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LARGE SCALE REDUCTION PRINCIPLE AND APPLICATION TO

HYPOTHESIS TESTING

M. CLAUSEL, F. ROUEFF, AND M. S. TAQQU

Abstract. Consider a non–linear function G(Xt) where Xt is a stationary Gaussian se-
quence with long–range dependence. The usual reduction principle states that the partial
sums of G(Xt) behave asymptotically like the partial sums of the first term in the expansion
of G in Hermite polynomials. In the context of the wavelet estimation of the long–range
dependence parameter, one replaces the partial sums of G(Xt) by the wavelet scalogram,
namely the partial sum of squares of the wavelet coefficients. Is there a reduction principle
in the wavelet setting, namely is the asymptotic behavior of the scalogram for G(Xt) the
same as that for the first term in the expansion of G in Hermite polynomial? The answer
is negative in general. This paper provides a minimal growth condition on the scales of the
wavelet coefficients which ensures that the reduction principle also holds for the scalogram.
The results are applied to testing the hypothesis that the long-range dependence parameter
takes a specific value.
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1. Introduction

Let X = {Xt}t∈Z be a centered stationary Gaussian process with unit variance and spectral
density f(λ), λ ∈ (−π, π). Such a stochastic process is said to have short memory or short–
range dependence if f(λ) is bounded around λ = 0 and long memory or long–range dependence
if f(λ) → ∞ as λ → 0. We will suppose that {Xt}t∈Z has long memory with memory
parameter 0 < d < 1/2, that is,

f(λ) ∼ |λ|−2df∗(λ) as λ→ 0 (1)

where the short range part f∗ of the spectral density is a bounded spectral density which is
continuous and positive at the origin. The parameter d is also called the long-range depen-
dence parameter.

A standard assumption in the semi-parametric setup is

|f∗(λ)− f∗(0)| ≤ Cf∗(0) |λ|β λ ∈ (−π, π) , (2)

where β is some smoothness exponent in (0, 2]. This hypothesis is semi–parametric in nature
because the function f∗ plays the role of a “nuisance function”. It is convenient to set

f(λ) = |1− e−iλ|−2df∗(λ), λ ∈ (−π, π] . (3)

Consider now a process {Yt}t∈Z, such that
(
∆KY

)
t
= G(Xt), t ∈ Z , (4)

forK ≥ 0, where (∆Y )t = Yt−Yt−1, {Xt}t∈Z is Gaussian with spectral density f satisfying (3)
and where G is a function such that E[G(Xt)] = 0 and E[G(Xt)

2] < ∞. While the process
{Yt}t∈Z is not necessarily stationary, its K–th difference ∆KYt is stationary. Nevertheless, as
in Yaglom (1958) one can speak of the “generalized spectral density” of {Yt}t∈Z, which we
denote fG,K. It is defined as

fG,K(λ) = |1− e−iλ|−2K fG(λ) , (5)

where fG is the spectral density of {G(Xt)}t∈Z.
Note that G(Xt) is the output of a non–linear filter G with Gaussian input. According to

the Hermite expansion of G and the value d, the time series Y may be long–range dependent
(see Clausel et al. (2012) for more details). We aim at developing efficient estimators of the
memory parameter of such non–linear time series.

Since the 80’s many methods for the estimation of the memory parameter have been de-
veloped. Let us cite the Fourier methods developed by Fox and Taqqu (Fox and Taqqu
(1986)) and Robinson (Robinson (1995b,a)). Since the 90’s, wavelet methods have be-
come very popular. The idea of using wavelets to estimate the memory parameter of a
time series goes back to Wornell and Oppenheim (1992) and Flandrin (1989a,b, 1991, 1999).
See also Abry and Veitch (1998); Abry et al. (1998), Bardet (2002), Bardet et al. (2008),
Bardet et al. (2000). As shown in Flandrin (1992), Abry and Veitch (1998), Veitch and Abry
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(1999) and Bardet (2000) in a parametric context, the memory parameter of a time series can
be estimated using the normalized limit of its scalogram (21), that is the average of squares
of its wavelet coefficients computed at a given scale. It is well–known that, when considering
Gaussian or linear time series, the wavelet–based estimator of the memory parameter is con-
sistent and asymptotically Gaussian (see Moulines et al. (2007) for a general framework in the
Gaussian case and Roueff and Taqqu (2009b) for the linear case). This result is particulary
important for statistical purpose since it provides confidence intervals for the wavelet–based
estimator of the memory parameter.

The application of wavelet–based methods for the estimation of the memory parameter of
non-Gaussian stochastic processes has been much less treated in the literature. See Abry et al.
(2011) for some empirical studies. In Bardet and Tudor (2010) is considered the case of the
Rosenblatt process which is a non-Gaussian self-similar process with stationary increments
living in the second Wiener chaos, that is, it can be expressed as a double iterated integral
with respect to the Wiener process. In this case, the wavelet–based estimator of the memory
parameter is consistent but satisfies a non–central limit theorem. More precisely, conveniently
renormalized, the scalogram which is a sum of squares of wavelet coefficients converges to a
Rosenblatt variable and thus admits a non–Gaussian limit. This result, surprisingly, also
holds for a time series of the form Hq0(Xt) where Xt is Gaussian with unit variance and Hq0

denotes the q0–th Hermite polynomial with q0 ≥ 2 (see Clausel et al. (2014)).
The general case G(Xt) is expected to derive from the case G = Hq0 . Namely, one could

expect that some “reduction theorem” analog to the one of Taqqu (1975) holds. Recall that
the classical reduction theorem of Taqqu (1975) states that if G(X) is long–range dependent

then the limit in the sense of finite–dimensional distributions of
∑[nt]

k=1G(Xk) adequately
normalized, depends only on the first term cq0Hq0/q0! in the Hermite expansion of G. The
reduction principle then states that there exist normalization factors an → ∞ as n→ ∞ such
that

1

an

[nt]∑

k=1

G(Xk) and
1

an

[nt]∑

k=1

cq0
q0!
Hq0(Xk) ,

have the same non–degenerate limit as n → ∞. A reduction principle was established
in Clausel et al. (2012), Theorem 5.1 for the wavelet coefficients of a non–linear time se-
ries of the form G(Xt). In applications, the wavelet coefficients are not used directly but
only through the scalogram. For example, Faÿ et al. (2008) use the scalogram to compare
Fourier and wavelet estimation methods of the memory parameter. The difficulty is that the
scalogram is a quadratic function of the wavelet coefficients involving not only the number
of observations but also the scale at which the wavelet coefficients are computed. In prac-
tice, however, the scalogram is easy to obtain and one can take advantage of the structure of
sample moments to investigate statistical properties. Its use is well–illustrated numerically
in Abry et al. (2011) who consider a number of statistical applications.

The following is a natural question :

Does a reduction principle hold for the scalogram?

In Clausel et al. (2013) we illustrated through different large classes of examples, that the
reduction principle for the scalogram does not necessarily hold and that the asymptotic limit
of the scalogram may even be Hermite process of order greater than 2. It is then important to
find sufficient conditions for the reduction principle to hold. In this case, the normalized limit
of the scalogram of the time series G(Xt) would be the same as the time series cq0Hq0(X)/q0!



4 M. CLAUSEL, F. ROUEFF, AND M. S. TAQQU

studied in Clausel et al. (2014) and therefore will be asymptotically Gaussian if q0 = 1 and a
Rosenblatt random variable if q0 ≥ 2. In Theorem 3.2, we prove that the reduction principle
holds at large scales, namely if

nj ≪ γνcj as j → ∞ , (6)

that is, if the number of wavelet coefficients nj at scale j (typically N2−j , where N is the
sample size) does not grow as fast as the scale factor γj (typically 2j) to the power νc, as
the sample size N and the scale index j go to infinity. The critical exponent νc depends on
the function G under consideration and may take the value νc = ∞ for some functions, in
which case the reduction principle holds without any particular growth condition on γj and
nj besides nj → ∞ and γj → ∞ as j → ∞.

The paper is organized as follows. In Section 2, we introduce long–range dependence and
the scalogram. The main Theorem 3.2, which states that under Condition (6) the reduction
principle holds is stated in Section 3 with the critical exponent νc given in Section 4 and
examples provided in Section 5. Section 6 contains statistical applications. The decomposition
of the scalogram in Wiener chaos is described in Section 7. That section contains Theorem 7.2
on which Theorem 3.2 is based. Several proofs are in Section 8. Section 9 contains technical
lemmas. The integral representations are described in Appendix A and the wavelet filters are
given in Appendix B. Appendix C depicts the multiscale wavelet inference setting.

For the convenience of the reader, in addition to providing a formal proof of a given result,
we sometimes describe in a few lines the idea behind the proof.

2. Long–range dependence and the multidimensional wavelet scalogram

The centered Gaussian sequence X = {Xt}t∈Z with unit variance and spectral density (3)
is long–range dependent because d > 0 and hence its spectrum explodes at λ = 0.

The long–memory behavior of a time series Y of the form (4) is well–known to depend on
the expansion of G in Hermite series. Recall that if E[G(X0)] = 0 and E[G(X0)

2] < ∞ for
X0 ∼ N (0, 1), G(X) can be expanded in Hermite polynomials, that is,

G(X) =

∞∑

q=1

cq
q!
Hq(X) . (7)

One sometimes refer to (7) as an expansion in Wiener chaos. The convergence of the infinite
sum (7) is in L2(Ω),

cq = E[G(X)Hq(X)] , q ≥ 1 , (8)

and

Hq(x) = (−1)qe
x2

2
dq

dxq

(
e−

x2

2

)
,

are the Hermite polynomials. These Hermite polynomials satisfyH0(x) = 1,H1(x) = x,H2(x) =
x2 − 1 and one has

E[Hq(X)Hq′(X)] =

∫

R

Hq(x)Hq′(x)
1√
2π

e−x2/2dx = q!1{q=q′} .

Observe that the expansion (7) starts at q = 1, since

c0 = E[G(X)H0(X)] = E[G(X)] = 0 , (9)
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by assumption. Denote by q0 ≥ 1 the Hermite rank of G, namely the index of the first
non–zero coefficient in the expansion (7). Formally,

q0 = min{q ≥ 1, cq 6= 0} . (10)

One has then
+∞∑

q=q0

c2q
q!

= E[G(X)2] <∞ . (11)

In the special case where G = Hq, whether {Hq(Xt)}t∈Z is also long–range dependent
depends on the respective values of q and d. We show in Clausel et al. (2012), that the

spectral density of {Hq(Xt)}t∈Z behaves like |λ|−2δ+(q) as λ→ 0, where

δ+(q) = max(δ(q), 0) where δ(q) = qd− (q − 1)/2 . (12)

We will also let δ+(0) = δ(0) = 1/2. For q ≥ 1, δ+(q) is the memory parameter of
{Hq(Xt)}t∈Z. It is a non–increasing function of q. Therefore, since 0 < d < 1/2, {Hq(Xt)}t∈Z,
q ≥ 1, is long–range dependent1 if and only if

δ(q) > 0 ⇐⇒ d >
1

2
(1− 1/q) , (13)

that is, d must be sufficiently close to 1/2. Specifically, for long–range dependence,

q = 1 ⇒ d > 0, q = 2 ⇒ d > 1/4, q = 3 ⇒ d > 1/3, q = 4 ⇒ d > 3/8 . (14)

From another perspective,

δ(q) > 0 ⇐⇒ 1 ≤ q < 1/(1 − 2d) , (15)

and thus {Hq(Xt)}t∈Z is short–range dependent if q ≥ 1/(1 − 2d).
Recall that the Hermite rank of G is q0 ≥ 1, that is the expansion of G(Xt) starts at q0.

We always assume that {Hq0(Xt)}t∈Z has long memory, that is,

q0 < 1/(1 − 2d) . (16)

The condition (16), with q0 defined as the Hermite rank (10), ensures such that {Yt}t∈Z =
{∆−KG(Xt)}t∈Z is long-range dependent with long memory parameter

d0 = K + δ(q0) ∈ (K,K + 1/2) . (17)

More precisely, we have the following result which also determines a Hölder condition on the
short-range part of the spectral density. This condition shall involve q0 defined in (17), and,
if G is not reduced to cq0Hq0/(q0!), it also involves the index of the second non-vanishing
Hermite coefficient denoted by

q1 = inf{q > q0 : cq 6= 0} .
If there is no such q1 we let δ+(q1) = 0 in (18).

Theorem 2.1. Let Y be defined as above. Then the generalized spectral density fG,K of Y
can be written as

fG,K(λ) = |1− e−iλ|−2d0 f∗G(λ) ,

1In our context, the values d = 1/2−1/(2q), q ≥ 1, constitute boundary values which introduce logarithmic
terms and will be omitted for simplicity. See Remark 3.2.
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where d0 is defined by (17) and f∗G is bounded, continuous and positive at the origin. Moreover,
for any ζ > 0 satisfying

ζ ≤ min(β, 2(δ(q0)− δ+(q1)) and, if q0 ≥ 2, ζ < 2δ(q0) , (18)

there exists a constant C > 0 such that

|f∗G(λ)− f∗G(0)| ≤ Cf∗G(0) |λ|ζ , λ ∈ (−π, π) . (19)

Proof. See Section 8.1. �

Idea behind the proof of Theorem 2.1. Starting with the regularity of the nuisance function
f∗ in (1), one derives that of f∗Hq

and, more generally, that of f∗G, taking advantage of the

fact that the terms in the expansion of G(X) in Hermite polynomials are uncorrelated.

Remark 2.1. The exponent ζ in (18) will affect the bias of the mean of the scalogram
(see (53)). The higher ζ, the lower the bias. Since in (18), ζ is required to satisfy a non–strict
and a strict inequality (if q0 ≥ 2), we cannot provide an explicit expression for ζ. However, in
most cases one has q0 = 1 or δ+(q1) > 0 and hence one can set ζ = min(β, 2(δ(q0)− δ+(q1)))
which then satisfies both inequalities in (18).

