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ABSTRACT

We propose in this paper a robust simplification tech-

nique, which preserves geometric features such as sharp

edges or corners from original surfaces. To achieve this

goal, our simplification process relies on a detection tool that

enables to preserve the sharp features during the three subse-

quent steps: a Poisson disk sampling that intelligently reduces

the number of vertices of the initial mesh; the meshing of the

samples that aligns the edges along the feature lines; and a

constrained relaxation step that improves the shape of the

triangles of our final simplified mesh. Experimental results

show that our method always produces valid meshes without

aliasing artifacts, and without giving up the shape fidelity and

quality of the mesh elements.

Index Terms— Mesh simplification, meshing, Poisson

disk sampling, feature-preserving, GPU

1. INTRODUCTION

Nowadays, 3D acquisition systems are widespread used to

generate numeric representations of surfaces. In order to

capture small details, current systems generate dense point

clouds. Consequently, the meshes generated from such point

clouds are dense, and often oversampled. Moreover, they may

also suffer from bad-shaped triangles (i.e. poor aspect-ratio),

which is not desirable for many applications.

To overcome this problem, many simplification tech-

niques have been developed for the last decades. They aim

at reducing the number of vertices, while possibly optimizing

their positions, and ensuring the fidelity with respect to the

original shapes. It can be also desirable to generate high-

quality simplified meshes, in other words, to improve the

aspect-ratio of the triangles.

The literature relative to mesh simplification is large [1,2].

The two main categories are the methods based on incremen-

tal simplification, such as the well-known Qslim algorithm

of Garland and Heckbert [3], and the methods based on parti-

tioning, such as the VSA algorithm of Cohen-Steiner et al. [4].

Furthermore, numerous sampling methods for surfaces

emerged in recent years. Among them, the methods that

THIS WORK IS SUPPORTED BY A GRANT FROM RÉGION
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generate Poisson disk distributions are particularly relevant

for many applications such as rendering [5] or texturing [6].

Fu et al. [7] showed that a Poisson disk distribution is also

a relevant way to create high-quality meshes. Indeed, their

overall idea is to position and triangulate a set of samples

on a given surface according to their Poisson disk sampling

method, and then to relax their positions to improve the qual-

ity of the output triangles. Recently, we developed an efficient

feature-preserving Poisson disk sampling method for surface

meshes [8]. Our method has the advantage to handle any kind

of topology, to preserve sharp features, and to be relatively

easy to implement. Inspired by [7], we propose in this paper

our own simplification method for triangular meshes. Our

main objective is to propose a robust simplification technique

that handles complex surfaces having saliences, genus, and

which generates valid meshes, without outliers or triangle

flips.

Starting from a set of samples generated with [8], we ex-

plain here how these samples can be meshed and better po-

sitioned with respect to the original shape, to finally obtain a

simplified mesh without any geometric aliasing artifacts (i.e.

notches along features for instance), and whose triangles have

a good aspect-ratio. The main contributions of this paper are a

weighted geodesic Voronoi diagram and a constrained relax-

ation which are driven by a vertex classification to preserve

sharp features.

The paper is organized as follows: Section 2 gives an

overview of our simplification method. Then, Section 3 in-

troduces the notion of Geodesic Voronoi Diagram (GVD),

the key component of our method, presents typical meshing

techniques based on GVD, and our contribution. Next, Sec-

tion 4 exposes our feature-constrained relaxation method, and

Section 5 provides experimental results and comparisons with

prior simplification techniques. Finally, Section 6 concludes

this paper.

2. SIMPLIFICATION OVERVIEW

The main steps of our simplification method are illustrated

in Figure 2, and an example of data generated all along the

process is presented in Figure 1.

Starting from a dense triangular mesh (a), a feature detec-

tion tool is applied to classify its vertices into two categories
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Fig. 1: Simplification overview: (a) dense input mesh (around 240k vertices); (b) classification result (green: sharp edge; blue:

smooth region); (c) Poisson disk samples (around 1k samples); (d) output of the meshing with the proposed weighted GVD; (e)

output of the relaxation: the simplified mesh (without geometric aliasing artifacts). (f) For comparison, output of the meshing

with the usual GVD: the geometric aliasing damages the sharp features.

(b): each vertex belongs to a smooth region or to a sharp edge.

According to this classification, a set of Poisson disk samples

is generated (c). This latter is then triangulated, according

to our meshing based on a weighted Geodesic Voronoi Dia-

gram (GVD) to produce a first mesh without geometric alias-

ing (d). Finally a relaxation is applied on this mesh to modify

the position of the vertices, which permits to reduce the global

approximation error and to improve the aspect-ratio of the tri-

angles of the simplified mesh (e). Constrained by the feature

detection, the two last steps do not damage the features. For

comparison, (f) presents the output of our simplification tech-

nique if the usual GVD is used: the geometric aliasing dam-

ages the sharp features.
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Fig. 2: Proposed simplification algorithm.

