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Abstract

We study the language-theoretical aspects of parameterized communicating automata (PCAs),

in which processes communicate via rendez-vous. A given PCA can be run on any topology of

bounded degree such as pipelines, rings, ranked trees, bus topologies, and grids. We show that,

under a context bound, which restricts the local behavior of each process, PCAs are effectively

complementable. Complementability is considered a key aspect of robust automata models and

can, in particular, be exploited for verification. In this paper, we use it to obtain a characterization

of context-bounded PCAs in terms of monadic second-order (MSO) logic. As the emptiness

problem for context-bounded PCAs is decidable for the classes of pipelines, rings, and trees,

their model-checking problem wrt. MSO properties also becomes decidable. While previous work

on model checking parameterized systems typically uses temporal logics without next operator,

our MSO logic allows one to express several natural next modalities.

1 Introduction

The “regularity” of an automata model is intrinsically tied to characterizations in algebraic

or logical formalisms, and to related properties such as closure under complementation and

decidability of the emptiness problem. Most notably, the robustness of finite automata is

witnessed by the Büchi-Elgot-Trakhtenbrot theorem, stating their expressive equivalence

to monadic second-order (MSO) logic. In the past few years, this fundamental result has

been extended to models of concurrent systems such as communicating finite-state machines

(see [10] for an overview) and multi-pushdown automata (e.g., [11, 12]). Hereby, the system

topology, which provides a set of processes and links between them, is usually supposed to be

static and fixed in advance. However, in areas such as mobile computing or ad-hoc networks,

it is more appropriate to design a program, and guarantee its correctness, independently of

the underlying topology, so that the latter becomes a parameter of the system.

There has been a large body of literature on parameterized concurrent systems [1,2,6,8,9],

with a focus on verification: Does the given system satisfy a specification independently of

the number of processes? A variety of different models have been introduced, covering a

wide range of communication paradigms such as broadcasting, rendez-vous, token-passing,

etc. So far, however, it is fair to say that there is no such thing as a canonical or “robust”

model of parameterized concurrent systems.

Parameterized Communicating Automata. This paper tries to take a step forward towards

such a model. It is in line with a study of a language theory of parameterized concurrent

systems that has been initiated in [3,4]. We resume the model of parameterized communicating

automata (PCAs), a conservative extension of classical communicating finite-state machines

[5]. While the latter run a fixed set of processes, a PCA can be run on any topology of

bounded degree, such as pipelines, rings, ranked trees, bus topologies, or grids. A topology is



a graph, whose nodes represent processes that are connected via interfaces. Every process will

run a local automaton executing send and receive actions, which allows it to communicate

with an adjacent process in a rendez-vous fashion. As we are interested in language-theoretical

properties, we associate, with a given PCA, the set of all possible executions. An execution

includes the underlying topology, the events that each process executes, and the causal

dependencies that exist between events. This language-theoretic view is different from

most previous approaches to parameterized concurrent systems, which rather consider the

transition system of reachable configurations. Yet, it will finally allow us to study such

important concepts like complementation and monadic second-order (MSO) logic. Note

that logical characterizations of PCAs have been obtained in [3]. However, those logics use

negation in a restricted way, since PCAs are in general not complementable. This asks

for restrictions of PCAs that give rise to a robust automata model. In this paper, we will

therefore impose a bound on the number of contexts that each process traverses.

Context Bounds. The efficiency of distributed algorithms and protocols is usually measured

in terms of two parameters: the number n of processes, and the number k of contexts. Here,

a context, sometimes referred to as round, restricts communication of a process to patterns

such as “send a message to each neighbor and receive a message from each neighbor”. In this

paper, we consider more relaxed definitions where, in every context, a process may perform

an unbounded number of actions. In an interface-context, a process can send and receive an

arbitrary number of messages to/from a fixed neighbor. A second context-type definition

allows for arbitrarily many sends to all neighbors, or receptions from a fixed neighbor.

In general, basic questions such as reachability are undecidable for PCAs, even when we

restrict to simple classes of topologies such as pipelines. To get decidability, it is therefore

natural to bound one of the aforementioned parameters, n or k. Bounding the number n of

processes is known as cut-off. However, the trade-off between n and k is often in favor of an

up to exponentially smaller k. Moreover, many distributed protocols actually restrict to a

bounded number of contexts, such as P2P protocols and certain leader-election protocols.

Therefore, bounding the parameter k seems to be an appropriate way to overcome the

theoretical limitations of formally verifying parameterized concurrent systems.

Contribution. The most basic verification question of context-bounded PCAs has been

considered in [4]: Is there a topology that allows for an accepting run of the given PCA? In

the present paper, we go beyond such nonemptiness/reachability issues and consider PCAs

as language acceptors. We will show that, under suitable context bounds, PCAs form a

robust automata model that is closed under complementation. Complementability relies on

a disambiguation construction, which is the key technical contribution of the paper.

Our complementation result has wider applications and implications. In particular, we

obtain a characterization of context-bounded PCAs in terms of a monadic second-order logic.

Together with the results from [4], this implies that context-bounded model checking of

PCAs against MSO logic is decidable for the classes of pipelines, rings, and trees. Note that

MSO logic is quite powerful and, unlike in [2, 7], we are not constrained to drop any (next)

modality. Actually, a variety of natural next modalities can be expressed in MSO logic, such

as process successor, message successor, next event on a neighboring process, etc.

Context-bounds were originally introduced for (sequential) multi-pushdown automata as

models of multi-threaded recursive programs [15]. Interestingly, determinization procedures

have been used to obtain complementability and MSO characterizations for context-bounded

multi-pushdown automata [11,12]. A pattern that we share with these approaches is that of

computing summaries in a deterministic way. Overall, however, we have to use quite different

techniques, which is due to the fact that, in our model, processes evolve asynchronously.
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Outline. In Section 2, we settle some basic notions such as topologies and message sequence

charts, which describe the behavior of a system. PCAs and their restrictions are introduced

in Section 3. Section 4 presents our main technical contribution: We show that context-

bounded PCAs are complementable. This result is exploited in Section 5 to obtain a logical

characterization of PCAs and decidability of the model-checking problem wrt. MSO logic.

We conclude in Section 6. Missing proof details can be found in the appendix.

2 Preliminaries

For n ∈ N, we set [n] := {1, . . . , n}. Let A be an alphabet and I be an index set. Given a

tuple ā = (ai)i∈I ∈ A
I and i ∈ I, we write āi to denote ai.

Topologies. We will model concurrent systems without any assumption on the number of

processes. However, we will have in mind that processes are arranged in a certain way, for

example as pipelines or rings. Once such a class and the number of processes are fixed, we

obtain a topology. Formally, a topology is a graph. Its nodes represent processes, which are

connected via interfaces. Let N = {a, b, c, . . .} be a fixed nonempty finite set of interface

names (or, simply, interfaces). When we consider pipelines or rings, then N = {a, b} where

a refers to the right neighbor and b to the left neighbor of a process, respectively. For grids,

we will need two more names, which refer to adjacent processes above and below. Ranked

trees require an interface for each of the (boundedly many) children of a process, as well as a

pointer to the father process. As N is fixed, topologies are structures of bounded degree.

◮ Definition 1. A topology over N is a pair T = (P, ) where P is the nonempty finite

set of processes and ⊆ P × N × N × P is the edge relation. We write p a b q for

(p, a, b, q) ∈ , which signifies that the a-interface of p points to q, and the b-interface of q

points to p. We require that, whenever p a b q, the following hold:

(a) p 6= q (there are no self loops),

(b) q b a p (adjacent processes are mutually connected), and

(c) for all a′, b′ ∈ N and q′ ∈ P such that p a′ b′
q′, we have a = a′ iff q = q′ (an interface

points to at most one process, and two distinct interfaces point to distinct processes).

We do not distinguish isomorphic topologies.

◮ Example 2. Example topologies are depicted in Figures 1 and 2. In Figure 2, five

processes are arranged as a ring. Formally, a ring is a topology over N = {a, b} of the form

({1, . . . , n}, ) where n ≥ 3 and = { (i, a, b, (i mod n) + 1) | i ∈ [n]} ∪ {((i mod n) +

1, b, a, i) | i ∈ [n]}. A ring is uniquely given by its number of processes. Moreover, as we do

not distinguish isomorphic topologies, it does not have an “initial” process. A pipeline is of

the form ({1, . . . , n}, ) where n ≥ 2 and = { (i, a, b, i+1) | i ∈ [n−1]}∪{(i+1, b, a, i) |

i ∈ [n− 1]}. Similarly, one can define ranked trees and grids [3]. ◭

MSO Logic over Topologies. The acceptance condition of a parameterized communicat-

ing automaton (PCA, as introduced in the next section) will be given in terms of a formula

from monadic second-order (MSO) logic, which scans the final configuration reached by a PCA:

the underlying topology together with the local final states in which the processes terminate.