Our estimator of the long memory parameter of Y is defined from its wavelet coefficients,
denoted by {Wj,k, j ≥ 0, k ∈ Z}, where j indicates the scale index and k the location. These
wavelet coefficients are defined by

Wj,k =
∑

t∈Z

hj(γjk − t)Yt , (20)

where γj ↑ ∞ as j ↑ ∞ is a sequence of non–negative decimation factors applied at scale index
j. The properties of the memory parameter estimator are directly related to the asymptotic
behavior of the scalogram Snj ,j, defined by

Snj ,j =
1

nj

nj−1∑

k=0

W 2
j,k , (21)

as nj → ∞ (large sample behavior) and j → ∞ (large scale behavior). More precisely, we
will study the asymptotic behavior of the sequence

Snj+u,j+u = Snj+u,j+u − E(Snj+u,j+u) =
1

nj+u

nj+u−1∑

k=0

(
W 2

j+u,k − E(W 2
j+u,k)

)
, (22)

adequately normalized as j, nj → ∞.
There are two perspectives. One can consider, as in Clausel et al. (2012), that the wavelet

coefficients Wj+u,k are processes indexed by u taking a finite number of values. A second
perspective consists in replacing the filter hj in (20) by a multidimensional filter hℓ,j, ℓ =
1, · · · ,m and thus replacing Wj,k in (20) by

Wℓ,j,k =
∑

t∈Z

hℓ,j(γjk − t)Yt, ℓ = 1, · · · ,m ,

(see Appendix C for more details). We adopted this second perspective in Clausel et al. (2014,
2013) and we also adopt it here since it allows us to compare our results to those obtained
in Roueff and Taqqu (2009b) in the Gaussian case.
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We use bold faced symbols Wj,k and hj to emphasize the multivariate setting and let

hj = {hℓ,j , ℓ = 1, · · · ,m}, Wj,k = {Wℓ,j,k, ℓ = 1, · · · ,m} ,
with

Wj,k =
∑

t∈Z

hj(γjk − t)Yt =
∑

t∈Z

hj(γjk − t)∆−KG(Xt), j ≥ 0, k ∈ Z . (23)

We then will study the asymptotic behavior of the sequence

Snj ,j =
1

nj

nj−1∑

k=0

(
W2

j,k − E[W2
j,k]
)
, (24)

adequately normalized as j → ∞, where, by convention, in this paper,

W2
j,k = {W 2

ℓ,j,k, ℓ = 1, · · · ,m} . (25)

The squared Euclidean norm of a vector x = [x1, . . . , xm]T will be denoted by |x|2 = x21 +
· · ·+ x2m and the L2 norm of a random vector X is denoted by

‖X‖2 =
(
E
[
|X|2

])1/2
. (26)

We now summarize the main assumptions of this paper in the following set of conditions.

Assumptions A {Wj,k, j ≥ 1, k ∈ Z} are the multidimensional wavelet coefficients defined
by (23) , where

(i) {Xt}t∈Z is a stationary Gaussian process with mean 0, variance 1 and spectral density
f satisfying (3).

(ii) G is a real-valued function whose Hermite expansion (7) satisfies condition (16),
namely q0 < 1/(1 − 2d), and whose coefficients in the Hermite expansion satisfy
the following condition : for any λ > 0

cq = O((q!)de−λq) as q → ∞ . (27)

(iii) the wavelet filters (hj)j≥1 and their asymptotic Fourier transform ĥ∞ satisfy the stan-
dard conditions (W-1)–(W-3) withM vanishing moments. See details in Appendix B.

We shall prove that, provided that the number of vanishing moments of the wavelet is large
enough, these assumptions yield the following general bound for the centered scalogram.

Theorem 2.2. Suppose that Assumptions A hold with M ≥ K + δ(q0). Then for any two
diverging sequences (γj) and (nj), we have, as j → ∞,

∥∥Snj ,j

∥∥
2
= O

(
γ2d0j n

−(1/2−d)
j

)
. (28)

Proof. Theorem 2.2 is proved in Section 8.2. �

Idea behind the proof of Theorem 2.2. One decomposes Snj ,j further in terms S
(q,q′,p)
nj ,j

as

in (64) and applies the bounds obtained in part in Proposition 7.1.

It is important to note that Theorem 2.2 holds whatever the relative growth of (γj) and (nj)
but it only provides a bound. This bound will be sufficient to derive a consistent estimator
of the long memory parameter K + δ(q0), see Theorem 6.1 below.

Obtaining a sharp rate of convergence of the centered scalogram and its asymptotic limit
is of primary importance in statistical applications but this can be quite a complicated task.
We exhibit several cases in Clausel et al. (2014, 2013) that underline the wild diversity of the
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asymptotic behavior of the centered scalogram. In general the nature of the limit depends
on the relative growth of (γj) and (nj). We will show, however, that if nj ≪ γνcj , where νc is
a critical exponent, then the reduction principle holds. In this case, the limit will be either
Gaussian or expressed in terms of the Rosenblatt process which is defined as follows.

Definition 2.1. The Rosenblatt process of index d with

1/4 < d < 1/2 , (29)

is the continuous time process

Zd(t) =

∫ ′′

R2

ei(u1+u2) t − 1

i(u1 + u2)
|u1|−d|u2|−d dŴ (u1)dŴ (u2), t ∈ R . (30)

The multiple integral (30) with respect to the complex-valued Gaussian random measure

Ŵ is defined in Appendix A. The symbol
∫ ′′
R2 indicates that one does not integrate on the

diagonal u1 = u2. The integral is well-defined when (29) holds because then it has finite L2

norm. This process is self–similar with self-similarity parameter

H = 2d ∈ (1/2, 1),

that is for all a > 0, {Zd(at)}t∈R and {aHZd(t)}t∈R have the same finite–dimensional distri-
butions, see Taqqu (1979). When t = 1, Zd(1) is said to have the Rosenblatt distribution.
This distribution is tabulated in Veillette and Taqqu (2013).

3. Reduction principle at large scales

We shall now state the main results and discuss them. They are proved in the following

sections. We use
L−→ to denote convergence in law.

The following result involving the case

G =
cq0
q0!
Hq0 , cq0 6= 0, q0 ≥ 1 ,

is proved in Theorem 3.2 of Clausel et al. (2014) and will serve as reference :

Theorem 3.1. Suppose that Assumptions A (i) and A (iii) hold with M ≥ K + δ(q0),
where δ(·) is defined in (12). Assume that Y is a non–linear time series such that ∆KY =
cq0
q0!
Hq0(X), with q0 ≥ 1 and q0 < 1/(1− 2d). Define the centered multivariate scalogram Sn,j

related to Y by (22) and let (nj) and (γj) be any two diverging sequences of integers.

(a) Suppose q0 = 1 and that (γj) is a sequence of even integers. Then, as j → ∞,

n
1/2
j γ

−2(d+K)
j Snj ,j

L−→ c21N (0,Γ) , (31)

where Γ is the m×m matrix with entries

Γℓ,ℓ′ = 4π(f∗(0))2
∫ π

−π

∣∣∣∣∣∣
∑

p∈Z

|λ+ 2pπ|−2(K+d)[ĥℓ,∞ĥℓ′,∞](λ+ 2pπ)

∣∣∣∣∣∣

2

dλ , 1 ≤ ℓ, ℓ′ ≤ m .

(32)
(b) Suppose q0 ≥ 2. Then as j → ∞,

n1−2d
j γ

−2(δ(q0)+K)
j Snj ,j

L−→
c2q0

(q0 − 1)!
f∗(0)q0 Lq0−1 Zd(1) , (33)
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where Zd(1) is the Rosenblatt process in (30) evaluated at time t = 1, f∗(0) is the
short-range spectral density at zero frequency in (1) and where for any p ≥ 1, Lp is

the deterministic m-dimensional vector [Lp(ĥℓ,∞)]ℓ=1,...,m with finite entries defined
by

Lp(g) =

∫

Rp

|g(u1 + · · · + up)|2
|u1 + · · ·+ up|2K

p∏

i=1

|ui|−2d du1 · · · dup , (34)

for any g : R → C.

Thus Theorem 3.1 states that in the case G = Hq0 , q0 ≥ 1 the limit of the scalogram is
either Gaussian or has a Rosenblatt distribution2. Our main result Theorem 3.2 states that
beyond this simple case, the limits continue to be either Gaussian or Rosenblatt under fairly
general conditions, involving nj and γj , namely that nj ≪ γνcj as j → ∞ where νc is a positive

(possibly infinite) critical exponent given in Definition 4.1, see Section 4 for details.

Theorem 3.2. Suppose that Assumptions A hold with M ≥ K + δ(q0), where δ(·) is defined
in (12) and that

d /∈ {1/2 − 1/(2q) : q = 1, 2, 3, . . . } . (35)

Define the centered multivariate scalogram Sn,j related to Y by (22). Let (nj) be any diverging
sequence of integers such that, as j → ∞,

nj ≪ γνcj , (36)

where νc is given in Definition 4.1 below. Then, the following limits hold depending on the
value of q0.

(a) If q0 = 1 and γj even, then, the convergence (31) holds.
(b) If q0 ≥ 2, then, the convergence (33) holds.

Proof. We shall prove in Theorem 7.2, see (70), that, under Conditions (35) and (36), Snj ,j

can be reduced to a dominating term S
(q0,q0,q0−1)
nj ,j

in the sense of the L2 norm (26). This

dominating term depends only on the term cq0Hq0(X)/(q0!) of the expansion of G(X). We
can then apply Theorem 3.1 to conclude. �

This result extends Theorem 3.1 stated above, whereG was restricted to G =
cq0
q0!
Hq0 . While

extending the result to a much more general function G, Theorem 3.2 involves two additional
conditions. Condition (35) is merely here to avoid logarithmic corrections, see Remark 3.2
below. Condition (36) is restrictive only when νc is finite, in which case it imposes a minimal
growth of the analyzing scale γj with respect to that of nj. We say that the reduction principle
holds at large scales. The main interest of having a reduction principle is to conclude that
the same asymptotic analysis is valid as in the case G =

cq0
q0!
Hq0 .

Remark 3.1. In practice such a result can be used as follows : If d, G are both known, νc
can be evaluated numerically. We then get a practical condition, albeit asymptotic, for the
reduction principle. See Section 6.3 for an application.

Remark 3.2. The values d = 1/2− 1/(2q), q ≥ 1, constitute boundary values which already
appear in the classical reduction theorem, see Taqqu (1975). These boundary values also
exist in our context. If d = 1/2 − 1/(2q), q ≥ 1, one gets similar results but with logarithm

2This case corresponds to L = {0} using the notation introduce in (37) below.
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terms. In fact, one can show that if one drops the restriction (35), then the conclusion of
Theorem 3.2 holds if

1) nj ≪ γνcj (log γj)
−4.

2) For any ε > 0, log nj = o(γεj ) and log γj = o(nεj) as j → ∞.

The technical condition 2) is very weak and condition 1) is the same as (36) up to a logarithmic
correction. We assume (35) for simplicity of the exposition.

Remark 3.3. We provided in Clausel et al. (2013) several examples for which different limits
are obtained. In these examples one does not have (36) and consequently different terms in
the decomposition in Wiener chaos of the scalogram dominate and provide different limits.
Since the limits are not the same as when G = Hq0 , the reduction principle does not hold in
these cases.

4. Critical exponent

The precise description of the critical exponent given below involves a number of sequences,
in particular, the subsequence of Hermite coefficients cq, q ≥ 1 that are non-vanishing. We
denote this subsequence by {cqℓ}ℓ∈L where (qℓ)ℓ∈L is a (finite of infinite) increasing sequence
of integers such that

qℓ = index of the (ℓ+ 1)th non–zero coefficient , ℓ ∈ L . (37)

Thus the indexing set L is a set of consecutive integers starting at 0 with same cardinality as
the set of non-vanishing coefficients. We set

I0 = {ℓ ∈ L : ℓ+ 1 ∈ L, qℓ+1 − qℓ = 1} , (38)

that is, qℓ and qℓ+1 take consecutive values when ℓ ∈ I0. The set I0 could be either empty
(there are no consecutive values of qℓ) or not empty. Then we set

ℓ0 =

{
min(I0) ≥ 0 , when I0 is not empty ,

∞ , when I0 is empty .
(39)

When ℓ0 is finite (that is, I0 is not empty), qℓ0 is the smallest index q such that two Hermite
coefficients cq, cq+1 are non–zero.

We define similarly for any r ≥ 0

Ir = {ℓ ∈ L : qℓ+1 = qℓ + r + 1} . (40)

which involves the terms distant by r + 1. Finally, we extend the definition of ℓ0 in (39) to
any r ≥ 0 by

ℓr = min(Ir) . (41)

We also define

R = {r ≥ 0 : Ir 6= ∅ and δ(r + 1) > 0} . (42)

Thus r ∈ R describes the gaps r+1 where Hr+1(Xt) is long-range dependent. Since by (12),
δ(r + 1) > 0 is equivalent to r + 1 < 1/(1 − 2d), we have

R ⊂ {0, 1, . . . , [1/(1 − 2d)] − 1} . (43)

Finally, let

Jd = {ℓ ∈ L : δ(qℓ+1 − qℓ) > 0} =
{
ℓ ∈ L : qℓ+1 < qℓ + (1− 2d)−1

}
, (44)



REDUCTION PRINCIPLE 11

where we used the expression for δ(q) in (12). Note that

Jd =
⋃

r∈R

Ir , (45)

and thus

Jd 6= ∅ ⇐⇒ R 6= ∅ . (46)

We illustrate these quantities in the following example.

Illustration. Suppose

G(x) = c1H1(x) +
c3
3!
H3(x) +

c4
4!
H4(x) +

c5
5!
H5(x) +

c24
24!

H24(x) ,

where c1, c3, c4, c5 and c24 are non-zero constants. Then

q0 = 1, q1 = 3, q2 = 4, q3 = 5, q4 = 24 and L = {0, 1, 2, 3, 4} ,
I0 = {1, 2}, I1 = {0}, I2 = · · · = I17 = ∅, I18 = {3} ,
ℓ0 = 1, ℓ1 = 0, ℓ18 = 3 .

