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HOW TO DETERMINE SAPLING BUCKLING RISK WITH ONLY

A FEW MEASUREMENTS

GAËLLE JAOUEN,2,5 TANCRÈDE ALMÉRAS,2 CATHERINE COUTAND,3 AND MERIEM FOURNIER4

2UMR Ecologie des Forêts de Guyane, INRA, BP 709, 97379 Kourou, French Guiana; 3UMR 547 PIAF, INRA, Université

Blaise Pascal, 63100 Clermont-Ferrand, France; and 4AgroParisTech, UMR1092 Laboratoire d’étude des Ressources Forêt-Bois

(LERFoB), 54000 Nancy, France

Tree buckling risk (actual height/critical buckling height) is an important biomechanical trait of plant growth strategies, and one

that contributes to species coexistence. To estimate the diversity of this trait among wide samples, a method that minimizes

damage to the plants is necessary. On the basis of the rarely used, complete version of Greenhill’s model (1881, Proceedings of

the Cambridge Philosophical Society 4(2): 65–73), we precisely measured all the necessary parameters on a sample of 236

saplings of 16 species. Then, using sensitivity (variance) analysis, regressions between successive models for risk factors and

species ranks and the use of these models on samples of self- and nonself-supporting saplings, we tested different degrees of

simplification up to the most simple and widely used formula that assumes that the tree is a cylindrical homogeneous pole. The

size factor had the greatest effect on buckling risk, followed by the form factor and the modulus of elasticity of the wood.

Therefore, estimates of buckling risk must consider not only the wood properties but especially the form factor. Finally, we

proposed a simple but accurate method of assessing tree buckling risk that is applicable to a wide range of samples and that

requires mostly nondestructive measurements.

Key words: biomechanics; critical buckling height; French Guiana; risk factor; sapling; stem form; tropical rain forest; trunk

volume.

Within the scope of forest ecology, plant functional traits
must be determined to observe their diversity, to find the
existing trade-offs that allow species to coexist (McGill et al.,
2006), and to define species growth strategies. Biomechanical
traits of plants are usually studied within different contexts,
including studies of the evolution of plant forms (Esser, 1946;
Larson, 1963; McMahon, 1973; Niklas, 1988; Alméras et al.,
2004) and growth (Mattheck, 1990; Niklas, 1993; Henry and
Aarssen, 1999; King et al., 2006). They are also studied at the
practical level to develop a better understanding of the
mechanical stability of cultivated plants (Brüchert et al.,
2000; Coutand et al., 2000) or their potential for human use
(Beismann et al., 2002; Kern et al., 2005). The interactions
between mechanical constraints and tree architecture (i.e., the
developmental constraint) are increasingly discussed within the
context of heterogeneous forest ecology, especially in tropical
rainforests characterized by a tremendous diversity of woody
plant species (O’Brien et al., 1995; Sterck and Bongers, 1998;
van Gelder et al., 2006). In this case, the diversity of tree traits
among a wide range of samples of plants and species must be
analyzed. Moreover, these traits should be assessed insofar as

possible by nondestructive measurements to enable repeated
and long-term observations during growth in permanent plots.
One tree trait discussed in many works (Rich et al., 1986;

King, 1987; Niklas, 1995; Sterck and Bongers, 1998; Gavin
and Peart, 1999) is the risk of mechanical buckling under self-
weight, usually measured by a safety factor, the ratio between
critical buckling height (Hcr) and the actual tree height. The use
of such safety factors implies the choice of a particular
biophysical constraint, buckling in this case, but other
constraints can be analyzed as well, such as uprooting or tree
breaks under wind stress (Esser, 1946; King, 1986; Spatz and
Bruechert, 2000; Karrenberg et al., 2003) or under hydraulic
stress (Niklas and Spatz, 2004; Kern et al., 2005). This
implicitly assumes that buckling is ecologically relevant in the
studied context. However, using safety factors .1 for self-
supporting trees, we highlight the safe situations where the
buckling risk is obviously not ecologically significant.
Actually, when a safety factor .4, buckling is obviously not
a major constraint and plant height is obviously limited by
other factors. Therefore, we prefer to use the reciprocal of the
safety factor, i.e., the risk factor (RF) that is the ratio between
the tree’s actual height and its critical buckling height. RF is
strictly contained between 0 and 1 for self-supporting plants,
and highlights high-risk values, i.e., situations where buckling
risk is a major ecological constraint, with a transition from self-
supporting to liana habit. Some authors (McMahon, 1973;
Niklas, 1994) reported very low buckling risks that were fairly
constant at the scale of large samples of trees or self-supporting
ground plant species. In tropical rainforest understory, the very
limited light (Chazdon and Fetcher, 1984; Montgomery and
Chazdon, 2002) with vertical (and horizontal) light gradients
induces tall and slender saplings associated with high buckling
risks (Kohyama and Hotta, 1990; King, 1991, 1994).
Moreover, a small percentage of nonself-supporting trees are
usually observed in this case (see Fig. 1). Finally, based on the
diversity of growth patterns, life histories, and architectures
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found in a tropical rainforest, we expect to find a diversity of
buckling risks among species (Bongers and Sterck, 1998;
Sterck and Bongers, 1998).