If S is the finite set of such local states, the formula thus defines a set of S-labeled topologies,

i.e., structures (P, , λ) where (P, ) is a topology and λ : P → S. The logic MSOt(S) is
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Figure 2 A ring topology

given by the grammar F ::= u a b v | u = v | λ(u) = s | u ∈ U | ∃u.F | ∃U.F | ¬F | F ∨ F

where a, b ∈ N , s ∈ S, u and v are first-order variables (interpreted as processes), and U is a

second-order variable (ranging over sets of processes). Note that we assume an infinite supply

of variables. Given a sentence F ∈ MSOt(S) (i.e., a formula without free variables), we write

L(F) for the set of S-labeled topologies (P, , λ) that satisfy F . Hereby, satisfaction is

defined in the expected manner (cf. also Section 5, presenting an extended logic).

Message Sequence Charts. Recall that our primary concern is a language-theoretic view

of parameterized concurrent systems. To this aim, we associate with a system its language,

i.e., the set of those behaviors that are generated by an accepting run. One single behavior

is given by a message sequence chart (MSC). An MSC consists of a topology (over the given

set of interfaces) and a set of events, which reflect the communication actions executed by a

system. Events are located on the processes and connected by process and message edges,

which reflect causal dependencies (as we consider rendez-vous communication, a message

edge has to be interpreted as “simultaneously”).

◮ Definition 3. A message sequence chart (MSC) over N is a tuple M = (P, , E,⊳, π)

where (P, ) is a topology, E is the nonempty finite set of events, ⊳ ⊆ E ×E is the acyclic

edge relation, which is partitioned into ⊳proc and ⊳msg, and π : E → P determines the

location of an event in the topology; for p ∈ P , we let Ep := {e ∈ E | π(e) = p}. We require

that the following hold:

⊳proc is a union
⋃

p∈P ⊳p where each ⊳p ⊆ Ep × Ep is the direct-successor relation of

some total order on Ep,

there is a partition E = E! ⊎ E? such that ⊳msg ⊆ E! × E? defines a bijection from E! to

E?,

for all (e, f) ∈ ⊳msg, we have π(e) a b π(f) for some a, b ∈ N , and

in the graph (E,⊳∪⊳−1
msg), there is no cycle that uses at least one ⊳proc-edge (this ensures

rendez-vous communication).

The set of MSCs (over the fixed set N ) is denoted by MSC. Like for topologies, we

do not distinguish isomorphic MSCs. Let Σ = {a! | a ∈ N} ∪ {a? | a ∈ N}. We define a

mapping ℓM : E → Σ that associates with each event the type of action that it executes: For

(e, f) ∈ ⊳msg and a, b ∈ N such that π(e) a b π(f), we set ℓM (e) = a! and ℓM (f) = b?.

◮ Example 4. Two example MSCs are depicted in Figure 3, both having the ring with five

processes as underlying topology (for the moment, we ignore the state labels si of processes).

The events are the endpoints of message arrows, which represent ⊳msg. Process edges are

implicitly given; they connect successive events located on the same (top-down) process line.

Finally, the mapping ℓM is illustrated on a few events. ◭
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Figure 3 Two MSCs over a ring topology; local states labeling the topology in a PCA run

3 Parameterized Communicating Automata

In this section, we introduce our model of a communicating system that can be run on

arbitrary topologies of bounded degree.

The Model and Its Semantics. The idea is that each process of a given topology runs

one and the same automaton, whose transitions are labeled with an action of the form (a!,m),

which emits a message m through interface a, or (a?,m), which receives m from interface a.

◮ Definition 5. A parameterized communicating automaton (PCA) over N is a tuple

A = (S, ι,Msg,∆,F) where S is the finite set of states, ι ∈ S is the initial state, Msg is a

nonempty finite set of messages, ∆ ⊆ S × (Σ×Msg)× S, and F ∈ MSOt(S) is a sentence,

representing the acceptance condition.

Let M = (P, , E,⊳, π) be an MSC. A run of A on M will be a mapping ρ : E → S

satisfying some requirements. Intuitively, ρ(e) is the local state of π(e) after executing e. To

determine when ρ is a run, we define another mapping, ρ− : E → S, denoting the source

states of a transition: whenever f⊳proc e, we let ρ−(e) = ρ(f); moreover, if e is ⊳proc-minimal,

we let ρ−(e) = ι. With this, we say that ρ is a run of A on M if, for all (e, f) ∈ ⊳msg, there

are a, b ∈ N and a message m ∈ Msg such that π(e) a b π(f), (ρ−(e), (a!,m), ρ(e)) ∈ ∆,

and (ρ−(f), (b?,m), ρ(f)) ∈ ∆. To determine when ρ is accepting, we collect the last states

of all processes and define a mapping λ : P → S as follows. Let p ∈ P . If Ep = ∅, then

λ(p) = ι; otherwise, λ(p) is set to ρ(e) where e is the unique ⊳proc-maximal event of p. Now,

run ρ is accepting if (P, , λ) ∈ L(F). The set of MSCs that allow for an accepting run is

denoted by L(A).

While a run of a PCA is purely operational, it is actually natural to define the acceptance

condition in terms of MSOt(S), which allows for a global, declarative view of the final

configuration. Note that, when we restrict to pipelines, rings, or ranked trees, the acceptance

condition could be defined as a finite (tree, respectively) automaton over the alphabet S.

◮ Example 6. The PCA from Figure 4 describes a simplified version of the IEEE 802.5

token-ring protocol. For illustration, we consider two different acceptance conditions, F and

F ′, giving rise to PCAs Atoken and A′
token, respectively. In both cases, a single binary token,

which can carry a value from m ∈ {0, 1}, circulates in a ring. Recall that, in a ring topology,

every process has an a-neighbor and a b-neighbor (cf. Figure 2). Initially, the token has

value 1. A process that has the token may emit a message and pass it along with the token

to its a-neighbor. We will abstract the concrete message away and only consider the token

value. Whenever a process receives the token from its b-neighbor, it will forward it to its

a-neighbor, while (i) leaving the token value unchanged (the process then ends in state s2

or s3), or (ii) changing its value from 1 to 0, to signal that the message has been received

5



(the process then ends in s4). Once the process that initially launched the token receives the

token with value 0, it goes to state s1.

Note that the acceptance condition F of Atoken permits those configurations where all

processes terminate in one of the states s1, . . . , s4. MSC M1 from Figure 3 depicts an

execution of the protocol described above, and we have M1 ∈ L(Atoken). The state-labelings

of processes indicate the final local states that are reached in an accepting run. However,

one easily verifies that we also have M2 ∈ L(Atoken), though M2 should not be considered as

an execution of a token-ring protocol: there are two processes that, independently of each

other, emit a message/token and end up in s1. To model the protocol faithfully and rule

out such pathological executions, we change the acceptance condition to F ′, which adds the

requirement that exactly one process terminates in s1. We actually have M1 ∈ L(A′
token)

and M2 6∈ L(A′
token). ◭

(a!, 1)

(a!, 0)

(a!, 0)

(b?, 1)

(b?, 0)

(a!, 1)

ι

s1

s2

s3

s4

(b?, 1)

(b?, 0)

F ≡ 8u.λ(u) 2 {s1, . . . , s4}

F 0 ≡ F ^ 9=1u.λ(u) = s1

Figure 4 The PCA A′

token

Note that [3,4] used weaker acceptance conditions, which

cannot access the topology. However, Example 6 shows that

an acceptance condition given as an MSOt-formula offers

some flexibility in modeling parameterized systems. For

example, it can be used to simulate several process types [4],

the idea being that each process runs a local automaton

according to its type. All our results go through in this

extended setting. Also note that messages (such as the

token value in Example 6) could be made apparent in the

MSCs. However, we will always need some “hidden” messages,

which are common in communicating automata with fixed

topology [10] and significantly extend their expressive power.

Context-Bounded PCAs. Our main results will rely on a restricted version of PCAs,

where every process is constrained to execute a bounded number of contexts. As discussed in

the introduction, contexts come very naturally when modeling distributed protocols. Actually,

the behavior of a single process is often divided into a small, or even bounded, number of

rounds, each describing some restricted communication pattern. Usually, one considers that

a round consists of sending a message to each neighbor followed by receiving a message from

each neighbor [13]. In this paper, we consider contexts, which are somewhat more general

than rounds: In a context, one may potentially execute an unbounded number of actions.