To determine R we need to involve d. Here q0 = 1 so d can take any value in (0, 1/2) to satisfy
Condition (16) which guarantees that G(X) is long-range dependent. We need to consider
the gaps of size 1,2 and 19, namely, r = 0, 1 and 18. Consequently, by (12) and using the fact
that δ(q) is decreasing,

a) If d ∈ (0, 1/4], or equivalently δ(2) ≤ 0, then R = {0}.
b) If d ∈ (1/4, 9/19], or equivalently δ(2) > 0 and δ(19) ≤ 0, then R = {0, 1}.
c) If d ∈ (9/19, 1/2), or equivalently δ(19) > 0, then R = {0, 1, 18}.

Finally, by (45), we get for Jd the following subsets of L. In Case a) : Jd = I0 = {1, 2},
Case b) : Jd = I0 ∪ I1 = {0, 1, 2} and Case c) : Jd = I0 ∪ I1 ∪ I18 = {0, 1, 2, 3}.

These sets and indices enter in the following definition.

Definition 4.1. The critical exponent is

νc =





∞, if L = {0} ,

∞, if q0 = 1, d ≤ 1/4 and I0 = ∅ ,

d+1/2−2δ+(qℓ0)

d , if q0 = 1, d ≤ 1/4 and I0 6= ∅ ,

1−2δ+(q1−1)
2d−1/2 , if q0 = 1, d > 1/4, 1 ∈ L and Jd = ∅ ,

min
(
1−2δ+(q1−1)

2d−1/2 ,
2d+1/2−2δ+(qℓr )−δ(r+1)

δ(r+1) : r ∈ R
)

if q0 = 1, d > 1/4 and Jd 6= ∅ ,

∞, if q0 ≥ 2 and I0 = ∅ ,

1 +
4(δ(q0)−δ+(qℓ0 ))

1−2d , if q0 ≥ 2 and I0 6= ∅ .
The exponent νc depends on d and on the function G through the expansion coefficient

indices (qℓ)ℓ∈L defined in (37). In fact one has
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Proposition 4.1. Every possible sequence (qℓ)ℓ∈L and every value of d satisfying (16) give
rise to a νc ∈ (0,∞].

Proof. See Section 8.3. �

The value νc = ∞ is the simplest case since then the reduction principle holds whatever
the respective growth rates of the diverging sequences (nj) and (γj) are. This happens for
instance when there are no consecutive non–zeros coefficients (I0 = ∅) and either q0 = 1 and
d ≤ 1/4 or q0 ≥ 2 (which implies d > 1/4).

5. Examples

In this section, we examine some specific cases of functions G. We always assume that G
satisfies Assumption A (ii).

5.1. G is even. If G is an even function then q0 ≥ 2 and I0 = ∅ because the Hermite
expansion has only even terms. Hence νc = ∞ and the reduction principle applies for any
diverging sequences (nj) and (γj).

5.2. G is odd. If G is an odd function then we have again I0 = ∅ since the Hermite expansion
has no even terms. But unlike the even case, we may have q0 = 1. If it is not the case, then
q0 ≥ 3 so that νc = ∞ and the reduction principle applies for any diverging sequences (nj)
and (γj). If q0 = 1 and d ≤ 1/4, we find again νc = ∞. If q0 = 1 and d > 1/4, the formula of
the exponent νc is more involved and takes various possible forms, see Section 5.4 for one of
the possible cases, namely I0 = ∅, q0 = 1 and δ(q1) > 0.

5.3. I0 6= ∅ and q0 ≥ 2. This corresponds to the class studied in Section 3.1 of Clausel et al.
(2013) with the additional condition δ(qℓ0 + 1) > 0 (see (3.3) in this reference). Using this
additional condition, we have δ(qℓ0) > 0 since δ(q) is decreasing. Hence δ+(qℓ0) = δ(qℓ0) and

νc = 1 +
4(δ(q0)− δ+(qℓ0))

1− 2d
= 1 +

4(δ(q0)− δ(qℓ0))

1− 2d
= 1 + 2(qℓ0 − 2q0) .

This value of νc corresponds to the exponent ν defined in (3.4) and appearing in Theorem 3.1
of Clausel et al. (2013). This theorem shows that if the opposite condition to (36) holds,
namely, γνcj ≪ nj , then the reduction principle does not apply since the limit is Gaussian
instead of Rosenblatt. We say that the reduction principle does not apply at small scales. In
Theorem 3.2, the reduction principle is proved even when δ+(qℓ0 + 1) = 0, but whether the
reduction principle does apply or not at small scales, namely if γνcj ≪ nj, remains an open
question.

5.4. I0 = ∅, q0 = 1 and δ(q1) > 0. The expansion of G contains H1 but does not contain
any two consecutive polynomials. This corresponds to the class studied in Section 3.2 of
Clausel et al. (2013) (see (3.8) in this reference). The exponent νc simplifies as follows. First
observe that δ(q1) > 0 implies δ+(q1 − 1) > 0, so that q1 ∈ R, and also δ(2) > 0 and hence
d > 1/4. We thus need to focus on the term of νc in Definition 4.1 involving min. Using (12),
for the first term in the min

1− 2δ+(q1 − 1)

2d− 1/2
=

(q1 − 1)(1 − 2d)

δ(2)
, (47)

which corresponds to the exponent ν2 in (3.10) of Clausel et al. (2013). Now focus on the
second term in the min. Take any r ∈ R and consider ℓr defined in (41). Note that qℓr is
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the smallest Hermite polynomial index of the expansion of G such that the next one appears
after a gap equal to r + 1. There are only two possibilities : (a) either qℓr = q0 = 1, (b) or
qℓr ≥ q1. In case (a), we have r + 1 = qℓr+1 − qℓr = q1 − 1 and thus

2d+ 1/2− 2δ+(qℓr)− δ(r + 1)

δ(r + 1)
=

1/2 − δ(q1 − 1)

δ(q1 − 1)
, (48)

which corresponds to the exponent ν1 in (3.10) of Clausel et al. (2013). In case (b), using
r + 1 ≥ 2 (since I0 = ∅) and qℓr ≥ q1, we get

2d+ 1/2− 2δ+(qℓr)− δ(r + 1)

δ(r + 1)
≥ 2d+ 1/2− 2δ+(q1)− δ(2)

δ(2)
=
q1(1− 2d)

δ(2)
>

(q1 − 1)(1 − 2d)

δ(2)
,

which already appeared in (47). Therefore with (47) and (48) and Definition 4.1 of νc for
q0 = 1 and d > 1/4, we get

νc = min

(
(q1 − 1)(1 − 2d)

δ(2)
,
1/2 − δ(q1 − 1)

δ(q1 − 1)

)
,

which corresponds to min(ν1, ν2) using the definitions in (3.10) of Clausel et al. (2013). Hence
the reduction principle established in Theorem 3.2 under the condition nj ≪ γνcj corresponds

to the cases nj ≪ γν1j and nj ≪ γν2j of Theorems 3.3 and 3.5 in Clausel et al. (2013),

respectively. These two theorems further show that when the additional condition δ(q1) > 0
holds the reduction principle does not hold under the opposite condition γνcj ≪ nj, illustrating
the fact that the reduction principle may not hold at small scales.

6. Application to wavelet statistical inference

6.1. Wavelet inference setting. Suppose that we observe a sample Y1, . . . , YN of Y . Recall
that Y has long memory parameter d0 = K + δ(q0). In this section, we assume that we are
given an unidimensional wavelet filter gj satisfying Assumptions (W-1)–(W-3) in Appendix B
(see also (128) and (133)). Then one can derive the wavelet estimator

d̂0 =

p∑

i=0

wi log σ̂
2
j+i , (49)

where w0, . . . , wp are well chosen weights and (σ̂2j )i≤j≤i+p denotes the multiscale scalogram
obtained from Y1, . . . , YN ,

(σ̂2j )i≤j≤i+p = Snj ,j =
1

nj

nj−1∑

k=0

W2
j,k , (50)

(see Appendix C for more details). In this setting, (γj) and (nj) are specified as follows

γj = 2j and nj = N2−j +O(1) . (51)

As usual in this setting the asymptotics are to be understood as N → ∞ with a well chosen
diverging sequence j = jN such that

lim
N→∞

N2−j = ∞ , (52)

and thus (nj) diverge as N → ∞. We refer to (Moulines et al., 2007, Theorem 1) for the
asymptotic behavior of the mean of the scalogram

E
[
σ̂2j
]
= C 22d0j

(
1 +O(2−ζj)

)
, (53)
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where C is a positive constant and ζ is an exponent satisfying the conditions of Theorem 2.1.
This relation follows from Theorem 2.1, provided that M ≥ d0 − 1/2. Choosing weights such
that

∑
iwi = 0 and

∑
i iwi = 1/(2 log 2) then yields

p∑

i=0

wi logE
[
σ̂2j+i

]
= d0 +O(2−ζj) . (54)

6.2. Consistency. We now state a consistency result.

Theorem 6.1. Consider the wavelet estimation setting (49)–(52) and suppose that Assump-

tions A hold with M ≥ K + δ(q0). Then, as N → ∞, d̂0 converges to d0 in probability.

Proof. By (49), we have

d̂0 −
p∑

i=0

wi logE
[
σ̂2j+i

]
=

p∑

i=0

wi log


1 +

σ̂2j+i − E

[
σ̂2j+i

]

E

[
σ̂2j+i

]


 . (55)

The numerators in the last ratio are the components of Snj ,j by (50). By Theorem 2.2
and (51), we have

Snj ,j = OP

(
γ2d0j n

−(1/2−d)
j

)
= OP

(
22d0j (N2−j)−(1/2−d)

)
.

Hence, with (55) and (53), we get that

d̂0 −
p∑

i=0

wi logE
[
σ̂2j+i

]
= OP ((N2−j)−(1/2−d)) .

Applying (54) then yields

d̂0 = d0 +OP

(
(N2−j)−(1/2−d)

)
+O(2−ζj) . (56)

The result then follows from (52). �

Remark 6.1. We note that this consistency result applies without any knowledge of G or β.

6.3. Hypothesis testing. Consider again a sample Y1, . . . , YN of Y and suppose now that
G is known and has Hermite rank q0.

Denote by d̃0 the estimator that would be obtained instead of d̂0 if we had G replaced by
cq0Hq0/(q0!). We shall apply Theorem C.1 and Theorem C.2 of Appendix C. Theorem C.1
(case q0 = 1) derives from Theorem 2 of Roueff and Taqqu (2009a) and Theorem C.2 (case
q0 ≥ 2) derives from Theorem 4.1 of Clausel et al. (2014). We obtain the following : for
conveniently chosen diverging sequences j = (jN ), there exists some renormalization sequence
(uN ) such that as N → ∞,

uN (d̃0 − d0)
(L)→ U(d,K, q0) , (57)

with

uN =

{
(N2−j)1/2 if q0 = 1,
(N2−j)1−2d if q0 ≥ 2,

(58)

and where U(d,K, q0) is a centered Gaussian random variable if q0 = 1 and a Rosenblatt
random variable if q0 ≥ 2. The precise distribution of U(d,K, q0) is given in Theorems C.1
and C.2. Beside the chosen wavelet, the distribution of U only depends on d, K and q0.
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As application of the reduction principle in this setting, we use (57) to define a statistical
test procedure which applies to a general G. Let d∗0 be a given possible value for the true
unknown memory parameter d0 of Y and consider the hypotheses

H0 : d0 = d∗0 against H1 : d0 ∈ (0, K̄ + 1/2) \ {d∗0} .

Here K̄ denotes a known maximal value for the true (possibly unknown) integration parameter
K. So to insure that the number M of vanishing moments satisfies M ≥ d0, it suffices to
impose M > K̄. Since G is assumed to be known, for the given value d∗0, one can define the
parameters d∗, K∗ and ν∗c defined as d, K and νc by replacing d0 by d∗0.

Let α ∈ (0, 1) be a level of confidence. Define the statistical test

δs =

{
1 if |d̂0 − d∗0| > sN (α),

0 otherwise.
(59)

where sN (α) is the (1− α/2) quantile of U(d∗,K∗, q0)/uN .
The following theorem provides conditions for the test δs to be consistent with asymptotic

level of confidence α, namely, that its power goes to 1 and its first type error goes to α as N
goes to ∞.

Theorem 6.2. Suppose that Assumptions A(i),(ii) hold with M > K̄ and that the unidimen-
sional wavelet filter gj satisfies Assumptions (W-1)–(W-3). Assume additionally that (35)
holds. Let j = (jN ) be a diverging sequence such that (52) holds. Suppose moreover that, as
N → ∞,

N2−j ≪ 2jν
∗

c , (60)

and that there exists a positive exponent ζ satisfying (18) and

2−ζj ≪ u−1
N , (61)

with uN defined as in (58). Then, if (36) is satisfied, δs is a consistent test with asymptotic
level of confidence α.

Remark 6.2. Observe that the different conditions that have to be simultaneously satisfied
by (jN ) can be reformulated as follows :

• limN→∞ jN = ∞ and limN→∞N2−jN = ∞.
• N2−jN ≪ 2jN ζ′ with

ζ ′ =

{
min(ν∗c , 2ζ) if q0 ≥ 1,
min(ν∗c , ζ/(1− 2d)) otherwise.

In particular, one can easily check that since ν∗c and ζ are both positive so is ζ ′. Hence these
conditions are not incompatible.

Proof. See Section 8.5. �

Idea behind the proof of Theorem 6.2. Condition (60) states that nj ≪ γ
ν∗c
j and will insure that

the reduction principle holds under H0. Condition (61) will ensure that the bias is negligible
under H0. These conditions will allow us through Relation (109) to transfer the problem to
the case G(x) =

cq0
q0!
Hq0(x) which was treated in Clausel et al. (2014).
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7. Decomposition in Wiener chaos

As in Clausel et al. (2012) and Clausel et al. (2013), we need the expansion of the scalogram
into Wiener chaos. The wavelet coefficients can be expanded in the following way :

Wj,k =

∞∑

q=1

cq
q!
W

(q)
j,k , (62)

where W
(q)
j,k is a multiple integral of order q. Then, using the same convention as in (25), we

have

W2
j,k =

∞∑

q=1

(
cq
q!