In this paper, we investigate a simple method for
determining the buckling limit of saplings for a wide range
of samples with as few measurements as possible but with
sufficient accuracy and no bias. Our goal is to use this simple
method to evaluate the variation of buckling limit in the
population. A mechanical model of the Hcr of trees was
proposed by Greenhill (1881). This model is based on the beam
theory for a tapered, elastic pole, subjected to gravity and with
restrained anchorage. Among the many models developed for
buckling analysis of tapered beams under complex loadings
(Garth Smith, 1988; Elishakoff and Rollot, 1999; Li, 2001), we
chose this model, which is very appropriate for tree buckling
risk assessment, because the parameters used to specify
geometry and loads are adapted to the description of a tree.
Greenhill’s model considers tree size, taper, mass distribution
along the trunk, and wood stiffness. Many authors (King, 1981;
Niklas, 1994; Claussen and Maycock, 1995; Sterck and
Bongers, 1998; van Gelder et al., 2006) have used this model
to compute safety factors with more or less implicitly
simplified assumptions about trunk taper, mass distribution
along the trunk, and wood stiffness, but the relevance of these
assumptions has seldom been assessed. Moreover, the
definition of RF requires a comparison between the real height
and the critical one, where all other factors remain constant.
Most authors (Claussen and Maycock, 1995; Sterck and
Bongers, 1998; van Gelder et al., 2006) compared trees using
one diameter, the same taper, the same mass distribution and,

sometimes, the same wood stiffness. When comparing species
strategies, the ecological significance of these assumptions is
not always obvious. Taper or mass distribution can be easily
understood as developmental architectural constraints and
should therefore vary among species and with environmental
conditions. Wood stiffness variations, closely linked to dry
wood density, play a central role in the life-history variation of
tree species (van Gelder et al., 2006). Lastly, the diameter is the
usual size parameter in forest science. However, because the
issue in this case is to calculate the maximal height the tree
could reach with the same investment in support material, the
tree should be compared to a pole of the same wood volume or
same wood dry mass, rather than the same diameter.
This paper compares different methods for estimating

buckling risk factors, using Greenhill’s model for calculating
buckling height. The Hcr and RF will first be computed with
the complete model using a sample of 236 saplings from 16
species of the tropical rain forest of French Guiana. The
sources of variation of the buckling height will be studied to
determine which ones can be disregarded at the intra- and/or
interspecific levels. For further applications on large samples
on permanent plots where trees cannot be harvested, we will
then design proxy variables using nondestructive data for the
factors that greatly contribute to Hcr variability. Finally, we will
discuss the bias and errors due to the different possible choices.
This comparison is based on the consequences of simplifying
the assumptions on the Hcr calculation and on the ranking of
species according to their RF. The ability of the models to
clearly discriminate between saplings known to be self-
supporting or not is validated for one species.

Fig. 1. A nonself-supporting Tachigali melinonii right after cutting (left) and a self-supporting one (right) from the same place. In the forest, the
nonself-supporting sapling was supported by larger trees.
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MATERIALS AND METHODS

Greenhill’s model—The risk for a tree to buckle under its self-weight is
calculated by the ratio of its actual height to its critical buckling height Hcr, i.e.,
the maximal height it could reach with the same volume of material, taking its

developmental constraints (mass, tree form, and wood properties) into account.
Our reformulation of Greenhill’s model leads to Eq. 1:

Hcr ¼
p
½E½r20cðjm� 4nþ 2jÞ

4ðMtotgÞ
½

; ð1Þ

where E is Young’s modulus of elasticity of the green wood (Pa), r0 the basal
radius of the trunk (m), Mtot the total biomass of the tree (kg), g the

gravitational acceleration (9.81 m�s�2), n the tapering parameter defining the
way the radius changes along the trunk (Eq. 2), and m the biomass distribution
along the whole trunk (Eq. 3).

rðzÞ ¼ r0
H � z

H

� �n

ð2Þ

MðzÞ ¼ Mtot

H � z

H

� �m

ð3Þ

The variable z is the height along the trunk (m), H is the total height of the tree

(m), r(z) the trunk radius (m) at the z-level, and M(z) the total biomass (kg;
trunk, branches, and leaves together) supported above the z-level. By way of
explanation, if n¼0, the stem is a cylinder; if n¼1, it is a cone. In other words,
the higher the value of n, the greater the taper (i.e., the diameter variation

between the basal and the upper part of the trunk). If m ¼ 1, the biomass is
uniformly distributed along the whole tree; the higher the value of m, the nearer
to the base of the tree the biomass is concentrated. Lastly, c is a function of n
and m, namely, the first root of the Bessel function Jt with t defined by Eq. 4:

t ¼
4n� 1

m� 4nþ 2
ð4Þ

Because the tree will be compared to a pole of the same wood volume, we
modified Eq. 1 using the trunk’s volume rather than its radius as the main size

parameter. The section is considered as circular so that the volume of the trunk
above z is given by Eq. 5:

VðzÞ ¼

Z

H

z

prðzÞ2dz; ð5Þ

which, using Eq. 2, gives Eq. 6:

VðzÞ ¼
pr20ðH � zÞ2nþ1

ð2nþ 1ÞH2n
: ð6Þ

From Eq. 6, the total volume is given, taking z ¼ 0, by Eq. 7:

Vð0Þ ¼ V ¼
pr20H

2nþ 1
; ð7Þ

and Eq. 1 becomes Eq. 8:

Hcr ¼
1

2ðpgÞ¼
E¼ðcðjm� 4nþ 2jÞð2nþ 1ÞÞ½V¼

Mtot

V

� ��¼

: ð8Þ

Lastly, the model can be presented as in Eq. 9:

Hcr ¼ 0:21E¼F½V¼L�¼: ð9Þ

The wood property factor E, namely, the modulus of elasticity of green wood

(Pa), defines wood mechanical stiffness independently of tree form and size.
The form factor F [with no unit, F¼ c(jm� 4nþ 2j)(2nþ 1)] depends on both
m, the distribution of biomass along the whole trunk, and n, the trunk taper
defining the variations of the cross section bending inertia along the pole. The

load factor L (kg�m�3) is the ‘‘structural’’ density, i.e., the ratio of the supported
mass (¼Mtot, including branches and leaves) to the volume of support material
(V). If branches, leaves, and bark biomass can be considered to be negligible,
this factor is the green wood density. The size factor, in other words, the stem

volume V (in m3), represents the amount of support material.

