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ORBITAL STABILITY: ANALYSIS MEETS GEOMETRY

STEPHAN DE BIEVRE!2, FRANCOIS GENOUD?, AND SIMONA ROTA NODARI!

ABSTRACT. We present an introduction to the orbital stability of relative equilibria of
Hamiltonian dynamical systems on (finite and infinite dimensional) Banach spaces. A
convenient formulation of the theory of Hamiltonian dynamics with symmetry and the
corresponding momentum maps is proposed that allows us to highlight the interplay be-
tween (symplectic) geometry and (functional) analysis in the proofs of orbital stability of
relative equilibria via the so-called energy-momentum method. The theory is illustrated
with examples from finite dimensional systems, as well as from Hamiltonian PDE’s, such
as solitons, standing and plane waves for the nonlinear Schrodinger equation, for the wave
equation, and for the Manakov system.
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1. INTRODUCTION

The purpose of these notes is to provide an introduction to the theory of orbital sta-
bility of relative equilibria, a notion from the theory of (mostly Hamiltonian) dynamical
systems with symmetry that finds its origins in the study of planetary motions [AM78].
In more recent times it has proven important in two new ways at least. It has on the one
hand found an elegant reformulation in the modern framework of Hamiltonian mechanics
of finite dimensional systems with symmetry in terms of symplectic geometry. It can in-
deed be phrased and studied in terms of the theory of momentum maps and of symplectic
reduction [AM78, LM87, Pat92, LS98, Mon97, PRW04, RSS06, MRO11]. On the other
hand, it also underlies the stability analysis of plane waves, of travelling wave solutions
and of solitons in infinite dimensional nonlinear Hamiltonian PDE’s, which has received
considerable attention over the last thirty years or so, and continues to be an active area
of research [CL82, SS85, Wei86, GSS87, GSS90, SS99, Caz03, HS04, Tao06, GHO7a,
GHO7b, Stu08, GS08, AP09, LC09, Tao09, Gen09, Gen13]. We refer to the first chapter
of [APO9] for an interesting historical overview of this aspect of the theory.

It is clear that in this field nonlinear analysis can be expected to meet geometry in
interesting and beautiful ways. It nevertheless appears that in the literature on Hamiltonian
PDE’s, the simple and elegant geometric ideas underlying the proofs of orbital stability
aren’t emphasized. The goal of these notes is to provide a unified formulation of the theory
in a sufficiently general but not too abstract framework that allows one to treat finite and
infinite dimensional systems on the same footing. In this manner, one may hope to harness
the geometric intuition readily gained from treating finite dimensional systems and use
it as a guide when dealing with the infinite dimensional ones that are the main focus of
our interest, but that demand more sophisticated technical tools from functional analysis
and PDE theory. The text is of an introductory nature and suitable for young researchers
wishing to familiarize themselves with the field. It is aimed at analysts not allergic to
geometry and at geometers with a taste for analysis, and written in the hope such people
exist.

There are many notions of stability for dynamical systems. One may in particular con-
sider stability with respect to perturbations in the vector field generating the dynamics, or
stability with respect to a variation in the initial conditions. It is the latter one we shall be
considering here. For a sampling of possible definitions in this context, one can consult
Section 6.3 of Abraham and Marsden [AM], who give nine different ones and mention
there exist others still.... We start by introducing the ones of interest to us in these notes.

The simplest possible one is presumably the following. Let E be a normed vector space,
d the corresponding metric on E, and X a vector fieldon E. Letu € E andr € R — u(t) € E
a flow line of X (i.e. 1(¢) = X (u(z)), with u(0) = u). Let us assume the flow is well-defined
globally, with u(¢) = ®X (u). Then one says that the initial condition u is stable if for all
€ > 0, there exists a 6 > 0 so that, forallv € E,

d(v,u) < & = supd(v(t),u(t)) < e. (1.1)
teR

Here v(¢) = ®X (v). This can be paraphrased as follows: once close, forever not too far.
Note that, if u is stable in this sense, then so is u(¢) for all 7 € R. There exists one situation
where proving stability is straightforward. It is the case where u = u.. is a fixed point of the
dynamics, meaning u(t) = u,, for all t € R, and where u, is a local non-degenerate mini-
mum of a constant of the motion, that is a function .Z : E — R, referred to as a Lyapunov
function, satisfying £ (v(r)) = £ (v(0)) for all ¢ € R, and for all v in a neighbourhood of
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u,. Let us sketch the argument, which is classic. Supposing . € C?(E,E) and that Dﬁ*iﬂ
is positive definite, one obtains from a Taylor expansion of . about u, , an estimate of the
type
cd(v,u,)? < 2 (v) — L (u,) < Cd(v,u,)?, (1.2)
for all v in a neighbourhood of u... Then, for v sufficiently close to u,, one can easily show,
using an argument by contradiction, that v(¢) stays in this neighbourhood and hence, for
all 7,
cd(v(t),u,)?> < L(0(1) — L(u) = L (v) — L(u.) < Cd(v,u)?, (1.3)
from which (1.1) follows immediately. This approach is known as the Lyapunov method
for proving stability. !

In Hamiltonian systems, at least one constant of the motion always exists, namely the
Hamiltonian itself. The above argument leads therefore to the perfectly standard result
that local minima of the Hamiltonian are stable fixed points of the dynamics. All orbital
stability results that we shall discuss below are, in fine, based on this single argument,
appropriately applied and combined with additional geometric properties of (Hamiltonian)
systems with symmetry, and, of course, with an appropriate dose of (functional) analysis.
Let us finally point out that when this approach does not work, and this is very often the
case, one is condemned to resort to considerably more sophisticated techniques, involving
the KAM theorem or Nekhoroshev estimates, for example.

A stronger version of stability than (1.1) is an asymptotic one, and goes as follows:
there exists a 6 > 0 so that, forallv € E,

divu) <6 = lgl}rlwd(v(t),u(t)) =0.

This phenomenon can only occur in dissipative systems. When u is a fixed point of the
dynamics, it corresponds to requiring it is attractive. If the flow line issued from u is
periodic, one obtains a limit cycle. So in this second definition, the idea is that, if two
points start close enough, they end up together. Since our focus here is on Hamiltonian
systems, where such behaviour cannot occur (because volumes are preserved), we shall
not discuss it further. Note, however, that another notion of “asymptotic stability” has been
introduced and studied in the context of Hamiltonian nonlinear dispersive PDE’s. This
notion encompasses finer asymptotic properties of the dynamics than those studied here.
A general heuristic discussion can be found in [Tao09], and recent results for the nonlinear
Schrodinger equation in [Cucll1].

There are several cases when definition (1.1) is too strong, and a weaker notion is
needed, referred to as orbital stability. The simplest definition of this notion goes as fol-
lows. Suppose t € R — u(t) € E is a flow line of the dynamics and consider the dynamical
orbit

y={u@) |1 R}

We say u = u(0) is orbitally stable if the following holds. For all € > 0, there exists § > 0,
so that

divu) <0 =Vr e R,d(v(z),y) <e. (1.4)
The point here is that the new dynamical orbit ¥ = {v(¢) | t € R} stays close to the initial
one, while possibly v(r) can drift away from u(z), for the same value of the time 7. As
we will see, this can be expected to be the rule since the nearby orbit may no longer be
periodic even if the original one was, or have a different period. A simple example that

Remark that .# (v(r)) < Z(v) would suffice in (1.3). But in these notes we will exclusively work with
constants of the motion.
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can be understood without computation is this. Think of two satellites on circular orbits
around the earth. Imagine the radii are very close. Then the periods of both motions will
be close but different. Both satellites will eternally move on their respective circles, which
are close, but they will find themselves on opposite sides of the earth after a long enough
time, due to the difference in their angular speeds. In addition, a slight perturbation in the
initial condition of one of the satellites will change its orbit, which will become elliptical,
and again have a different period. But the new orbit will stay close to the original circle.
So here the idea is this: if an initial condition v is chosen close to u, then at all later times
t, v(t) is close to some point on 7, but not necessarily close to u(t), for the same value of 7.
We will treat this illustrative example in detail in Section 4.

The definition of orbital stability in (1.4) turns out to be too strong still for many ap-
plications, in particular in the presence of symmetries of the dynamics. This is notably
the case in the study of solitons and standing or travelling wave solutions of nonlinear
Hamiltonian differential or partial differential equations. We will therefore present an ap-
propriate generalization of the notion of orbital stability in the presence of symmetries in
Section 3. For that purpose, we introduce in Section 2 dynamical systems ®X, t € R on
Banach spaces E, which admit an invariance group G with an action ®;,g € Gon E, i.e.
&, DY = OXD,. We then say u € E is a relative equilibrium if, for all t € R, ®X (u) € O,,,
where 0, = ®¢(u) is the group orbit of u under the action of G. As we will see, solitons,
travelling waves and plane waves are relative equilibria. We say a relative equilibrium u
is orbitally stable if initial conditions v € E close to u have the property that for all € R,
®X (v) remains close to &,. Note that the larger the symmetry group G, the weaker the
corresponding notion of stability.

The main goal of these notes is to present a general framework allowing to establish or-
bital stability of such relative equilibria of (both finite and infinite) dynamical systems with
symmetry, using an appropriate generalization of the Lyapunov method sketched above.
This approach to stability is often referred to as the “energy-momentum” method. In the
process, we wish to clearly separate the part of the argument which is abstract and very
general, from the part that is model-dependent. We will also indicate for which arguments
one needs the dynamics to be Hamiltonian and which ones go through more generally.

In Section 4, we treat the illustrative example of the relative equilibria of the motion in
a spherical potential, allowing us to present four variations of the proof of orbital stability,
which are later extended to a very general setting in Section 7. The main hypothesis of the
proofs, which work for general dynamical systems on Banach spaces, is the existence of a
coercive Lyapunov function £, which is a group-invariant constant of the motion satisfying
an appropriately generalized coercive estimate of the type (1.2) (see (7.1)). In applications,
the proof of orbital stability is thus reduced to the construction of such a function.

It is in this step that the geometry of Hamiltonian dynamical systems with symmetry
plays a crucial role. Indeed, the construction of an appropriate Lyapunov function for such
systems exploits the special link that exists between their constants of the motion F and
their symmetries, as embodied in Noether’s theorem and the theory of the momentum map.
This is explained in Sections 5 and 6. The crucial observation is then that in Hamiltonian
systems, relative equilibria tend to come in families uy, € E, indexed by the value y of
the constants of the motion at uy. In fact, it turns out that uy, € E is a relative equilib-
rium of a Hamiltonian system if (and only if) uy, is a critical point of the restriction of
the Hamiltonian to the level surface X, = {u € E | F(u) = u} of these constants of the
motion (Theorem 6.1). This observation at once yields the candidate Lyapunov function
£y (see (6.5)).
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We finally explain (Proposition 7.7) how the proof of the coercivity of the Lyapunov
function can be obtained from a suitable lower bound on its second derivatives D%, (w,w),
with w restricted to an appropriate subspace of E, using familiar arguments from the the-
ory of Lagrange multipliers (Section 7). This ends the very general, geometric and abstract
part of the theory. To control szu(w, w) finally requires an often difficult, problem-
dependent, and detailed spectral analysis of the Hessian of the Lyapunov function, as we
will show in the remaining sections.

