terms of oscillation frequency or oscillation thresholds of
the different periodic solutions has been highlighted in previous work . Surprisingly enough, the present
study shows that this simple linear analysis provides information about the stability zones of the different
periodic solutions (i.e. the different registers), and allows to predict, in some cases, the register resulting
from a transient of the mouth pressure. Such information can be obtained without solving the nonlinear
equations and without computing the steady-state oscillations of the model.

1 Introduction

Various studies have highlighted the complex be-
haviour of flute-like instruments, and the valuable
information arising from the study of a physical
model of this kind of instruments [2, 5, 3]. How-
ever, even the simplest model involves both nonlin-
ear, non smooth and delayed terms [1]. These par-
ticular features make both its time-domain integra-
tion and its analysis in terms of a (neutral) non-
linear dynamical system particularly complex, and
costly in terms of computation time [3]. The dras-
tic reduction of the model, through its linearisation
around a trivial non oscillating (i.e. static) solu-
tion thus presents an obvious interest, due to the
simplicity of calculations. It is theoretically known
that this linear analysis of the model provides in-
formation about the stability properties of the con-
sidered static solution, and thus, in some cases,
about the oscillation threshold (see for example
[10]). Moreover, some studies have stressed the
ability of this method to provide a rough approx-
imation of the oscillation frequency and regime
change thresholds [2].

This paper focuses on the information provided
by the linear analysis of the state-of-the-art phys-
ical model for flute-like instruments in the case of
attack transients of the mouth pressure. Such at-
tack transients correspond to strongly non station-
nary evolutions of the parameters, and to oscilla-
tions outside the vinicity of the static solution in-
volved in the linearisation. As the linearisation in-
volves hypothesis of both quasistatic variations of
the parameters, and small perturbations around
the static solution, attack transients fall, at first
sight, outside the scope of the considered linear
analysis. However, due to their musical impor-
tance and to the fact that they are directly con-
trolled by the instrumentalist, their study is par-
ticularly interesting.

The state-of-the-art physical model for flute-like
instruments is first presented in section 2, fol-
lowed by details on its linearisation and analysis
in section 3. Finally, section 4 presents the com-
parison between the results of linear analysis and
time-domain simulations of the complete nonlinear
model. Information provided by the linear analysis
are discussed in terms of oscillation regime reached
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during an attack transient, stability ranges of the
different periodic regimes, and duration and spec-
tral nature of the transients.

2 Model for flute-like instru-

ments

2.1 General mechanism of sound pro-

duction

Although transverse flutes, recorders, or organ
pipes present important differences, the general
mechanism of sound production can be, in all
cases, described as follows [1]. When the musi-
cian blows in the instrument, a naturally unstable
jet is created at the channel exit of height h (see
figure 1). This jet oscillates around the sharp edge
called labium, which constitutes the exciter, pro-
viding energy to the resonator, formed by the air
column contained in the pipe. The acoustic field
thus created in the resonator perturbs in turn the
jet at the channel exit. As the jet is naturally
unstable, this perturbation is amplified while con-
vected along the jet of length W from the channel
exit to the labium, thus sustaining the oscillations
of the jet around the labium. This auto-oscillation
process can be represented through a feedback loop
system shown in figure 2.

Figure 1: Recorder section and simplified represen-
tation of its exciter, constituted by the oscillation
of an unstable air jet around a sharp edge called
labium.

2.2 State-of-the-art physical modeling

This mechanism of sound production is modeled
through a set of equations, each of them being re-
lated to an element of the feedback loop system
sketched in figure 2. The principal phenomena and
the equations associated to each of these elements

Figure 2: Basic modeling of sound production
mechanism in flute-like instruments, as a feedback
loop system [1].

are briefly recalled in this section; for more details
on the complete model, the reader is referred to
[1, 2, 3].