If the tree is assumed to be a tapered pole of constant density (q) with

negligible branch and leaf biomasses, M(z) ¼ qV(z), then according to Eq. 6,

parameter m equals 2n þ 1.

A further simplified version of the model (referred to as the ‘‘classical

formula’’ in this work) is often found in the literature (Niklas, 1995, 1999a;

Sterck and Bongers, 1998; Falster, 2006; van Gelder et al., 2006). In this case,

the trunk is considered as a cylinder with, in most cases, a homogeneous

distribution of biomass all along the tree so that n¼ 0 and m¼ 1 and, thus, c¼
1.867. The resolution of Greenhill’s model leads to Eq. 10:

Hcr ¼ 0:792
E

M=V

� �1=3

D2=3: ð10Þ

Obviously, the use of Bessel functions that are not as popular as other

mathematical functions (such as sines, exponentials, or logarithms) deterred

authors from properly taking taper and mass distribution into account in

buckling height calculations; they therefore automatically used the constants

explicitly given for a homogeneous cylinder. To promote the use of proper

form factors (F) in further studies, we propose a polynomial regression of c vs.t
obtained from our numerical calculations.

In Greenhill’s initial model, the parameter used for the diameter is the basal

dimension of the stem, but some authors (Sterck and Bongers, 1998; Sposito

and Santos, 2001; van Gelder et al., 2006) used the diameter at breast height to

define the size of the cylinder used to calculate the Hcr. When applying this

formula to our data, we used the diameter measured 1.5 m above the ground

(D150), which is easier and more accurate to measure than the basal diameter

because of the buttresses, stilt roots, and frequent variations of the stem’s

circumference near the base of the tree. In Eq. 10, the cylinder defined by the

basal diameter may be significantly larger than the one defined by another

diameter higher up in the tree, and the Hcr calculated is larger as well.

Plant material and measurements—Sixteen common species of the

Guianese tropical rain forest were used (Table 1). The 236 saplings were

harvested between 2002 and 2006 at the Paracou Research Station (58180 N,

528550 W); see Gourlet-Fleury et al. (2004) for a complete description of the site.

The individuals were chosen to form a representative sample of saplings with

D150 ranging from 1 to 7 cm. The mean D150 was 3.9 cm 6 1.9 SD, and the

mean height was 7.3 m 6 3.3 SD. The data were collected as follows: after the

sapling was cut down, the total length (H) of the main axis was measured.

Diameters and weights were measured along the trunk. These data were used to

calculate n and m with log–log regressions. To increase the accuracy of the log–

log regressions used to calculate n andm, trees were sawed into six parts of equal
length, and the two distal parts were again cut into two equal parts. Each of the

eight parts was weighed, including trunk, branches, and leaves, and the basal

diameter of each part was measured. The determination coefficients for the

individual log–log regressions were high (R2
mean¼0.9526 0.041 for n and R2

mean

¼ 0.973 6 0.025 for m). All the saplings for which this coefficient was under

0.85 (mostly due to broken saplings) were removed from the analysis. This

excluded less than 3% of the sampled saplings. Diameters at the base of each part

were also used to calculate trunk volume V, considering each stem segment as a

truncated cone. Finally, a 1-cm thick segment of each part was kept and used to

measure wood basic density qb (oven dry mass/fresh volume). The segments

were fully impregnated with water using a vacuum pump, and their volume was

measured by the Archimedes principle. The segments were then dried in an oven

for 3 days at 1038C and weighed. The basic density is a good proxy of Young’s

modulus, at least at an interspecific level, as shown for both temperate and

tropical trees (Cannell and Morgan, 1987; van Gelder et al., 2006). Fournier et al.

(2006) used a compilation of results to quantify the relationship between the

modulus of elasticity of green wood (E) and basic density (qb):

E ¼ 10400
qb

0:53

� �1:03
: ð11Þ

The average coefficient of variation of basic density within saplings was low

(6.3% 6 3.9 SD), justifying the assumption of a constant Young’s modulus

along the stem. However, E is not a pure wood property but a composite one;

near the top of the tree, the contribution of softer bark and very juvenile xylem is

no longer negligible (Niklas, 1999b). Some authors (Spatz, 2000; Spatz and

Speck, 2002) proposed a modified version of Greenhill’s model that considers

the vertical variation of E. The use of this method requires a numerical

computation for each sapling and additional measurements at the individual

level to accurately determine the variations in E at the highest parts of the trunk.

Because the aim of this work was to determine a method to compute the
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individual buckling risk for diverse samples, we preferred to use a mean E for

each sapling. However, we note that use of a mean E could overestimate Hcr.