We illustrate the theory in Section 8 on a first simple example. We consider the plane
waves ug i(f,X) = oe el E € R, k € 277 and o € R, which are solutions of the cubic
nonlinear Schrédinger equation on the one-dimensional torus T,

idu(t,x)+ ﬁ&fxu(t,x) + k|u(t,x)|2u(t,x) =0,

provided & + Bk*> = A|a|?. This equation is (globally) well-posed on E = H!(T,C) and
its dynamical flow is invariant under the globally Hamiltonian action @ of the group
G =R x R defined by (®,,(u)) (x) = eu(x —a) (see Section 5.5). The plane waves
Ug k (t,x) are G-relative equilibria. We establish (Theorem 8.1) their orbital stability when
B (27)* > 2A|a|?. Although the linear stability analysis for this model is sketched in many
places, and the nonlinear (in)stability results seem to be known to many, we did not find a
complete proof of nonlinear orbital stability in the literature. A brief comparison between
our analysis and related results ([ZhiO1, GHO7b, GHO7a]) ends Section 8. Note that the
analysis of orbital stability of plane waves of the cubic nonlinear Schrodinger equation on
a torus of dimension d > 1 is much more involved (see for example [FGL13]).

In Section 9 we will present orbital stability results pertaining to curves (i.e. one-
dimensional families) of standing waves of nonlinear Schrodinger equations on R? with
a space-dependent coefficient f:

i0u(t,x) + Au(t,x) + f(x, |u|*(z,x))u(r,x) = 0. (1.5)

Imposing a non-trivial spatial dependence has two major consequences. First, the space-
translation symmetry of the equation is destroyed, and one is left with the reduced one-
parameter symmetry group G = R, acting on the Sobolev space E = H! (R?) via @, (u) =
e'Yu. Note that the associated group orbits are of the simple form &, = {¢'"u: y € R} C
H'(R?). Now, standing waves are, by definition, solutions of (1.5) of the form u(x,t) =
P w(x), which are therefore clearly relative equilibria. Such standing waves are some-
times referred to as “solitons” due to the spatial localization of the profile w(x), and to
their stability.

Second, constructing curves of standing wave solutions of (1.5) is now a hard prob-
lem, and we will outline the bifurcation theory developed in [GS08, Gen(09, Genl10a,
Gen13] to solve it. This powerful approach allows one to deal with power-type nonlin-
earities f(x,|u|*) = V(x)|u|°~! (under an approriate decay assumption on the coefficient
V : R? — R) but also with more general nonlinearities, for instance the asymptotically

o—1
linear f (x, u2) = V (x) .
tailed analysis of D?>.Z(w,w) required by the model can be. As we shall see, this analysis
turns out to be deeply connected with the bifurcation behaviour of the standing waves.

In the pure power (space-independent) case f(x, |u|>) = |u|°~!, the appropriate notion
of stability is that associated with the action of the full group G =R? x R, (®Pq_y(u)) (x) =
eYu(x — a). The stability of standing waves in this context was proved in the seminal paper
of Cazenave and Lions [CL82] for ]l < o < 1+ %, and this result is sharp (i.e. stability

doesnotholdatc =1+ %). The contribution [CL82] is one of the first rigorous results on

This will give a good illustration of how involved the de-
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orbital stability for nonlinear dispersive equations, and is based on variational arguments
using the concentration-compactness principle (see for instance [ZhiO1, HS04] for more
recent results in this direction). This line of argument is conceptually very different from
the energy-momentum approach developed here, so we shall not say more about it.

The modern treatment of Hamiltonian dynamical systems with symmetries uses the
language of symplectic geometry, as for example in [AM78, Arn99, LM87, Sou97]. But
we don’t need the full power of this theory, since we will work exclusively with linear
symplectic structures on (infinite dimensional) symplectic vector spaces. For the reader
not familiar with Hamiltonian mechanics, Lie group theory and symplectic group actions,
elementary self-contained introductions to these subjects sufficient for our purposes are
provided in the Appendix.

Acknowledgments. This work was supported in part by the Labex CEMPI (ANR-11-
LABX-0007-01). F.G. thanks CEMPI and the Lab. Paul Painlevé for their hospitality dur-
ing his one-month visit to the Université Lille 1 in September 2013. He also acknowledges
the support of the ERC Advanced Grant “Nonlinear studies of water flows with vorticity”.
The authors are grateful to V. Combet, A. De Laire, S. Keraani, G. Riviere, B. Tumpach
and G. Tuynman for stimulating discussions on the subject matter of these notes.

2. DYNAMICAL SYSTEMS, SYMMETRIES AND
RELATIVE EQUILIBRIA

2.1. Dynamical systems on Banach spaces.

Let E be a Banach space. A domain Z is a dense subset of E; in the examples presented
in these notes, it will be a dense linear subspace of E. We consider on E a dynamical
system, by which we mean a separately continuous map

F : (t,u) eERXE — ®F(u) :=D*(t,u) €E, (2.1)
with the following properties:
(i) Forallt,s € R,
P 0@ =@,

(ii) Forallt € R, ®X(2) = 2.
(iii) X : 2 C E — E is a vector field that generates the dynamics in the sense that, when
u€ P, ®(u) :=u(t) € Z is a solution of the differential equation

u(t) =X (u)), u(0)=u. (2.3)

& (u) = Idg. (22)

59

By this we mean that the curve t € R — u(r) € E is differentiable as a map from R to E.
In infinite dimensional problems, the vector fields are often only defined on a domain 2,
where they may not even be continuous. But note that we always assume that the flows
themselves are defined on all of E (or on an open subset of E). For examples illustrating
these subtleties, see Section 2.4. Local flows can be defined analogously. In that case the
domains are dense in some open subset of E, but we shall not deal with such situations in
these notes since we will always assume the flows to be globally defined.
Suppose there exists a function F' : E — R" so that

FodX =F, VieR. (2.4)

We then say that the vector field X or its associated flow ®X admits m constants of the
motion, which are the components F; of F. In that case, one may consider the restriction
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of the flow @ to the level sets of F: for u € R™, we define
Yy={u€cE|F(u)=u}, (2.5)
and one has that ®fX, = X, forall u € R™.

2.2. Symmetries, reduced dynamics and relative equilibria

We now define the notion of an invariance group for a dynamical system. For that
purpose, we need to say a few words about group actions. Let G be a topological group
acting on E. By this we mean there exists a separately continuous map

D:(g,u) € GXE — Dy(u) €E,
satisfying @, = Id, ®g,,, = Py, 0 Dg,. We will call
Oy ={Dy(u)| g € G} (2.6)

the orbit of G through u € E. For later reference, we define the isotropy group of u, G,, as
follows

G.={g€G|Py(u) =u}. 2.7)

We can then introduce the notion of an invariance group for @Y.

Definition 2.1. We say G is an invariance group (or symmetry group) for the dynamical
system <I>;X if, for all g € G, and for all r € R,

D, 0D =P 0D, (2.8)

Remark that G = R is always an invariance group of the dynamical system, with ac-
tion ®X on E. While this is correct, this is not of any particular use, as one can suspect
from the start. Indeed, the flow ®X is in applications obtained by integrating a nonlinear
differential or partial differential equation, and is not explicitly known. In fact, it is the
object of study. “Useful” symmetries are those that help to simplify this study; they need
to have a simple and explicit action on E. They are often of a clearcut geometric origin:
translations, rotations, gauge transformations, efc. Several examples are provided in the
following sections.

Finally, it should be noted we did not define “the” symmetry group for ®X, but “a”
symmetry group. Depending on the problem at hand and the questions addressed, differ-
ent symmetry groups may prove useful for the same dynamical system, as we shall also
illustrate. In particular, any subgroup of an invariance group is also an invariance group,
trivially.

It follows immediately from (2.6) and (2.8) that, forall x € E,

D Oy = Ogx (- (2.9)
In other words, if G is an invariance group, then the dynamical system maps G-orbits into
G-orbits. This observation lies at the origin of the following construction which is crucial
for the definitions of relative equilibrium and orbital stability that we shall introduce. We

give the general definitions here, and refer to the coming sections for examples. Defining
an equivalence relation on E through

u~u = 0,=0,,

we consider the corresponding quotient space that we denote by Eg = E/ ~ and that we
refer to as the reduced phase space. We will occasionally use the notation

n:ucekE— 0,€Eg (2.10)
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FIGURE 1. A dynamical orbit7 — u(r) and its “attached” G-orbits, with
the projection into Eg.

for the associated projection. So the elements of E¢ are just the G-orbits in E. It is then
clear from (2.9) that the dynamical system ®X on E naturally induces reduced dynamics
on the orbit space Eg: it “passes to the quotient” in the usual jargon. We will use the same
notation for these reduced dynamics and write ®X¢& = O'(t) for any 0 € Eg. Note that
X0, = O, (See Fig. 1).

As a general rule of thumb, one may hope that the reduced dynamics are simpler than
the original one, since they take place on a lower dimensional (or in some sense smaller)
quotient space. This idea can sometimes provide a useful guideline, notably in the study
of stability properties of fixed points or periodic orbits of the original dynamical system,
as will be illustrated in the coming sections. Implementing it concretely can nevertheless
be complicated, in particular because the quotient itself may be an unpleasant object to
do analysis on, even in finite dimensions, as its topology or differential structure may be
pathological and difficult to deal with. Conditions on G and on the action & are needed, for
example, to ensure the quotient topology on E is Hausdorff, or that it has a differentiable
structure [AM78, LM87, PRWO04]. In addition, concrete computations on models are more
readily done on E directly, than in the abstract quotient space, particularly in infinite di-
mensional problems. We will avoid these difficulties, in particular because we will work
almost exclusively with isometric group actions. Their orbits have simplifying features
that we will repeatedly use: see Proposition 2.3 below.

We are now in a position to introduce the notion of relative equilibrium, as follows.

Definition 2.2. Let u € E. Let ®X be a dynamical system on E and let G be a symmetry
group for E. We say u is a G-relative equilibrium2 for CIDZX if, for all t € R, u(t) € 0),. Or,
equivalently, if for all # € R, CI>ZX 0, = U,. When there is no ambiguity about the dynamical
system @ and the group G considered, we will simply say u is a relative equilibrium.

With the language introduced, u is a relative equilibrium if &, is a fixed point of the
reduced dynamics on Eg. Again, we refer to the following sections for examples. We are
interested in these notes in the stability of such relative equilibria. Roughly speaking, we

In [LMB87], the term stationary motion is used for this concept.
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will say a relative equilibrium is orbitally stable if it is stable as a fixed point of the reduced
dynamics; we give a precise definition in Section 3.