3. PROPOSED MESHING TECHNIQUE

In this section we present our first contribution, a meshing

(or reconstruction) technique based on a Geodesic Voronoi

Diagram (GVD) [9–11].

3.1. Geodesic Voronoi Diagram (GVD)

We consider a surface S embedded in R
3, and a set X = {xi}

of p seeds initialized on the surface S. The GVD of X on S

is the union of the Voronoi cells {ci} associated to the seeds

{xi}. Each cell ci is defined on S by

ci = {x ∈ S/ ∀j 6= i, d(x, xi) < d(x, xj)}, (1)

where d(., .) is a geodesic distance. In our case, the surface S
being defined by a mesh M , the cell ci corresponds to the set

of vertices of M which are closer to the seed xi than all other

seeds (in terms of geodesic distance).

3.2. Meshing based on GVD

Such a meshing technique consists in connecting the seeds

{xi} to generate a mesh Mout. Usually, this process is done

by linking the seeds whose Voronoi cells share a common

border [12].

This technique is simple and efficient for smooth surfaces,

but may generate artifacts on saliences like sharp edges: see

Figure 1(f). Those artifacts, often called the geometric alias-

ing artifacts, appear when the edges of the output mesh are

not aligned along the feature lines. When a GVD is used dur-

ing meshing, these artifacts occur when two consecutive seeds

on a feature line have no common border. This is due to the

fact that these seeds are too far from each other, and conse-

quently the associated cells are disjoint. Figure 3(b) illustrates

this problem, where the red points represent the seeds that do

not lie on the feature edge, while blue ones do. The GVD is

calculated using equation (1). We observe that the orange and

the red cells associated to the blue seeds are disjoint. Con-

sequently, a notch appears since the generated edge connects

the red seeds.

3.3. Our contribution

To overcome the aforementioned geometric aliasing, we pro-

pose to apply a weighting on the GVD. The objective is to

stretch the Voronoi cells along features. For this purpose, we

first reuse the classification results: a vertex v of M is part of

the class sharp edge if it lies on a feature edge, otherwise it be-

longs to the class smooth region. Then, to create the GVD, we

replace in equation (1) the geodesic distance function d(., .)
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Fig. 3: Geometric aliasing and resulting solution of our feature-aware weighted meshing: (a) original surface; (b) and (c) GVD

and the resulting triangulation obtained without and with the proposed weighting, respectively.

by the following weighted geodesic distance dpond(., .):

dpond(v1, v2) = α.d(v1, v2). (2)

v1 and v2 are two neighbor vertices of M . α is used to warp

the Voronoi cells: α is smaller than 1 if v1 and v2 belong

to the class sharp edge, otherwise, α is equal to 1. The role

of the weighted distance dpond(., .) is to speed the growing

process up along saliences and thus to ensure the creation of

a common border between seeds on the feature lines. Fig-

ure 3(c) illustrates this fact: the red and the orange cells now

share a border, and consequently, the aliasing artifact does not

occur. Empirically, α is set to 0.3, which is efficient for all our

experimentations, whatever the expected number of vertices.

3.4. Implementation

Before detailing the implementation of the proposed meshing

technique, we recall that the two first steps of our simplifica-

tion are the feature detection and the sampling (see Figure 2).

The latter generates the samples (see Figure 1(c)) that will be

considered as the seeds {xi} for the meshing step. For these

two first steps, we choose to use the dart throwing technique

proposed in [8]. This technique generates Poisson disk sam-

pling on surfaces of arbitrary topology, while preserving the

sharp features. It is based on the tensor voting theory [13], to

detect the feature lines, and Dijkstra’s algorithm [14] to mea-

sure the geodesic distances between samples. Please read [8]

for more details.

The pseudo-code of our meshing is given by Algorithm 1,

see below.

Algorithm 1 Implementation details of our meshing method

Consider the samples generated with [8] as seeds {xi} and

the classified input vertices;

Step 1: Compute the GVD of X on M via a region growing

process using the weighted geodesic distance (2);

Step 2: Triangulate the samples {xi} according to the re-

sulting GVD.

To accelerate the generation of the GVD, we use a GPU

parallelized version of the multi-sources Dijkstra’s algorithm

[15]. The creation of a Voronoi diagram indeed is well suited

to parallelization, by using one thread per seed. However,

special attention must be paid along the borders. Indeed, two

threads might add the same vertex to different cells at the

same time. Consequently, a mutual exclusion technique has

been implemented to retrieve reliable cells over the surface

of M , that allows only one thread at a time to access a ver-

tex. The principle is depicted in Figure 4: (a) two cells are

growing simultaneously on the surface of M . (b) and (c) after

two iterative propagations, their borders are in contact and the

surrounded red area is critical because the update of the ver-

tex distances to their respective nearest seeds, must be done

iteratively, and not in parallel (i.e. one thread after the other).
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Mutual exclusion area 

Vertices of M 
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Fig. 4: GPU parallelized GVD. The red circle highlights the

area where false values might appear if the two threads Tx1

and Tx2 modify at the same time the distance from the same

vertex to their respective seeds.