Moreover, a round can be simulated by a bounded number of contexts. Actually, there exist

several natural definitions. A word w ∈ Σ∗ is called an

(s⊕r)-context if w ∈ {a! | a ∈ N}∗ or w ∈ {a? | a ∈ N}∗,

(s1+r1)-context if w ∈ {a! , b?}∗ for some a, b ∈ N ,

(s⊕r1)-context if w ∈ {a! | a ∈ N}∗ or w ∈ {b?}∗ for some b ∈ N ,

intf-context if w ∈ {a! , a?}∗ for some a ∈ N .

The context type s1⊕r (w ∈ {a!}∗ or w ∈ {b? | b ∈ N}∗ for some a ∈ N ) is dual to s⊕r1, and

we only consider the latter case. All results for s⊕r1 in this paper easily transfer to s1⊕r.

Let k ≥ 1 be a natural number and ct ∈ {s⊕r, s1+r1, s⊕r1, intf} be a context type. We

say that w ∈ Σ∗ is (k, ct)-bounded if there are w1, . . . , wk ∈ Σ∗ such that w = w1 · · ·wk and

wi is a ct-context, for all i ∈ [k]. To lift this definition to MSCs M = (P, , E,⊳, π), we

define the projection M |p ∈ Σ∗ of M to a process p ∈ P . Let e1 ⊳proc e2 ⊳proc . . . ⊳proc en

be the unique process-order preserving enumeration of all events of Ep. We let M |p =

ℓM (e1)ℓM (e2) . . . ℓM (en). In particular, Ep = ∅ implies M |p = ε. Now, we say that M

is (k, ct)-bounded if M |p is (k, ct)-bounded, for all p ∈ P . Let MSC(k,ct) denote the set
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of all (k, ct)-bounded MSCs. Given two sets L and L′ of MSCs, we write L ≡(k,ct) L
′ if

L ∩MSC(k,ct) = L′ ∩MSC(k,ct).

◮ Example 7. Consider the PCAs Atoken and A′
token from Figure 4. Every process executes

at most two events so that we have L(A′
token) ⊆ L(Atoken) ⊆ MSC(2,ct) for all context

types ct ∈ {s⊕r, s1+r1, s⊕r1, intf}. In particular, the MSCs M1 and M2 from Figure 3 are

(2, ct)-bounded.

4 Context-Bounded PCAs are Complementable

Let ct ∈ {s⊕r, s1+r1, s⊕r1, intf}. We say that PCAs are ct-complementable if, for every PCA

A and k ≥ 1, we can effectively construct a PCA A′ such that L(A′) ≡(k,ct) MSC \L(A). In

general, PCAs are not complementable, and this even holds under certain context bounds.

◮ Theorem 8. Suppose N = {a, b}. For all context types ct ∈ {s⊕r, s1+r1}, PCAs are not

ct-complementable.

The proof uses results from [14, 16] and can be found in the appendix. However, the

situation changes when we move to context types s⊕r1 and intf. We now present the main

result of our paper:

◮ Theorem 9. For all ct ∈ {s⊕r1, intf}, PCAs are ct-complementable.

The theorem follows directly from a disambiguation construction, which we present as

Theorem 10. We call a PCA A unambiguous if, for every MSC M , there is exactly one

run (accepting or not) of A on M . An unambiguous PCA can be easily complemented by

negating the acceptance condition.

◮ Theorem 10. Given a PCA A, a natural number k ≥ 1, and ct ∈ {s⊕r1, intf}, we can

effectively construct an unambiguous PCA A′ such that L(A) ≡(k,ct) L(A′).

The PCA from Figure 4 is not unambiguous, since there are runs of Atoken (or A′
token) on

the MSC M1 from Figure 3 ending, for example, in configurations s1s2s4s3s3 or s1s2s2s4s3.

Unfortunately, a simple power-set construction is not applicable to PCAs, due to the hidden

message contents. Note that, in the fixed-topology setting, there is a commonly accepted

notion of deterministic communicating automata [10], which is different from unambiguous.

We do not know if Theorem 10 holds for deterministic PCAs.

Proof of Theorem 10

In the remainder of this section, we prove Theorem 10. The proof outline is as follows:

We first define an intermediate model of complete deterministic asynchronous automata

(CDAAs). We will then show that any context-bounded PCA can be converted into a CDAA

(Lemma 13) which, in turn, can be converted into an unambiguous PCA (Lemma 12).

◮ Definition 11. A complete deterministic asynchronous automaton (CDAA) over the set

N is a tuple B = (S, ι, (δ(a,b))(a,b) ∈ N ×N ,F) where S, ι, and F are like in PCAs and, for

each (a, b) ∈ N ×N , we have a (total) function δ(a,b) : (S × S)→ (S × S).

The main motivation behind introducing CDAAs is that, for a given process p, the

functions (δ(a,b))(a,b) ∈ N ×N can effectively encode the transitions at each of the neighbors

of p. Similarly to PCAs, a run of B on an MSC M = (P, , E,⊳, π) is a mapping

ρ : E → S such that, for all (e, f) ∈ ⊳msg, there are a, b ∈ N satisfying π(e) a b π(f) and

7



δ(a,b)(ρ
−(e), ρ−(f)) = (ρ(e), ρ(f)). Whether a run is accepting or not depends on F and is

defined exactly like in PCAs. The set of MSCs that are accepted by B is denoted by L(B).

◮ Lemma 12. For every CDAA B, there is an unambiguous PCA A such that L(B) = L(A).

Proof. The idea is that the messages of a PCA “guess” the current state of the receiving

process. A message can only be received if the guess is correct, so that the resulting

PCA is unambiguous. Let B = (S, ι, (δ(a,b))(a,b) ∈ N ×N ,F) be the given CDAA. We let

A = (S, ι,Msg,∆,F) where Msg = N × N × S × S and ∆ contains, for every transition

δ(a,b)(s1, s2) = (s′
1, s

′
2), the tuples (s1, a!(a, b, s1, s2), s′

1) and (s2, b?(a, b, s1, s2), s′
2). Note

that A is indeed unambiguous. Let M = (P, , E,⊳, π) be an MSC and ρ : E → S. From

the run-definitions, we obtain that ρ is an (accepting) run of B on M iff it is an (accepting,

respectively) run of A on M . It follows that L(B) = L(A). ◭

Next, we will describe how an arbitrary context-bounded PCA can be transformed into

an equivalent CDAA. This construction is our key technical contribution.

◮ Lemma 13. Let ct ∈ {s⊕r1, intf}. For every PCA A and k ≥ 1, we can effectively

construct a CDAA B such that L(A) ≡(k,ct) L(B).

The remainder of this section is dedicated to the proof of Lemma 13. We do the proof

for the more involved case ct = s⊕r1 and will explain in the appendix what is different if

ct = intf. Let A = (S, ι,Msg,∆,F) be a PCA and k ≥ 1. In the following, we will construct

the required CDAA B = (S′, ι′, (δ(a,b))(a,b) ∈ N ×N ,F
′).

The idea behind our construction is that the current sending process simulates the

behavior of all its neighboring receiving processes, storing all possible combinations of global

source and target states. In Figure 5, in the beginning, p2 starts sending to p3 and p1. Hence

p2 keeps track of the local states at p1 and p3 as well. This computation spans over what

we call a zone (the gray-shaded areas in Figure 5). Whenever a sending (receiving) process

changes into a receiving (sending, respectively) process, the role of keeping track of the

behavior of neighboring processes gets passed on to the new sending process, which results

in a zone switch. We will see that a bounded number of such changes suffice (Lemma 14).

Finally, the acceptance condition F ′ checks whether the information stored at each of the

processes can be coalesced to get a global run of the given PCA A.

Zones. Let M = (P, , E,⊳, π) be an MSC. An interval of M is a (possibly empty)

subset of E of the form {e1, e2, . . . , en} such that e1 ⊳proc e2 ⊳proc . . .⊳proc en. A send context

of M is an interval that consists only of send events. A receive context of M is an interval

I ⊆ E such that there is a ∈ N satisfying ℓM (e) = a? for all e ∈ I. A set Z ⊆ E is called a

zone of M if there is a nonempty send context I such that the corresponding receive contexts

Ia = {f ∈ E | e⊳msg f for some e ∈ I such that ℓM (e) = a!} are intervals for all a ∈ N , and

Z = I ∪
⋃

a∈N Ia.

Zones help us to maintain the summary of a possibly unbounded number of messages in

a finite space. By Lemma 14, since there is a bound on the number of different zones for

each process, the behavior of a PCA can be described succinctly by describing its action on

each of the zones.