We end this section with two comments. First, the above terminology comes from
the literature on Hamiltonian dynamical systems in finite dimensions. We will see in the
following sections what the many specificities are of that situation. We refer to [Arn99,
AMT7T8, LM87] for textbook treatments and historical background and to [Pat92, Mon97,
LS98, PRW04, RSS06, MRO11] for more recent developments. Second, we will often
need to deal with the restriction of the dynamical systems under consideration to the level
sets X, C E of a family of constants of the motion F, as defined in (2.5). Note that X, is a
metric space. We define

Gy, ={g€G|VuecXy ®,u) €Ly} 2.11)

This is clearly a subgroup of G, which is a symmetry group of the dynamical system
restricted to Xy, We will often deal with isometric group actions on such X, or on the full
Banach space E. The following simple proposition collects some of the essential properties
of their orbits that we shall repeatedly need and use. We first recall the definition of the
Hausdorff metric. Let (X,d) be a metric space and let S, S’ C (£,d). Then

A(S,S") = max{supd(u,S’), sup d(S,u’)}. (2.12)

ues u'es'

Notice that this is only a pseudometric3 and that A(S,S’) = +oo is possible.

Proposition 2.3. Ler G be a group, (£,d) a metric space and ® : G x £ — ¥ an action of
G on L. Suppose that for each g € G, ®, is an isometry: Yu,u' € X,d(Pg(u), Pg(u')) =
d(u,u). Let 0,0’ be two G-orbits in X. Then
(i) Yui,up € ONuuhy € 0, d(uy,0') =d(up, 0"), d(uy,0) =d(ub,0),

(i) Yue O,u' € 0', du,0")=A(0,0")=d(,0),

(iii) Yvue O, € 0', A(0,0") <d(u,u).
Proof. The first statement follows from the existence of g € G so that ®¢(u;) = us. For
the second, we proceed by contradiction. Suppose first that, Vu € O,u' € &', d(u, 0") <
d(u',0). Letu € O,u’ € 0'. Then we know there exists v € &’ (depending on u,u’) so
that d(u, 0') < d(u,v) < d(u', ). But since, by the first part of the proposition, d(v, &) =
d(u', 0), this implies d(u,v) < d(v, &), which is a contradiction. So we conclude, using
the first part again, that Vu € &,u' € 0',d(u, 0") > d(«', ). Repeating the argument with
the roles of &, 0" inverted, the result follows. O

If the action is not isometric, it is quite possible for all the statements of the theorem to
fail. For example, consider on E = R? the action ®,(q, p) = (exp(a)q,exp(—a)p), a € R.

2.3. Motion in a spherical potential

In this section, we illustrate the preceding notions on a simple Hamiltonian mechanical
system: a particle in a spherical potential. We will make free use of the concepts and
notation of Appendices A.2 and A.3 that we invite the reader unfamiliar with Hamiltonian
mechanics or Lie group theory to peruse.

By a spherical potential we mean a function V : R3 — R, satisfying V (Rq) = V(g), for
all R €SO(3). With a slight abuse of notation, we write V(q) = V(||¢||), for a smooth
function V : R* — R. We consider on E = R® the Hamiltonian

I
H(u) = H(g,p) = 5p* +V(llll) (2.13)

3A(S,S/) =0 does not imply S = §'. In particular, A(S,S) = 0.
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and the corresponding Hamiltonian equations of motion
g=p, p=-V"l4l)d (2.14)
where we introduce the notation b = ﬁ for any b € R, Integrating those, we obtain the

Hamiltonian flow ® (1) = u(t), where u = (¢, p) € RS. Introducing the angular momen-
tum

L(g,p) =qAp, (2.15)
one checks immediately that, for any solution t € R — (g(t), p(t)) € R®, one has
d
g La(),p() =0. (2.16)

In other words, angular momentum is conserved during the motion in a central potential:
its three components are constants of the motion. This implies the familiar result that the
motion takes place in the plane perpendicular to L and passing through 0.

We will now use Noether’s Theorem (Theorem A.3.9) to show this system is SO(3)-
invariant. We start with the following observations. First, the action of the group G =SO(3)
on E = R given by

Pr(u) = (Rq,Rp) (2.17)
is easily checked to be globally Hamiltonian®. Indeed, for each £ €s0(3),
q)exp(zé) = q’ng )

where
Fe(q,p) =& -L(q,p)

(recall that we can identify so(3) with R3 via (A.2.6)). In other words,“angular momentum
generates rotations.” Next, it is clear that the Hamiltonian satisfies H o®gr = H. As aresult,
it follows from Theorem A.3.9 (iii) that the dynamical flow is rotationally invariant:

O op =dro®@,  VteR, R€SO(3).

Note that, here and in what follows, we are using, apart from the symplectic, also the
standard euclidean structure on R,

We now wish to identify the relative equilibria of these systems. For that purpose,
consider first u € R® with L(u) = u # 0. Then the ensuing dynamical trajectory u(z) lies
in the surface

Yy ={ucR®|L(u)=p}. (2.18)
Now, if u is a relative equilibrium, then, for each ¢, there exists R(r) € SO(3) so that
@pyu = u(t). Hence p = L(u(t)) = L(Pg(u) = R(t)L(u) = R(¢)1. In other words, R(t)
belongs to
Gu={R€SO(3)|Ru=p}~S0(2),

which is the subgroup of rotations about the p-axis. It follows that ||g(¢)|| = ||¢||, for all
t. Since g(z) is perpendicular to y, this means that ¢(¢) lies on the circle of radius | g||
centered at 0 and perpendicular to pt. The orbit is therefore circular and, in particular, for
all 7, g(r) - p(t) = 0. Conversely, it is clear that all circular dynamical orbits are relative
equilibria. The initial conditions corresponding to such circular orbits are easily seen to be
of the form

g=p.d, p=0.p, Z=pV'(p.), q-p=0, (2.19)
with p,, 6, > 0 and hence V'(p,.) > 0. We will discuss in Section 4 under what conditions
they are orbitally stable in the sense of (1.4).

4See Definition A.3.7.
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Now, let u = (g, p) € R be such that L(x) = 0. In this case ¢ and p are parallel and this
remains true at all times. But if p(¢) # 0 at any time 7, u cannot be a relative equilibrium.
Indeed, the motion is then along a straight line passing through the origin and such a
straight line cannot lie in an SO(3) orbit since the SO(3) action preserves norms. If on the
other hand u = (p.4,0) = u(t) is a fixed point of the dynamics, it is a fortiori a relative
equilibrium. This occurs if and only if V/(p.) = 0 as is clear from the equations of motion.
Note that these fixed points fill the sphere of radius p..

It is clear these fixed points cannot be stable in the sense of definition (1.1) or (1.4).
Indeed, any initial condition &’ close to such fixed point u, but with p’ = 0 gives rise to a
trajectory in the plane spanned by ¢’ and p’: when ¢’ and p’ are not parallel, the trajectory
will wind around the origin in this plane, moving away from the initial condition. What
we will prove in Section 4 is that, provided V" (p.) > 0, these trajectories all stay close to

Op.00={ucR’q-q=pZ, p-p=0,4q-p=0}, (2.20)
which is the SO(3) orbit through the fixed point u = (p.§,0). Those fixed points are
therefore SO(3)-orbitally stable, in the sense of Definition 3.1 (i) below.

To end this section, we list, for later purposes, all SO(3)-orbits in E = R®. Those are
easily seen to be the hypersurfaces 0 s ¢ of the form

Opoa=1(q.p) ER®|q-q=p* p-p=0? g p=al, (2.21)

with p,o > 0,00 € R. Note that || < po. Those orbits are three-dimensional smooth
submanifolds of R®, except on the set where the angular momentum L vanishes, i.e. on

%o ={(q,p) €R®|L(gq,p) = 0}.

This surface (which is not a submanifold of E) is itself SO(3)-invariant and foliated by
group orbits as follows:

Y= U Gpoa={00}u |J Opoa

po=|a| po=|a|
(p,0)#(0,0)
On the latter orbits, g and p are parallel, but do not both vanish, so that these orbits can be
identified with two-dimensional spheres.

2.4. The nonlinear Schrodinger equation

An important example of an infinite dimensional dynamical system is the nonlinear
Schrodinger equation

2.22
u(0,%) = uol), 222
with u(t,x) : R x RY — C. Here A denotes the usual Laplace operator and f is a local
nonlinearity. More precisely, consider f : (x,u) € RY x RT — f(x,u) € R such that f is
measurable in x and continuous in u. Assume that

{ iQu(t,x) + Au(t,x) + f(x,u(t,x)) =0,

f(x,0) =0ae. in R? (2.23)
and that for every K > 0 there exists L(K) < oo such that

|f(x,u)—f(x,v)| SL(K)|M—V| (224)
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a.e. in R and for all 0 < u,v < K. Assume further that

L(-) € C°([0,+<0)) ifd=1,
4 (2.25)
L(K)gC(1+K“)withO§a<ﬁ ifd>2,
and extend f to the complex plane by setting
u
f(xa“) = mf(xa |u|)a (226)

forallu e C,u+#0.
Finally, let H be the Hamiltonian of the system defined by

71 ) )
H(u) = E/W|vu| (x)dx—/Rd/O F(x,s) dsdx. 2.27)

We now explain how the Schrédinger equation defines an infinite dimensional dynamical
system with symmetries, within the framework of Sections 2.1 and 2.2. The sense in which
the Schroédinger equation defines a Hamiltonian dynamical system will be explained in
Section 5.

For that purpose, we need the following results on local and global existence of solutions
to (2.22). First, concerning local existence, we have:

Theorem 2.4 ([Caz03)). If f is as above, then for every uy € H' (Rd,(C) there exist num-
bers Tnin, Tmax > 0 and a unique maximal solution u:t € (—Tiin, Timax) — u(t) € H' (R?,C)
of (2.22) satisfying

u € CO((=Thnin, Tnax ), H' (RY)) N C (= Tinin Tinax ), H~H(RY)).

Moreover, u depends continuously on uy in the following sense: if u’é — ug in H! (Rd,(C)
and if uy is the maximal solution of (2.22) with the initial value ul(‘), then u, — u in
CO[—S,T],H' (R?)) for every interval [~S,T) C (—Thin, Tmax ). In addition, there is con-
servation of charge and energy, that is

[u(®) |2 = lluoll 2, H(u(t)) = H(uo) (2.28)
Sorallt € (—Thin, Tax)-

For global existence of solutions, one needs a growth condition on f in its second vari-
able.

Theorem 2.5 ([Caz03]). Let f be as in Theorem 2.4. Suppose in addition that there exist
A>0and0<v < % such that

u
f(x,s)ds <Alul*(1+|u]¥), xeR? uecC. (2.29)
0

It follows that for every ug € H' (R¢,C), the maximal strong H'-solution u of (2.22) given
by Theorem 2.4 is global and sup, g ||u(t)|| ;1 < +eo.