Following the empirical model proposed by de
la Cuadra [5], the initial transversal perturbation
η0(t) of the jet is provided at the channel exit by
the acoustic velocity vac(t). Rayleigh’s theory is
applied to describe in a simplified way the convec-
tion and amplification of this perturbation along
the jet, leading to the transversal displacement at
the labium:

η(t) = η0(t− τ)eαiW =
h

Uj

vac(t− τ)eαiW , (1)

with Uj the centerline velocity of the unstable jet
(directly related to the pressure Pmouth in the mu-
sician’s mouth, through the Bernoulli relation),
and αi ≈

0.4
h

an empirical amplification coeffi-
cient [5]. The delay τ , due to the convection du-
ration, is related both to the distance W , and to
the convection velocity cv of the perturbation, with
0.3Uj < cv < 0.5Uj [4, 5]. It is worth noting that τ
is directly related to both the jet velocity Uj hence
to the mouth pressure Pmouth (the higher Pmouth,
the smaller the delay τ).

The oscillation of the jet induces an alternative
flow injection on each side of the labium (inside and
outside the pipe). Following the jet-drive model
[6], these two localised flow sources in phase op-
position, separated by a distance δd, constitute a
dipolar pressure source ∆psrc(t).

Moreover, the phenomenon of vortex shedding
at the labium [7] gives rise to energy loss modeled
through an additional term ∆plos(t) in the source
equation.

The pressure source ∆p(t) = ∆psrc(t)+∆plos(t)
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exciting the resonator is finally written as:

∆p(t) =
ρδdbUj

W

d

dt

[

tanh

(

η(t)− y0

b

)]

−
ρ

2

(

vac(t)

αvc

)2

sgn((vac(t)),

(2)

with ρ the air density, b the half width of the Bick-
ley profile of the jet, y0 the offset between the
labium and the jet centerline (see figure 1), sgn the
sign function, and where αvc represents the vena

contracta contraction coefficient, estimated for a
sharp edge at 0.6.

The acoustical frequency response of the air col-
umn to the pressure source is given by its admit-
tance Y (ω) = Vac(ω)

∆P (ω) , which is modelled through a
modal decomposition:

Vac(ω) =

[

a0

jωb0 + c0
+

p
∑

k=1

akjω

ω2
k − ω2 + jω ωk

Qk

]

∆P (ω),

(3)

with ω the pulsation, ak, ωk and Qk the modal
amplitude, the resonance pulsation and the qual-
ity factor of the kth resonance mode (respectively),
and a0, b0 and c0 the coefficients of the so-called
uniform mode at zero-frequency. Such coefficients
are estimated, for different fingerings, from the
geometrical dimensions of a Bressan Zen-On alto
recorder, using the software WIAT [8].

The model is finally defined by equations 1, 2,
and 3. For sake of numerical conditionning, the re-
sulting system is made dimensionless, defining the
following variables: t̃ = ω1t and ṽ(t̃) = heαiW

bUj
vac(t)

(see [3] for more details).

3 Linearisation around the equi-

librium

The model described in section 2 can be rewritten
as a neutral delayed nonlinear dynamical system
[2, 3]:

ẋ(t̃) = f(x(t̃),x(t̃− τ̃), ẋ(t̃− τ̃ ), λ). (4)

where λ is the set of parameters, and x the vector
of state variables, constituted by the projections of
ṽ(t̃) on each mode of the admittance (see equation
3), and their first derivative with respect to time
(see [3] for more details).

Due to its neutral delayed nature, the complete
resolution and analysis of the model is particularly

complex [9, 3]. Especially, time-domain simula-
tions require very high sampling frequency (typ-
ically 1 MHz) to provide accurate results, and
are thus costly in terms of computation time.
The study of the corresponding linearised system
around a non oscillating solution is thus particu-
larly interesting, due to the simplicity of the cal-
culations.

The model studied here has a trivial non oscillat-
ing solution f(0, 0, 0) = 0. Linearisation of system
4 around this static solution leads to the following
equation:

ẋ(t̃) = A1x(t̃) +A2x(t̃− τ̃) +A3ẋ(t̃− τ̃), (5)

where Ai denotes the partial derivative of vector
function f with respect to its ith argument, evalu-
ated at the static solution 0 (see for example [10]).
In this expression, terms A2 and A3 are directly
related to the neutral nature of the system. In a
more classical system of ordinary differential equa-
tions ẋ(t) = f(x(t), λ), modeling for example reed
instruments, brass instruments and bowed string
instruments, A2 = A3 = 0.

