
HAL Id: hal-01036590
https://hal.science/hal-01036590

Submitted on 22 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A moving mesh approach for the numerical simulation of
gas micro flows

Guillaume Dechristé, Luc Mieussens

To cite this version:
Guillaume Dechristé, Luc Mieussens. A moving mesh approach for the numerical simulation of gas
micro flows. 28TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS, Jul 2012,
Zaragoza, Spain. pp.366-372, �10.1063/1.4769544�. �hal-01036590�

https://hal.science/hal-01036590
https://hal.archives-ouvertes.fr
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Abstract. The study of numerical methods for the computation of gas micro flows in domains with moving obstacles is
motivated by the modelling of micro-electromechanical system (MEMS), especially vibrating devices. In this framework,
the flow is assumed to be well described by the BGK equation. Weproposed a new numerical method for the simulation of
deterministic rarefied flows with moving obstacles based on amoving mesh approach.

Keywords: Boltzman equation, moving mesh methods, flow simulations
PACS: 47.45.-n, 47.11.Df, 47.61.Fg

INTRODUCTION

In the framework of rarefied gas flows, several phenomena are observed and do not exist when the gas is described
by the classical continuous gas dynamics such that Navier-stokes equations. The gas needs then to be treated at
microscopic level by a statistical approach. At this scale the gas is governed by the Boltzmann equation [1]. This
kinetic description is justified when the mean free path of molecules is the same order of magnitude that the typical
flow dimension.

Rarefied regimes may appears at atmospheric pressure if the typical size of the system is the order of the nano
or micrometer. This is precisely the case in MEMS (Micro-Electro-Mechanical-System) [2]. However, rarefied flows
also appears in larger system when the ambient pressure is around 10−2 millibar, for instance in specific pumps. Both
systems may be made up of moving parts and the simulation of these systems is still challenging.

For now, several methods for the computation of continuous gas dynamics equation have been proposed. These
methods are divided in two main categories: either the computational mesh does not change during the computation,
or the grid evolves in order to fit with the physical boundary at each time. Methods based on non-moving mesh are
called immersed boundary methods and have been first proposed by Peskin [3] to study blood flow in vessel. An
extension of this approach to rarefied gas flows is described in [4]. In this article we proposed to use the moving mesh
method [5] for the computation of the simplified BGK model of Boltzmann equation.

The outline of this article is the following. In the first section, we briefly present the BGK model of Boltzmann
equation. In the next section, the moving mesh method is described. Finally, in the last section the method is validated
on two different test cases: a moving piston and an actuator.

THE BGK MODEL

The BGK model was proposed by Bhatnagar, Gross and Krook [6] as a simplification of the Boltzmann equation. It
consists of a relaxation of the distribution function towards its corresponding Maxwellian equilibrium. In this article,
only one dimensional cases in space and velocity have been studied. We empathize that this simplification is non
relevant from a physical point of view.
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∂ t

+ v · ∂ f
∂x

=
1
τ
(

M [ f ]− f
)
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The relaxation timeτ is defined byτ = µ/(ρRT), and according to [7],µ = µre f (T/Tre f)
ω whereµre f , ω andTre f

are constants that depend on the gas. Because the distribution functionf is the density probability of finding a particle
at coordinatex with a velocityv, the usual macroscopic quantities are its first moments:
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∫
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1
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|v|2) f (t,x,v)dv, (2)



The temperatureT of the gas is deduced from the relationE = 1
2ρ|u|2+ 1

2ρRT whereR is the gas constant, and is
defined by the ratio between the Boltzmann constant and the molecular mass of the gas. The Maxwellian distribution,
which corresponds to the thermodynamical equilibrium state, is obtained from the moments off :
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2πRT
exp

(

−|v−u|2
2RT

)

. (3)

Boundary conditions may be modelled by two standard approaches: either specular or diffuse reflection. In the
former model, incident molecules of velocityv are remitted with a velocity symmetric tov with respect to the wall.
Consequently, if the wall moves at a velocityuw, the specular reflection condition will be given by the following
relation:

f (t,x,v) = f (t,x,2uw− v) if (v−uw) ·nx > 0, (4)

wherenx is the unit normal vector to the boundary, pointed to the gas.In the diffuse reflection model, the molecules
colliding with the boundary are remitted with a temperatureTw equal to the wall temperature and with a random
velocity normally distributed arounduw. This reads:

f (t,x,v) = φM (1,uw,Tw) if (v−uw) ·nx > 0, (5a)