Note that the condition on f is always satisfied when f is negative. This result im-
plies that one can define ®X on E = H'(R?,C) by ®X (u) = u(t) € E and that ®X satis-
fies (2.1)—(2.2). Note however that, whereas the flow lines r — u(t) € E are guaranteed
to be continuous by the above theorems, they are C! only when viewed as taking values
in E¥* = H-!(R4,C). The following “propagation of regularity” theorem allows one to
identify the appropriate domain 2 on which the stronger condition (2.3) holds.
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Theorem 2.6 ([Caz03]). Let f be as in Theorem 2.4, and consider ug € H' (R?,C) and
u € CO((=Thmin, Tinax ), H' (R?)) the solution of the problem (2.22) given by Theorem 2.4.
Then the following statements hold.
(i) If up € H*(R?,C), then u € CO((—Tiin, Tmax ), H>(R?)). If. in addition, f(x,-) €
C!(C,C), then u depends continuously on uq in the following sense: ifu](; — up
in H? (Rd,(C) and if uy is the maximal solution of (2.22) with the initial value u](;,
then w, — u in CO([—S, T),H*(R?)) for every interval [—S,T] C (—Thin, Tmax)-
(i) If ug € H™(RY,C) for some integer m > max{%,2} and if f(x,-) € C"(C,C),
then u € CO((—Thin, Tmax ), H™(R?)). In addition, u depends continuously on uy
in the following sense: ifu’é — ug in H"(R,C) and if u is the maximal solution
of (2.22) with the initial value uf, then u — u in L ([—S,T],H™(RY)) for every
interval [—S,T] C (—Tin, Tmax)-

Note that the derivatives of f should be understood in the real sense here.

Remark 2.7. 1t follows from Theorem 2.6 that, if we take & = H’”(Rd,(C), with m > 3,
then (2.3) is satisfied, and so the flow is differentiable as a map from R to E = H!(R¢,C).

Example 2.8. A typical example of local nonlinearity which satisfies (2.23), (2.24), (2.25)
and (2.26) is the pure power nonlinearity

fluw)=Alul"u (2.30)

with
1<0 <4 ford=1,

4 2.31
1§G<1+m ford > 2, ( )

and A € R. The standard “cubic” Schrédinger equation corresponds to ¢ = 3, which is an
allowed value of ¢ only if 1 <d < 3. The Hamiltonian is then given by

_1 2 A o+l
H(u) = 2/Rd|Vu| (x)dx GH/W |u| 1 (x) dx. (2.32)

In this case, the nonlinear Schrodinger equation reads
i u(t,x) + Au(t,x) + Alu|® 1 (t,x)u(t,x) =0,
{ u(0,x) = up(x).
Theorem 2.4 then ensures the existence of a local solution
u € CO((—Tins Tonax) H' (RY)) N CY ((— Trnin, Tonax ), H " (R?)) (2.34)

and the conservation of the Hamiltonian energy H. To guarantee the existence of a global
flow, we have to distinguish the focusing (A > 0) and the defocusing case (A < 0). More
precisely, Theorem 2.5 implies the flow is globally defined on H'!(R?, C), i.e.

. RxH'(R?,C) —» H'(R?,C), (2.35)

(2.33)

if o satisfies (2.31) in the defocusing case orif 1 <o < 1+ % in the focusing case. Note
that, in the latter situation, ¢ = 3 is allowed only if d = 1.
Next, we recall that

c €N, codd = f€C”(C,C),
ceN, oeven = (feC"(C,C)em<o—-1),
c¢N=(feC"(C,C)em<[o—-1]+1),
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and, in particular, f € C'(C,C) for all ¢ > 1. Hence Theorem 2.6 applies and the flow can
be restricted to H(R?,C)
¥ : R x H*(RY,C) — H*(RY,C),

whenever o satisfies (2.31) in the defocusing case or 1 < 6 < 1+ 3 in the focusing case.
This, however, is not enough for our purposes, since it only guarantees the existence of the
derivative of ¢ — u(t) as a function in L?>(R¢,C), and not as a function in E = H'(R?,C).
In other words, we cannot take 2 = H?(R?,C) if we wish to satisfy (2.3). To obtain
sufficient propagation of regularity, having in mind Remark 2.7, we state the following
results.

In dimension d = 1 both in the defocusing case, for 3 < ¢ < +oo, and in the focusing
case, for3 <o <5,

¥ R x H3(R,C) — H*(R,C).
Hence, in these cases, using the notation introduced in Section 2.1, E = H'(R,C) and the
domain 2 of the vector field X can be chosen to be the Sobolev space H*(R,C).

In dimension d = 2,3 and in the defocusing case, the global flow ®X can be defined on
E=H! (Rd,(C) forall3<o <1+ ﬁ. As before, the domain Z of the vector field X can
be chosen to be the Sobolev space H> (R4, C).

It follows in particular from what precedes that the cubic Schrodinger equation (o = 3)
fits in the framework of the previous section provided either d = 1 (with A arbitrary) or
A<0Oandd=2,3.

We now turn to the study of the symmetries of the nonlinear Schrédinger equation (2.33).
Let G = SO(d) x RY x R and define its action on E = H'(R¢,C) via

Vue H'(RY), (Pray(u)) (x) =eTu(R™ " (x—a)). (2.36)
Here the group law of G is
(Ri,a1,71)(R2,a2,) = (RiR2,a1 + Riaz, i + 12)

for all Rj,R; € SO(d), aj,a; € R4 and 7,7 € R. We claim that G is an invariance
group (see Definition 2.1) for the dynamics ®X. Indeed, let u(t,x) = (®X(u))(x) a so-
lution to the nonlinear Schrédinger equation (2.33) and consider ((Pg.q,y 0 PF) (1)) (x) =
eu(t,Rx — a). A straightforward calculation shows that e’u(t,R~!(x — a)) is again a so-
lution to equation (2.33). More precisely,

i0,(e"u(t,R" (x—a))) +A(eu(t, R~ (x—a)))

+AleMu(t, R (x — a))l"’l(eiyu(t,R’l(xf a)))

= (i(&tu)(t,Rfl (x—a))+ (Au)(t,R" ' (x—a)) + (A|u|®'u)(t,R" (x— a)))

=0
where we use the fact that the Laplace operator is invariant under space rotations, space
translations and phase rotations. As a consequence,

(Prayo®)(1)) (x) = (¥ © Pray)(W)) (x)

and G is an invariance group for the dynamics ®X. Moreover, we can easily prove that
Ho®r, = H. Indeed, using the definition of H given in (2.32), we have

_ c+1
H o (1) 2/ V(R e a) e 2 [l R (e )
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We will see later (in Section 5.3) why this is important.

Now, let us give some examples of G-relative equilibria of the nonlinear Schrédinger
equation (2.33). First, consider the simplest case where d = 1 and ¢ = 3. The invariance
group G reduces to R x R and the nonlinear Schrédinger equation becomes

idu(t,x) + d%u(t,x) + Alu(t,x)|*u(t,x) = 0. (2.37)

In the focusing case (A > 0), there exists a two-parameters family of functions, the so-
called bright solitons,

Ugc(t,x) = a\/%sech(a(x - C;))e"(%ﬂ(azf%)z)

that are solutions to (2.37) for all (¢,c) € R x R, with initial conditions

Ug,c(X) =ugc(0,x) = Oc\/%sech(ax)ei(

For each (a,c) € R X R, ug(x) is a G-relative equilibrium of (2.37). Indeed, the G-orbit
of ug o(x) is given by

(S

%) ¢ E = H'(R). (2.38)

Ougo = {e"yuaﬁc(x —a),(a,y) eRx R} ) (2.39)
Hence, it is clear that for all f € R, g (,x) € ﬁuw and, by Definition 2.2, we can conclude

that ug . (x) is a G-relative equilibrium of (2.37).

More generally, standing and travelling waves are examples of G-relative equilibria of
the nonlinear Schrodinger equation (2.33). More precisely, standing waves are solutions to
(2.33) of the form

ug(t,x) = ¢ wg (x) (2.40)
with & € R. For this to be the case, the profile ws has to be a solution of the stationary
equation

Aw+ Alw|®Tw = Ew.

Bright solitons with ¢ = 0 are examples of such standing waves, with d = 1,6 = 3. Stand-
ing waves of the one-dimensional Schrodinger equation with a spatially inhomogeneous
nonlinearity, as well as their orbital stability, will be studied in Section 9. Travelling waves
are solutions to (2.33) of the form

urw (1,) = € wrw (x — ct) (241)
withé e Randc € R4. Now, the profile wrw has to be a solution of

Aw+Aw|® tw = Ew+ic- Vw.

Bright solitons with ¢ # 0 are examples of such travelling waves, withd = 1,0 = 3.
The G-orbit of the initial condition wg(x) is given by

Os = {e"ws(R™' (x—a)),(R,a,7) € G} (2.42)
and it is clear that ug(r,x) € 0, for all r € R. The same holds true for urw with wg

replaced by wrw.

Another, closely related example of an infinite dimensional dynamical system is the
cubic Schrodinger equation

{ iopu(r,x) + 02u(t,x) % [u(t,x)Pu(t,x) = 0

u(0,x) = up(x) (243



ORBITAL STABILITY: ANALYSIS MEETS GEOMETRY 17

in the space periodic setting T = R/(27Z) (the one dimensional torus). In [Bou93], the
following theorem is proven.

Theorem 2.9 ([Bou93]). The Cauchy problem (2.43) is globally well-posed for data ug €
H*(T,C), s > 0 and the solution u € C°(R,H*(T)). Moreover, if u, v are the solutions
corresponding to data uy,vy € H*(T,C), there is the regularity estimate

() = v(0) |z < C" o = vo (244)
where C depends on the L*-size of the data, i.e. C = C(||uo|| 2, |[vol|,2)-

This ensures the existence of a global flow
®* R x H*(T,C) — H*(T,C).

for all s > 1. Hence, we can choose E = H'(T,C) and 2 = H*(T, C) to ensure the condi-
tions of Section 2.1 are satisfied.

As before, by using the invariance of Equation (2.43) under space translations and phase
rotations, we can show that the dynamics defined by ®X are invariant under the action of
the group G = R x R given by

(Pay(u))(x) = e7ulx —a). (245)
As an example of G-relative equilibria, we can consider the two-parameter family of plane
waves
g i (1,x) = e e (2.46)
with o € R and k € Z and & = —k? & |t|>. The G-orbit of the initial condition ug 4 (x) =
ae ™ is given by
ﬁ”a,k = {aeiyeiik(X7a)7 (av ’)/) € G} .

As before, it is clear that ug (,x) € Oy,
of these relative equilibria in Section 8.
Remark that plane waves are the simplest elements of a family of solutions of the NLS

equation of the form

for all € R. We will study the orbital stability

Upo(t,x) = % e PU (x —ct), (1,x) eERXR

with &, p,c € Rand U : R — C a periodic function. This kind of solutions are called quasi-
periodic travelling waves and their orbital stability has been studied in [GHO7a, GHO7b].

2.5. The Manakov equation

The Manakov equation [Man74, Gaz12] is a system of two coupled nonlinear Schrodinger
equations which describe the evolution of nonlinear electric fields in optical fibers with
birefringence, defined by

{ialu(t,x)+Au(t,x)+7L|u(t,x)|2u(t,x) =0 047
u(0,x) = up(x) '
with u(r,x) = (Z;g:g) ‘Rx R — C?, |u(t,x)]> = (Jui (¢,x)|> + |uz(t,x)|?) and A € R.