The stability properties of the static solution are
then determined by the roots κ of the characteristic
equation associated to equation 5:

det(κI −A1 −A2e
−κτ̃

−A3κe
−κτ̃ ) = 0, (6)

where I represents the identity matrix [10]. In the
present case, this equation is solved with the soft-
ware DDE-Biftool and its extension for neutral dy-
namical systems [11, 9, 12]. The considered static
solution remains locally stable as long as all the
roots have negative real parts. Conversely, if at
least one of the roots has a positive real part, any
small disturbance is amplified with time, and the
static solution is thus locally unstable. This anal-
ysis thus allows to determine the Hopf bifurcation

points at which the real parts of two complex con-
jugate roots κ become positive. Such a Hopf bifur-
cation corresponds to the birth of a periodic solu-
tion (and thus to an oscillation threshold), whose
frequency at this threshold is driven by the imag-
inary part of the considered roots. Each periodic
solution is thus associated to a given instability of
the static solution.

As an example, figure 3 represents real parts of
the roots of equation 6, with respect to the dimen-
sionless delay τ̃ (along this paper, the roots are
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represented with respect to τ̃ for sake of readibil-
ity and consistency with the numerical resolution
method). The modal coefficients correspond to the
G4 fingering of an alto recorder. It highlights that
for the range of τ̃ represented, the static solution
remains unstable. More precisely, two different
instabilities (corresponding to two periodic solu-
tions) exist for 0.98 < τ̃ < 1.3. The first instability
disapears for τ̃ slightly below 0.2. According to the
imaginary part of the root associated to this insta-
bility, it corresponds to a periodic regime at a fre-
quency close to the first resonance frequency, the
so-called first register. In the same way, the sec-
ond instability (corresponding to the second reg-
ister) disapears around τ̃ = 0.1 . At τ̃ = 0.98,
τ̃ = 0.7 and τ̃ = 0.55, three additional periodic so-
lutions emerge, which respectively correspond to
the third, the fourth and the fifth registers, and
die out at τ̃ = 0.05, τ̃ = 0.04 and τ̃ = 0.02.

In addition to the prediction of oscillation
thresholds and oscillation frequency at each of
these thresholds, some previous studies have high-
lighted that such a linear analysis can provide a
rough approximation of both the regime change
thresholds and the oscillation frequency far from
oscillation thresholds (through the imaginary parts
of the different roots, not represented here) [2].
The present study focuses on the information pro-
vided by this linear analysis in the case of attack
transients of the mouth pressure.

4 Results: Linear analysis and

attack transients

The results of linear analysis are compared to
time-domain simulations of the complete nonlin-
ear model. Since attack transients correspond both
to highly non stationary evolutions of the param-
eters, and to oscillations outside the vinicity of
the static solution around which the system is lin-
earised (equation 5), nothing guarantees that this
method can provide valuable information.

4.1 Pmouth steps : arrival oscillation

regime

For modal coefficients corresponding to the G4 fin-
gering of an alto recorder, different steps of the
mouth pressure between a low value of Pmouth (for
which the static solution is stable) and a variable
target value Pt of the mouth pressure are carried
out through time domain simulations of the model

presented in section 2. A Runge-Kutta solver of or-
der 3, implemented in Matlab - Simulink, has been
used. Figure 4 represents, with respect to time, the
mouth pressure, the acoustic velocity vac(t) and
the oscillation frequency, for two different values
of Pt (Pt = 300 Pa and Pt = 400 Pa). The com-
parison of the fundamental frequencies highlights
that the step with Pt = 300 Pa leads to oscillation
on the first register, whereas the step with Pt =
400 Pa leads to oscillation on the second register.
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Figure 3: G4 fingering: real parts of the roots κ

(linearised model), with respect to the dimension-
less delay τ̃ . Each (positive) branch of ℜ(κ) cor-
responds to an instability of the static solution,
related to a periodic solution. The cross and the
circle represent the largest value ℜ(κ), for values
of Pt (300 Pa and 400 Pa) leading respectively in
time-domain simulation to the first and the second
register.

Examining the roots κ at these two points sug-
gests that the arrival regime could be driven by
the root with the largest real part. In figure 3,
which represents roots κ with respect to τ̃ , the blue
cross and the red circle highlight the root with the
largest real part, respectively for the two values of
the dimensionless delay τ̃ corresponding to Pt =
300 Pa and Pt = 400 Pa. In that case, the first
register is obtained when the root with the largest
real part corresponds to the instability giving rise
to the first register, whereas the second register is
obtained when the root with the largest real part
is related to the existence of the second register.