Data analysis—Variance analysis of log-transformed variables—To

determine the accuracy needed for each factor, we performed a sensitivity

analysis. This analysis is based on the identification of the main sources of

variation of Hcr. The log transformation of Eq. 9 enables us to express the

cumulative influence of each factor on Hcr:

lnHcr ¼ ln 0:21þ
1

4
ln Eþ

1

2
ln Fþ

1

4
ln V �

1

4
ln L: ð12Þ

The coefficient associated with each factor depends on the power to which it is

elevated in the original equation and thus directly expresses the magnitude of

the mechanical influence of each factor. However, the sensitivity of the

buckling height to a given factor also depends on the actual variability of that

factor. Assuming linear independence between the log-transformed factors, the

decomposition of variance leads to:

VarðlnHcrÞ ¼
1

16
Varðln EÞ þ

1

4
Varðln FÞ þ

1

16
Varðln VÞ þ

1

16
Varðln LÞ:

ð13Þ

Eq. 13 quantifies the influence of each factor on the total variability. In turn, the

total variability of a factor can be decomposed into interspecific variance

(Varspe) and intraspecific (interindividual at a specific level) variance (Varind):

VarðlnHcrÞ ¼
1

16
½Varspeðln EÞ þ Varindðln EÞ þ 4Varspeðln FÞ þ 4Varindðln FÞ

þ Varspeðln VÞ þ Varindðln VÞ þ Varspeðln LÞ þ Varindðln LÞ�

ð14Þ

Each component of the total variance is calculated, and its relative contribution

to the total variance is examined to identify the factors to which Hcr is the most

sensitive. If the intraspecific contribution of a factor to the total variance is low,

then the use of a mean value at a specific level can be tested to estimate the Hcr

of an individual. If the interspecific contribution is also low, then the use of a

mean computed with all species together (an interspecific mean) is tested for

this factor.

Finding proxies or mean estimations to avoid destructive measurements—

According to the results of the variance analysis for the factors for which the

contribution to the total variance is large enough, we tried to find the best

relationship between the factor and a combination of H and D150. This was

done using the multiple regression tool of the Statistica software (version 7.1,

Statsoft France [2006]).

Testing the simplifications of the model—To determine the acceptability of

the aforementioned simplifications, we checked their influence on Hcr and RF

estimations. The most accurate method, which uses all the factors measured at

the individual level (referred to as the ‘‘complete model’’ later), was taken as a

reference for comparing Hcr and RF calculated with increasingly simplified
models. A good simplified model is characterized by (1) a good correlation

with the complete model; (2) no bias, i.e., a slope close to one (the intercept is

set to zero); (3) an unchanged ranking of species; and (4) the ability to

discriminate between self-supporting and nonself-supporting trees. This last
point was then validated with a sample of Tachigali melinonii saplings. These
saplings were sampled according to their observed state of mechanical stability

(clearly self-supporting or clearly buckled as in Fig. 1) and were included in the

sample used in this paper (Table 1). For each validation criterion, we compared
the complete model (Eq. 9), our simplified versions, and the classical formula

(Eq. 10).

RESULTS

Practical calculation of the constant ct (root of a Bessel
function)—The constant ct, which depends on the allometric
parameters through t (Eq. 4) can be computed by Eq. 15:

ct ¼ ctn¼0;m¼1
þ a tþ

1

3

� �

þ b tþ
1

3

� �2

þ c tþ
1

3

� �3

ð15Þ

The intercept is the value of ct for the classically used
assumptions of a cylindrical trunk with a homogeneous
distribution of biomass, i.e., n ¼ 0 and m ¼ 1, thus t ¼�1/3
and cm ¼ 1.867. The coefficients are shown in Table 2. The
small relative errors (the largest one is lower than 2%) confirm
the validity of these equations to calculate ct.

Analysis of variance of log-transformed factors—The main
part of the total variance of Hcr (Table 3) was represented by
the size factor V, followed by the form factor F, and then with
equal weight, wood stiffness E and structural load L.
Separating inter- and intraspecific contributions for each factor
indicated that the main source of variance was intraspecific for
V and F and interspecific for E and L.

Estimations of the four factors according to the results of
the analysis of variance—Factor V has the largest inter- and
intraspecific variations and thus must be accurately determined
for each individual. The best relationship to estimate V was: ln
V ¼ a þ b ln D150 þ c ln H.
Very good relationships were found to predict the volume at

TABLE 1. The 16 species used in this study with their Latin name, botanical family, abbreviation used in the text, and the number (N) of saplings included
in the analysis.

Species Family Abbreviations N

Dicorynia guianensis Amsh. Caesalpiniaceae Dg 13
Bocoa prouacensis Aubl. Caesalpiniaceae Bp 5
Carapa procera A. DC. Meliaceae Cp 5
Tachigali melinonii (Harms) Barneby Caesalpiniaceae Tm 12
Sextonia rubra (Mez) van der Werff Lauraceae Sr 5

Eperua falcata Aubl. Caesalpiniaceae Ef 31
Pradosia cochlearia (Lecomte) Pennington Sapotaceae Pc 15
Lecythis persistens Sagot Lecythidaceae Lp 24
Gustavia hexapetala (Aubl.) J.E. Smith Lecythidaceae Gh 5
Qualea rosea (Aubl.) Vochysiaceae Qr 5
Oxandra asbeckii (Pulle) R.E. Fries Annonaceae Oa 23
Virola michelii Heckel Myristicaceae Vm 16

Eperua grandiflora (Aubl.) Benth. Caesalpiniaceae Eg 32
Pogonophora schomburgkiana Miers ex Bentham Elaeocarpaceae Ps 5
Licania alba (Bernoulli) Cuatrec. Chrysobalanaceae La 29
Goupia glabra Aubl. Celastraceae Gg 11
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a specific level (R2 ranging between 0.956 and 0.999) and also
at the interspecific level (R2 ¼ 0.982) (Table 4). For E and L,
the intraspecific variance was low so that mean specific values
(Table 4) will be tested. Finally, because F has a considerable
effect at both the inter- and intraspecific levels, two estimations
were tested: a global regression with size parameters (the best
relation found was ln F ¼ 1.784 þ 0.2943 ln H, R2 ¼ 0.319)
and mean specific values.