)2 (
W

(q)
j,k

)2
+ 2

∞∑

q′=2

q′−1∑

q=1

cq
q!

cq′

q′!
W

(q)
j,kW

(q′)
j,k , (63)

where the convergence of the infinite sums hold in L1(Ω) sense.

Each W
(q)
j,k is a multiple integral and consequently so is Snj ,j in (24). (Basic facts about

Multiple integrals and Wiener chaos are recalled in Appendix A).
In Proposition 4.2 of Clausel et al. (2013), we gave the following explicit expression of the

Wiener chaos expansion of the scalogram.

Proposition 7.1. For all j, {Wj,k}k∈Z is a weakly stationary sequence. Moreover, for any

j ∈ N, Snj ,j can be expanded into Wiener chaos as follows

Snj ,j =
1

nj

nj−1∑

k=0

W2
j,k − E[W2

j,0]

=

∞∑

q=1

(
cq
q!

)2 q−1∑

p=0

p!

(
q

p

)2

S
(q,q,p)
nj ,j

+ 2

∞∑

q′=2

q′−1∑

q=1

cq
q!

cq′

q′!

q∑

p=0

p!

(
q

p

)(
q′

p

)
S
(q,q′,p)
nj ,j

,(64)

where, for all q, q′ ≥ 1 and 0 ≤ p ≤ min(q, q′), S
(q,q′,p)
nj ,j

is of the form

S
(q,q′,p)
nj ,j

= Îq+q′−2p

(
g
(q,q′,p)
nj ,j

)
, (65)

and where the infinite sums converge in the L1(Ω) sense. The function g
(q,q′,p)
nj ,j

(ξ), ξ =

(ξ1, . . . , ξq+q′−2p) ∈ R
q+q′−2p, in (65) is defined as follows :

g
(q,q′,p)
nj ,j

(ξ) = Dnj
(γj{ξ1 + · · ·+ ξq+q′−2p})×

∏q+q′−2p
i=1 [

√
f(ξi)1(−π,π)(ξi)]

× κ̂
(p)
j (ξ1 + · · ·+ ξq−p, ξq−p+1 + · · ·+ ξq+q′−2p) ,

(66)

where f denotes the spectral density of the underlying Gaussian process X and for any integer
n,

Dn(u) =
1

nj

nj−1∑

k=0

eiku =
1− einju

nj(1− eiu)
, (67)

denotes the normalized Dirichlet kernel, and for ξ1, ξ2 ∈ R, if p 6= 0,

κ̂
(p)
j (ξ1, ξ2) =

∫

(−π,π)p

(
p∏

i=1

f(λi)

)
ĥ
(K)
j (λ1+· · ·+λp+ξ1)ĥ(K)

j (λ1 + · · · + λp − ξ2) d
pλ , (68)
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and, if p = 0,

κ̂
(p)
j (ξ1, ξ2) = ĥ

(K)
j (ξ1)ĥ

(K)
j (ξ2) . (69)

The random summand S
(q,q′,p)
nj ,j

is expressed in (65) as a Wiener–Itô integral of order q +

q′ − 2p and q + q′ − 2p will be called the order of S
(q,q′,p)
nj ,j

.

The limits involved in Theorem 3.1 are those given by the term S
(q0,q0,q0−1)
nj ,j

as proved in

Propositions 5.3 and 5.4 of Clausel et al. (2013). A sufficient condition to get the reduction
principle is that the other terms are negligible with respect to this term. Theorem 3.2 is then
a direct consequence of the following main result :

Theorem 7.2. Suppose that Assumptions A hold with M ≥ K + δ(q0), where δ(·) is de-
fined in (12) and that (35) holds. Define the centered multivariate scalogram Sn,j related
to Y by (22). Suppose that (γj) and (nj) are any diverging sequences of integers. Then
Condition (36) implies, as j → ∞,∥∥∥Snj ,j − S

(q0,q0,q0−1)
nj ,j

∥∥∥
2
≪ ‖S(q0,q0,q0−1)

nj ,j
‖2 . (70)

Proof. Theorem 7.2 is proved in Section 8.4. �

Idea behind the proof of Theorem 7.2. One uses the expansion (64). The norms of the
relevant terms are bounded in Proposition 7.3. We then deduce bounds for the difference

‖Snj ,j − S
(q0,q0,q0−1)
nj ,j

‖2 in Proposition 7.4. The main task in the proof of Theorem 7.2 is to

show that these bounds are negligible compared to the leading term ‖S(q0,q0,q0−1)
nj ,j

‖2 whose

asymptotic behavior is also given in Proposition 7.4.

Our results are based on L2(Ω) upper bounds of the terms ‖S(q,q′,p)
nj ,j

‖2 established in Propo-

sition 5.1 of Clausel et al. (2013). To recall this result, we introduce some notations.
For any s ∈ Z+ and d ∈ (0, 1/2), set

Λs(a) =

s∏

i=1

(ai!)
1−2d, ∀a = (a1, · · · , as) ∈ N

s . (71)

For any q, q′, p ≥ 0, define α, β and β′ as follows :

α(q, q′, p) =

{
min (1− δ+(q − p)− δ+(q

′ − p), 1/2) if p 6= 0 ,
1
2 if p = 0 ,

(72)

β(q, p) = max (δ+(p) + δ+(q − p)− 1/2, 0) , (73)

β′(q, q′, p) = max
(
2δ+(p) + δ+(q − p) + δ+(q

′ − p)− 1,−1/2
)
. (74)

Notice that for any q ≥ 0, β(q, 0) = δ+(q) and that, by definition of β, β′, we have, for all
0 ≤ p ≤ q ≤ q′, we have

β′(q, q′, p) ≤ β(q, p) + β(q′, p) . (75)

Define the function ε on Z+ as

ε(p) =

{
0 if for any s ∈ {1, · · · , p}, s(1− 2d) 6= 1 ,

1 if for some s ∈ {1, · · · , p}, s(1− 2d) = 1 .
(76)

We first recall Proposition 5.1 of Clausel et al. (2013) where Part (i) corresponds to p ≥ 1
and Part (ii) to p = 0.
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Proposition 7.3. Suppose that Assumptions A hold.

(i) There exists C > 0 such that for for all n, γj ≥ 2 and 1 ≤ q ≤ q′ and 1 ≤ p ≤
min(q, q′ − 1),

‖S(q,q′,p)
n,j ‖2 ≤ C

q+q′

2 Λ2(q − p, p)1/2Λ2(q
′ − p, p)1/2γ2Kj

×[n
−α(q,q′,p)
j γ

β′(q,q′,p)
j + n

−1/2
j γ

β(q,p)+β(q′,p)
j ]

× (log nj)
ε(q+q′−2p) (log γj)

3ε(q′) .

(77)

(ii) Assume that M ≥ K + max(δ+(q), δ+(q
′)). Then there exists some C > 0 such that

for all n, γj ≥ 2 and 1 ≤ q ≤ q′,

‖S(q,q′,0)
nj ,j

‖2 ≤ C
q+q′

2 Λ1(q)
1/2Λ1(q

′)1/2n
−1/2
j γ

2K+δ+(q)+δ+(q′)
j (log γj)

ε(q′) . (78)

Note that under Condition (35) we have ε(p) = 0 for all p ≥ 1 in (76). Thus the logarithmic
terms vanish in (77) and (78). Moreover, if p = 0 then Λ2(q, 0) = Λ1(q), α(q, q

′, 0) = 1/2,
β(q, 0) = δ+(q) and β′(q, q′, 0) = δ+(q) + δ+(q

′). Therefore, if Condition (35) holds, the
bounds (77) and (78) imply the following common bound

‖S(q,q′,p)
n,j ‖2 ≤ C

q+q′

2 Λ2(q − p, p)1/2Λ2(q
′ − p, p)1/2γ2Kj

× [n
−α(q,q′,p)
j γ

β′(q,q′,p)
j + n

−1/2
j γ

β(q,p)+β(q′,p)
j ] . (79)

Consider now the decomposition

Snj ,j = S
(q0,q0,q0−1)
nj ,j

+
(
Snj ,j − S

(q0,q0,q0−1)
nj ,j

)
.

The following result provides the sharp rate of the first term and a bound on the second one,
relying on Wiener chaos decomposition (64).

Proposition 7.4. Assume that Assumptions (A) hold with M ≥ K + δ+(q0) and suppose
that Condition (35) holds. Let (nj) and (γj) be any diverging sequences. Then, there exists a
positive constant C such that, for all j ≥ 1,
∥∥∥Snj ,j − S

(q0,q0,q0−1)
nj ,j

∥∥∥
2
≤ C γ2Kj sup

(q,q′,p)∈A0

[n
−α(q,q′,p)
j γ

β′(q,q′,p)
j + n

−1/2
j γ

β(q,p)+β(q′,p)
j ] , (80)

where we denote

A0 = {(q, q′, p) : 1 ≤ q ≤ q′, 0 ≤ p ≤ min(q, q′ − 1), cq × cq′ 6= 0} \ {(q0, q0, q0 − 1)} . (81)

Moreover, the two following assertions hold :

(i) If q0 = 1, as j → ∞,

‖S(q0,q0,q0−1)
nj ,j

‖2 = ‖S(1,1,0)
nj ,j

‖2 ∼ C n
−1/2
j γ

2(d+K)
j , (82)

where C is a positive constant.
(ii) If q0 ≥ 2, as j → ∞,

‖S(q0,q0,q0−1)
nj ,j

‖2 ∼ Cn−1+2d
j γ

2(δ(q0)+K)
j , (83)

where C is a positive constant.



REDUCTION PRINCIPLE 19

Proof. By Proposition 7.1 and (81), applying the Minkowski inequality, we have
∥∥∥Snj ,j − S

(q0,q0,q0−1)
nj ,j

∥∥∥
2
≤ 2

∑

(q,q′,p)∈A0

|cq|
q!

|cq′ |
q′!

p!

(
q

p

)(
q′

p

)
‖S(q,q′,p)

nj ,j
‖2 .

The bound (79) implies that

∑

(q,q′,p)∈A0

|cq|
q!

|cq′ |
q′!

p!

(
q

p

)(
q′

p

)
‖S(q,q′,p)

nj ,j
‖2

≤


 ∑

(q,q′,p)∈A0

|cq|
q!

|cq′ |
q′!

p!

(
q

p

)(
q′

p

)
C

q+q′

2 Λ2(q − p, p)1/2Λ2(q
′ − p, p)1/2




× γ2Kj sup
(q,q′,p)∈A0

[n
−α(q,q′,p)
j γ

β′(q,q′,p)
j + n

−1/2
j γ

β(q,p)+β(q′,p)
j ] .

By Lemma 8.6 of Clausel et al. (2013), the last two displays yield (80).
We now prove (82) and (83). First consider the case where q0 = 1. This asymptotic equiva-

lence (82) is related to the convergence (31) and follows from its proof, see e.g. Moulines et al.
(2007). Since q0 = 1, we have c1 6= 0. Moreover in Condition (W-3) on the wavelet filters

recalled in Appendix B, ĥℓ,∞ are functions that are non-identically zero and which are con-
tinuous as locally uniform limits of continuous functions. Therefore

∑
ℓ Γ

2
ℓ,ℓ > 0 and we

get (82).
Now consider the case where q0 ≥ 2. The bound (83) is then related to Theorem 3.2((b))

where the weak convergence is stated and follows from its proof, see Clausel et al. (2014). �

8. Proofs

8.1. Proof of Theorem 2.1. The generalized spectral density fG,K of Y is related to the
spectral density fG of G(X) by (5). By definition of d0, the result shall then follow if we
prove the existence of a bounded function f∗G such that

fG(λ) = |1− e−iλ|−2δ(q0) f∗G(λ) , (84)

and satisfying all the properties stated in Theorem 2.1.
We now prove (84). To this end, we consider the following decomposition of G(X) as the

sum of two uncorrelated processes,

G(X) = G1(X) +G2(X) =:
∑

1≤q<1/(1−2d)

cq
q!
Hq(X) +

∑

q≥1/(1−2d)

cq
q!
Hq(X) .

The proof of Proposition 6.2 in Clausel et al. (2012) shows that G2(X) admits a bounded
spectral density fG2

. We first consider the case where G1 reduces to the term cq0Hq0/q0!.
Since the two processes Hq0(X) and G2(X) are uncorrelated, one has

fG(λ) =
c2q0
q0!
fHq0

(λ) + fG2
(λ) .

We can then set

f∗G(λ) =
c2q0
q0!
f∗Hq0

(λ) + |1− e−iλ|2δ(q0)fG2
(λ) .



20 M. CLAUSEL, F. ROUEFF, AND M. S. TAQQU

Let us check f∗G has the properties stated in the theorem. Relation (84) follows from the
definition of f∗G and f∗Hq0

. To prove the other properties stated in Theorem 2.1, we distinguish

the two cases q0 = 1 and q0 ≥ 2. If q0 = 1, fHq0
= f , f∗Hq0

= f∗ and then ζ ≤ β, one has

|f∗Hq
(λ)− f∗Hq

(0)| ≤ C|λ|ζ , (85)

for some C > 0. If q0 ≥ 2, Lemma 9.1 yields that there exists a bounded function f∗Hq0
such

that
fHq(λ) = |1− e−iλ|−2δ(q)f∗Hq

(λ) (86)

Moreover for any ζ ∈ (0, 2δ(q)) such that ζ ≤ β, one has

|f∗Hq
(λ)− f∗Hq

(0)| ≤ C|λ|ζ , (87)

for some C > 0. In any case, the boundedness of fG2
and the properties of f∗Hq0

(equation (85)

if q0 = 1 or (86), (87) if q0 ≥ 2) then imply that (19) holds in the case G1 = cq0Hq0/q0!, that
is if δ+(q1) = 0.

We now deal with the case where Hq1 has also long memory, namely δ+(q1) > 0. Since
the terms Hq(X) for q < 1/(1 − 2d) are all pairwise uncorrelated, the spectral density of
long-range dependent part G1(X) reads as follows

fG1
(λ) =

∑

1≤q<1/(1−2d)

c2q
q!
fHq(λ) .