◮ Lemma 14. [cf. [4]] Let M = (P, , E,⊳, π) be a (k, s⊕r1)-bounded MSC. There is a

partitioning of the events of M into zones such that, for each process p ∈ P , the events of

Ep belong to at most K := k · (|N |2 + 2|N |+ 1) different zones.
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Figure 5 Computing zones in a CDAA B
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Figure 6 Illustration of F ′ ∈ MSOt(S
′)

A CDAA that Computes Zones. We now construct a CDAA that, when running on

a (k, s⊕r1)-bounded MSC, computes a “greedy” zone partitioning, for which the bound K

from Lemma 14 applies. We explain the intuition by means of Figure 5, which depicts an

MSC along with a partitioning of events into different zones. The crucial point for processes

is to recognize when to switch to a new zone. Towards this end, a summary of the zone

is maintained. Each process stores its zone number together with the zone number of its

neighboring receiving processes. A sending (receiving) process enters a new zone if the stored

zone number of a neighbor does not match the actual zone number of the corresponding

neighboring receiving (sending, respectively) process.

In Figure 5, the zone number of p3 in p2’s first zone is 1. However, at the time of sending

the second message from p2 to p3, the zone number of p3 is 2 which does not match the

information stored with p2. This prompts p2 to define a new zone and update the zone

number of p3.

A sending process enters a new zone when (a) it was a receiving process earlier, or (b)

the zone number of a receiving process does not match. Similarly, a receiving process enters

a new zone when (a) it was a sending process earlier, or (b) it was receiving previously from

a different process, or (c) the zone number of the sending process does not match. This is

formally defined in Equations (1) and (2) below.

We now formally describe the CDAA B. A zone state is a tuple (i, τ, κ,R) where

i ∈ {0, . . . ,K} is the current zone number, which indicates that a process traverses its

i-th zone (or, equivalently, has switched to a new zone i− 1 times),

τ ∈ 2N ∪ N denotes the role of a process in the current zone (if τ ⊆ N , it has been

sending through the interfaces in τ ; if τ ∈ N , it is receiving from τ),

κ : N → {0, . . . ,K} denotes the knowledge about each neighbor, and

R ⊆ (SN ∪{self})2 is the set of possible global steps that the zone may induce; each step

involves a source and target state for the current process as well as its neighbors. As the

sending process simulates the receivers’ steps, we let R = ∅ whenever τ ∈ N .

Let Z be the set of zone states. For (a, b) ∈ N ×N , we define a partial “update” function

δzone
(a,b) : (Z × Z) ⇀ (Z × Z) by

δzone
(a,b)((i1, τ1, κ1, R1), (i2, τ2, κ2, R2)) = ((i′1, τ

′
1, κ1[a 7→ i′2], R′

1), (i′2, b, κ2[b 7→ i′1], ∅))

where

i′1 =

{

i1 + 1 if i1 = 0 or τ1 ∈ N or (a ∈ τ1 and κ1(a) 6= i2)

i1 otherwise
(1)
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i′2 =

{

i2 + 1 if τ2 6= b or κ2(b) 6= i1

i2 otherwise
(2)

τ ′
1 =

{

{a} if i′1 = i1 + 1

τ1 ∪ {a} otherwise
R′

1 =

{

R if i′1 = i1 + 1

R1 ◦R otherwise
(3)

with R being the set of pairs (s̄, s̄′) ∈ (SN ∪{self})2 such that there is m ∈ Msg with

(s̄self , (a!,m), s̄′
self) ∈ ∆, (s̄a, (b?,m), s̄′

a) ∈ ∆, and s̄c = s̄′
c for all c ∈ N \ {a}.

The function δzone
(a,b) is illustrated in Figure 5 (omitting the R-component) for the three

different cases that can occur: (i) both processes increase their zone number; (ii) only the

receiver increases its zone number; (iii) none of the processes increases its zone number.

A state of B is a sequence of zone states, so that a process can keep track of the

zones that it traverses. Formally, we let S′ be the set of words over Z of the form

(0, ∅, κ0, ∅)(1, τ1, κ1, R1) . . . (n, τn, κn, Rn) where n ∈ {0, . . . ,K} and κ0(a) = 0 for all a ∈ N .

The initial state is ι′ = (0, ∅, κ0, ∅). Note that the size of S′ is exponential in K (and,

therefore, in k).

We are now ready to define the transition function δ(a,b) : (S′ × S′) → (S′ × S′).

Essentially, we take δzone
(a,b), but we append a new zone state when the zone number is

increased. Let z1 = (i1, τ1, κ1, R1) ∈ Z and z2 = (i2, τ2, κ2, R2) ∈ Z. Moreover, suppose

δzone
(a,b)(z1, z2) = (z′

1, z
′
2) where z′

1 = (i′1, τ
′
1, κ

′
1, R

′
1) and z′

2 = (i′2, τ
′
2, κ

′
2, R

′
2). Then, we let

δ(a,b)(w1z1 , w2z2) =















(w1z
′
1 , w2z

′
2) if i′1 = i1 and i′2 = i2

(w1z
′
1 , w2z2z

′
2) if i′1 = i1 and i′2 = i2 + 1

(w1z1z
′
1 , w2z2z

′
2) if i′1 = i1 + 1 and i′2 = i2 + 1

Note that the case i′1 = i1 + 1 ∧ i′2 = i2 can actually never happen. Nonetheless, δ(a,b) is still

a partial function. However, adding a sink state, we easily obtain a function that is complete.

The Acceptance Condition. It remains to determine the acceptance condition of B. The

formula F ′ ∈ MSOt will check whether there is a concrete choice of local states that is

consistent with the zone abstraction and, in particular, with the relations R collected during

that run in the zone states. Let T be the set of sequences of the form ιs1 . . . sn where

n ∈ {0, . . . ,K} and si ∈ S for all i. The idea is that si is the local state that a process

reaches after traversing its i-th zone. The formula will now guess such a sequence for every

process and check if this choice matches the abstract run. To verify if the local states

correspond to the relation R stored in some constituent sending process p, it is sufficient to

look at the adjacent neighbors of p.

This is illustrated in Figure 6 for the zone abstraction from Figure 5. Process p2, for

example, stores both the relations R2
1 and R2

2, and we have to check if this corresponds to

the sequences from T that the formula had guessed for every process (the white circles).

To do so, it is indeed enough to look at the neighborhood of p2, which is highlighted

in gray. The guess is accepted only if the state at the beginning of a zone matches the

state at the end of the previous zone. For example, in Figure 6, the formula collects the

pair of tuples ((ι, ι, ι), (s1
1, s

2
1, s

3
1)) and verifies if it is contained in R2

1. Also, it collects the

pair ((s1
1, s

2
1, s

3
2), (s1

2, s
2
2, s

3
3)) and checks if it is contained in R2

2. Similarly, looking at the

neighborhood of p3, it verifies whether ((s2
1, s

3
1, ι), (s

2
1, s

3
2, s

4
1)) ∈ R3

2.

Let us be more precise. Suppose the final configuration reached by B is (P, , λ′) with

λ′ : P → S′. By means of second-order variables Ut, with t ranging over T , the formula
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F ′ guesses an assignment σ : P → T . It will then check that, for all p ∈ P with, say,

λ′(p) = ι′(1, τ1, κ1, R1) . . . (np, τnp
, κnp

, Rnp
) ∈ S′, the following hold:

the sequence σ(p) is of the form s0s1 . . . snp
(in the following, we let σ(p)i refer to si),

for all i ∈ [np] with τi ⊆ N , there is (s̄, s̄′) ∈ Ri such that (i) s̄self = si−1 and s̄′
self = si,

and (ii) for all p a b q, we have s̄a = σ(q)κi(a)−1 and s̄′
a = σ(q)κi(a) if a ∈ τi, and

s̄a = s̄′
a = σ(q)κi(a) if a /∈ τi.

These requirements can be expressed in MSOt. Finally, to incorporate the acceptance

condition F ∈ MSOt(S), we simply replace an atomic formula λ(u) = s, where s ∈ S, by the

disjunction of all formulas u ∈ Ut such that t ∈ T ends in s. This concludes the construction

of the CDAA B. The correctness proof can be found in the appendix.