With the same arguments as those used for the nonlinear Schrodinger equation (2.33),
one can easily show that the flow is globally defined in H'(R,C?), i.e.

®* :Rx H'(R,C*) — H'(R,C?) (2.48)
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both in the focusing (A > 0) and in the defocusing case (A < 0). Moreover, thanks to the
propagation of regularity, the flow preserves H>(R,C?) i.e.

®* : R x H3(R,C?) — H*(R,C?) (2.49)
as before. Hence, using the notation of Section 2.1, one can choose E = H! (R,(CZ) and

the domain 2 = H*(R,C?).
Now, let (a,5) € G =R x U(2) act on E = H'(R,C?) via

D, 5(u) = Su(x—a). (2.50)

Here the group law of G is (ay,S1)(a2,5,) = (a1 +az,515>) forall a;,a, € R? and S1,5, €
U(2). A straightforward calculation proves that G is an invariance group for the dynamics
X,

In the focusing case (A > 0), there exists a family of solitons,

/2 i(5v+ (0= )r) (cosBe™
— = _ 2 4 .
uy(t,x) =« 1 sech(at(x—ct))e ( sin B

that are solutions to (2.47) forall v = (a,¢,0,7%,72) € IR’ with initial condition

2 i(<y) [cosBe
uy(x) = uy(0,x) = a\/;sech(ax)e (52) (sin Beih) €E=H'(R,C?).

For each v € R, uy(x) is a G-relative equilibrium of (2.47). Indeed, the G-orbit of uy (x)
is given by
Oy, = {Suy(x—a),(a,S) e RxU(2)}.

Hence, it is clear that for all € R, uy(¢,x) € 0, and, by Definition 2.2, we can conclude
that uy (x) is a G-relative equilibrium of (2.37).

2.6. The nonlinear wave equation
Let us consider the nonlinear wave equation

2.51)

{ AZu(t,x) — Au(t,x) + Alu(t,x)|° tu(r,x) = 0
u(0,x) = up(x), du(0,x) = u; (x)

with u(f,x) : R x RY — R, and, for simplicity, let us take d = 1,2,3. Moreover, we restrict
our attention to the defocusing case, that in our notation corresponds to A > 0 (because
of the minus sign in front of the Laplacian), and to the so-called algebraic nonlinearities,
which means ¢ € N is odd. As a consequence the function f(u) = |u|° ~'u is smooth.

Let H defined by

_ 1 2 1r 2 A o+l
H(u,a,u)—E/Rd|Vu| dx—i—E./Rd|8tu| dx—i—G—H/Rd|u| & (2.52)

be the Hamiltonian of the system. As for the Schrédinger equation, we will explain in
Section 5 how the nonlinear wave equation defines an infinite dimensional Hamiltonian
dynamical system.

In the defocusing case and whenever | <6 <+ ford=1orl1 <o <1+ ﬁ for

d = 2,3, we can define a global flow on H'(R?,R) x L*>(R?,R), i.e.
¥ R x (H'(R?,R) x L>(R?,R)) — H'(RY,R) x L*(R?,R)

(2.53)
(t,u(0),du(0)) — (¢,u(t),du(t))
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withu € C(R,H'(R?))NC' (R, L?(R¥)) the unique solution to (2.51). Moreover the Hamil-
tonian energy (2.52) is conserved along the flow, i.e.

H(u(0),0,u(0)) = H (u(t), du(r))
for all € R (see [Tao06] and references therein). Furthermore, it follows from the integral
form of (2.51) (see [Tao06, Ex. 2.18 and 2.22]) that u € C*>(R,H ' (R?)).

In the algebraic case, thanks to the persistence of regularity, the flow can be restricted

to H*(RY,R) x H*"'(RY,R),

Y R x (H'(RY,R) x H"'(RY,R)) — H*(RY,R) x H~!(RY,R)
for all s > %. Hence, using the notation of Section 2.1, E = H'(RY,R) x L?>(R?,R) and
the domain 2 of the vector field X can be chosen to be the Sobolev space H?(R?,R) x
H'(RY R).

As for the nonlinear Schrodinger equation, by using the invariance of Equation (2.51)
under space rotations, space translations and phase rotations, we can show that the dy-
namics defined by @ are invariant under the action of the group G = SO(d) x RY on
E = H'(R?,R) x L*(R?,R) defined by

@p o, du) = (R (x —a)),du(R™" (x — a))).

Moreover, H o ®g .y = H and we will explain in Section 5.3 the consequences of this fact.

2.7. Generalized symmetries

The nonlinear Schrodinger equation is often said to be invariant under Galilei transfor-
mations. This invariance is however of a slightly different nature than the one defined in
Definition 2.1, as we now explain5 .

Recall that Newtonian mechanics is known to be invariant under coordinate changes
between inertial frames. These include space and time translations, rotations, and changes
to a moving frame, often referred to as Galilei boosts. All together, they form a group, the

Galilei group Gg,, wWhich is a Lie group that can be defined formally as
Gga = SO(d) x R x RY x R
with composition law
(R'V.,d t'")(R,v,a,t) = (RR,Rv+V Ra+d +Vt,t+1).
It acts naturally on space-time (x,7) € R? x R as follows:
(R .,d 1) (x,t) = (Rx+d +Vt,t' +1).
Of course, the physical case corresponds to d = 3.
The statement that Newton’s equations are invariant under boosts means for example

that, if t — (g1 (¢),q2(¢)) is the solution of Newton’s equations of motion for two particles
moving in a spherically symmetric interaction potential V

migi(t) = =V, V(llg1(t) —q2(t)]), m2ga(t) = =V, V([lq1(t) — q2(2)]),
with initial conditions

. 2T P2
Ch( ) q1, 512( ) q2, ql( ) m s 612( ) m27

then, forall v € R, t — (g (t) +vt,qa(t) +vt) is also such a solution, with initial conditions

2100) = q1, 32(0) =g, 41(0) = ZL +v, (0) = L2+,
n ny

SWe will, in this section, make free use of the material of Appendices A.2 and A.3.
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In a Hamiltonian description®, the above equations of motion are associated to the Hamil-
tonian ) )
D3

P
H =2 4 72 Ly _
(@)= 5.+ 5.+ V(llar = o),

which generates a flow @/ that is clearly invariant under space translations and rotations.
The situation for Galilei boosts, however, is different. Indeed, in this context they act on
the phase space E = R% x R® with symplectic transformations, as follows:

VVER35 (I)\l/((q7p):(q7p1_mlv7p2_m2v)'
Here K = mq +m»q> and CIDf is a shorthand notation for

K _ $Ki - 6K o Ky
D, =Pyl oPy ooy,

where each CI>VKI." is the hamiltonian flow of one component of K. But those do NOT com-
mute with the dynamical flow ®/. Indeed, one easily checks that

f ol X = @f @), (2.54)
where P = pj + p; is the total momentum of the system, which generates translations:
®P(q1,92,p1,p2) = (q1 +a,q2+a, p1, p2). In that sense, the three dimensional commuta-
tive group of Galilei boosts is NOT an invariance group for the dynamical system accord-

ing to Definition 2.1. To remedy this situation, one can proceed as follows. Define, on
E =R® x R®, for each g = (R,v,a,t) € Gga, the symplectic transformation

CI)g = (I)Z)q)tHcI)\I/(q)Rv
where @, is defined as in (2.17). It is then easily checked using (2.54) that the ®, define
an action of Ggy on E. It is clearly globally Hamiltonian (Definition A.3.7)7. It follows

that the Galilei boosts are generalized symmetries for the dynamical system @/, in the
following sense:

Definition 2.10. Let G be a Lie group, and & an action of G on a Banach space E. Let
®X a dynamical system on E. We say G is a generalized symmetry group for ®X provided
there exists & € g so that @ = Deype).-

For our purposes, an important difference between symmetries and generalized sym-
metries in Hamiltonian systems is that the latter do NOT give rise to constants of the mo-
tion. To illustrate this, remark that, although the Galilei boosts are generated by K(q, p) =
m1q1 + maq, it is clear that K is not a constant of the motion of H:

(K,H}=P, (2.55)

where P = p; + p» is the total momentum of the two-particle system. This is not a surprise:
K = MR, where R is the center of mass of the two-particle system and M = m; + m; its
mass. And of course, the center of mass moves: in fact, (2.55) implies it moves at constant
velocity.

A similar situation occurs with the nonlinear Schrédinger equation. If u(¢,x) is a solu-
tion of (2.22) with a power law nonlinearity, then so is, for every v € R¢,

i(t,x) =exp(—4(v-x+ %t)) u(t,x+vt), (2.56)

as is readily checked. The function & can be interpreted as the wave function in the moving
frame, as can be seen from the shift x — x -+ vz in position and from the factor exp(—i5 - x),

6See Appendix A.3.
7t is however not Ad* -equivariant.
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which corresponds to a translation by %v in momentum, in the usual quantum mechanical
interpretation of the Schrodinger equation. Adopting the framework of Section 2.4, one
observes that the maps

P, u(x) = exp (—4(v-x)) u(x),

defined for all v € R on E = H'(R9) are not symmetries for the Schrodinger flow &X
defined in (2.35) but that

Yo, =0, of, (2.57)
1,vt,7?t
where ® > is defined in (2.36). This commutation relation is very similar to (2.54),

Lvt,— 7t
except for the extra phase exp(—iét). We note in passing that the boosts W, are unitary
on L?, but do not preserve the H' norm. They are nevertheless bounded operators on
E =H'(RY).

As in classical mechanics, one can put together the above transformations with the
representation of the Euclidean group in (2.36) to form a (projective) representation of the
Galilei group showing that the Galilei boosts are generalized symmetries of the nonlinear
Schrodinger equation with a power law nonlinearity. We will not work this out in detail
here, but note for further use that

Dpay Py = exp(i%L) Py Pr - (2.58)

In particular @,,a,o@v =exp(i %)@vdh’a’o so that, in this setting, the boosts ‘i’v commute
with translations only “up to a global phase” exp(i%3* ), in the usual terminology of quantum
mechanics. In contrast, in classical mechanics, ®X and ®% clearly commute.

Generalized symmetries do not provide constants of the motion via Noether’s Theorem,
and hence cannot quite play the same role as symmetries in the study of relative equilibria.
We will now show how one may nevertheless use (2.57) in the analysis of the stability of
the relative equilibria of the (non)linear Schrodinger equation.

We first remark that the uq ¢, defined in (2.38), satisfy ug . = lf’,cumo. We will show
that, thanks to (2.57), if uq o is orbitally stable, then so is ug ¢, for any ¢ € R. We will only
sketch the argument, leaving the details to the reader. Note first that u o is orbitally stable,
if and only if, for all € > 0, there exists § > 0 so that, for all w € E with d(w,ug ) < 6,
there exists, forall t € R, a(z) € R, ¥(¢) € R so that

||A[|| <eg, where A;:= CD?W* ‘D[’a(,),y(,)ua’().