Are trees cylindrical with a homogeneous distribution of
biomass?—The third part of Table 4 and Fig. 2 show that n
was significantly different from 0 for all species. Moreover, for
m, only four species (G. hexapetala, Q. rosea, V. michelii, and
P. schomburgkiana) had values not significantly different from
1. Figure 2A first shows a considerable interspecific variability
for the n values, which ranged from 0.3 to nearly 0.8, meaning
that trunk forms were in between cylinders (n¼0) and cones (n
¼ 1). The global mean stands for a mean form closer to a cone
than to a cylinder. The m values (Fig. 2B) were also variable
between species and were, for a majority of species and for the
global mean, greater than 1, meaning that the center of gravity
was closer to the base than to the top of the saplings. The
power-law models fit well with the observed data. Examples of
individual fittings are shown in Fig. 3. The species chosen are
among those with the highest (B. prouacensis) and the lowest
(E. grandiflora) intraspecific variability for n and m. The
analysis of the n and m values also shows that the mean
difference between m and 2n þ 1 was 31.3% 6 14.6% SD.

Testing simplifications of the model—Comparisons be-
tween models—According to the previous analysis, four levels
of simplification of our model (Eq. 9) were considered. All four
models used a species-specific mean for E and L. F was either
computed from a global regression (Fgr in the model name) or
set to the mean species-specific value (Fm). V was computed
from regression relationships (Table 4), either at the commu-
nity level (Vgr) or at the specific level (Vsr). The simplified

models all led to an almost unbiased estimation of both Hcr and
RF, with slopes close to 1 (Table 5). The determination
coefficients were high for the prediction of Hcr but lower for
RF. It clearly appears that using Fgr rather than Fm leads to
lower determination coefficients for the RF. The classical
model produced lower determination coefficients than those of
models FmVgr and FmVsr, and, more importantly, it led to a
substantial bias, namely an underestimation of Hcr and an
overestimation of RF. On the basis of this analysis, models
FmVgr and FmVsr were identified as the best models for
predicting Hcr and RF. The use of Vsr provided the most
accurate results, but Vgr can also be used without much
decrease in accuracy. The use of global mean values of E, L,
and F with Vsr (Table 6) also resulted in a low bias.

Ranking of species—The ranking of species obtained with
models FmVgr and FmVsr were strongly correlated (P , 0.01)
with that obtained with the complete model (RSpearman¼ 0.888
and 0.921, respectively). The ranking correlation between the
classical model and the complete model was clearly lower
(RSpearman¼ 0.456) and not statistically significant (P¼ 0.076).
Results of this test confirmed those obtained in the previous
section—that model FmVsr is the most accurate.

Predicting degree of self-support—The complete model and
our simplified versions, FmVgr and FmVsr, revealed significant
differences between means of RF for both habits, self-
supporting and nonself-supporting (Table 7). The mean
values given by models FmVgr and FmVsr were close to those
given by the complete model. If we used individual values
and considered a margin of 60.1, the RF of some saplings did
not correspond (out of the margins) to their habit. Finally, for
the classical model, the mean values were higher than for the
three other models. The individual values were frequently
higher than 1, predicting that almost all the saplings were
nonself-supporting. The complete model and our simplified
versions revealed an RF significantly lower than 1 for self-
supporting saplings and not significantly lower than 1 for
nonself-supporting saplings (Fig. 4). The classical model
provided higher values with no significant distinction
between mean RF of self-supporting saplings and the
buckling limit 1.

DISCUSSION

This work aims at determining a way to accurately measure
the buckling risk factor of saplings. Within the context of forest
ecology, the study of plant functional traits and their diversity
is a central issue, and the buckling risk has not been accurately
studied among sapling populations. We propose a detailed

TABLE 2. Coefficients necessary to calculate ct, for any value of t in the�1/3 ! 20 range. ct is the first root of the Bessel function Jt and is one of the
necessary parameters to compute the critical buckling height. Columns a, b, and c give the coefficient values of the formula giving ct as a function of
t. The last two columns give the determination coefficients (R2) of the relationship for each range of t and the maximum relative error (Max. rel. err.)
between real values and the estimation of ct.

Range of t a b c R2 Max. rel. err. (%)

�1/3 $ 0.499 1.69086 �0.25831 0.07789 0.999 0.996
0.5 $ 2.499 1.62867 �0.13929 0.01773 0.999 0.336
2.5 $ 20 1.41260 �0.02446 0.00060 0.999 1.971

TABLE 3. Percentages of the total variance of the critical buckling height
explained by each factor: wood modulus of elasticity (E), form (F),
load (L), and trunk volume (V). The interspecific and intraspecific
parts are separated, and the total contribution for each factor appears
in the last row.