We now apply Equation (111) of Lemma 9.1 successively to each q < 1/(1 − 2d). Hence

fG1
(λ) = |1− e−iλ|−2δ(q0)


 ∑

1≤q<1/(1−2d)

c2q
q!
|1− e−iλ|2δ(q0)−2δ(q)f∗Hq

(λ)


 .

Since fG = fG1
+ fG2

, we then get (84) with

f∗G(λ) =


 ∑

1≤q<1/(1−2d)

c2q
q!
|1− e−iλ|2δ(q0)−2δ(q)f∗Hq

(λ)


 + |1− e−iλ|2δ(q0)fG2

(λ) .

Since |1 − e−iλ| = 0 for λ = 0, we have f∗G(0) = c2q0f
∗
Hq0

(0)/q0!. We now prove that under

Condition (18) on ζ, we get (19). Indeed,

|f∗G(λ)− f∗G(0)| ≤ c2q0
q0!

|f∗Hq0
(λ)− f∗Hq0

(0)| +
[∑

q1≤q<1/(1−2d)
c2q
q! |1− e−iλ|2δ(q0)−2δ(q)f∗Hq

(λ)
]

+|1− e−iλ|2δ(q0)fG2
(λ) .

Using the boundedness of f∗Hq
for any q ≥ q1, we deduce that for some C > 0 and any q ≥ q1,

|1− e−iλ|2δ(q0)−2δ(q)f∗Hq
(λ) ≤ C|λ|2δ(q0)−2δ(q1) , (88)

whereas by Lemma 9.1 applied with q = q0, we deduce that for any ζ ∈ (0, 2δ(q0)) such that
ζ ≤ β, one has

|f∗Hq0
(λ)− f∗Hq0

(0)| ≤ L|λ|ζ . (89)

We now combine (88) and (89) and deduce that for any ζ ∈ (0, 2δ(q0)) such that ζ ≤
min(β, 2δ(q0)− 2δ(q1)), one has

|f∗G(λ)− f∗G(0)| ≤ L′|λ|ζ , (90)
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for some L′ > 0.

8.2. Proof of Theorem 2.2. The bound (28) follows the same lines as the proof of Propo-
sition 7.4. It is a consequence of Proposition 7.1, Proposition 7.3, Lemma 8.6 of Clausel et al.
(2013) and of the following bounds :

α(q, q′, p) ≥ 1/2 − d and equality implies q′ = q + 1 and p = q ,

β(q, p) ≤ δ(q0) and equality implies q = q0 ,

β′(q, q′, p) ≤ 2δ(q0) and equality implies q = q′ = q0 .

The two first bounds follow from Lemma 8.3 in Clausel et al. (2013), and the last one
from (75). The equality cases are used to get rid of the logarithmic corrections appear-
ing in (77) and (78) since q′ = q+1 and p = q imply ε(q+ q′−2p) = ε(1) = 0 and q = q′ = q0
implies ε(q′) = ε(q0) = 0. This concludes the proof.

8.3. Proof of Proposition 4.1. We want to show we always have νc > 0. By definition of
δ and δ+ in (12), we have δ(q) ≤ δ(1) = d for all q ≥ 1, and since d > 0, δ+(q) ≤ d. With
d < 1/2, this implies that d + 1/2 − 2δ+(qℓ0) ≥ 1/2 − d > 0 and thus the third line of the
definition of νc is positive. For the same reason, 1−2δ+(q1−1) ≥ 1−2d and the fourth line of
the definition of νc is positive. In addition, for any r ≥ 0, 2d+1/2−2δ+(qℓr)−δ(r+1) ≥ 1/2−d
and δ(r + 1) < 1/2 so that, for any r ∈ R,

2d+ 1/2 − 2δ+(qℓr)− δ(r + 1)

δ(r + 1)
≥ 1− 2d > 0 ,

which ensures that the quantities inside the min are uniformly lower-bounded by a positive
value. Finally, for the last line, we separate the cases δ+(qℓ0) = 0 and δ+(qℓ0) = δ(qℓ0). In
the first case, we have 4(δ(q0)− δ+(qℓ0)) = 4δ(q0) = 2− 2q0(1− 2d) and so

4(δ(q0)− δ+(qℓ0))

1− 2d
= 2(1/(1 − 2d)− q0) > 0 ,

as a consequence of (16). In the second case, we have 4(δ(q0)− δ+(qℓ0)) ≥ 4(δ(q0)− δ(qℓ0)) =
2(qℓ0 − q0)(1− 2d) and so

4(δ(q0)− δ+(qℓ0))

1− 2d
≥ 2(qℓ0 − q0) ≥ 0 ,

which is non-negative by definition of qℓ0 . Hence the last line defining νc is at least one, hence
is positive, which concludes the proof.

8.4. Proof of Theorem 7.2. By Proposition 7.4, it is sufficient to show that the right-
hand side of (80) is negligible with respect to the right-hand side of (82) if q0 = 1 or to the
right-hand side of (83) if q0 ≥ 2, that is, respectively,

lim
j→∞

n
1/2
j γ−2d

j sup
(q,q′,p)∈A0

[n
−α(q,q′,p)
j γ

β′(q,q′,p)
j + n

−1/2
j γ

β(q,p)+β(q′,p)
j ] = 0 , (91)

lim
j→∞

n1−2d
j γ

−2δ(q0)
j sup

(q,q′,p)∈A0

[n
−α(q,q′,p)
j γ

β′(q,q′,p)
j + n

−1/2
j γ

β(q,p)+β(q′,p)
j ] = 0 . (92)

We now distinguish the two cases q0 = 1, q0 ≥ 2.
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8.4.1. Proof of Theorem 7.2 in the case q0 = 1. In this case, we need to show that Condi-
tion (36) implies (91).

By Lemma 8.3 (4) in Clausel et al. (2013), we have, for all 0 ≤ p ≤ q ≤ q′, β(q, p)+β(q′, p) ≤
δ+(q) + δ+(q

′). We may thus write

sup
(q,q′,p)∈A0

γ
β(q,p)+β(q′,p)
j ≤ sup

(q,q′,p)∈A0

γ
δ+(q)+δ+(q′)
j ≤ γ

sup{δ+(q)+δ+(q′) : 1≤q≤q′, (q,q′)6=(1,1)}
j ,

since for q0 = 1, the triplet (q0, q0, q0 − 1) = (1, 1, 0) is excluded from A0. Using Lemma 9.2,
we obtain, as j → ∞,

sup
(q,q′,p)∈A0

n
−1/2
j γ

β(q,p)+β(q′,p)
j = o

(
n
−1/2
j γ2dj

)
. (93)

Inserting this in (91), we only need to show that (36) implies

lim
j→∞

n
1/2
j γ−2d

j sup
(q,q′,p)∈A0

n
−α(q,q′,p)
j γ

β′(q,q′,p)
j = 0 . (94)

Observe that, by definition, α(q, q′, p) ≤ 1/2. We shall therefore partition A0 into A0 =
A1 ∪ A2, where

A1 = {(q, q′, p) ∈ A0 : α(q, q′, p) = 1/2}
A2 = {(q, q′, p) ∈ A0 : α(q, q′, p) < 1/2} .

Since α(q, q′, p) = 1/2 for (q, q′, p) ∈ A1, we get with (75) that

sup
(q,q′,p)∈A1

n
−α(q,q′,p)
j γ

β′(q,q′,p)
j ≤ sup

(q,q′,p)∈A0

n
−1/2
j γ

β(q,p)+β(q′,p)
j = o

(
n
−1/2
j γ2dj

)
,

as j → ∞ by (93).
If A2 = ∅ we conclude that (94) holds. By Lemma 9.4, we note that A2 = ∅ if and only if

d ≤ 1/4 and I0 defined by (38) is an empty set. Hence, from now on, we assume that A2 6= ∅,
that is, either d ≤ 1/4 and I0 6= ∅, or d > 1/4. It only remains to show that, under these
conditions, (36) implies

lim
j→∞

n
1/2
j γ−2d

j sup
(q,q′,p)∈A2

n
−α(q,q′,p)
j γ

β′(q,q′,p)
j = 0 . (95)

To compute the sup, we first optimize on p, then on q′, and finally on q.

Optimization on p. By Lemma 9.3, if (q, q′, p) ∈ A2 for a given (q, q′), then α(q, q′, p) is
minimal and β′(q, q′, p) is maximal for the largest possible p, which corresponds to p = q − 1
if q′ = q and to p = q if q′ > q. For such a p, we have, if q = q′,

α(q, q′, p) = α(q, q, q − 1) = min(1− 2d, 1/2) ,

and if q′ > q,
α(q, q′, p) = α(q, q′, q) = 1/2 − δ+(q

′ − q) .

Since being in A2 implies α(q, q′, p) < 1/2, we must have 1 − 2d < 1/2 (that is d > 1/4) if
q = q′ and δ(q′ − q) > 0 if q′ > q. To separate the cases q = q′ and q 6= q′, we define

A2,1 =

{
∅ if d ≤ 1/4,

{(q, q, q − 1) : q ≥ 2, cq 6= 0} if d > 1/4.

and
A2,2 = {(q, q′, q) : q′ > q ≥ 1, cqcq′ 6= 0, δ(q′ − q) > 0} .
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Note that in A2,1 we set q ≥ 2 to avoid (q, q, q − 1) = (1, 1, 0). Recall that the indices of the
non-zero coefficients cq are labeled as qℓ, see (37). Then

{(q, q, q − 1) : q ≥ 2, cq 6= 0} = {(qℓ, qℓ, qℓ − 1) : ℓ ∈ L, ℓ ≥ 1} ,
and, similarly,

A2,2 = {(qℓ, qℓ′ , qℓ) : ℓ, ℓ′ ∈ L, 0 ≤ ℓ < ℓ′, δ(qℓ′ − qℓ) > 0} .
Defining

Aj := sup
(ℓ,ℓ′)

n
−1/2+δ(qℓ′−qℓ)
j γ

β′(qℓ,qℓ′ ,qℓ)
j , (96)

where the supℓ,ℓ′ is taken over (ℓ, ℓ′) ∈ L2 such that ℓ < ℓ′ and δ(qℓ′ − qℓ) > 0, and

Bj := sup
ℓ
γ
β′(qℓ,qℓ,qℓ−1)
j , (97)

where the supℓ is taken over all ℓ ∈ L such that ℓ ≥ 1, we thus obtain the two following
assertions.

• If d ≤ 1/4, the sup over A2 can be restricted to A22. This gives

sup
(q,q′,p)∈A2

n
−α(q,q′,p)
j γ

β′(q,q′,p)
j = Aj , (98)

• If d > 1/4, the sup over A2 has to be performed over A21 and A22. This gives

sup
(q,q′,p)∈A2

n
−α(q,q′,p)
j γ

β′(q,q′,p)
j = max

(
n−1+2d
j Bj, Aj

)
. (99)

Optimization on q′. We only need to consider Aj since Bj corresponds to q′ = q. For Aj ,
optimizing on q′ means optimizing on ℓ′ in the sup of (98). We know from Lemma 9.3 that,
for each ℓ, α(qℓ, qℓ′ , qℓ) is non-decreasing and β′(qℓ, qℓ′ , qℓ) is non-increasing as ℓ′ increases,
hence the supℓ,ℓ′ is achieved when ℓ′ = ℓ+ 1 and thus α(qℓ, qℓ′ , qℓ) < 1/2 implies

Aj =




sup
ℓ∈Jd

n
−1/2+δ(qℓ+1−qℓ)
j γ

β′(qℓ,qℓ+1,qℓ)
j if Jd 6= ∅,

0 otherwise ,
(100)

where Jd is defined in (44). When Jd = ∅, the sup in (96) is taken over the empty set. We
use the convention sup∅(. . . ) = 0.

Optimization on q. We deal separately with the cases

(a) d ≤ 1/4.
(b) d > 1/4.

The case (a) is the simplest since in (98), Bj does not appear. Recall also that we have I0 6= ∅
in this case since we assumed A2 6= ∅. The optimization on q here amounts to optimize Aj

on ℓ in (100) in the case Jd 6= ∅. Observe that when d ≤ 1/4, δ(r) = 0 for all r ≥ 2, see (12).
Thus the condition δ(qℓ+1 − qℓ) > 0 on ℓ ∈ Jd is equivalent to qℓ+1 = qℓ + 1, in which case
δ(qℓ+1 − qℓ) = δ(1) = d > 0 and Jd = I0. Hence,

Aj = sup
ℓ∈I0

n
−1/2+d
j γ

β′(qℓ,qℓ+1,qℓ)
j = sup

ℓ∈I0

n
−1/2+d
j γ

2δ+(qℓ)+d−1/2
j ,
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where we used that β′(qℓ, qℓ + 1, qℓ) = max(2δ+(qℓ) + d − 1/2,−1/2) = 2δ+(qℓ) + d − 1/2,
see (74). This sup is achieved for the smallest ℓ since δ+ is non-increasing. Recall that the
smallest ℓ in I0 is denoted by ℓ0 in (39), thus,

Aj = n
−1/2+d
j γ

2δ+(qℓ0)+d−1/2

j .

Now, we note that in case (a) with q0 = 1, νc in Definition 4.1 takes value

νc =
d+ 1/2 − 2δ+(qℓ0)

d
.

Hence Condition (36) implies

n
1/2
j γ−2d

j Aj = ndjγ
2δ+(qℓ0)−d−1/2

j = o(1) .

With (98), we obtain (95) and case (a) is complete.
We now turn to the case (b), that is, we assume now that d > 1/4 and show that (95) holds

under Condition (36). Optimizing Bj on q amounts to optimizing the sup in (97) on ℓ ∈ L
with ℓ ≥ 1. Note that β′(qℓ, qℓ, qℓ−1) = max(2δ+(qℓ−1)+2d−1,−1/2) = 2δ+(qℓ−1)+2d−1
which is non-increasing as ℓ increases. Hence the sup in (97) is achieved for ℓ = 1 and thus

Bj = γ
2δ+(q1−1)+2d−1
j . (101)

Note that in this case νc in Definition 4.1 takes value

νc =





1−2δ+(q1−1)
2d−1/2 if Jd = ∅ ,

min

(
1−2δ+(q1−1)

2d−1/2 ,min
r∈R

(
2d+ 1/2 − 2δ+(qℓr)− δ(r + 1)

δ(r + 1)

))
if Jd 6= ∅.