Now suppose u € E is sufficiently close to uq, for some ¢ € R. Then, since @C is a
bounded operator, W.u = w is close to uq o. Then, using (2.57) and (2.58), one finds

O u=dfY_w

- lijiCq)l,ct,f%zq);(w

= @,CCDLC“? %,q)l,a(t)#(l) Ua o+ @*CCDI,ct,f %tAl

= @*C(b/,mra(r)f %w(r) Hoo+ @%qplﬂf %IAI

- ¢,,Cl+a(,),— %zﬂ’(r)Jr M (I}icua’o ’ ®76¢”Cl’* %IA[ .

Since ug . = ‘f’,cua’o, and since ‘i’,c is bounded, it is now clear that CI>f(u is at all times
close to &, defined in (2.39).

Ug.cr



22 S. DE BIEVRE, F. GENOUD, AND S. ROTA NODARI

The above argument shows, more generally, that the relative equilibria of the homoge-
neous NLS for G = SO(d) x R? x R (see (2.36)) come in families lf’,cuo = u., indexed
by ¢ € RY. Moreover, if ug is spherically symmetric and orbitally stable, then all u, are
orbitally stable.

3. ORBITAL STABILITY: A GENERAL DEFINITION

We can now formulate the general definition of orbital stability that we shall study. In
fact, several definitions appear naturally:

Definition 3.1. Let ®X be a dynamical system on a Banach space E and let G be a sym-
metry group for ®X.

(i) Let u € E and let 0, be the corresponding G-orbit . We say u € E is orbitally
stable if

Ve>0,36 >0,YweE, <d(v,u) <d=VteR, in&d(v(t),ﬁu(,/)) < s) .
t'e

(i) Let & be a G-orbitin E. We say & is stable if each u € & is orbitally stable in the
sense of (i) above.

(iii) Let & be a G-orbit in E. We say ¢ is uniformly stable if it is stable and & in (i)
does not depend on u € &. In other words, if Ve > 0, there exists & > 0 so that,
Yue O,Vv eE,

d(V,Lt) <d=WVre R, inﬂgd(v(t),ﬁu(,/)) <e. 3.1
t'e

(iv) We say & € E¢ is Hausdorff orbitally stable if & satisfies: Ve > 0, there exists
6 > 0 so that, V&' € Eg

AO,0') <8 =VteR, infA(0'(t),0(t)) <e. (3.2)
l/

The four definitions are subtly different.

Definition (i) requires that the dynamical orbit issued from the nearby initial condition
v remains close to the orbit {®% P, (u) | ' € R,g € G} of the larger group R x G. It is
therefore a generalization of definition (1.4), which corresponds to the case G = {e}. This
notion of orbital stability therefore depends on the choice of the group G and it is clear that,
the larger G, the weaker it is. As we will see in the examples of Section 4 and Section 5.5,
there are cases where definition (1.4) is not satisfied for some u € E, but where the above
definition holds for a suitable choice of G. As we will also see, the choice of G may depend
on the point u € E considered and it is in particular not always necessary to use the largest
symmetry group G available for ®X to obtain orbital stability.

The stability of the orbit &’ as defined in part (ii) simply requires the orbital stability
of each point u € @, as defined in (i). Note that 6 depends on u here. In part (iii) of the
definition, uniformity is required.

Part (iv) requires that if two G-orbits &, 0’ C E are initially close (in the sense of the
Hausdorff metric) then, for all ¢, &' (t) is close to &(¢") for some value of #'. It is the natural
transcription of the definition of orbital stability in (1.4) from the original dynamical system
on E to the reduced dynamics on Eg.

Parts (i), (i1) and (iii) are the most telling/interesting, since they give a statement directly
on the phase space E, using the original distance d, rather than in the more abstract quo-
tient space Eg. They do moreover not use the somewhat unpleasant Hausdorff metric. In
applications, one really wants to prove (i), (ii) or (iii).
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As shown in the lemma below, the four definitions in Definition 3.1 are equivalent when
the group action is isometric. For many applications in infinite dimensional systems in
particular, this is the case.

Lemma 3.2. Let ®F be a dynamical system on E and let G be a symmetry group for ®¥,
acting isometrically. Let u € E. Then the following statements are equivalent.

(i) u € E is orbitally stable.

(ii) Eachv € O, is orbitally stable.
(iii) O, is uniformly stable.
(iv) O, is Hausdorff orbitally stable.

In practice, one often proves (i) for a suitably chosen u on the orbit. This then automat-
ically yields (iii). The statement in terms of the reduced dynamics in (iv) is intellectually
satisfying but rarely encountered, it seems.

Proof. We prove (i) < (ii) and (i) = (iii) = (iv) = (i).

(i) = (iii) and (i) = (ii): Letv € O, andV € E, d(V/,v) < 8. Then there exists g € G so
that v = g (u). Define u’ = @, '(v'). Then, by the isometry of @, d(u',u) < & and hence,
by hypothesis, for all 7, there exists ¢’ so that d(u(¢), 0,,(y) < €. Hence

d(v/(t)a ﬁv(l')) = d(q)g(u/(t))a ﬁu(l’)) = d(u/(t)v ﬁu(r’)) <Ee.

This proves (iii) and, in particular, (i7). Since it is clear that (if) = (i), we obtain (i) < (ii).

(iti) = (iv): Suppose 0, is uniformly stable. Let &’ be such that A(0,,0") < §. Let
u' € 0" withd(u,u’) < 8. Then (3.1), together with Proposition 2.3 (if), imply A(&" (), Oy 1)) <
E.

(iv) = (i): Suppose 0, is orbitally stable. Letu’ € E so that d(u,u’) <. Let 0" = 0.
Then, by Proposition 2.3 (iii), A(0,0") < §. Hence, for all ¢, infy A(0'(¢),0(f)) < e.
Proposition 2.3 (ii) then implies (7). O

In many applications, especially in infinite dimensional problems, the ®, are both linear
and norm-preserving: several examples were given in Section 2. In that case the action is
of course isometric. In addition, all group orbits are then bounded. Note nevertheless
that, if the ®, are norm-preserving, but not linear, the action is no longer isometric, while
the group orbits are still bounded. Finally, isometric actions may have unbounded group
orbits: think for example of translations on E = R?",

4. ORBITAL STABILITY IN SPHERICAL POTENTIALS

Before presenting the general Lyapunov approach to the proof of orbital stability in Sec-
tion 7, we show here the orbital stability of the relative equilibria in spherical potentials
that we identified in Section 2.3. This simple example is instructive for several reasons.
First, it permits one to appreciate the group theoretic and symplectic mechanisms underly-
ing the construction of a suitable candidate Lyapunov function. Second, it nicely illustrates
the various methods available to use this Lyapunov function in order to prove orbital stabil-
ity via an appropriate “coercivity estimate” generalizing (1.2). We will present three such
methods below.

4.1. Fixed points

The proof of the uniform orbital stability of &, ¢ o in (2.20) is straightforward, and can
be done with H itself as the Lyapunov function, in close analogy with the proof sketched
in the introduction.
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Proposition 4.1. Let V € C?(R3) be a spherical potential and H(u) = %pz +V(q) the cor-
responding Hamiltonian. Let p, > 0 with V'(p,) =0, V"(p.) > 0. Let O, 00 = {(q,p) €
R | ||lg|| = p«, p = 0} be the corresponding SO(3) orbit. Then O, is uniformly orbitally
stable.

This result is intuitively clear. Under the assumptions stated, the Hamiltonian reaches a
local minimum at each of the fixed points of the dynamics that make up the sphere O}, 0,
and it increases quadratically in directions perpendicular to that sphere. Any nearby initial
condition must therefore give rise to an orbit that stays close to the sphere: the potential
acts locally as a potential well trapping the particle close to ), 0.

Proof. We know from Section 2.3 that the Hamiltonian H in (2.13) is an SO(3)-invariant
constant of the motion, and that D,H = 0 for all u € 0, 0, so that each such point is
a fixed point of the dynamics. We will write H, = H(u),Yu € 0), 0. Moreover, for all

u= (qvo) € ﬁp*,0,0
" A A
277 \4 (P*)Qi%‘ 0
D;H = ( 0 L)

Note that the Hessian is not positive definite. In fact, it vanishes on w = (a,0), fora-g =0,
which is the two-dimensional tangent space 7,0), o0 to the orbit. We can therefore not
expect to obtain a coercive estimate as in (1.2). On the other hand, since V" (p..) > 0, D2H
is positive definite on the four-dimensional orthogonal complement to the tangent space,
given by

(Tu0p.00)" = {(0g,b) €R® | & € R,b € R*}. (@.1)
As a result, we can still show that there exist constants c, 1. > 0 with the property that
Vu' € E,(d(,Op, 00) <M= HW')—H, > c.d(u,0p,00)%), 4.2)

and this will suffice for the proof of orbital stability. To show (4.2), note first that setting
u' = (¢',p') and taking 1. < p./2, one has ¢’ # 0. Consider then u = (p.q’,0) € O, 00
and remark that d(u’, 0, 00) = ||’ — ul|. Now compute

Hw)-H, = H@W)—Hu)=DHu —uu' —u)+o(||u' —ul|?)
> min{1,V"(p.)}d(u, Op, 0,0)* +0(d(u', Op, 00)°)-

One can then conclude (4.2) holds by using that the term in o(d(/, &), 0,0)?) is uniformly
small in u € O, o since H is SO(3)-invariant. We now prove that &), o is uniformly
orbitally stable. Since the action of SO(3) is isometric, Lemma 3.2 shows it is enough
to prove all u € &), o are orbitally stable. Suppose that this is not true. Then there
exists u € O, 0 and € > 0, and for each n € N,, ), € E, t, € R so that d(u},,u) < 1 and

d(uy,(ta), Op, 0,0) = €. Since we can choose € < 1., we can apply (4.2) to write
H(uy) —H(u) = H(,(tn)) = Hy > ¢.d(10,(n), Op, 00)* = c:€”.
Taking n — 4o leads to the desired contradiction. O

4.2. Circular orbits

Proving an appropriate notion of stability for the initial conditions in (2.19) giving rise
to circular orbits of the dynamics turns out to be slightly less straightforward. Intuitively,
as explained already in the introduction, one expects that, under a suitable condition on the
potential, an initial condition close to a circular orbit will generate a dynamical orbit that
stays close to this orbit. As a result, orbital stability is satisfied in the sense of (1.4). The
following proposition gives a precise statement of this phenomenon.
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Proposition 4.2. Let V € C*(R3) be a spherical potential and H(u) = £p*+V(q) the
corresponding Hamiltonian. Let p.., 0. > 0 with V' (p,)p. = 62. Consider uy, = (q.,p:) =
(PG, 0xP«), with §s - p» = 0. Then uy, is a relative equilibrium for the group SO(2) of
rotations about U, = q. N\ p«. If in addition,

V'(ps) > =302p, %, 4.3)

uy, is orbitally stable in the sense of definition (1.4) and of Definition 3.1 (i). In addi-
tion, uy, is a local minimum of Hy,, the restriction of H to the level surface ¥, defined
in (2.18).