5 Monadic Second-Order Logic

MSO logic over MSCs is two-sorted, as it shall reason about processes and events. By

u, v, w, . . . and U, V,W, . . ., we denote first-order and second-order variables, which range

over processes and sets of processes, respectively. Moreover, by x, y, z, . . . and X,Y, Z, . . .,

we denote variables ranging over (sets of, respectively) events. The logic MSOm is given by

the grammar ϕ ::= u a b v | u = v | u ∈ U | ∃u.ϕ | ∃U.ϕ | ¬ϕ | ϕ ∨ ϕ | x⊳proc y | x⊳msg y |

x = y | x@u | x ∈ X | ∃x.ϕ | ∃X.ϕ where a, b ∈ N .

MSOm formulas are interpreted over MSCs M = (P, , E,⊳, π). Hereby, free variables

u and x are interpreted by a function I as a process I(u) ∈ P and an event I(x) ∈ E,

respectively. Similarly, U and X are interpreted as sets. We write M, I |= u a b v if

I(u) a b I(v) and M, I |= x@u if π(I(x)) = I(u). Thus, x@u says that “x is located at u”.

The semantics of other formulas is as expected. When ϕ is a sentence, i.e., a formula without

free variables, then its truth value is independent of an interpretation function so that we

can simply write M |= ϕ instead of M, I |= ϕ. The set of MSCs M such that M |= ϕ is

denoted by L(ϕ).

◮ Example 15. Let us resume the token-ring protocol from Example 6. We would like

to express that there is a process that emits a message and gets an acknowledgment that

results from a sequence of forwards through interface a. We first let fwd(x, y) ≡ x a b

y ∧ ∃z.(x ⊳proc z ⊳msg y) where x a b y is a shorthand for ∃u.∃v.(x@u ∧ y@v ∧ u a b

v). It is well known that the transitive closure of the relation induced by fwd(x, y) is

definable in MSOm-logic, too. Let fwd+(x, y) be the corresponding formula. It expresses

that there is a sequence of events leading from x to y that alternatingly takes process

and message edges, hereby following the causal order. With this, the desired formula is

ϕ ≡ ∃x, y, z.(x⊳proc y ∧ x⊳msg z ∧ x
a b z ∧ fwd+(z, y)) ∈ MSOm. Consider Figures 3 and

4. We have M1 |= ϕ and M2 6|= ϕ, as well as L(A′
token) ⊆ L(ϕ). ◭

◮ Theorem 16. Let ct ∈ {s⊕r1, intf}, k ≥ 1, and L ⊆ MSC. There is a PCA A such that

L(A) ≡(k,ct) L iff there is a sentence ϕ ∈ MSOm such that L(ϕ) ≡(k,ct) L.

The direction “=⇒” follows a standard pattern and is actually independent of a context

bound. For the direction “⇐=”, we proceed by induction, crucially relying on Theorem 9.

Note that there are some subtleties in the translation, which arise from the fact that MSOm

mixes event and process variables (cf. appendix).

By the results from [4] and the fact that PCAs are closed under intersection (cf. [3]), we

obtain decidability of MSO model checking as a corollary.

◮ Theorem 17. Let T be one of the following: the class of rings, the class of pipelines, or

the class of ranked trees. The following problem is decidable, for all ct ∈ {s⊕r1, intf}:
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Input: A PCA A, a sentence ϕ ∈ MSOm, and k ≥ 1.

Question: Do we have M |= ϕ for all MSCs M = (P, , E,⊳, π) ∈ L(A) ∩MSC(k,ct)

such that (P, ) ∈ T ?

6 Conclusion

This paper constitutes a further step towards a language theory of parameterized concurrent

systems. We established that PCAs are closed under complementation when processes are

constrained to execute a bounded number of (suitable) contexts. As a consequence, we obtain

that context-bounded PCAs are expressively equivalent to MSO logic.

Note that MSO logic is a powerful logic and it may actually be used for the verification

of extended models that may, for example, involve registers to store process identities that

can be checked for equality. MSO logic allows one to trace back the origin of a process

identity so that an additional equality predicate on process identities can be reduced to an

MSO formula over a finite alphabet. This would allow us to model and verify leader-election

protocols. It will be worthwhile to explore this in future work.
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A Proof of Theorem 8

First, note that the non-complementability result from [3] does not apply to our case of

rendez-vous communication.

Our proof uses the fact that grid automata (or, graph acceptors) over grids are not

complementable [14, 16]. Grids are rectangular structures that are uniquely determined

by their height m ≥ 1 and their width n ≥ 1. Formally, a grid is a structure of the form

G = (C,→, ↓) where C = [m]× [n] is the set of coordinates, → = {((i, j), (i, j + 1)) | i ∈ [m]

and j ∈ [n − 1]} is the “go to the right”-relation, and ↓ = {((i, j), (i + 1, j)) | i ∈ [m − 1]

and j ∈ [n]} is the “go down”-relation. The type type(i, j) of a coordinate (i, j) ∈ C is

a subset of the collection D = {n, s,w, e} of directions (denoting north, south, west, and

east, respectively). We let n ∈ type(i, j) iff i ≥ 2 and w ∈ type(i, j) iff j ≥ 2. Moreover,

s ∈ type(i, j) iff i < m and e ∈ type(i, j) iff j < n. We let d(i, j) be the d-neighbor of (i, j),

which is defined in the obvious manner for all d ∈ type(i, j). By Gm,n, we denote the grid

with set of coordinates [m]× [n]. Finally, let G be the set of all grids.

A grid automaton is a pair G = (S,∆) where S is the nonempty finite set of states and ∆

is the set of transitions. A transition labels a coordinate with a state, determines its type, and

assigns a state to each of its neighbors. It is given by a pair (s, ν) where s ∈ S and ν : D ⇀ S

is a partial mapping. A run of G on grid G = (C,→, ↓) is a labeling ρ : C → S of coordinates

with states that is consistent with ∆: for all (i, j) ∈ C, there is a transition (s, ν) ∈ ∆ such

that s = ρ(i, j), dom(ν) = type(i, j), and ν(d(i, j)) = ρ(d(i, j)) for all d ∈ type(i, j). Note

that there is no further acceptance condition, i.e., every run is accepting. By L(G), we denote

the set of grids that allow for a run of G. Actually, grid automata are expressively equivalent

to graph acceptors (running on grids), which have an acceptance condition and transitions

with a larger action radius [16].

◮ Theorem 18 (Matz et al. [14]; Thomas [16]). There is a grid automaton G such that no G′

exists with L(G′) = G \ L(G).

Grids can be encoded into MSCs as depicted in Figures 7 and 8 for context types s1+r1

and s⊕r, respectively. Note that both MSCs use only one context per process. Actually,

there are several ways to interpret these MSCs as grids. In both cases, we may say that

events of type a! correspond to the coordinates and that, roughly, going down on a process

line corresponds to going down in the grid. Thus, the MSC from Figure 7 encodes G4,4, and

the MSC from Figure 8 encodes G4,2.

a b a b a b a b

Figure 7 Grid encoding for s1+r1

a b a b a b a b

Figure 8 Grid encoding for s⊕r

We assume context type s1+r1, the case of s⊕r is similar. For G ∈ G, let msc(G) denote

the MSC encoding of G. Conversely, if M = msc(G) then we let grid(M) = G (which is

well-defined). Both mappings extend to sets as expected. Note that we can easily construct a

PCA Agrid over the interface set {a, b} such that L(Agrid) = msc(G), i.e., A accepts precisely

the MSCs that encode a grid.
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The following lemmas state that PCAs can simulate grid automata, and vice versa.

◮ Lemma 19. For every grid automaton G, there is a PCA A such that L(A) = msc(L(G)).

Proof (sketch). Initially, the PCA A guesses whether its process is the leftmost one, an

inner process or the rightmost one. It keeps this guess in its states and the correctness of the

guess is checked by the acceptance condition of A. Below, we describe the behavior of the

PCA at an inner process. The cases of a left-most or right-most process are similar.

At every send event, the automaton guesses the transition (s, ν) that is used by the grid

automaton G at this coordinate. In order to check that the guesses form a run of G, some

information is propagated along process edges and message edges. A send event e with

guessed transition (s, ν) propagates the pair (s, ν(e)) to its matching receive event and (if it

is not the last event on its process) the pair (s, ν(s)) to its process successor which is also a

read event.

Hence a read event f receives a pair (sw, tw) as a message from its matching send event

and a pair (sn, tn) from its process predecessor (if f is not the first event on its process). It

checks that tw = tn = t and propagates the triple (sw, sn, t) to its process successor which is

a send event e′. The automaton A then makes sure that the transition (s′, ν′) of G guessed

by e′ is consistent with s′ = t, ν′(n) = sn and ν′(w) = sw.

If a read event f is the first on its process it propagates the pair (sw, tw) to its process

successor e′. In such a case, the transition (s′, ν′) guessed by e′ should satisfy s′ = tw,

ν′(w) = sw and n /∈ dom(ν′).