(102)

In both cases, we have νc ≤ (1− 2δ+(q1 − 1))/(2d− 1/2), and thus Condition (36) implies, as
j → ∞,

γ−2d
j n

−1/2+2d
j Bj = n

−1/2+2d
j γ

2δ+(q1−1)−1
j = o(1) .

If Jd = ∅ so that Aj = 0 in (100), we thus obtain with (99) that (36) implies (95). Similarly,
if Jd 6= ∅, which we now assume, it only remains to prove that (36) implies

lim
j→∞

n
1/2
j γ−2d

j Aj = 0 . (103)

Using (100) and that β′(qℓ, qℓ+1, qℓ) = max(2δ+(qℓ) + 1/2 + δ(qℓ+1 − qℓ)− 1, 1/2) = 2δ+(qℓ) +
δ(qℓ+1 − qℓ)− 1/2, we have

Aj = sup
ℓ∈Jd

n
−1/2+δ(qℓ+1−qℓ)
j γ

2δ+(qℓ)+δ(qℓ+1−qℓ)−1/2
j . (104)

Optimizing on q here means optimizing this sup on ℓ ∈ Jd. To do so, we partition Jd as
in (45) and, by the definition of Ir in (40), we have, for all ℓ ∈ Ir,

n
−1/2+δ(qℓ+1−qℓ)
j γ

2δ+(qℓ)+δ(qℓ+1−qℓ)−1/2
j = n

−1/2+δ(r+1)
j γ

2δ+(qℓ)+δ(r+1)−1/2
j .

Since δ is non-increasing, we get with Definition (41) that, for all r ∈ R,

sup
ℓ∈Ir

n
−1/2+δ(qℓ+1−qℓ)
j γ

2δ+(qℓ)+δ(qℓ+1−qℓ)−1/2
j = n

−1/2+δ(r+1)
j γ

2δ+(qℓr )+δ(r+1)−1/2
j .

Hence, by (104) and (45), we get that

n
1/2
j γ−2d

j Aj = max
r∈R

n
δ(r+1)
j γ

2δ+(qℓr )+δ(r+1)−1/2−2d
j .
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Now, since we are in the case Jd 6= ∅, νc in (102) satisfies νc ≤ (2d + 1/2 − 2δ+(qℓr) − δ(r +
1))/(δ(r + 1)) for all r ∈ R and recalling that R is a finite set (see (43)), we see that (36)
implies (103). The proof of the case q0 = 1 is concluded.

8.4.2. Proof of Theorem 7.2 in the case q0 ≥ 2. In this case, we need to show that (36)
implies (92).

Recall that in Assumptions A include Condition (16) and thus q0 ≥ 2 implies d > 1/4.
Hence we have 1 − 2d < 1/2 and since moreover for all q′ ≥ q ≥ q0 and 0 ≤ p ≤ q, we have
β(q, p) + β(q′, p) ≤ 2δ+(q0) = 2δ(q0), we obtain that

lim
j→∞

n1−2d
j γ

−2δ(q0)
j sup

(q,q′,p)∈A0

n
−1/2
j γ

β(q,p)+β(q′,p)
j = 0 .

This correspond to the second term between brackets in (92) and we thus only need to prove
that (36) implies

lim
j→∞

n1−2d
j γ

−2δ(q0)
j sup

(q,q′,p)∈A0

n
−α(q,q′,p)
j γ

β′(q,q′,p)
j = 0 . (105)

Let us partition A0 into A0 = ∪5
i=1Ai, where

A1 = {(q, q′, p) ∈ A0, q = q′ = q0},
A2 = {(q, q, p) ∈ A0, q = q′ > q0},
A3 = {(q, q′, p) ∈ A0, q

′ ≥ q + 2},
A4 = {(q, q′, p) ∈ A0, q

′ = q + 1, p ≤ q − 1},
A5 = {(q, q′, p) ∈ A0, q = p, q′ = q + 1} .

We shall prove that for i = 1, 2, 3, 4,

lim
j→∞

n1−2d
j γ

−2δ(q0)
j sup

(q,q′,p)∈Ai

n
−α(q,q′,p)
j γ

β(q,p)+β(q′,p)
j = 0 , (106)

and that, when I0 defined as in (38) is not empty, (36) implies

lim
j→∞

n1−2d
j γ

−2δ(q0)
j sup

ℓ∈I0

n
−α(qℓ,qℓ+1,qℓ)
j γ

β′(qℓ,qℓ+1,qℓ)
j = 0 . (107)

Since β′(q, q′, p) ≤ β(q, p) + β(q′, p) and A5 = {(qℓ, qℓ + 1, qℓ) : ℓ ∈ I0}, we indeed have
that (106) and (107) imply (105) and the proof will be concluded.

The limit (106) can be deduced for i = 1, · · · , 4 from Lemma 8.3 of Clausel et al. (2013).
More precisely this lemma implies the following facts (recall that d > 1/4).

(1) For all p = 0, . . . , q0 − 2, we have α(q0, q0, p) > 1 − 2d and 2β(q0, p) ≤ 2δ(q0), which
implies (106) for i = 1 since (q0, q0, q0 − 1) is excluded from A0.

(2) For all q ≥ q0 + 1 and p = 0, . . . , q − 1, we have α(q, q, p) ≥ 1 − 2d and 2β(q, p) ≤
2δ+(q0 + 1) < 2δ(q0), which implies (106) for i = 2.

(3) For q ≥ q0, q
′ ≥ q + 2 and p = 0, . . . , q, we have α(q, q′, p) ≥ 1 − 2d and β(q, p) +

β(q′, p) ≤ δ+(q0) + δ+(q0 + 2) < 2δ(q0), which implies (106) for i = 3.
(4) For q ≥ q0 and p = 0, . . . , q−1, we have α(q, q+1, p) ≥ min(3/2(1−2d), 1/2) > 1−2d

and β(q, p) + β(q + 1, p) ≤ δ+(q0 + 1) + δ(q0) < 2δ(q0), which implies (106) for i = 4.

Hence we obtain that (106) is valid for i = 1, · · · , 4. If I0 is empty, the proof is concluded.
We now assume that I0 is not empty, so that ℓ0 is finite, and it only remains to show that
Condition (36) implies (107). Observe that, for any q ≥ q0, we have α(q, q + 1, q) = 1/2 − d
and β′(q, q + 1, q) = 2δ+(q) + d − 1/2 is non–increasing as q increases. Hence over ℓ ∈ I0,
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α(qℓ, qℓ + 1, qℓ) is constant and β′(qℓ, qℓ + 1, qℓ) is maximal at ℓ = ℓ0, where it takes value
2δ+(qℓ0) + d− 1/2. We conclude that

n1−2d
j γ

−2δ(q0)
j sup

ℓ∈I0

n
−α(qℓ,qℓ+1,qℓ)
j γ

β′(qℓ,qℓ+1,qℓ)
j = n

1/2−d
j γ

d−1/2−2(δ(q0)−δ+(qℓ0 ))

j .

Note that in this case νc in Definition 4.1 takes value

νc = 1 +
4(δ(q0)− δ+(qℓ0))

1− 2d
.

Thus Condition (36) implies (107) and the proof is finished.

8.5. Proof of Theorem 6.2. The fact that the test δs is consistent follows directly from the
consistency statement in Theorem 6.1 and the fact that (uN ) is diverging.

To show that the test δs has asymptotic confidence level α, it suffices to show that when
d0 = d∗0 (null hypothesis), we have

uN (d̂0 − d0)
(L)→ U . (108)

We first observe that under the conditions on j = (jN ) of the theorem, the convergence (57)

involving d̃0 holds, see Clausel et al. (2014).
The computations of Section 5 in Clausel et al. (2014) allows us to specify (56) as

d̂0 − d0 = L(2−2d0jSnj ,j) + oP

(
2−2d0jSnj ,j

)
+O(2−ζj) ,

where L is the linear form

L(z1, · · · , zp) =
p∑

i=1

wi2
−2d0izi ,

where the weights (wi) have been defined in Section 6.1. The same linearization holds for

d̃0 − d0 with Snj ,j replaced by S
(q0,q0,q0−1)
nj ,j

, so by subtracting, we get

d̂0−d0 = d̃0−d0+2−2d0j
[
OP

(∣∣∣Snj ,j − S
(q0,q0,q0−1)
nj ,j

∣∣∣
)
+ oP

(∣∣∣S(q0,q0,q0−1)
nj ,j

∣∣∣
)]

+O(2−ζj) . (109)

Using (60), which corresponds to (36) under H0, we can apply Theorem 7.2 so that

Snj ,j − S
(q0,q0,q0−1)
nj ,j

= oP

(∥∥∥S(q0,q0,q0−1)
nj ,j

∥∥∥
2

)
.

With (109), we get

d̂0 − d0 = d̃0 − d0 + oP

(
2−2d0j

∥∥∥S(q0,q0,q0−1)
nj ,j

∥∥∥
2

)
+O(2−ζj) .

Since uN (d̃0−d0) converges in distribution, it remains to check that uN

∥∥∥S(q0,q0,q0−1)
nj ,j

∥∥∥
2
= O(1)

and uN2−ζj = o(1). By the definition of uN in (57) and since γj = 2j , d0 = K + δ(q0) and
δ(1) = d, the asymptotic equivalences (82) and (83) in Proposition 7.4 can be written as

‖S(q0,q0,q0−1)
nj ,j

‖2 ∼ C u−1
N 22d0j .

The bound un

∥∥∥S(q0,q0,q0−1)
nj ,j

∥∥∥
2
= O(1) follows under H0. Finally the bound uN2−ζj = o(1)

follows from the bias negligibility condition (61). Hence we get (108), which concludes the
proof.
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9. Technical lemmas

The next lemma give an explicit expression of the spectral density of Hq(X) for q <
1/(1 − 2d) and is a refined version of Lemma 4.1 in Clausel et al. (2012). It is used in the
proof of Theorem 2.1.

Lemma 9.1. Let q be a positive integer greater than 2. The spectral density of {Hq(Xℓ)}ℓ∈Z
is

fHq := q!(f ⋆ · · · ⋆ f) , (110)

where f denotes the spectral density of X = {Xℓ}ℓ∈Z. Moreover if in addition q < 1/(1− 2d)
the function f∗Hq

in

fHq(λ) = |1− e−iλ|−2δ(q)f∗Hq
(λ) . (111)

is bounded on λ ∈ (−π, π) and for any ζ ∈ (0, 2δ(q)) such that ζ ≤ β, where β has been
defined in (2), one has

|f∗Hq
(λ)− f∗Hq

(0)| ≤ L|λ|ζ , (112)

for some L > 0.

Proof. The explicit expression (110) of fHq has already been given in Lemma 4.1 in Clausel et al.
(2012). Moreover in the same lemma, we also already showed that f∗Hq

defined by (111) is a

bounded function. We then only need to prove that (112) holds for some L > 0. We prove
the result by induction on q.

Assume first that q = 2. By assumption on f∗ and definition of β, we know that for some
C > 0 and any ζ ≤ β

|f∗(λ)− f∗(0)| ≤ C|λ|ζ . (113)

Since fH2
= 2f ∗ f , we then apply the second part of Lemma 8.2 of Clausel et al. (2012),

with β1 = β2 = 2d, g∗1 = g∗2 = f∗ (using the notations of that lemma). We see that
Condition (66) of Lemma 8.2 of Clausel et al. (2012) is satisfied provided that ζ ≤ β and
ζ < β1 + β2 − 1 = 2d+ 2d− 1 = 2δ(2) (which are necessary conditions of the lemma). Hence
for some L > 0, one has

|f∗H2
(λ)− f∗H2

(0)| ≤ L|λ|ζ .
If we now assume that q > 2, we can also apply the second part of Lemma 8.2 of Clausel et al.

(2012), with β1 = 2δ(q − 1), β2 = 2d, g∗1 = f∗Hq−1
and g∗2 = f∗ which allows us to proceed by

induction. �

Lemmas 9.2 to 9.4 are used in the proof of Theorem 7.2.

Lemma 9.2. Let δ+ be the exponent defined in (12). One has

sup
{
δ+(q) + δ+(q′) : 1 ≤ q ≤ q′, (q, q′) 6= (1, 1)

}
< 2d . (114)

Proof. For any (q, q′) in the considered set, one has q ≥ 1 and q′ ≥ 2. Since δ+ is non-
increasing, we get δ+(q) + δ+(q′) ≤ δ+(1) + δ+(2) = d + (2d − 1/2)+ < 2d since d < 1/2.
Lemma 9.2 follows. �

Lemma 9.3. Let α(q, q′, p) and β′(q, q′, p) be the exponents defined in (72) and (74) respec-
tively, for 0 ≤ p ≤ q ≤ q′. Then the following facts hold :

(i) α(q, q′, p) is non-decreasing as q or q′ increases and is non-increasing as p increases.
(ii) β′(q, q′, p) is non-increasing as q or q′ increases.
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(iii) On the set {(q, q′, p) : 0 ≤ p ≤ q ≤ q′, α(q, q′, p) < 1/2}, β′(q, q′, p) is non-decreasing
as p increases.

Proof. The facts (i) and (ii) directly follow by observing that δ+ is a non-increasing function.
Now suppose that α(q, q′, p) < 1/2. It follows that p 6= 0 and δ+(q−p) > 0 and δ+(q

′−p) > 0
since otherwise δ+(q− p) + δ+(q

′ − p) ≤ 1/2 which implies α(q, q′, p) = 1/2 in the case p 6= 0.
Now, when δ+(q − p) > 0 and δ+(q

′ − p) > 0, we have in the definition of β′ that

β′(q, q′, p) =

{
max(δ(q − p) + δ(q′ − p)− 1,−1/2) if δ+(p) = 0

max(δ(q) + δ(q′),−1/2) if δ+(p) > 0.