Note that the two definitions of orbital stability mentioned coincide in this particular
case. Also, since the action of the rotation group is isometric, the result implies uniform
orbital stability as well. Below, we will give three different arguments to prove the propo-
sition, each of which can and has been used to treat various infinite dimensional problems.

The origin of the condition V”(p,) > —362p, 2 can be understood as follows. In
standard mechanics textbooks such as [Gol80], motion in a spherical potential is treated
by fixing the angular momentum g A p = ., and then using for g, p polar coordinates
(r,0,pr, pg) in the plane perpendicular to the angular momentum. The Hamiltonian then
reads, in these coordinates,

pi | Pa ")

H(raevprvpﬂ) = ?+ﬁ+v r

The equation of motions are

2
. y_ Po . 14 .
r=Dpr, Gzr_z pr(t):r_g_v/(r)v Pe=0

and W, = pg. It follows that the radial motion is decoupled from the angular one, since

2
i= =V, (r) with Vy, (r) =V (r)+ 57*2 It is then clear that the circular orbits correspond to
the critical points r = p, of the effective potential V,,, which are fixed points of the radial
dynamics. By an argument as in the introduction, those are stable if the critical point is a

local minimum of
2

p
Hﬂ*(r7pr) = 7" +Vﬂ*(r)7

and so in particular if V}/ (p.) > 0, which is precisely condition (4.3). Note however that

the preceding argument does not prove orbital stability of the circular orbits: it does not

allow to consider initial conditions u € R® with y # .. This is actually the tricky part of

the proof of the proposition.

Proof. To mimic the previous proof, we would like to find a constant of the motion .Z
which is SO(2) invariant and so that D.Z vanishes on the orbit under consideration. We
cannot use H for this, since clearly DM“*H # 0, as we are not dealing with a fixed point
of the dynamics. On the other hand, as we pointed out after the definition of relative
equilibrium, when uy,, is a relative equilibrium, then there exists an element & of the Lie-
algebra of the invariance group so that Xy (uy, ) = X¢ (uy, ) or, equivalently, so that

Dy, (H—Fz) =0.

In the present case, the invariance group is a one-dimensional rotation group and the state-
ment becomes: there exists & € R so that

Dy, (H &1, 1) =0, (44)
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since, as we saw, UL, - L generates rotations about the u,-axis. Since, for all u € R®

DyH=(V'(lql)g.p),  Du(ps-L) = (pA e, s Nq),
one easily checks that (4.4) is satisfied iff & = p; 2. This suggests to define
ZL(u) = H(u) = p; - L(u)
and to try using it as a Lyapunov function. .Z is often referred to as the “augmented
Hamiltonian”. Note that the theory of Lagrange multipliers implies that (4.4) is equivalent
to the statement that the restriction Hy, of H to Xy, has uy, as a critical point. Hence the
circular orbits can be characterized as the critical points of Hy,,. This is a general feature

of relative equilibria of Hamiltonian systems, as shown in Theorem 6.1.
The main ingredient of the proof is the following statement:

3c>0,We O, Ve (T0,,.) NTE., DXZL(ww)>c|w|®. 4.5

Upy
This is a lower bound on the Hessian of .Z restricted to the two-dimensional subspace of
IR® spanned by the vectors tangent to Xy, (see (2.18)) and perpendicular to the dynamical
orbit &y, C Xy,. It will allow us to show the following lower bound on the variation of
the Lyapunov function, which is to be compared to (1.2):

386>0,c>0,Vu € .,
(A, 04,) < 8= L) — Lluy,) > cd* (W, 04,,)) . (4.6)

Note that this immediately implies that Hy,, attains a local minimum on &, .
To show (4.5), note that the three vectors

p
— A2 |, (1), - p) , 47
el (_ (g_) q) e (p) €3 (q 4.7

form an orthogonal basis of 7,X,, , for each point v = (¢, p) € 0,,; e; is easily seen to be
tangent to &, so that e and e3 span (T, 0,,)* N T,X,,. A simple but tedious computation
then shows that the matrices of D? (i, - L) and of D?H in this basis are

2
2 o w|(%) 1]
Di(u.-L)= 0 —2u? 0
2
2 % 2
u [(g—) 1} 0 .
and
V'(p.)p ol 0 (V'(ps)ps ' = 1)o?
D}H = 0 V" (p.)p? + o2 0

(V'(p)ps ' —1)o7 0 V'(ps)ps ol +p?

The estimate (4.5) now follows immediately from the hypothesis that V"' (p,)p2 4362 > 0.
We now turn to the proof of (4.6). Let u’ € X,,. Then there exists v/ € 0, so that

d(v,0,.) = ||’ —V'|| and as a result, one has that ' —V' € (T, ,,)". We can write
w=u =V v =V =)+ =)L
Here («' —V') | is perpendicular to 7,yX,,, and (u' —V')| belongs to 7,,X,, and is perpen-
dicular to T, 0, since u’ —v' is. Now remark that, since D,sL((«' —v')) = 0, and since
WV ex,,
0=L@')—LO)=DyL(( =V ) +0O(||lu’ =V |*). (4.8)
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It is easily checked that, for each v/ € G, , the restriction of DyL to (TyZu,)* is an
isomorphism. It follows that there exists a constant C so that
2
1" =V) Ll < Cll =V)]* (4.9)

Note that this constant is independent of v € &), since, for all R € SO(3), and for all
ucRO,
CI)R ODML o} CDR*] = DCDRuL;

where ®g, defined in (2.17), is an isometry. Returning to (4.8), and using this last remark,
we conclude there exists a constant ¢ so that, for ||’ — /|| small enough, one has

1 =V = =V = 1 = V) ]| = eolld =] (4.10)
We can now conclude the proof of (4.6) as follows, using (4.9), (4.10) and (4.5):
L)~ L(uy,) = LW)-2()

1
= DyZLW —V)+ ED%/Z(M’ —v V) +o(||lu —V|?)

= DAL )yl )+ O V) + of o~ P)
= DL ) ) ol )

Y

1
Sell @ =12+ ol = vI1%)
> &l V| = Edz(u’,ﬁ’uu*).

Remark that as before, the constant c is independent of v/ € &), . This shows (4.6). Note
that we used the boundedness of Dg,f , uniformly in Ve ﬁ"u* .
We can now prove orbital stability, namely:

Ve>0,386>0,Vd' €R®, (d(u,0,, )< 8=Vt eRdW (t),0,,)<€). (4.11)

y Cuy,

For that purpose, we propose three different arguments.

First argument. We proceed by contradiction, as before. Suppose there exists & > 0 and
foreach n € N, u], € R® and #,, € R such that d(u},, uy,,) < + and d(u),(1,), Ou,, ) = €. We

can suppose, without loss of generality, that 2&y < 8, where § is given in (4.6). We know
that £ (u),(1,)) = £ (u),), since .& is a constant of the motion. Hence

. / _ _
Jim 20 (1) = Z ) = .

Since the orbit &, is bounded, and since d(ul,(tn), Ouy, ) = &, it follows that the sequence
u,,(,) is bounded; we can therefore conclude that lim,_, e d(u),(2,),Zu, ) = 0. (In other
words .Z satisfies Hypothesis F, see Lemma 7.2.) As a consequence, there exist w, €
Ty, so that [|w, — u},(t,)|| — 0. We can now conclude. Since, for n large enough, 2 <
d(wn, Oy, ) < %80, we have

L () = 2L (up,) = L (u(tn)) — L (up.)
(tn(tn)) — L (wn) + L (Wn) — 2 (up.)
(U (tn)) = Z (wn) +cd?(wn, O, )

The sequences u),(z,) and w,, are bounded. This, combined with the uniform continuity of
% on bounded sets, leads again to a contradiction upon taking n — +-oco.

KK

>
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Second argument. The second proof uses the fact that the relative equilibrium u,,, which
gives rise to a circular orbit, belongs to a continuous family ¢ — u, of such equilibria,
defined on a neighbourhood I C R? of u,. We will only sketch the argument, the general
case is treated in Theorem 7.5. One first observes that, for u belonging to a suitably
small neighbourhood of p., both (4.5) and (4.6) hold, with u, replaced by u, and with
u-independent ¢ and 6. This allows one to prove that the equilibria 1, are orbitally stable
with respect to perturbations of the initial condition within X, that is:

Ve>0,36 >0.Vu' €%y, (d(u,04,) <8=VieR,d(t),0,)<e). (412

Indeed, suppose that this is not true. Then there exists & > 0, and for each n € N*, u/, € Xy,
tn € R so that d(u},,uy) < 1 and d(u;,(t,), O, ) = €. Since we can choose & < §, we can
apply (4.6) to write

ZL(uy) = L (up) = L (u,(tn)) — L (up) = cd(u,(ta), 0,

g )? = c.&.

Taking n — oo leads to the desired contradiction. It remains to prove (4.12) with “Vu' €
X" replaced by “Vu € R®” For that purpose, note that, if u’ € R® is close to uy,, then
= L(u') is close to i, and hence uy close to uy,. So u' is close to uy. Hence u/'(t)
remains close at all times to &, by (4.12). Now, since 0}, is close to 0}, , the result

follows.

Third argument. If (4.5) had been valid for all w € (7,0, ), the first argument above
would have been slightly easier, since we could then have mimicked the proof of Propo-
sition 4.1 directly. As it stands, we were able to first show (4.6), which is valid only for
Vv e Y., and which shows .2, restricted to X, attains a local minimum on the orbit. This
immediately implies an orbital stability result for perturbations «’ of the initial condition
uy, that stay within X, as is readily seen. But to obtain a stability result for arbitrary
perturbations u’ € R of the initial condition u 1> we had to work a little harder and invoke
Hypothesis F, which is not necessarily easily verified in infinite dimensional problems. It
turns out that (4.5) is not valid® for all w € (T, Oy, ). However, it is possible to adjust the
Lyapunov function .Z so that this is the case. Consider, for all K > 0,

Lie(u) = £ () + K(L(u) — o). (4.13)

Note that the additional term vanishes on X, where £k reaches an absolute minimum.
‘We now show

3¢>0,K>0,We O, ,Ywe (T,0,,), D:ZL(ww)>el|w|> (4.14)

For that purpose, introduce, for each v = (¢,p) € 0,

Uy, >

gnp 0 ) 1 <G*c}>
es = Coes=1(. ), eg=—o (1), 4.15
4 < 0 > 5 <q/\p 6 T ol \peb (4.15)

which, together with e, e3,e3 in (4.7) form an orthonormal basis of RO. Clearly, D, (L —
w)*(w) =0, forall v € Oy, and for all w € R®. Moreover, if 11,m2,13 € R? form an
orthonormal basis, then