% of the total variance

Origin of the variance E F L V

Interspecific part 1.6 4.8 1.1 14.1
Intraspecific part 0.2 7.6 0.7 69.8
Sum for each factor 1.7 12.5 1.8 83.9
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study of this trait assessment and a method to measure it on a
wide range of plant populations. The Hcr sensitivity analysis
shows the predominance of the size factor V. This result simply
expresses the fact that the maximal height that a tree can
achieve mainly depends on the amount of material it is made
of. It should be noted that the contribution of the volume factor
to the total variance of Hcr is directly controlled by the range of
sizes of the studied trees. If a wide size range is used, then the
volume factor is the main contribution to the variance of Hcr.
For instance, Niklas (1994) studied plants with diameters
ranging from 0.003 m to 3 m. The effect of size-independent
factors is of much greater biological significance in terms of
biomass allocation and optimal mechanical design. The most
original result of our work concerns the demonstrated
preponderance of the form factor F among size-independent
factors. Researchers usually assume that the form factor is
constant, i.e., that trees are homogenous and cylindrical
(McMahon, 1973; Claussen and Maycock, 1995; Niklas,

1995, 1997, 1999a; Sterck and Bongers, 1998; van Gelder et
al., 2006). As shown in Fig. 2, this assumption does not
correspond to the reality of stem form. Moreover, the form
factor has large interspecific variability, showing that the
distribution of biomass within the tree is an important
biomechanical trait of the species. The use of the classical
formula (Eq. 10) leads to an underestimation of Hcr and an
overestimation of RF, confirmed by the analysis of the
subsample of T. melinonii for which the habits are known.
Those results are not surprising because the classical formula
considers a cylinder, while the majority of the taper values are
closer to a cone (n ¼ 1). Obviously, with the same amount of
material, a cone can be built higher than a cylinder. Indeed, a
cone has both a lower load in its distal part where the lever arm
is the biggest and a higher bending inertia in the basal part that
is subjected to the highest bending moment. These results are
consistent with those of Keller and Niordson (1966), who
found optimal taper values comprised between 1/3 and 3/2 for

TABLE 4. Summary of the values used to estimate V (trunk volume), E (wood modulus of elasticity), F (form) and L (load, i.e., ratio of the whole biomass
to V). Coefficients a, b and c are the species-specific coefficients of the relationship ln V¼ aþ b ln D150þ c ln H (the R2 are from the comparison
between real and modeled V values). The values of E (GPa), F (no unit) and L (kg�m�3) are the species-specific means. For n (stem taper) and m
(biomass distribution parameter), mean values and standard deviations are given. The last row contains values for the whole sample.

Speciesa

Volume prediction Mean specific values of factors Mean specific values of form parameters

a b c R2 E F L n SD m SD

Dg �1.86 1.68 1.04 0.996 11.2 10.7 1177 0.63 0.08 1.61 0.16
Bp �1.37 1.52 0.41 0.956 15.7 10.4 1418 0.60 0.20 1.59 0.37
Cp �0.02 2.00 0.67 0.999 9.1 6.5 1141 0.38 0.03 0.75 0.14
Tm �0.24 1.97 0.73 0.996 9.5 10.4 1040 0.53 0.10 1.55 0.34

Sr �3.27 1.26 1.15 0.988 8.5 5.9 1438 0.30 0.09 0.63 0.10
Ef �3.15 1.37 1.21 0.979 11.4 11.5 1092 0.77 0.15 1.85 0.34
Pc 1.00 2.11 0.32 0.984 11.7 11.6 1581 0.76 0.17 1.85 0.41
Lp �0.47 1.90 0.73 0.992 12.5 11.1 1664 0.73 0.18 1.74 0.38
Gh 1.59 2.08 �0.27 0.957 10.1 8.2 1589 0.56 0.05 1.14 0.09
Qr 0.38 2.02 0.42 0.999 11.1 6.7 1595 0.45 0.07 0.79 0.23

Oa 1.27 2.18 0.31 0.991 14.2 12.6 1597 0.76 0.14 1.98 0.36
Vm 1.81 2.24 0.09 0.994 7.7 8.5 1126 0.50 0.13 1.16 0.51
Eg �4.76 1.09 1.54 0.977 12.8 10.8 1205 0.74 0.12 1.70 0.38
Ps 7.31 3.30 �0.80 0.999 13.7 7.8 1361 0.42 0.12 1.05 0.16
La �0.93 1.80 0.79 0.986 16.3 11.7 1458 0.67 0.27 1.65 0.47
Gg �4.24 1.23 1.55 0.965 13.0 11.4 1157 0.54 0.17 1.76 0.40
All �1.79 1.61 0.93 0.982 12.3 10.7 1340 0.66 0.20 1.62 0.49

a Species abbreviations are given in Table 1.