The second line comes from the fact that 2δ(p) + δ(q − p) + δ(q′ − p)− 1 = δ(q) + δ(q′). Now
it is clear that β′(q, q′, p) is non-decreasing as p increases. �

Lemma 9.4. Let α(q, q′, p) be the exponent defined in (72) for 0 ≤ p ≤ q ≤ q′. Then we have
α(q, q′, p) ∈ (0, 1/2] and the three following assertions hold :

(i) For any q ≥ 1, α(q, q + 1, q) = 1/2− d < 1/2.
(ii) If d ≤ 1/4, then for all 1 ≤ q ≤ q′ and 0 ≤ p ≤ min(q, q′ − 1) such that q′ 6= q + 1, we

have α(q, q′, p) = 1/2.
(iii) If d > 1/4, then for all q ≥ 2, α(q, q, q − 1) = 1− 2d < 1/2.

Proof. Assertion (i) follows by applying (72), since δ+(0) = 1/2 and δ+(1) = d.
Suppose that d ≤ 1/4. If p = 0, α(q, q′, p) = 1/2 for any q, q′ by (72). Let now p ≥ 1. Let

(q, q′) be such that 1 ≤ q ≤ q′, 0 ≤ p ≤ min(q, q′−1) and q′ 6= q+1. Then either q = q′ ≥ p+1
(first case) or q′ ≥ q + 2 and q ≥ p (second case). Then by Lemma 9.3((i)), we have in the
first case

α(q, q, p) ≥ α(p + 1, p+ 1, p) = min(1− 2d, 1/2) = 1/2 ,

since d ≤ 1/4. In the second case, Lemma 9.3 (i) implies

α(q, q′, p) ≥ α(p, p + 2, p) = min(1/2 − δ+(2), 1/2) = 1/2 ,

since d ≤ 1/4 implies δ+(2) = 0. This proves Assertion (ii).
To obtain Assertion (iii), we remark that

α(q, q, q − 1) = min(1− 2d, 1/2) = 1− 2d < 1/2 ,

since d > 1/4. �

Lemma 9.5. Consider a sequence {qℓ, ℓ ∈ L} with L a set of consecutive integers starting at
0. Let νc(d) be as in Definition 4.1 for all d ∈ (1/2(1 − 1/q0), 1/2), so that (16) holds. Then
the following assertions hold :

(i) If q0 = 1, νc(d) is non-increasing as d increases.
(ii) If q0 ≥ 2, νc(d) is non-decreasing as d increases.

Proof. We first consider the case q0 ≥ 2. In this case, either I0 = ∅ and νc(d) = ∞, or I0 6= ∅
and νc is a continuous function taking values

νc(d) =

{
1 +

4(δ(q0)−δ(qℓ0 ))

1−2d = 1 + 2(qℓ0 − q0) if δ(qℓ0) > 0,

1 + 4δ(q0)
1−2d = 1− 2q0 + 2/(1 − 2d) otherwise.

Hence we obtain (ii).
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We now consider the case q0 = 1. In this case, with the convention a/0 = ∞ for a > 0 the
following formula can be applied in all cases :

νc(d) = min

(
1− 2δ+(q1 − 1)

δ+(2)
,
2d+ 1/2 − 2δ+(qℓr)− δ(r + 1)

δ(r + 1)
: r ∈ R

)

This comes from the fact that if d ≤ 1/4, we have δ+(2) = 0 and R ⊂ {0} with equality if
and only if I0 6= ∅. Let us denote

R̃ = {1 + qℓ+1 − qℓ : ℓ ∈ L} ,
so that R = R̃ ∩ {r : δ(r + 1) > 0}. Since 2d+ 1/2− 2δ+(qℓr)− δ(r + 1) = 2(d− δ+(qℓr)) +
(1/2 − δ(r + 1)) > 0 we get using the same convention as above that

νc(d) = min

(
1− 2δ+(q1 − 1)

δ+(2)
,
2d+ 1/2 − 2δ+(qℓr)− δ(r + 1)

δ+(r + 1)
: r ∈ R̃

)
,

where now the set R̃ does not depend on d. To prove (i), we thus only need to show the
following two assertions (setting q = q1 − 1 and then p = r + 1 and q = qℓr).

(a) For any given positive integer q, (1 − 2δ+(q))/δ+(2) is non-increasing as d increases,
(b) For any given positive integers p and q, µ(d) := (2d + 1/2 − 2δ+(q) − δ(p))/δ+(p) is

non-increasing as d increases.

Assertion (a) follows from the fact that δ(q) is increasing with d for any given q ≥ 1. Finally,
we need to prove Assertion (b). Take some integers p, q ≥ 1 and denote µ(d) as in (b). If
δ+(p) = 0, which is equivalent to d ≤ 1/2(1 − 1/p), µ(d) = ∞. Now µ(d) is continuous over
d > 1/2(1 − 1/p) and takes value

µ(d) = min

(
1/2 + 2d

dp + (p− 1)/2
,
1/2 + (q − 1)(1 − 2d)

dp+ (p − 1)/2

)
.

Since the two arguments in the min are decreasing functions of d over d > 1/2(1 − 1/p), we
conclude that (b) holds. The proof of the lemma is achieved. �

Appendix A. Integral representations

It is convenient to use an integral representation in the spectral domain to represent the
random processes (see for example Major (1981); Nualart (2006)). The stationary Gaussian
process {Xk, k ∈ Z} with spectral density (3) can be written as

Xℓ =

∫ π

−π
eiλℓf1/2(λ)dŴ (λ) =

∫ π

−π

eiλℓf∗1/2(λ)

|1− e−iλ|d dŴ (λ), ℓ ∈ N . (115)

This is a special case of

Î(g) =

∫

R

g(x)dŴ (x), (116)

where Ŵ (·) is a complex–valued Gaussian random measure satisfying, for any Borel sets A

and B in R, E(Ŵ (A)) = 0, E(Ŵ (A)Ŵ (B)) = |A ∩B| and

Ŵ (A) = Ŵ (−A) .
The integral (116) is defined for any function g ∈ L2(R) and one has the isometry

E(|Î(g)|2) =
∫

R

|g(x)|2dx .
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The integral Î(g), moreover, is real–valued if

g(x) = g(−x) .
We shall also consider multiple Itô–Wiener integrals

Îq(g) =

∫ ′′

Rq

g(λ1, · · · , λq)dŴ (λ1) · · · dŴ (λq)

where the double prime indicates that one does not integrate on hyperdiagonals λi = ±λj, i 6=
j. The integrals Îq(g) are handy because we will be able to expand our non–linear functions
G(Xk) introduced in Section 1 in multiple integrals of this type.

These multiples integrals are defined for g ∈ L2(Rq,C), the space of complex valued func-
tions defined on R

q satisfying

g(−x1, · · · ,−xq) = g(x1, · · · , xq) for (x1, · · · , xq) ∈ R
q , (117)

‖g‖2L2 :=

∫

Rq

|g(x1, · · · , xq)|2 dx1 · · · dxq <∞ . (118)

Hermite polynomials are related to multiple integrals as follows : if X =
∫
R
g(x)dŴ (x) with

E(X2) =
∫
R
|g(x)|2dx = 1 and g(x) = g(−x) so that X has unit variance and is real–valued,

then

Hq(X) = Îq(g
⊗q) =

∫ ′′

Rq

g(x1) · · · g(xq)dŴ (x1) · · · dŴ (xq) . (119)

Appendix B. The wavelet filters

The sequence {Yt}t∈Z can be formally expressed as

Yt = ∆−KG(Xt), t ∈ Z .

The study of the asymptotic behavior of the scalogram of {Yt}t∈Z at different scales involve
multidimensional wavelets coefficients of {G(Xt)}t∈Z and of {Yt}t∈Z. To obtain them, one
applies a multidimensional linear filter hj(τ), τ ∈ Z = (hj,ℓ(τ)), at each scale index j ≥ 0. We
shall characterize below the multidimensional filters hj(τ) by their discrete Fourier transform :

ĥj(λ) =
∑

τ∈Z

hj(τ)e
−iλτ , λ ∈ [−π, π] , hj(τ) =

1

2π

∫ π

−π
ĥj(λ)e

iλτdλ, τ ∈ Z . (120)

The resulting wavelet coefficients Wj,k, where j is the scale index and k the location are
defined as

Wj,k =
∑

t∈Z

hj(γjk − t)Yt =
∑

t∈Z

hj(γjk − t)∆−KG(Xt), j ≥ 0, k ∈ Z, (121)

where γj ↑ ∞ as j ↑ ∞ is a sequence of non–negative scale factors applied at scale index j,
for example γj = 2j. We do not assume that the wavelet coefficients are orthogonal nor that
they are generated by a multiresolution analysis. Our assumption on the filters hj = (hj,ℓ)
are as follows :

(W-1) Finite support: For each ℓ and j, {hj,ℓ(τ)}τ∈Z has finite support. Further there exists
some A > 0 such that for any j and any ℓ one has

supp(hj,ℓ) ⊂ γj[−A,A] . (122)
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(W-2) Uniform smoothness: There exists M ≥ K, α > 1 and C > 0 such that for all j ≥ 0
and λ ∈ [−π, π],

|ĥj(λ)| ≤
Cγ

1/2
j |γjλ|M

(1 + γj |λ|)α+M
. (123)

By 2π-periodicity of ĥj this inequality can be extended to λ ∈ R as

|ĥj(λ)| ≤ C
γ
1/2
j |γj{λ}|M

(1 + γj|{λ}|)α+M
. (124)

where {λ} denotes the element of (−π, π] such that λ− {λ} ∈ 2πZ.
(W-3) Asymptotic behavior: There exists a sequence of phase functions Φj : R → (−π, π]

and some non identically zero function ĥ∞ such that

lim
j→+∞

(γ
−1/2
j ĥj(γ

−1
j λ)) = ĥ∞(λ) , (125)

locally uniformly on λ ∈ R.

In (W-3) locally uniformly means that for all compact K ⊂ R,

sup
λ∈K

∣∣∣γ−1/2
j ĥj(γ

−1
j λ)eiΦj(λ) − ĥ∞(λ)

∣∣∣→ 0 .

It implies in particular that ĥ∞ is continuous over R.
A more convenient way to express the wavelet coefficients Wj,k than in (121) is to incor-

porate the linear filter ∆−K into the filter hj and denote the resulting filter h
(K)
j . Then

Wj,k =
∑

t∈Z

h
(K)
j (γjk − t)G(Xt) , (126)

where

ĥ
(K)
j (λ) = (1− e−iλ)−K ĥj(λ) (127)

is the discrete Fourier transform of h
(K)
j , see Clausel et al. (2013) for more details.

Appendix C. The multiscale wavelet inference setting

We state here two theorems that are used in Section 6 to derive statistical properties
of the estimator of the memory parameter d0. This parameter is obtained from univariate
multiscale wavelet filters gj . Since, Theorem 3.2 applies to multivariate filters hj which define
the multivariate scalogram Sn,j, we explain in this appendix the connection between these
two perspectives.

We first give some details about the definition of the estimator of the memory parameter.
We use dyadic scales here, as in the standard wavelet analysis described in Moulines et al.
(2007), where the univariate wavelet coefficients are defined as

Wj,k =
∑

t∈Z

gj(2
jk − t)Yt , (128)

which corresponds to (20) with γj = 2j and with (gj) denoting a sequence of filters that
satisfies (W-1)–(W-3) with m = 1. In the case of a multiresolution analysis, gj can be
deduced from the associated mirror filters.
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The number nj of wavelet coefficients available at scale j, is related both to the number
N of observations Y1, · · · , YN of the time series Y and to the length T of the support of the
wavelet ψ. More precisely, one has

nj = [2−j(N − T + 1)− T + 1] = 2−jN + 0(1) , (129)

where [x] denotes the integer part of x for any real x. Details about the above facts can be
found in Moulines et al. (2007); Roueff and Taqqu (2009a).

The univariate scalogram is an empirical measure of the distribution of “energy of the
signal” along scales, based on the N observations Y1, · · · , YN . It is defined as

σ̂2j =
1

nj

nj−1∑

k=0

W 2
j,k, j ≥ 0 , (130)

and is identical to Snj ,j defined in (21). The wavelet spectrum is defined as

σ2j = E[σ̂2j ] = E[W 2
j,k] for all k , (131)

where the last equality holds for M ≥ K since in this case {Wj,k, k ∈ Z} is weakly stationary.
To define our wavelet estimator of the memory parameter d0, we are given some positive

weights w0, · · · , wp such that
p∑

i=0

wi = 0 and

p∑

i=0

iwi =
1

2 log(2)
.

We then set

d̂0 =

p∑

i=0

wi log(σ̂j+i) . (132)

To derive statistical properties of this estimator, we apply Theorem 3.2 using a sequence
of multivariate filters (hj)j≥0 related to the family of univariate filters gj in a way indicated
below.

We first give an example and consider the case p = 1. To investigate the asymptotic prop-
erties of d̂0, we then have to study the joint behavior of Wj−u,k for u = 0, 1. Recall that j− 1
is a finer scale than j. Following the framework of Roueff and Taqqu (2009a), we consider the
multivariate coefficients Wj,k = (Wj,k, Wj−1,2k, Wj−1,2k+1), since, in addition to the wavelet
coefficients Wj,k at scale j, there are twice as many wavelet coefficients at scale j− 1, the ad-
ditional coefficients beingWj−1,2k, Wj−1,2k+1. These coefficients can be viewed in this case as
the output of a three-dimensional filter hj defined as hj(τ) = (gj(τ), gj−1(τ), gj−1(τ+2j−1)).
These three entries correspond to (u, v) below equal to (0, 0), (1, 0) and (1, 1), respectively,
in the general case below.

In the general case, each hj is defined as follows. For all, j ≥ 0, u ∈ {0, . . . , j} and
v ∈ {0, . . . , 2u − 1}, let ℓ = 2u + v and define a filter hℓ,j by

hℓ,j(t) = gj−u(t+ 2j−uv), t ∈ Z . (133)

Applying this definition and (128) with γj = 2j , we get

Wj−u,2uk+v =
∑

t∈Z

hℓ,j(2
jk − t)Yt .