This assumption is confirmed by the realisation
of different steps of the mouth pressure on a wider
range of Pt: as highlighted in figure 5, which repre-
sents the same kind of data as figure 3, the oscilla-
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Figure 4: Time-domain simulation of the complete
model, for two steps of Pmouth with a target pres-
sure Pt = 300 Pa (left) and Pt = 400 Pa (right).
Representation of the mouth pressure (high), the
acoustic velocity vac(t) (middle) and the funda-
mental frequency (bottom), with respect to time.

tion regime reached corresponds, in all the tested
cases, to the register related to the root with the
largest real part.

Through a linear analysis of the model, it is thus
possible to predict the range of mouth pressure of
the attacks (controlled by the musician) leading
to each oscillation regime. Thus, it is possible to
bring out some characteristics of a given fingering,
such as for example the inhability (or at least the
difficulty) to attack on a specific register.

4.2 Stability ranges of the periodic

regimes

According to these first results, the analysis of the
system linearised around its static solution allows
to predict the oscillation regime resulting from a
step of the mouth pressure. It thus suggests that
the periodic regime related to a given instability
of the static solution is necessary stable as long as
the associated root is the largest one, in terms of
real part. The different periodic solutions branches
of the complete model and their stability proper-
ties are calculated in the software DDE-Biftool, as
described in [3]. Figure 6 represents the roots κ

computed for the G4 fingering as a function of τ̃
(already represented in figures 3 and 5), superim-
posed with the range of stability of the different
corresponding periodic solution branches (i.e. the
different registers). It highlights that for each of
the five registers, if the associated root κ is the one
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arrival regime: 2nd register

arrival regime: 3rd register

arrival regime: 4th register

arrival regime: 5th register

Figure 5: Lines: real parts of roots κ (linearised
model), as function of the dimensionless delay τ̃ ,
for the G4 fingering. Markers: time-domain simu-
lation of steps of Pmouth; representation of the ob-
served oscillation regime as function of the value
τ̃c corresponding to the step amplitude Pt.

with largest real part, the regime is stable. How-
ever the reciprocal is false.

If it does not allow to predict the precise range of
stability of a given periodic regime, we conjecture
that this analysis nevertheless provides a minimal

range of stability for each periodic regime.

4.3 Duration and type of the transients

As real parts of roots κ characterise the amplifi-
cation, with respect to time, of small disturbances
superimposed on the static solution, it is expected
that the duration of the transient of vac(t) depends
on the real part of the root associated to the arrival
regime (see for example [10]). For simulations of
different steps of the mouth pressure, the duration
of the transient of vac(t) has been compared to the
largest real part of the roots κ. The duration of the
transient is defined as the time between the instant
at which the step of Pmouth occurs and the time at
which the oscillation amplitude of vac(t) differs by
less than 10 percent from the steady-state oscilla-
tion amplitude. The results, represented in figure
7 for modal coefficients corresponding to the A4

fingering of an alto recorder, show good agreement
with the theory, in the sense that the larger the
real part of the root, the shorter is the transient.
However, two specific points, for ℜ(κ) = 0.05 and
ℜ(κ) = 0.07, show unexpected behaviours.

A more careful study of this two points high-
lights particularly interesting phenomenon: the
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instability of the static solution (i.e. branch of
ℜ(κ)).

(long) transients of the temporal signals vac(t),
represented in windows (a) and (b) in figure 7,
are in both cases constituted by a quasiperiodic
regime. Moreover, examining the real parts of
roots κ at these points shows, as highlighted in
window (c) in figure 7, that in both cases, two
”branches” of roots (corresponding to two differ-
ent periodic solutions) intersect. Case (a) corre-
sponds to the intersection between the branch re-
lated to the first register and the branch related
to the second register. A spectral analysis of the
quasiperiodic transient observed at this point high-
lights that its two base frequencies correspond to
those of the 1st and 2nd registers.

Similarly, case (b) is located at the intersection
point between the roots leading respectively to the
2nd and the 4th register (see (c)). As for the case
(a), the spectral analysis of the quasiperiodic tran-
sient allows to identify the two base frequencies as
frequencies of the 2nd and 4th registers.