Fig. 2. Mean specific values and mean value of all species together (last point of each plot) for (A) stem taper n and (B) biomass distribution m.
Vertical bars represent the confidence intervals (95%). Dotted lines highlight classical assumption values for each parameter (n¼ 0 and m¼ 1). All the
mean values of n are significantly different from 0, and the majority of the mean values of m are significantly different from 1.
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unloaded and loaded columns (with an infinitely higher load
than its own weight), respectively. Our values of n are closer to
1/3, which corresponds to the sapling situation, i.e., loaded by
noninfinite mass. Moreover, when researchers assume cylin-
drical trees of a given diameter (McMahon, 1973; Claussen and
Maycock, 1995; Niklas, 1995, 1997, 1999a; Sterck and
Bongers, 1998; van Gelder et al., 2006), the estimation of
Hcr is very sensitive to the choice of the tree diameter (basal, at
breast height, etc.), and such choices are rarely discussed.
Therefore, disregarding accurate estimations of form factors
leads to a bias of the RF estimate because the form factor is

both a determining factor of the RF and variable among tree
species. Moreover, even if it is not strong, a significant (P ,

0.05) relationship has been found (R2 ¼ 0.319) between form
factor and the size of saplings. As a result of the small range of
sizes in our sample, we were able to use a specific mean value
for this factor, but the transposition of this result to a wider
sample may not be advisable. Biologists and foresters have
been studying stem growth and taper for a long time (Larson,
1963; Claussen and Maycock, 1995). Even if some authors
(Chiba and Shinozaki, 1994; Chave et al., 2005) have reported
no change in stem form of saplings over time, there is evidence

Fig. 3. Validation of the power models used to determine stem taper n and biomass distribution parameter m: ln r(z) vs. ln[(H� z)/H] for (A) Bocoa
prouacensis and (B) Eperua grandiflora; and ln M(z) vs. ln[(H� z)/H] for the same (C) B. prouacensis and (D) E. grandiflora according to Eqs. 2 and 3.
The points represent the measured values of ln r(z) or ln M(z); the dotted lines represent the values estimated with n (or m) determined at the individual
level, i.e., the log–log regressions; the continuous lines represent the values estimated with n (or m) mean specific values. The determination coefficients
for measured points are: R2 ¼ 0.965 (for n) and 0.991 (for m) for B. prouacensis and 0.989 (for n) and 0.997 (for m) for E. grandiflora.

TABLE 5. Comparisons of Hcr and RF computations by different combinations of assumptions for E (wood modulus of elasticity), L (saplings load, i.e.,
ratio of the whole biomass to trunk volume), F (form), and V (trunk volume) and by the complete model. Determination coefficient (R2) and slopes of
linear regressions between both computation ways are given.

Model
name E L F V

R2 Slopes

Hcr RF Hcr RF

FgrVgr sp mean sp mean glob reg glob reg 0.880 0.352 0.963 0.980
FgrVsr sp mean sp mean glob reg sp reg 0.886 0.394 0.971 0.979
FmVgr sp mean sp mean sp mean glob reg 0.874 0.702 0.960 0.977
FmVsr sp mean sp mean sp mean sp reg 0.889 0.733 0.967 0.975

Classical classical formula 0.827 0.629 0.807 1.167

Note: sp mean¼mean specific value (‘‘m’’ in model name); glob reg¼ regression constructed with all of the species together (‘‘gr’’ in model name); sp
reg ¼ species-specific regressions (‘‘sr’’ in model name); classical formula ¼ Eq. 10.
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that this factor is modulated by the immediate environment of
the sapling: light, population density, and resource availability
(Larson, 1963; Claussen and Maycock, 1995; Briand et al.,
1999; Dean et al., 2002). Fewer data are available on the mass
distribution parameter m along the trunk, which integrates
biomasses of both the trunk and the branches (wood and
leaves). Because trunk wood is quite heavy, we would expect
that m could be linked to n. However, such a relationship was
not found, and moreover, m is different from 2n þ 1, which
means that the tree cannot be modeled as a pole of constant
density. King and Loucks (1978) emphasized the importance of
mass distribution and developed a model of Hcr based on the
ratio R of crown biomass to trunk biomass. Niklas (1994)
underlined and completed the results of King and Loucks
(1978) using an R varying with species and size to compute the
Hcr. A correct estimation of the form factor is the main
difference between our models and the classical formula, a
difference that leads to considerable discrepancies, including a
different ranking of species relative to their RF. Therefore, it is
essential that any biomechanical study based on buckling
analysis acquire data and use existing data about form factors.
To avoid the complicated problem of calculating Bessel roots
that are not standard mathematical functions, we proposed a
simple polynomial fitting of ct that will provide practical help
for the calculation of F and for further studies.

The load factor was not very sensitive; inter- and
intraspecific variabilities are comparable. Therefore, the
estimation of L always leads to a slight bias of Hcr and RF
calculations. Moreover, interspecific variations can be over-
looked without much loss in the accuracy of predictions; the
use of a global mean value in the FmVsr model leads to results
similar to those given by the complete model. However, the
stable value of L should depend on the studied situation.
Finally, we chose to use a mean specific value for E. Although
less sensitive than the form factor, the wood modulus of
elasticity is involved in the variability of biomechanical
stability, as emphasized by van Gelder et al. (2006). We found
greater inter- than intraspecific differences for E. This is
consistent with other works (Wiemann and Williamson, 1988;
Barbosa and Fearnside, 2004; Muller-Landau, 2004). Wood
density is known to depend on the ecology of the species
(Wiemann and Williamson, 1989; Suzuki, 1999; Woodcock
and Shier, 2003; Muller-Landau, 2004), with less dense and
stiff wood on pioneer, fast-growing species. Thus, the use of a
mean specific value seems acceptable and requires only a few
destructive measurements because of the low intraspecific
variability. However, we stress that the actual measured factor
is wood basic density and not Young’s modulus of elasticity.
We used a relationship between wood modulus of elasticity
along the grain and basic density, as is typical in cellular
materials and wood science (Kollmann and Cote, 1968), and
made sure that it was very good at predicting interspecific
variations of wood stiffness (Fournier et al., 2006). Wood basic
density is linked to Young’s modulus, but this relationship is
subject to exceptions (Guitard, 1987) because of the ultra-
structure of wood cells (the microfibril angle may differ among
woods of similar basic density, resulting in differences in
mechanical properties as well). Wood basic density is less
variable than Young’s modulus, and we may thus underesti-
mate the participation of this factor in the total variance of Hcr.
Nevertheless, each time we had the opportunity to directly
verify the accuracy of the estimation for tropical green wood,
the predicted value of E was very close to the measured value
(Clair et al., 2003). However, because many studies reveal
variations in the modulus of elasticity with ontogeny (Rueda
and Williamson, 1992; de Castro et al., 1993; Woodcock and
Shier, 2003), environment (Fearnside, 1997; Suzuki, 1999;
Baker et al., 2004), or the ecology of the species (Wiemann and
Williamson, 1989; Muller-Landau, 2004), it is advisable to
make new measurements for each new population studied.
Using a mean interspecific value of E in the FmVsr model does
not reduce the precision of calculations, with the exception,
once again, of the RF calculation. It is therefore acceptable to
use a mean interspecific value to avoid destructive measure-
ments. Some authors have also reported that wood properties
change from pith to bark (Wiemann and Williamson, 1989;