Also, the last send event on its process guesses a transition (s, ν) with s /∈ dom(ν) and

the correctness of this guess is checked by the acceptance condition of A. ◭

◮ Lemma 20. For every PCA A such that L(A) ⊆ msc(G), there is a grid automaton G

such that L(G) = grid(L(A)).

Proof (sketch). There are two main issues in the translation of the PCAA = (S, ι,Msg,∆,F)

into the grid automaton G.

First, G has to simulate the transitions of A applied to an MSC M ∈ msc(G) using only

the nodes of the encoded grid G. Recall that every node in G corresponds to an event in

M , while the other direction fails. However, similarly to the proof of Lemma 19, we can

encode the transitions of A. The set of states of G is S ×Msg. A transition ((s,m), ν) of G

with, for example, {n,w} ⊆ dom(ν) checks if A has transitions of the form (sb, (b?,ma), s′
b)

and (s′
b, (a!,m), s) such that ν(w) = (sa,ma) for some sa, and ν(n) = (sb,m

′) for some m′.

Adding messages to states will make sure that, at the w-neighbor of the current event, ma is

indeed the emitted message, so that a run of G gives rise to a consistent run of A.

Second, the acceptance condition of A has to be taken care of by B, which itself does

not have an acceptance condition. Recall that we have to consider only MSCs M that are

encodings of grids. The underlying topology is a pipeline, and every process executes at

least one event. By the Büchi-Elgot-Trakhtenbrot theorem, the acceptance condition F of A

thus reduces to a regular language over S. In turn, the grid automaton can simulate the

corresponding finite automaton over S on the last row of the grid. ◭

According to Theorem 18, let G be a grid automaton such that no G′ exists with

L(G′) = G \ L(G). By Lemma 19, there is a PCA A such that L(A) = msc(L(G)). Towards

a contradiction, suppose that PCAs are s1+r1-complementable. Then, there is a PCA A′′

such that L(A′′) ≡(1,s1+r1) MSC \msc(L(G)). Building the product with Agrid, we transform

A′′ into a PCA A′ satisfying L(A′) = msc(G) \msc(L(G)). By Lemma 20, there is a grid
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automaton G′ such that L(G′) = grid(msc(G) \ msc(L(G))). The latter equals G \ L(G),

which is a contradiction to the assumption that G is not complementable.

B Missing Details for Proof of Lemma 13

We start by showing that B computes zones when it is run on a (k, s⊕r1)-bounded MSC.

◮ Lemma 21. Let M = (P, , E,⊳, π) ∈MSC(k,s⊕r1) and let ρ′ be the unique run of B on

M . Then, ρ′ is a mapping E → S′ (i.e., it does not use any sink state), and the equivalence

relation ∼ defined as follows induces a zone partitioning of E.

For e ∈ E, we let in the following (ie, τe, κe, Re) ∈ Z denote the last zone state in the

sequence ρ′(e). We define ∼ ⊆ E × E as the least equivalence relation such that ⊳msg ⊆ ∼

and {(e, e′) ∈ ⊳proc | ie = ie′} ⊆ ∼.

Proof. Pick p ∈ P . We partition the set of send events on p into intervals as follows. The

first interval I contains the first send event (wrt. ⊳∗
proc). We add further send events to I

as long as, for all a ∈ N , the corresponding receive events at the a-neighbor also form an

interval Ia. Then, consider the next maximal interval, and so on. When we are done with

p, we pick another process, etc. We will show that the zone partitioning induced by this

procedure coincides with the equivalence classes of ∼.

Let p ∈ P . Let I be one of the constructed send intervals on p and suppose that its

receive intervals are given by Ia, for each a ∈ N (note that Ia may be empty). By definition,

Z = I ∪
⋃

a∈N Ia is a zone. It is also easily seen that, by (1) and (2) in the definition of the

functions δzone
(a,b), we have e ∼ e′ for every two events e, e′ ∈ Z. It remains to show that Z

defines a whole equivalence class of ∼, i.e., whenever e ∈ Z and e′ 6∈ Z, then e 6∼ e′.

We define min(I),max(I) ∈ E in the obvious way. Suppose e ∈ E such that e⊳proc min(I).

Assume that I is the first send interval on p. By (1), we have that ie < imin(I). Now, assume

that I is not the first interval that we chose on p. If e is a receive event, then ie < imin(I) by

(1). So, suppose that e is a send event. Then, e belongs to the previous send interval on p

that we have chosen. Assume e⊳msg f and p = π(e) a b π(f). Suppose e′ = min(I) also

sends through a, say, with e′
⊳msg f

′. Then, f and f ′ do not belong to the same context.

By (1) and (2), we have if < if ′ , which implies ie < ie′ . Now, suppose e′ sends through

b 6= a and that f ′ is the matching receive event. Then, there is a send event ê from the send

interval preceding I (which also contains e) such that ℓM (ê) = b! and whose corresponding

receive event f̂ is not in the same context as f ′. Suppose (ê, f̂) is the last pair before I with

that property. By (1) and (2), we have i
f̂

= κe(b) < if ′ . Again, this implies ie < ie′ .

Suppose e ∈ E such that max(I) ⊳proc e. If e is a receive event, then imax(I) < ie by (2).

Now assume that e is a send event and f is such that e⊳msg f and π(e) a b π(f). Then, by

(2) and the maximality of I, we have Ia 6= ∅ and if ′ < if for all f ′ ∈ Ia. By (1), this implies

imax(I) < ie.

Next, pick one of the intervals Ia associated with I. By a similar reasoning, we get that,

for all e ∈ E, e⊳proc min(Ia) implies ie < imin(Ia), and max(Ia) ⊳proc e implies imax(Ia) < ie.

Recall that, for all e, f ∈ E with π(e) a b π(f) and e ⊳msg f , we have κe(a) = if and

κf (b) = ie. Thus, we have shown that Z coincides with an equivalence class of ∼.

When we partition the set of send events on a process p, we may have to divide some

send contexts, since the corresponding receive events on some a-neighbor do not necessarily

belong to one context. However, for each neighbor, we have at most k such splittings. In

turn, |N | · (k + k · |N |) new receive contexts may be created on p by splitting send contexts

in neighboring processes. As a result, process p traverses at most K := k · (|N |2 + 2|N |+ 1)

different zones (cf. [4]). We deduce that ρ′(e) ∈ S′ for all e ∈ E. ◭
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We are now ready to show that L(A) ≡(k,s⊕r1) L(B). So let us fix an MSC M =

(P, , E,⊳, π) ∈MSC(k,s⊕r1). When, in the following, we talk about a zone of M , we mean

a zone induced by ∼ as defined in Lemma 21. We start with the reverse inclusion which is

the most challenging.

◮ Lemma 22. If M ∈ L(B) then M ∈ L(A).

Proof. Since B is deterministic and complete, there is a unique run of B on M , which is

given by ρ′ : E → S′ (by Lemma 21, since M is (k, s⊕r1)-bounded, the run does not use any

sink state). Let λ′ : P → S′ denote the local final state at each process for ρ′. We know that

(P, , λ′) satisfies F ′. Recall that F ′ guesses an assignment σ : P → T by means of the

second-order variables Ut for t ∈ T . We have to construct an accepting run ρ : E → S of A

for M .

For each process p, let np be the number of zones of process p computed by B. Then,

we have σ(p) = ισ(p)1 · · ·σ(p)np
. It is easy to assign a state from S to the last event of

each zone: for all i ∈ [np], if ep,i is the last event of the i-th zone of process p then we let

ρ(ep,i) = σ(p)i. Then, we have to assign states from S to the intermediary events of each

zone. To this end, we will use the following lemma.

◮ Lemma 23. Let λ′(p) = (0, ∅, κ0, ∅)(1, τ1, κ1, R1) . . . (np, τnp
, κnp

, Rnp
). Let i ∈ [np] be

such that τi ⊆ N (in its i-th zone, process p is sending). Then, for all (s̄, s̄′) ∈ Ri there is a

run of A on the i-th zone of process p starting from s̄ and ending in s̄′.

Proof. We construct the run by induction on the number of send messages added in this

i-th zone. The zone is created with a first message sent on some interface p a b q. The

update function δzone
(a,b) starts a new zone with the relation R′

1 = R defined in (3). By

definition, for each (s̄, s̄′) ∈ R, there is a message m ∈ Msg with (s̄self , (a!,m), s̄′
self) ∈ ∆,

(s̄a, (b?,m), s̄′
a) ∈ ∆, and s̄c = s̄′

c for all c ∈ N \ {a}. Hence, A has a run from s̄ to s̄′ on the

zone consisting of this single message sent from p to q.