At these points, it thus seems that the system
”hesitates” between the two instabilities (leading
to two different registers). As each of these insta-
bilities involves a particular frequency, it results in
a long quasiperiodic transient, constituted by these
two frequencies.

It results that the computation of the roots κ

not only provides an estimation of the relative du-
rations of the transients for different values of the
mouth pressure (the transient will all the shorter
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Figure 7: Time-domain simulation of mouth pres-
sure steps, for the A4 fingering. Transient duration
of vac with respect to the largest value ℜ(κ) at the
value of τ̃c corresponding to the amplitude Pt of
the step. (a) and (b): temporal signal vac with re-
spect to time for the two pathological points. (c):
ℜ(κ) of the linearised model, with respect to τ̃ .

than the real part of the root is large), but also,
in some cases, information about the nature of the
transient. This result suggests that it would be
possible to access, through a comparison of the
real parts of the different roots, an estimation of
the spectral content of the transient of vac. How-
ever, this remains to be confirmed.

4.4 Influence of the rise time of Pmouth

Previous sections have bring out the interesting
connections between the behaviour of the complete
(nonlinear) model and the roots of the linearised
system, in the case of attack transients formed by
steps of the mouth pressure. However, one can
question the validity of these results in the case
of more realistic transients. In a study focusing
on the analysis of attack transients realised by
recorder players, Garćıa [13] noted rise times of
the blowing pressure between 10ms and 40ms.

To test the influence of the attack time, same
kind of simulations as in section 4.1 have been
achieved with linearly increasing attack transients
of Pmouth, with rise time from 10ms to 40ms. If
such profile of Pmouth remains a rough represen-
tation of real attack transients (mainly because of
the linear increase during the attack), they are nev-
ertheless less caricatural than the steps previously
studied.

As in section 4.1, figure 8 presents the compar-
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ison between the oscillation regime resulting from
attack transients with a rise time of 40ms (with
different values of the target pressure) and real
parts of the roots of the linearised system. As
previously, it highlights that the arrival oscillation
regime is the register resulting from the instability
of the static solution associated to the root with
the largest real part, and that this arrival regime
can thus be predicted by the simple examination
of the roots κ. Same results have been observed
for different values of the rise time of Pmouth be-
tween 0ms and 40ms. If the influence of the attack
transient profile remains to be studied, these re-
sults already argue in favor of the validity of this
conjecture in the case of more realistic transients
attack.
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Figure 8: Lines: real parts of roots κ (lin-
earised model), as function of τ̃ , for the G4 fin-
gering. Markers: time-domain simulation of steps
of Pmouth with rise time of 40ms; representation
of the arrival register as function of the value τ̃c
corresponding to the step amplitude Pt.

5 Conclusion

This study has presented some comparisons be-
tween the analysis of the linearised state-of-the-art
model for flutes, and time-domain simulations of
attack transients of the complete nonlinear model.
Theoretically, attack transients fall totally out of
the scope of linear analysis around the static so-
lution. However, very surprisingly, it appears that
the roots computed from the linearised model pro-
vide valuable information on attack transients of
the complete nonlinear model. Indeed, the study
of the real parts of the roots is enough to predict
the oscillation regime resulting from a step of the
mouth pressure, a minimal range of stability of

each periodic regime, and in some cases, a qual-
itative estimation of the relative transients dura-
tion and spectral content. It is interesting to note
that these conjectures seem to remain valid for rise
times of the mouth pressure corresponding to those
observed on musicians. These results thus allow, in
some cases, to predict the model behaviour with-
out solving the complete model, ans thus consid-
erabily reducing the computation time and com-
plexity. To the author knowledge, these surpris-
ing results have never been observed before, nei-
ther on neutral dynamical systems, nor on simpler
ordinary differential systems (modelling for exam-
ple reed, brass and bowed-string instruments). In
order to test the validity of these conjectures for
more realistic attack transients, it would be inter-
esting to study, in addition to the rise time of the
mouth pressure, the influence of its temporal pro-
file. Indeed, only linear profiles of the mouth pres-
sure have been considered here. Moreover, since
this study suggests the existence of a relation be-
tween the quasiperiodic nature of a transient and
the roots of the linearised model, it would be in-
tereseting to explore in more depth the ability of
the method to predict the spectral content of the
attack transients.
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