TABLE 7. RF calculated according to different versions of the model for
saplings of Tachigali melinonii known to be self-supporting (S) or
nonself-supporting (NS). The models used to calculate RF are
complete, FmVgr, FmVsr, and the classical model. The intermediate
lines contain the mean RF for each habit and each model. The last row
of the table gives the P value of the Mann–Whitney test between S
and NS trees for each model. A P value under 0.05 indicates a
significant difference of RF between both habits. Boldface values
correspond to values not in accordance with the sapling’s habit.

Habit Complete FmVgr FmVsr Classical

S1 0.80 0.67 0.70 0.87
S2 0.78 0.73 0.73 0.95
S3 0.82 0.81 0.82 1.00
S4 0.88 0.95 0.94 1.18
mean 0.82 0.79 0.79 1.00

NS1 0.95 0.79 0.85 1.09
NS2 0.93 0.86 0.92 1.10
NS3 0.98 0.90 0.94 1.14
NS4 1.19 1.02 1.06 1.38
NS5 0.87 0.96 0.98 1.18
NS6 0.98 1.04 1.07 1.38

NS7 0.99 1.05 1.07 1.17
NS8 0.94 0.99 0.98 1.22
mean 0.98 0.95 0.98 1.21
P ,0.05 ,0.05 ,0.05 0.06

TABLE 6. Effects of the use of a mean interspecific value (glob mean) vs. a specific mean (sp mean) of E (wood modulus of elasticity), L (load), or F
(form) in the FmVsr model for Hcr and RF calculations. The first part of the table explains the proxies used in each case (Table 5); the second gives the
determination coefficients and slopes of comparison with the calculations done with the complete model, for both Hcr and RF, respectively.

Proxies used R2 Slopes

E L F V Hcr RF Hcr RF

glob mean sp mean sp mean sp reg 0.868 0.656 0.965 0.966

sp mean glob mean sp mean sp reg 0.987 0.947 0.987 1.018
sp mean sp mean glob mean sp reg 0.815 0.581 0.957 0.956
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Woodcock and Shier, 2002). Changes may also occur because
of reaction wood production. We measured wood properties on
segments representing the whole stem section, thus giving us a
‘‘global modulus of elasticity.’’ The mechanically correct
measurement of the equivalent modulus of elasticity would
have required us to consider each different layer and its relative
contribution to the flexural inertia, but because E is not the
main contributing factor to Hcr and because of the high
interspecific variations, we could use this method without
inducing too large of an error.

Within the framework of this study, the analysis of T.
melinonii saplings clearly shows that trees in a forest are not
always self-supporting. Thus, RF values larger than 1 are not
only due to an artifact, as suggested by Niklas (1994), but they
can reveal a nonself-supporting habit as part of a growth
strategy. Assumptions made in our simplified models do not
considerably change the ranking of species according to their
biomechanical strategy. This is not the case with the classical
formula. However, the accuracy of the estimation by Green-
hill’s model was not obvious because there are many
underlying assumptions: consistently circular cross sections,
branch weights assumed to act similarly to the trunk with no
additional bending due to asymmetric development, perfectly
rigid anchorage, wood variability, etc. We verified that
Greenhill’s model by itself is a good estimation of the self-
supporting habit. When comparing self-supporting and non-
self-supporting trees, we found that the model accurately
discriminated between the different habits. This type of
discussion about the performance of buckling mechanical
models rarely occurs in the literature (Tateno and Bae, 1990).
We finally proposed a better way to estimate Hcr and RF; in
contrast to the widely used classical formula, our method
emphasizes the importance of form factor values and
variability. Concerning biomechanical ecological studies of
tree species, we suggest that the height and diameter of each
individual be measured nondestructively, then the mean values
for E, L, and F and the relationships between V and H and D150

should be estimated using smaller samples of harvested trees
for each population. In any case, the use of a global
relationship for V does not induce a large bias. Moreover, the
method developed (i.e., the analysis of variance among the

samples that justifies the choice of estimations for each factor
and allows a classification of factors according to their
sensitivity) is easy to reproduce in other situations, for
example, in comparisons of different plant forms in phyloge-
netic studies. Further studies will focus on using this method to
monitor and analyze the biomechanical diversity of tree species
in permanent plots and to understand the relationship between
biomechanical traits and species ecology.
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