4. PROPOSED CONSTRAINED RELAXATION

The output of the reconstruction step is a first mesh without

aliasing artifacts. However, the quality of the triangles and

its fidelity with respect to the initial shape may be improved

using a relaxation. The proposed relaxation is based on our

algorithm proposed in [16] for generating Centroidal Voronoi

tessellation. The principle is, for a given diagram, to compute

the centroid of each cell, and to move the seed to this specific

position. A new tessellation is then computed, and these two

stages are iterated until convergence. Such an approach cre-
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Fig. 5: Three meshes and their simplified versions, obtained

with our method. From left to right: FANDISK, SHARP

SPHERE and AXLE.

ates dual triangulation of high quality: see [16] for more de-

tails. The main differences between the relaxation proposed

here and [16] are: (i) the weighted geodesic distance (equa-

tion 2) is used as metric to compute the Voronoi cells (instead

of the euclidean distance, absolutely not suitable for dealing

with shapes of arbitrary topology, sharp features, etc.); (ii)

at the end of each relaxation stage, each ”centroidal” seed is

moved to the closest vertex of the input mesh M that belongs

to the same class as this seed before relaxation (smooth region

or sharp edge). The interest of this second modification is to

ensure that the vertices remain positioned on the feature lines

despite the relaxation. Hence, the sharp features of the input

shape are also preserved during relaxation.

5. RESULTS

Figure 5 depicts three original manifold meshes (on top), and

their simplified versions created with our method (on bottom).

We observe that no geometric aliasing occurs during our

simplification and that each mesh well approximates its orig-

inal shape. To verify the fidelity of our simplified meshes to

the original shapes (low approximation error) and the qual-

ity of the output triangles, we compare our results in terms

of geometric error (RMSE) [17], and minimum angle of tri-

angles, with those produced by the prior simplification tech-

niques Qslim [3] and ACVD [18] (see Table 1). As expected,

Qslim is more efficient than our method on the smoother sur-

faces (SHARP SPHERE and FERTILITY). On the other hand,

our method gives similar or lower approximation errors than

Qslim and ACVD for non-smooth meshes such as AXLE or

FANDISK. Also, we observe that, as expected, our method al-

ways outperforms Qslim in terms of quality of triangles, and

most of times outperforms ACVD. Moreover, in the contrary

of the two prior methods, our simplification always provides

valid meshes (i.e. manifold meshes) without aliasing artifacts,

and without giving up the shape fidelity and quality of the

Simplified meshes

with [3] with [3] with [18]

(1,035 vertices) (1,054 vertices) (1,000 vertices)

Fig. 6: Three meshes produced by Qslim [3] and ACVD [18],

which present triangle flips or outliers. From left to right:

FANDISK, AXLE and CASTING.

mesh elements. Indeed, see the three simplified meshes pre-

sented in Figure 6, generated by Qslim [3] and ACVD [18]:

they contain triangle flips (FANDISK and AXLE) or outliers

(CASTING). Finally, our results are very satisfactory since

our objective was to propose a robust simplification technique

dedicated for such complex meshes.

Models Methods Manifold RMSE

Min.

angle

FERTILITY

Qslim [3] Yes 0.00068 31.3◦

ACVD [18] Yes 0.00278 47.2◦

Our method Yes 0.00242 39.4◦

FANDISK

Qslim [3] Yes 0.00390 26.6◦

ACVD [18] Yes 0.00023 35.0◦

Our method Yes 0.00040 39.2◦

SHARP
Qslim [3] Yes 0.00068 33.8◦

SPHERE
ACVD [18] No 0.00119 37.6◦

Our method Yes 0.00238 39.7◦

AXLE

Qslim [3] No 0.00924 30.6◦

ACVD [18] No 0.00115 35.9◦

Our method Yes 0.00090 36.1◦

Table 1: RMSE and minimum angle of triangles in degrees,

for our method and two prior simplification algorithms (Qslim

[3] and ACVD [18]). It is also indicated either the produced

meshes are manifold or not.

6. CONCLUSION

We presented a new simplification technique for surface

meshes, that has the advantage to handle surfaces of arbitrary

topology, and to preserve the sharp features. The main con-

tributions are an efficient meshing and a relaxation technique

that take into account the feature lines in order to avoid ge-

ometric aliasing. Experimentations show that our resulting

simplified meshes are also of high quality, since they approx-

imate well the input shapes in terms of geometric error and

triangle aspect-ratio. Furthermore, they are valid meshes and

do not present outliers or triangle flips.
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