φ =−
∫

(v−uw)·nx<0 f (t,x,v)(v−uw) ·nxdv
∫

(v−uw)·nx>0M (1,uw,Tw)(v−uw) ·nxdv
. (5b)

Note that the coefficientφ is chosen in order to set the normal mass flux across the wall tozero.
Conservations laws for the density, momentum and energy areobtained by the definition of the moments off .
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and using Eq. (2), relation (6) become:
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The calculation of (7c) is detailed in [1] and the heat fluxq is given by the relationq= 1
2

∫

R
(v−u)3 f . This term may

be approximated by a Chapman-Enskog expansion [8], and we get:

q=
3
2

τρR2T
∂T
∂x

. (8)

For small Knudsen numbers, that isτ → 0, the heat fluxq is negligible and the set of Eq. (7) is simplified to Euler
equations. Otherwise, the set of Eq. (7) is exactly the Navier-Stokes equations. It is generally admitted [7] that the
macroscopic equations are no longer sufficient when the Knudsen number is greater than 0.1.

MOVING MESH APPROACH

BGK Equation in a Moving Frame

Let xmin(t) andxmax(t) be the coordinates of the moving frame boundaries. Let alsoumin andumax stand for the
velocity of these boundaries. The BGK equation may now be written as:

∂ f
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)

, (9a)

f (xmin(t),v, t) = fmin(xmin(t),v, t) ∀(v−umin)> 0, (9b)

f (xmax(t),v, t) = fmax(xmax(t),v, t) ∀(v−umax)< 0. (9c)



The boundary conditionsfmin and fmax are either specular (4) or diffuse (5). Let us derive the Eq. (9) in a moving
frame. Denoting byu(x, t) the velocity of the frame, we consider the following differential system:







u(x, t) =
dx
dt

,

x(0) = ξ .
(10)

The solution of this system is denoted byx(ξ , t). Then(ξ , t) are called the the moving frame coordinates. Moreover,
setting:
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From now on, for all functionsΨ(x, t) expressed in the usual coordinates, we introduce the notation
Ψ(ξ , t) = Ψ(x(ξ , t), t). Here, Ψ is the function expressed in the moving frame coordinates. Then, using rela-
tions (10) and (12), we may compute Eq. (9a) in the moving frame coordinates:
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Noticing that

J · ∂ f
∂x

=
∂ f̄
∂ξ

, (14)

and using equality (9a), we can simplify Eq. (13):
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(15a)

f̄ (ξmin,v, t) = fmin(ξmin,v, t) ∀(v−umin)> 0, (15b)

f̄ (ξmax,v, t) = fmax(ξmax,v, t) ∀(v−umax)< 0. (15c)

Numerical Discretization

The computational grid is changing at each time step. At eachtime steptn = ∆t, we denotexn
min andxn

max the value
of xmin(tn) andxmax(tn). Then, the domain is discretized by a Cartesian grid ofN+1 nodesxn

i+1/2 = xn
min+ i∆xn where

∆xn = (xn
max− xn

min)/N. At initial state, we have:

x0
i = ξi and ∆x0 = ∆ξ . (16)

With this mesh definition, the number of cell is the same in each time step, and the space step is constant for a specific
time, see Fig. 1. Let nowf n

i (v) stands for the average off (x,v, tn) over a cellCn
i = [xn

i−1/2,x
n
i+1/2[. Similarly, we denote

by f̄ n
i (v) the average of̄f (ξ ,v, tn) over a cellC̄i = [ξi−1/2,ξi+1/2[. Eq. (11) is approximated by
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FIGURE 1. Example of grid and space step computation.

and an easy computation shows thatf n
i (v) = f̄ n

i (v):

f n
i (v) =

1
∆xn

∫ xn
i+1/2

xn
i−1/2

f (x,v, tn)dx=
1

∆xn

∫ ξi+1/2

ξi−1/2

f̄ (ξ ,v, tn)J(ξ , tn)dξ = f̄ n
i (v). (18)

A discrete velocity method [9] is applied to treat the velocity variable. We definef n
i,k as an approximation of

f n
i (vk) where vk are the nodes of a bounded Cartesian grid with step∆v. The Maxwellian is approximated on

this grid by a discrete Maxwellian which has the same momentsas f . DenotingF n
i+ 1