These coefficients are stored in a vector Wj,k = [Wℓ,j,k]ℓ, say of length m = 2p − 1,

Wℓ,j,k =Wj−u,2uk+v, ℓ = 2u + v = 1, 2, . . . ,m , (134)
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which corresponds to the multivariate wavelet coefficient (23) with hj(t) having components
hℓ,j(t), ℓ = 1, 2, . . . ,m defined by (133). This way of proceeding allows us to express the

vector [σ̂2j−u − σ2j−u]u=0,...,p−1 as a linear function of the vector Snj ,j defined by (22), up to a

negligible term. We can then deduce, as in Section 6, the asymptotic behavior of d̂0 of the
multivariate scalogram Snj ,j using (132).

We now indicate the asymptotic behavior of the univariate multiscale scalogram in the case
G = Hq0 since it will be needed in Section 6. We state the results separately for q0 = 1 and
for q0 ≥ 2.

We first consider the case q0 = 1 :

Theorem C.1. Suppose G = Hq0 with q0 = 1 and that Assumptions A(i),(ii) in Section 2
hold. Set γj = 2j and let {(gj)j≥0, g∞} be a sequence of univariate filters satisfying (W-1)–
(W-3) with m = 1 and M ≥ d+K. Then, as j → ∞,

σ2j ∼ f∗(0)L1(ĝ∞) 22j(d+K) , (135)

where L1 has been defined in (34). Let now j = j(N) be an increasing sequence such that
j → ∞ and N2−j → ∞. Define nj, σ̂

2
j and σ2j as in (129), (130) and (131), respectively.

Then, as N → ∞, {
n
1/2
j

(
σ̂2j−u

σ2j−u

− 1

)}

u≥0

fidi−→
{
Q(d)

u

}
u≥0

, (136)

where Q(d) denotes a centered Gaussian process with covariance function

Cov(Q(d)
u , Q

(d)
u′ ) =

4π 22(d+K)|u′−u|−max(u,u′)

L1(ĝ∞)2

∫ π

−π
|D∞,u−u′(λ)|2dλ , (137)

with for all m ∈ Z and λ ∈ (−π, π),
D∞,m(λ) =

∑

ℓ∈Z

|λ+ 2πℓ|−2(d+K)em(λ+ 2πℓ)ĝ∞(λ+ 2πℓ)ĝ∞(2−m(λ+ 2πℓ)) ,

and
em(ξ) = 2−m/2[e−i2−mvξ , v = 0, · · · , 2m − 1]T .

Proof. We first observe that the proof of formula (4.5) in Theorem 4.1 of Clausel et al. (2014)
remains valid in the case q0 = 1. This yields (135).

We now prove the convergence (136). To do so we adapt the corresponding proof of Theo-
rem 4.1 of Clausel et al. (2014) done for q0 ≥ 2. From Clausel et al. (2014) (see equality (9.5)),
we have

σ̂2j−u − σ2j−u =
nj
nj−u

2u−1∑

v=0

Snj ,j(2
u + v) +OP (σ

2
j−u/nj−u), u = 0, . . . , p− 1 ,

where we denoted the entries of the multivariate scalogram Snj ,j in (22) as [Snj ,j(ℓ)]ℓ=1,...,m.
In addition, we also proved in Section 9 of Clausel et al. (2014) that the multivariate filters
hj(t) involved in the definition of the multivariate wavelet coefficients, defined by (133), satisfy
the assumptions of Theorem 3.2 of Clausel et al. (2014). We can then apply Theorem 3.2 (a)
of Clausel et al. (2014) which provides the asymptotic behavior of the multivariate scalogram

Snj ,j. Using the equality (9.6) of Clausel et al. (2014) relating ĥℓ,∞ and ĝ∞ as,

ĥℓ,∞(λ) = 2−u/2ĝ∞(2−uλ)ei2
−uvλ ,
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we then deduce that as j → ∞,
{
n
1/2
j 2−2(j−u)(d+K)Snj ,j(2

u + v)
}
u,v

(L)−→ N (0, Γ̃) ,

where (we denote λp = λ+ 2pπ),

Γ̃(u,v),(u′,v′) = 22(u+u′)(d+K)Γ2u+v,2u′+v

= 4π(f∗(0))2 22(u+u′)(d+K− 1

2
)

∫ π

−π

∣∣∣∣∣∣
∑

p∈Z

|λp|−2(K+d)ĝ∞(2−uλp)ĝ∞(2−u′

λp)e
i(2−uv−2−u′v′)λp

∣∣∣∣∣∣

2

dλ ,

and (u, v) (resp (u′, v′)) take values u = 0, . . . , p−1 (resp u′ = 0, . . . , p−1) and v = 0, . . . , 2u−1

(resp v′ = 0, . . . , 2u
′ − 1). We showed in Clausel et al. (2014), Relation (9.4), that as j → ∞,

nj/nj−u ∼ 2−u. Using also (135), which implies that σ2j−u ∼ f∗(0)L1(ĝ∞) 22(j−u)(d+K) as

j → ∞, and following the proof of Theorem 4.1 of Clausel et al. (2014), we get
{
n
1/2
j

1

σ2j−u

nj
nj−u

2u−1∑

v=0

Snj ,j(2
u + v)

}

u

(L)−→ N (0,Γ) ,

with

Γu,u′ (138)

=
2−u−u′

(f∗(0))2L1(ĝ∞)2

2u−1∑

v=0

2u
′

−1∑

v′=0

Γ̃(u,v),(u′,v′)

=
22(u+u′)(d+K− 1

2
)

(f∗(0))2L1(ĝ∞)2

2u−1∑

v=0

2u
′

−1∑

v′=0

Γ2u+v,2u′+v

=
4π22(u+u′)(d+K−1)

L1(ĝ∞)2

∫ π

−π

2u−1∑

v=0

2u
′

−1∑

v′=0

∣∣∣∣∣∣
∑

p∈Z

ĝ∞(2−uλp)ĝ∞(2−u′

λp)e
i(2−uv−2−u′v′)λp

|λp|2(K+d)

∣∣∣∣∣∣

2

dλ , (139)

and where u, u′ = 0, . . . , p − 1. Thereafter, we follow the same lines that in the proof
of (Roueff and Taqqu, 2009a, Theorem 2). Assume for example that u′ ≥ u. We have to
estimate

2u−1∑

v=0

2u
′

−1∑

v′=0

∣∣∣∣∣∣
∑

p∈Z

|λp|−2(K+d)ĝ∞(2−uλp)ĝ∞(2−u′λp)e
i(2−uv−2−u′v′)λp

∣∣∣∣∣∣

2

,

which reads
2u

′

−1∑
v′=0

Gu,u′,v′(λ) with

Gu,u′,v′(λ) =
2u−1∑

v=0

∣∣∣∣∣∣
∑

p∈Z

ei(2
−uv−2−u′v′)λpgu,u′(2−uλp)

∣∣∣∣∣∣

2

where gu,u′(ξ) = |2uξ|−2(K+d)ĝ∞(ξ)ĝ∞(2u−u′ξ). We now observe that Gu,u′,v′ is a 2π–periodic

function and write p = 2uq+ r with r ∈ {0, · · · , 2u−1}. Hence (λp = λr+2uq×2π and e2iπv,



REDUCTION PRINCIPLE 35

if v is integer),

Gu,u′,v′(λ) =
2u−1∑

v=0

∣∣∣∣∣∣

2u−1∑

r=0

ei(2
−uv−2−u′v′)λr

∑

q∈Z

e−i2u−u′v′2πqgu,u′(2−uλr + 2πq)

∣∣∣∣∣∣

2

=

2u−1∑

v=0

∣∣∣∣∣
2u−1∑

r=0

ei2
−uvλrhu,u′,v′(2

−uλr)

∣∣∣∣∣

2

,

with

hu,u′,v′(ξ) =
∑

q∈Z

e−i2u−u′v′(2πq+ξ)gu,u′(ξ + 2πq) .

Hence

Gu,u′,v′(λ) =
2u−1∑

v=0

2u−1∑

r=0

2u−1∑

r′=0

ei2
−uv2π(r−r′)hu,u′,v′(2

−uλr)hu,u′,v′(2−uλr′) .

Observe that if r 6= r′

2u−1∑

v=0

ei2
−uv2π(r−r′) = 0 ,

whereas in the case r = r′ this sum equals 2u. Hence

Gu,u′,v′(λ) = 2u
2u−1∑

r=0

|hu,u′,v′(2
−uλr)|2 .

As in the proof of (Roueff and Taqqu, 2009a, Theorem 2), we apply Lemma 1 of Roueff and Taqqu
(2009b) with g = |hu,u′,v′ |2, γ = 2u and get

∫ π

−π
Gu,u′,v′(λ)dλ = 2u

∫ π

−π

(
2u−1∑

r=0

|hu,u′,v′(2
−uλr)|2

)
dλ = 22u

∫ π

−π
|hu,u′,v′(λ)|2dλ .

We then deduce that

2u
′

−1∑

v′=0

∫ π

−π
Gu,u′,v′(λ)dλ = 22u

∫ π

−π




2u
′

−1∑

v′=0

|hu,u′,v′(λ)|2

 dλ .

Using (138), the definition of Gu,u′,v′ and the last display, we deduce that

Γu,u′

=
4π22(u+u′)(d+K−1)

L1(ĝ∞)2


22u

∫ π

−π

2u
′

−1∑

v′=0

|hu,u′,v′(λ)|2



=
4π22(u+u′)(d+K−1)

L1(ĝ∞)2
× 22u2−4u(d+K)

2u
′

−1∑

v′=0

∫ π

−π

∣∣∣∣∣∣
∑

q∈Z

|λq|−2(d+K)e−i2u−u′v′λq ĝ∞(λq)ĝ∞(2−(u−u′)λq)

∣∣∣∣∣∣

2

dλ

=
4π22(u

′−u)(d+K)−2u′

L1(ĝ∞)2

2u
′

−1∑

v′=0

∫ π

−π

∣∣∣∣∣∣
∑

q∈Z

|λq|−2(d+K)e−i2u−u′v′λq ĝ∞(λq)ĝ∞(2−(u−u′)λq)

∣∣∣∣∣∣

2

dλ .
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For v′ ∈ {0, · · · , 2u′ − 1}, we write v′ = v + k2u
′−u with v ∈ {0, · · · , 2u′−u − 1} and k ∈

{0, · · · , 2u − 1} and transform the sum in v′ into a sum over v and k. We obtain

Γu,u′ =
4π22(u

′−u)(d+K)−2u′

L1(ĝ∞)2

2u
′
−u−1∑

v=0

2u−1∑

k=0

∫ π

−π

∣∣∣∣∣∣
∑

q∈Z

|λq|−2(d+K)e−i2u−u′(v+k2u
′
−u)λq ĝ∞(λq)ĝ∞(2−(u−u′)λq)

∣∣∣∣∣∣

2

dλ .

Since e−i2u−u′v′λq = e−i2u−u′vλqe−ikλ and
∑2u−1

k=0 |e−ikλ|2 = 2u, one has

Γu,u′ =
4π22(u

′−u)(d+K)−u′

2u−u′

L1(ĝ∞)2

2u
′
−u−1∑

v=0

∫ π

−π

∣∣∣∣∣∣
∑

q∈Z

|λq|−2(d+K)e−i2u−u′vλq ĝ∞(λq)ĝ∞(2−(u−u′)λq)

∣∣∣∣∣∣

2

dλ .

Define now for any m ∈ Z, the vector

em(ξ) = 2−m/2[ei2
−mvξ , v = 0, · · · , 2m − 1]T .

We then recover (137) which concludes the proof. �

The case q0 ≥ 2 has been considered in (Clausel et al., 2014, Theorem 4.1). We recall it
here.

Theorem C.2. Suppose G = Hq0, q0 ≥ 2 and that Assumptions A(i),(ii) hold with q0 ≥ 2.
Set γj = 2j and let {(gj)j≥0, g∞} be a sequence of univariate filters satisfying (W-1)–(W-3)
with m = 1 and M ≥ δ(q0) +K. Then, as j → ∞,

σ2j ∼ q0! (f
∗(0))q0 Lq0(ĝ∞) 22j(δ(q0)+K) , (140)

where Lp has been defined in (34) for any p ≥ 1. Let now j = j(N) be an increasing sequence
such that j → ∞ and N2−j → ∞. Define nj , σ̂

2
j and σ2j as in (129), (130) and (131),

respectively. Then, as N → ∞,
{
n1−2d
j

(
σ̂2j−u

σ2j−u

− 1

)}

u≥0

fidi−→
{
2(2d−1)u Lq0−1(ĝ∞)

q0!Lq0(ĝ∞)
Zd(1)

}

u≥0

. (141)
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Faÿ, G., Moulines, E., Roueff, F., and Taqqu, M. S. (2008). Estimators of long-memory:
Fourier versus Wavelets. The Journal of Econometrics. To appear.

Flandrin, P. (1989a). On the spectrum of fractional Brownian motions. IEEE Transactions
on Information Theory, IT-35(1):197–199.

Flandrin, P. (1989b). Some aspects of nonstationary signal processing with emphasis on time-
frequency and time-scale methods. In Combes, J., Grossman, A., and Tchamitchian, P.,
editors, Wavelets, pages 68–98. Springer-Verlag.

Flandrin, P. (1991). Fractional Brownian motion and wavelets. In Farge, M., Hung, J.,
and Vassilicos, J., editors, Fractals and Fourier Transforms-New Developments and New
Applications. Oxford University Press.

Flandrin, P. (1992). Wavelet analysis and synthesis of fractional Brownian motion. IEEE
Trans. Inform. Theory, 38(2, part 2):910–917.

Flandrin, P. (1999). Time-Frequency/Time-scale Analysis. Academic Press, 1st edition.
Fox, R. and Taqqu, M. S. (1986). Large-sample properties of parameter estimates for strongly

dependent stationary Gaussian time series. Ann. Statist., 14(2):517–532.
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