Assume now that the nonempty i-th zone is extended via δzone
(a,b) with a new message sent

on p a b q. Then, R′
1 = R1 ◦R according to (3). Let (s̄, s̄′′) ∈ R′

1. We have (s̄, s̄′) ∈ R1 and

(s̄′, s̄′′) ∈ R for some state s̄′ ∈ SN ∪{self}. By induction, we have a run of A from s̄ to s̄′ on

the zone before adding the new message. By definition of R, we also have a run of A from s̄′

to s̄′′ on the last message sent from p to q. This results in a run of A from s̄ to s̄′′ on the

zone exented with the new message from p to q. ◭

We continue the proof of Lemma 22. We have already defined the states assigned to the

last event of each zone ρ(ep,i) = σ(p)i. We use the notation of Lemma 23 with i ∈ [np] being

a send-zone for process p. Since the run of B is accepting, (P, , λ′) |= F ′ and we have

chosen the assignment σ which witnesses this fact. Therefore, there is (s̄, s̄′) ∈ Ri such that

(i) s̄self = σ(p)i−1 and s̄′
self = σ(p)i, and (ii) for all p a b q we have s̄a = σ(q)κi(a)−1 and

s̄′
a = σ(q)κi(a) if a ∈ τi, and s̄′

a = s̄a = σ(q)κi(a) if a /∈ τi. We apply Lemma 23 to the pair

(s̄, s̄′) and we obtain a run of A from s̄ to s̄′ on the i-th zone of process p. We use this run to

extend the map ρ to all events of the i-th zone of process p. We repeat this construction for

all send-zones and we obtain a fully defined map ρ : E → S. By construction, the restriction

of ρ to each send-zone defines a run of A, hence ρ is a run of A on M .

It remains to show that ρ is accepting. By construction, the last state of the run ρ for

process p is λ(p) = σ(p)np
which is the last state of σ(p) (with the convention σ(p)0 = ι).

Now, the acceptance condition F ′ contains (as a conjunction) a formula F ′′ which consists of

the acceptance condition F in which each atomic formula λ(u) = s with s ∈ S is replaced with

the disjunction of all formulas u ∈ Ut such that t ∈ T ends in s. Let I ′ be the interpretation
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of the variables (Ut)t∈T defined by σ. Notice that p ∈ I ′(Uσ(p)) for all p ∈ P and that σ(p)

ends with λ(p). Assume that a first-order process variable u is assigned to process p under

some interpretation. Then, λ(u) = s holds iff s = λ(p) = σ(p)np
iff u ∈ Ut holds for some t

that ends with s (since the only such t is σ(p)). Then, it is not difficult to check by induction

on the formula that (P, , λ′), I ′ |= F ′′ if and only if (P, , λ) |= F . ◭

◮ Lemma 24. If M ∈ L(A) then M ∈ L(B).

Proof. Assume that M ∈ L(A) and let ρ : E → S be an accepting run of A on M . Let

λ : P → S denote the local final state of ρ at each process. Then, (P, , λ) satisfies F .

Since B is deterministic and complete, there is a unique run of B on M . By Lemma 21,

since M is (k, s⊕r1)-bounded, the run does not end in a sink state so that it is a mapping

ρ′ : E → S′. Let λ′ : P → S′ denote the local final state at each process for ρ′.

For p ∈ P , assume that λ′(p) = (0, ∅, κ0, ∅)(1, τ1, κ1, R1) . . . (np, τnp
, κnp

, Rnp
). The

events of process p have been partitioned into np zones. Let σ(p)0 = ι and, for i ∈ [np],

σ(p)i = ρ(ei) where ei is the last event of the i-th zone on process p. Then, we let

σ(p) = σ(p)0σ(p)1 · · ·σ(p)np
. The assignment σ : P → T is well-defined and induces an

interpretation of each second-order variable Ut for t ∈ T as the set σ−1(t) ⊆ P .

Pick p ∈ P and suppose λ′(p) = (0, ∅, κ0, ∅)(1, τ1, κ1, R1) . . . (np, τnp
, κnp

, Rnp
). Further-

more, let i ∈ [np] with τi ⊆ N . We define s̄, s̄′ ∈ SN ∪{self} by (i) s̄self = σ(p)i−1 and

s̄′
self = σ(p)i, (ii) s̄a = σ(q)κi(a)−1 and s̄′

a = σ(q)κi(a) if a ∈ τi, and s̄a = s̄′
a = σ(q)κi(a) if

a /∈ τi. Note that the i-th zone of p involves those processes q such that p a b q with a ∈ τi

and b ∈ N . Since ρ is a run of A on M , there is a run of A on the i-th zone of p that starts

from s̄ and ends in s̄′. By Equation (3), since processes do not change their zone number

within a zone, we have (s̄, s̄′) ∈ Ri.

Now, consider (P, , λ) with the interpretation induced by σ. Since σ(p) ∈ T keeps

track of the states visited at the end of each zone and (P, , λ) satisfies F , we have that

(P, , λ′) also satisfies F where each atomic subformula λ(u) = s (s ∈ S) is replaced by

the disjunction of all formulas u ∈ Xt such that t ∈ T ends in s. ◭

C The Case of Context Type intf

When ct = intf, we define the zones in a slightly different way.

Zones. Let M = (P, , E,⊳, π) be an MSC. An intf-zone is a nonempty set of events of

the form {e1, . . . , en, f1, . . . , fn} ⊆ E such that

e1 ⊳proc e2 ⊳proc . . .⊳proc en,

f1 ⊳proc f2 ⊳proc . . .⊳proc fn, and

for all i ∈ [n], either ei ⊳msg fi or fi ⊳msg ei.

◮ Lemma 25. [cf. [4]] Let M = (P, , E,⊳, π) be a (k, intf)-bounded MSC. There is a

partitioning of the events of M into zones such that, for each process p ∈ P , the events of

Ep belong to at most K := k + (k · |N |) zones.

Here also, a process stores the zone number of each of its neighbors. A process enters

a new zone if (a) it starts receiving from or sending to a different process, or (b) the zone

number of its neighbor does not match. A zone state from Z is a tuple (i, τ, κ,R) where

i has the same meaning as before, but τ ∈ N , κ ∈ {0, . . . ,K}, and R ⊆ (S × S)2. The

component τ carries information only about the current neighbor and κ stores its zone

number. Moreover, R is the set of possible global steps that the zone may induce.
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We now define the partial function δzone
(a,b) : (Z × Z) ⇀ (Z × Z) for (a, b) ∈ N ×N by

δzone
(a,b)((i1, τ1, κ1, R1), (i2, τ2, κ2, R2)) = ((i′1, a, i

′
2, R

′
1), (i′2, b, i

′
1, R

′
2))

where

i′1 =

{

i1 + 1 if i1 = 0 or τ1 6= a or (τ1 = a and κ1 6= i2)

i1 otherwise

i′2 =

{

i2 + 1 if i2 = 0 or τ2 6= b or (τ2 = b and κ2 6= i1)

i2 otherwise

R′
1 =

{

R if i′1 = i1 + 1

R1 ◦R otherwise
R′

2 =

{

R′ if i′2 = i2 + 1

R2 ◦R
′ otherwise

with R being the set of pairs ((sa, sb), (s′
a, s

′
b)) ∈ (S × S)2 such that there is m ∈ Msg with

(sa, (a!,m), s′
a) ∈ ∆ and (sb, (b?,m), s′

b) ∈ ∆. Also, R′ is the set of pairs ((sb, sa), (s′
b, s

′
a)) ∈

(S × S)2 such that ((sa, sb), (s′
a, s

′
b)) ∈ R. Note that the zone switch happens simultaneously

for both the neighbors.

We will now define the transition function δ(a,b) : (S′×S′)→ (S′×S′) where S′ is the set

of words over Z of the form (0, a, 0, ∅)(1, τ1, κ1, R1) . . . (n, τn, κn, Rn) where n ∈ {0, . . . ,K}

and a ∈ N is an arbitrary fixed interface. The initial state is ι′ = (0, a, 0, ∅). Let z1 =

(i1, τ1, κ1, R1) ∈ Z and z2 = (i2, τ2, κ2, R2) ∈ Z. Also, suppose δzone
(a,b)(z1, z2) = (z′

1, z
′
2) where

z′
1 = (i′1, τ

′
1, κ

′
1, R

′
1) and z′

2 = (i′2, τ
′
2, κ

′
2, R

′
2). Then, we let

δ(a,b)(w1z1 , w2z2) =

{

(w1z
′
1 , w2z

′
2) if i′1 = i1 and i′2 = i2

(w1z1z
′
1 , w2z2z

′
2) if i′1 = i1 + 1 and i′2 = i2 + 1

Again, the automaton is not complete, since δ(a,b) is a partial function. However, we can

again add a sink state to obtain a CDAA that is complete.