2 ,k
the time average of[vk −

u(xi+1/2, t)] f (ξi+1/2,vk, t) betweent andt +∆t, Eq. (15a) is discretized as follows:
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Under the assumption that the velocities of the grid points are constant over a time step∆t, we denote
un

i+1/2 = u(xi+1/2, t) = (xn+1
i+1/2 − xn

i+1/2)/∆t . The fluxes at the interfaces between two cells can then be
computed by a classical first order upwind scheme, and relation (19) is finally simplified to:
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F
n
i+ 1

2
= max(0,vk−un

i+1/2) · f n
i,k+min(0,vk−un

i+1/2) · f n
i+1,k. (20b)

Note that with this scheme, the computation of the flux (20b) at the left of the domain (resp. right) requires the value
of f n

0,k (resp.f n
N+1,k) for all positive (resp. negative) microscopic velocityvk−un

min (resp.vk−un
max). These values are

defined by the boundary condition (15b) (resp. (15c) ). Sincethe velocities of the grid points are related to the speeds
of the boundaries, the computation of the time step is linkedto the motion of the wall through the CFL condition:

∆t < min

(

1
τi
,

∆xn+1

vk−un
i+1/2

)

(21)

It is worth pointing out that the positivity and stability properties of the scheme hold in a unbounded domain under
this CFL condition. This scheme is order one in space and time. The total order of the scheme can be increased using
for instance a Runge-Kutta 2 scheme for temporal discretization and computing the numerical fluxes with a superbee
scheme [10]. Equation (15a) can also be treated semi-implicitly [11], so that the CFL condition (21) does not depend
on τ .

NUMERICAL RESULTS

Oscillating Piston

Russo and Filbet recently proposed a semilagrangian scheme[12] for the numerical simulation of one dimensional
rarefied gas flows with moving boundaries. In this section, the same test case that in [12] is studied. The gas is located in



a one dimensional slab and is governed by a dimensionless BGKequation:R= 1 andτ is set to 10−3. A moving piston
is located at the left edge of the slab and moves with a velocity umin(t) = 0.25 sin(t). Its initial position isxmin(0) = 1.
There is a fixed wall at the right side of the slab located atxmax= 20. Each edge of the domain is modelled with
specular boundary conditions (4). The initial state of the gas is given by(ρ,u,T) = (1,0,3.15). Since the relaxation
time τ is very small, the solutions of the BGK equation can be compared to the solution of Euler equations. An easy
way to solve Euler equations in a one dimensional moving frame is to write them in Lagrangian coordinates [13].
Computations are done fromt = 0 to t = 35. The pressure at each edge of the slab is represented Fig. 2, and results
of Euler equations are compared to results obtained with BGKequation. In order to get a very accurate pressure
distribution, 2000 cells were used for the computation of Euler equations. The BGK equation has been computed with
the moving mesh method (first order scheme) as well as with thesemilagrangian scheme. Both computations have
been launched with 300 cells. In this case, increasing the number of computational cells or increasing the order of
the scheme would lead to better agreements with results of Euler computations. Nevertheless, even with a low space
resolution, BGK equation solved with the moving mesh methodgives quite accurate results.

 1

 2

 3

 4

 5

 6

 7

 0  5  10  15  20  25  30  35

P
re

ss
ur

e

time

Euler Equations, Full Lagrangian Scheme
BGK Equation, Semilagrangian Scheme

BGK Equation, Moving Mesh Method

 1

 2

 3

 4

 5

 6

 7

 0  5  10  15  20  25  30  35

P
re

ss
ur

e

time

Euler Equations, Full Lagrangian Scheme
BGK Equation, Semilagrangian Scheme

BGK Equation, Moving Mesh Method

FIGURE 2. Comparisons between the pressure profile obtained with Euler equations and BGK model near the piston (left) and
near the fixed wall (right). BGK equation is solved with both semilagrangian and moving mesh method.

Actuator Simulation

The system is made up of a moving plate located in the center ofa slab. The considered gas is argon (molecular mass
M = 66.3·10−27g) and it is governed by BGK equation. The relaxation time is calculated by the relationτ = µ/(ρRT).
The initial temperatureT0, pressureP0 and densityρ0 are the same in both parts of the slab. However, the temperature
of the right side of the plateTw differs from the temperature of its left sideT0. As the result, the temperature, as well
as the pressure, increases in the right part of the slab. Finally, the motion of the plate is induced by the difference of
pressure at each side of the plate:

m
dup

dt
= (P−−P+)S, (22)

whereup is the velocity of the plate,P− andP+ are the pressures at the left and right side of the plate,m is the mass
of the plate andS is its surface. The experiment is represented Fig. 3.

The equilibrium position of the plate can be analytically calculated. Indeed, if we write the mass conservation and
the gas equation of state for each part of the slab:

{

ρle f tRT0 = Pequi
ρrightRTw = Pequi

and

{

ρ0L0 = ρle f t(L0+ xequi)
ρ0L0 = ρright(L0− xequi)

, (23)

we have:

xequi= L0
1−Tw/T0

1+Tw/T0
, ρle f t =

Pequi

RT0
, ρright =

Pequi

RTw
, and Pequi=

L0

L0+ xequi
P0. (24)



The experiment has been numerically studied. The initial temperatureT0, velocity u0, pressureP0 and the right
temperature of the plateTw are respectively set to 270K, 0m·s−1, 1Paand 330K. The total length of the plate is given
by 2L0 = 2m. With these parameters, we getxequi= −0.1mand the Knudsen number isKn= 5 ·10−3. For this range
of Knudsen numbers, the Navier-Stokes equations are still valid.

moving plate

xxx0 = 0

(ρle f t, T0, Pequi) (ρright, Tw, Pequi)(ρ0, T0, P0) (ρ0, T0, P0)

Tw

L0+xequi L0−xequi

TwT0

xequi

T0 TwTw

L0 L0

T0 T0

FIGURE 3. Actuator experiment at initial state (left) and equilibrium state (right).

First, the moving mesh method is applied to solve the BGK equation. The BGK equation is independently solved
on left and right parts of the slab. For the left part of the slab, the diffuse boundary conditions at the fixed wall and at
the moving plate are respectively implemented with(T0,u) = (270,0) and(T0,u) = (270,un

p). The diffuse boundary
conditions for the right part of the slab are implemented in the same way, that is(Tw,u) = (330,un

p) at the moving plate
and(Tw,u) = (330,0) at the fixed wall. The velocity and the position of the plate are computed with backward Euler
schemes:

un+1
p = un

p+∆t× S
m
(Pn

l ,Nx
−Pn

r,1), (25a)

xn+1
p = xn

p+∆t×un
p, (25b)

wherePn
l ,Nx

andPn
r,1 are the pressures in the last and first cell of the left and right part of the slab at timetn. Velocity

and position of the plate are plotted Fig. 4. Notice that the equilibrium time is aboutt ≈ 100s. Indeed, the plate is
oscillating around its equilibrium position until its velocity comes to zero. Moreover the equilibrium position is in
agreement with relation (24).
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FIGURE 4. Left: velocity of the moving plate. Right: position of the moving plate

In a second step, BGK equation are discretized with the immersed boundary method [4]. With this approach the grid
is unchanged during the whole computation. Then, every cellwhich center is located in a solid object is considered
as solid. At last, the value of the distribution function in these solid cells is chosen in order to impose an appropriate
value of f at the solid interface. The results are in good agreement with the moving mesh method, see Fig. 5. This
numerical result shows no difference between the two methods. But we can expect that the moving mesh method will
lead to more accurate results that the immersed boundary method for more complex computations including among
others 2D simulations. Indeed, unlike the immersed boundary method, the moving mesh method set the numerical flux
to zero at the boundary, so that the total mass is preserved.



Finally, it is assumed that the gas is also governed by Navier-Stokes equations. These one are written in Lagrangian
coordinates and are solved by using the central scheme of Nessayhu-Tadmor [14]. Here again, the position of the plate,
Fig. 5, is really closed to the one obtained with BGK equation.
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FIGURE 5. Position of the moving plate: BGK equation with moving mesh method,⊙ BGK equation with Immersed
boundary method,+ Navier stokes equations with a full Lagrangian scheme.

CONCLUSION

We proposed an extension of the moving mesh method, already used for the simulation of compressible viscous flows,
to the simulation of the BGK model of gas dynamics. The methodhas been validated for one dimensional problems
and we showed that the method accurately predicts the behaviour of the gas near the boundary. The extension of the
method to higher dimensional problems is challenging because the recalculation of mesh seems difficult. However,
several methods, such that ALE approaches [15], on unstructured grid have been proposed for the computation of
compressible flow and our project is to use these methods for the computation of rarefied gas flows.
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