Acceptance Condition. Let T be the set of sequences of the form ιs1 . . . sn where n ∈

{0, . . . ,K} and si ∈ S for all i. By means of second-order variables Ut, with t ranging over

T , the formula F ′ guesses an assignment σ : P → T . It will then check that, for all p ∈ P

with, say, λ(p) = ι′(1, τ1, κ1, R1) . . . (n, τn, κn, Rn) ∈ S′, the following hold: For all i ∈ [n],

there exists ((s1, s2), (s′
1, s

′
2)) ∈ Ri such that

s1 = σ(p)i−1 and s′
1 = σ(p)i, and

there exist b ∈ N and q ∈ P such that p τi b q, s2 = σ(q)κi−1, and s′
2 = σ(q)κi

.

The acceptance condition F is incorporated in the same way as in the previous case. The

proof of correctness of the above construction is similar to that of Lemma 13.

D Proof of Theorem 16

We first consider the direction “=⇒”. Let A = (S, ι,Msg,∆,F) be a PCA. We construct a

sentence ϕ ∈ MSOm such that L(A) = L(ϕ). Let max(x) and min(x) be formulas denoting

that x is the first and, respectively, last event on its process. The formula ϕ will guess

an assignment of events to states in terms of second-order variables (Xs)s∈S . Similarly, to

evaluate the acceptance condition F of the given PCA, we use second-order variables (Us)s∈S .
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We let

ϕ = ∃(Xs)s∈S .∃(Us)s∈S .

EventPart((Xs)s∈S) ∧ ProcPart((Us)s∈S) (1)

∧ ∀u.∀x.(x@u ∧max(x)→
∧

s∈S u ∈ Us ↔ x ∈ Xs) (2)

∧ ∀u.((¬∃x.x@u)→ u ∈ Uι) (3)

∧ ϕF (4)

∧
∧

a,b∈N ∀x.∀y.(x
a b y ∧ x⊳msg y →

∨

m∈Msg trans
(a,b)
m (x, y, (Xs)s∈S)) (5)

The meaning of the subformulas is as follows:

(1) Formulas EventPart((Xs)s∈S) and ProcPart((Us)s∈S) ensure that (Xs)s∈S and (Us)s∈S

form partitions of the set of events and, respectively, processes of the given MSC.

(2) The formula makes sure that, in Us, we collect those processes whose maximal event

terminates in state s.

(3) Similarly, Uι should contain all processes that do not execute any event.

(4) Items (2) and (3) allow us to use a formula ϕF to simulate the acceptance condition F of

A. It is obtained from F by replacing every subformula of the form λ(u) = s by u ∈ Us.

(5) x a b y is a shorthand for ∃u.∃v.(x@u ∧ y@v ∧ u a b v)

(6) Finally, trans
(a,b)
m (x, y, (Xs)s∈S)) makes sure that there are transitions that can be applied

at x and y to exchange a message m through interfaces a and b. We have to handle

several cases, depending on whether x and y are the first event of their process. This is

formalized as follows:

∨

s1,s′

1
,s2,s′

2
∈S |

(s1,(a!,m),s′

1
)∈∆

(s2,(b?,m),s′

2
)∈∆

x ∈ Xs′

1
∧ y ∈ Xs′

2
∧













∃x̄.∃ȳ.(x̄⊳proc x ∧ ȳ ⊳proc y ∧ x̄ ∈ Xs1
∧ ȳ ∈ Xs2

)

∨ ∃ȳ.(min(x) ∧ ȳ ⊳proc y ∧ “s1 = ι” ∧ ȳ ∈ Xs2
)

∨ ∃x̄.(x̄⊳proc x ∧min(y) ∧ x̄ ∈ Xs1
∧ “s2 = ι”)

∨ min(x) ∧min(y) ∧ “s1 = ι” ∧ “s2 = ι”













Here, formula “si = ι” is either “true” or “false” depending on whether si = ι or not. This

completes the construction of the formula ϕ ∈ MSOm such that L(A) = L(ϕ).

Let us turn to direction “⇐=”. As we deal with an inductive translation, we have to cope

with free variables and, thus, to consider an extension of MSCs that allows for an encoding

of variables. As PCA are closed under projection, this can be safely done.

Consider a formula ϕ ∈ MSOm with free variables Free(ϕ) ⊆ V = U ⊎X where U consists

of first-order and second-order process variables and X consists of first-order and second-order

event variables.

V-Extended MSCs are structures of the form (M,f, g) where M = (P, , E,⊳, π) is an

MSC, f : P → {0, 1}U and g : E → {0, 1}X . The pair (f, g) encodes an interpretation I of

the variables in V in the following way. For second-order variables U ∈ U and X ∈ X we let

I(U) = {p ∈ P | f(p)(U) = 1} and I(X) = {e ∈ E | g(e)(X) = 1}. For first-order variables

u ∈ U and x ∈ X we require that there is exactly one process p ∈ P (resp. event e ∈ E) such

that f(p)(u) = 1 (resp. g(e)(x) = 1) and we let I(u) = p (resp. I(x) = e).

To handle such an interpretation I of free variables, we consider V-PCAs running on

V-extended MSCs (M,f, g). In a V-PCA A = (S, ι,Msg,∆,F), the acceptance condition

is given by an MSOt formula F which may have free variables in U : Free(F) ⊆ U . The
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transitions are also extended to read bit vectors: ∆ ⊆ S × Σ ×Msg × {0, 1}X × S. The

semantics is extended as expected. We use the notation introduced in Section 3. A run is still

a labelling ρ : E → S and if e⊳msg e
′ with π(e) a b π(e′) we require that for some message

m ∈ Msg we have (ρ−(e), (a!,m, g(e)), ρ(e)) ∈ ∆ and (ρ−(e′), (b?,m, g(e′)), ρ(e′)) ∈ ∆. The

run is accepting if (P, , λ), f |= F .

Notice first that we can easily build a V-PCA Avalid checking that a V-extended MSC

(M,f, g) encodes first-order variables faithfully: for each first-order process variable u ∈ U

there is exactly one process p ∈ P such that f(u)(p) = 1 and similarly for first-order event

variables. The automaton for a subformula ψ of ϕ is the intersection of Avalid with an

automaton depending on ψ and constructed inductively as follows.

The PCA for the formula u a b v has a single state S = {ι}, a single message Msg = {m},

a full transition table ∆ = S × Σ×Msg × {0, 1}X × S, and its acceptance condition is

simply the formula F = u a b v. This automaton accepts clearly all V-extended MSCs

satisfying u a b v.

Another interesting case is the formula x@u, since it mixes an event and a process variable.

The corresponding V-PCA has two states S = {ι, s} and a single message Msg = {m}. It

is deterministic and complete. It moves from state ι to state s only when reading the

(unique) event e associated with x, i.e., such that g(e)(x) = 1. The automaton stays in its

current state when reading an event e such that g(e)(x) = 0. The acceptance condition is

F = ∀v.(λ(v) = s←→ v = u).

For the formula x⊳msg y which compares two events, we need two states S = {ι, s} and

two messages Msg = {m,m′}. The special message m′ is emitted by the event e such

that g(e)(x) = 1 and can only be received by the event e′ such that g(e′)(y) = 1. When

the special message is used, the automaton moves from state ι to state s. All other pairs

of events e⊳msg e
′ use message m and keep the state of the automaton unchanged. The

acceptance condition F = ∃u.(λ(u) = s) makes sure that the special message has been

used.

Constructing V-PCAs for the formulas x⊳proc y, x = y, and x ∈ X is easy.

Let us turn to complementation. Suppose we have a PCA A for formula ψ ∈ MSOm, i.e.,

L(A) ≡(k,ct) L(ψ). By Theorem 9 (which also holds for V-extended MSCs), there is a

PCA A′ such that L(A′) ≡(k,ct) MSC \ L(A). Thus, we have L(A′) ≡(k,ct) L(¬ψ).

Disjunction reduces to “union” of two PCAs and existential (first-order or second-order)

event quantification is dealt with via projection of the transition table as usual.

Existential process quantification is different from event quantification. Suppose we

already have a PCA A for ψ ∈ MSOm, say, with acceptance condition F . The PCA for

∃u.ψ is like A, but uses as acceptance condition the formula ∃u.F . Second-order process

quantification is handled analogously.
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