DY (L— ) (wow) =2 [Dy(mi- L) (w)]?,

>y

i=1

8This can be seen from a straightforward computation, which is most readily made in the basis e; introduced
in (4.7) and (4.15).
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with
Dy(ni-L)(w) =wi - (pAM) +w2-(MiAg), w=(wi,w2) € RO,
Now, writing w = ):?:2 ajej € (T,0y,, ) and using Ny = §, M2 = p, N3 = § A p, we find

Di(L— p.)*(w,w) =2 [0g 07 + a3p? + o (p7 + 02)]
>2min{o?,p?} [0 + 0Z + og] . (4.16)

We can now conclude the proof of (4.14) as follows. We write w = wy +wp with wy =
ey + aze; and wp = Oyeq + Oses + Ogeg. Then there exists a constant C > 0, independent
ofve 0,, ,so that

Upy >
D3.Zx(w,w) > D22 (w,w) + 2K min{ 02, p2} | wa|
> D% (wa,wa) +2Kmin{c?, p2}|wa||* — C [[wall [wal + lws*]
Using (4.5), one finds that, for all m > 0,

2 Cm? 2 : 2 2 ¢ 2
DYZic(ww) > (= 5= ) [wal*+ (2K min{o?, p?} —C— 25 ) lwal

where we have applied Young’s inequality to the term ||wq4||||wg||. Choosing m small
enough and K large enough, one finds (4.14). We can now prove the following statement,
which is to be compared to (4.6): 38, ¢ > 0 so that, for all &’ € RS,

d(',0,,. ) <6 = Lx (') — Lx(uy,) > Ad Oy, )- 4.17)

Indeed, for all &’ € R®, there exists v € O, sothatu' —v € (T, 0, )*. Hence

M

A

L) = L(up) =L ') — Lk (V) > %Hu' V| +o(lu' —v'[*).
This implies (4.17), from which orbital stability follows by the now familiar argument. [J

We point out that the core ingredient of all three arguments in the proof is estimate (4.5).
Its proof constitutes the only truly model-dependent part of the proofs of orbital stability
via the energy-momentum method. This will become clear in Section 7 where we will
show how a suitably adapted version of this estimate implies orbital stability in a general
infinite dimensional setting as well (Theorem 7.4, Theorem 7.5, Theorem 7.10).

As a second remark, note that (4.6) allows one to prove immediately the orbital stability
for perturbations of the initial condition that preserve the angular momentum. The three
strategies of the proof above therefore concern three different methods for extending this
result to arbitrary perturbations of the initial condition. The same structure of the proof
will be apparent in the general situation treated in Section 7.

The first argument in the above proof is used in [GSS87] and [GSS90]. It has the
disadvantage of using Hypothesis F, which, while obvious in finite dimensions, may not
always be easy to check in infinite dimensional systems, notably when the group G, is not
one-dimensional and in particular when it is not commutative (as in [GSS90]). It has the
advantage of not using the fact that the relative equilibrium under consideration belongs to
a continuous family.

The second argument is used for example in [Wei86], and in [GHO7b, GHO7a]. For
this argument the existence of a continuous family of relative equilibria is needed but not
Hypothesis F.

The third argument is commonly used in the literature on finite dimensional Hamilton-
ian systems [Pat92], and appears also in [Stu08] in the infinite dimensional case. It is not
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universally useable, since it depends on the existence of a Gy -invariant Euclidean structure
on the dual of the Lie-algebra of G, as we will see in Section 7.

5. HAMILTONIAN DYNAMICS IN INFINITE DIMENSION

The modern formulation of Hamiltonian dynamics has been adapted to the framework
of infinite dimensional Banach manifolds in [CM74, MR94]. This approach is not well
suited for our purposes for two reasons. First, we are interested in flows defined by the
solutions to (nonlinear) partial differential equations that are defined on Banach (or even
Hilbert) spaces, for which a general Banach manifold formulation is overly complex. In
addition, the notions of “Hamiltonian vector field” and ‘“Hamiltonian flow” introduced
in [CM74] seem too general for the purpose of studying stability questions. We therefore
present a simpler and more restricted framework that is well adapted to the analysis of the
stability questions that are our main focus, including for nonlinear Schrédinger and wave
equations.

Our main goal in this section is thus to give a workable and not too complex definition
of “Hamiltonian dynamical system” or of “Hamiltonian flow” in the infinite dimensional
Banach space setting (Section 5.2). The formalism allows us to easily obtain general re-
sults on the link between symmetries and conserved quantities for such systems, as in the
finite dimensional case (Section 5.3). This link is indeed an essential ingredient for the
identification of relative equilibria and the construction of coercive Lyapunov functions in
Hamiltonian systems with symmetry, as we shall explain in Section 6. Several examples
of Hamiltonian PDE’s that fit in our framework are given in Section 5.5. Although this
section is self-contained, the reader unfamiliar with finite dimensional Hamiltonian dy-
namical systems and their symmetries may find it useful to consult Appendix A.3 for a
concise and self-contained treatment of this case. We will make regular use of the notation
and concepts introduced there.

5.1. Symplectors, symplectic Banach triples, symplectic transformations, Hamilton-
ian vector fields

We first generalize the notion of symplectic form to the infinite dimensional setting and
introduce the equivalent notion of symplector (Definition 5.2). It turns out that, in the
infinite dimensional setting, it is convenient to treat the latter as the central object of the
theory, rather than the symplectic form itself, as is customary in finite dimensions. As we
will see, the two approaches are perfectly equivalent.

We need some preliminary terminology. Let E be a Banach spaceand B: EXE —+ R a
bilinear continuous form. We can then define, in the usual manner, forallu € E, Zpuc E*
via

Igu(v) =B(u,v).

It follows easily that _#p:u € E — Zpu € E* is linear and continuous, with ||_#g|| = ||B||.
We will write Qfg = Ran_¢g. Conversely, given a continuous linear map ¢ : E — E*,
one can construct B 4 (u,v) = (_# u)(v). We introduce the following terminology:

Definition 5.1. A bilinear continuous form B is non-degenerate (or weakly non-degenerate)
if _#pis injective. It is strongly non-degenerate if _Zp is both injective and surjective. Sim-
ilarly, a linear map ¢ : E — E* is said to be (weakly) non-degenerate if it is injective, and
strongly non-degenerate if it is a bijection.
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Definition 5.2. We now introduce the notion of symplector.’

(i) A symplector or weak symplector is a continuous linear map ¢ : E — E* that is
injective and anti-symmetric, in the sense that

(Ju)(v) ==(7v)(w).
If in addition _# is surjective, we say it is a strong symplector.
(i) A (strong) symplectic form @ is a (strongly) non-degenerate bilinear continuous
form that is anti-symmetric.
(iii) When _# is a (strong) symplector, we will say (E, #) is a (strong) symplectic
vector space, or simply that E is a (strong) symplectic vector space, when there is
no ambiguity about the choice of _¢#.

There clearly is a one-to-one correspondence between (strong) symplectors and (strong)
symplectic forms. Note that the definition implies that

Va,BeZy, al g 'B)=-B(7 o). (5.1)
The following examples of (strong) symplectors cover all applications we have in mind
in these notes. Let . be a real Hilbert space and set E = J# x .# . Then

/ : (Q7p) €EE— (_p7q) GE*

is clearly a strong symplector. Here we wrote u = (q,p) € ¢ X J# and used the Riesz
identification of E with E*. The corresponding strong symplectic form is

oy (uu')=q-p'—q - p,
where - denotes the inner product on #". The analogy with (A.3.1) is self-evident: there

& =R", where R”" is equipped with its standard Euclidean structure. Note that if Q is a
bounded self-adjoint operator on % with KerQ = {0}, then

S :(q,p) €EE — (-0p,0q) €E”

is also a symplector with

®y(uu')=q-0p'—p-Qq.
We will need the following straightforward generalization of the above construction. Let
K? be a positive (possibly and typically unbounded) self-adjoint operator on %", with
domain Z(K). Introduce, for all s € R, %5 = [Z((K)*)], where (K) = /1 + K? and where
(K)* is defined by the functional calculus of self-adjoint operators. Here [Z((K)*)] denotes
the closure of Z((K)*) in the topology induced by the Hilbert norm

[Juells := [ CK) u]].
Note that, since (K)* : (2((K)*), || - |ls) = (Z((K)~*),]|| - ||) is an isometric bijection, it
extends to a unitary map from .%; to ¢ for which we still write (K)*. With these con-
ventions, we can then make the usual identification between %" and .#_;: Vv € #_, we
define
ue Hy—v-ueR,
by setting v-u := (K) *v- (K)*u. Note that
Vs,s €ER, s<s§ = Ay CH.

It is easy to see using the spectral theorem that this is an inclusion as sets, and we will
therefore not introduce explicit identification operators to represent such inclusions which

9This object does not seem to have been blessed with a name in the literature, so we took the liberty to
baptize it.
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are moreover continuous for the respective Hilbert space topologies. The typical example
of this construction to keep in mind is K> = —A on .# = L*(R?). We then have .%; =
H*(R?), the usual Sobolev spaces.

For s = (s1,57) € R?, we define E; = Hs, X Hs,. Defining a partial order relation by
s < s"iff s; <} and s, <}, we have

Vs, s eR?, s<s5 = Ey C E;.
Setting § = (s2,s1) we then define
Fs:u=(q,p) € Es— (—p,q) € E5. (52)

The following lemma is now immediate.

Lemma 5.3. _Z; is a weak symplector if and only if s1 > —s5. In that case
Js:u=(q,p) €Es — (—p,q) €Es CE_y=E].

We have %, = %/S = F5. And f(l = f*"\Es' Isz is unbounded, JZ is a strong
symplector if and only if s1 = —s3.

Typical examples of this construction are the use of E = E(j/5 _1/3) or of E = E(y ¢
with # = L?(R?) and K? = —A to study the wave equation. For the Schrodinger equation,
E = E(1 ) is a natural choice. We refer to Section 5.5 for the details of these examples.
Note that of these three examples, only the first corresponds to a strong symplector and
hence to a strong symplectic form. It is therefore clear that the use of weak symplectors is
unavoidable in applications to PDE’s.

We end our discussion of symplectors with a simple lemma that collects some of their
essential properties.

Lemma 5.4. Let E be a Banach space and ¢ : E — E* be a bounded linear map. Then
the following holds:
(i) If 7 is a strong symplector, then 7 ~1is bounded.
(ii) If 7 is injective and (anti-)symmetric, and if E is reflexive, then % g is dense in
E*.
(iii) Suppose _Z is injective and (anti-)symmetric, and that its inverse is bounded on
X y. Suppose E is reflexive. Then # ; = E*.

Proof. (1) This is a consequence of the open mapping theorem.
(i) Suppose v € E satisfies Zu(v) =0forallu € E. Then #v(u)=0forallu € E,
by (anti-)symmetry. Hence _# v = 0 and hence, since _# is injective, v = 0. Since
E is reflexive, this means that, if v € E** vanishes on %/ C E*, then v =0. This
implies Z 7 is dense (Hahn-Banach).
(ii1) Since the inverse is bounded, %’( ¢ is closed. The result then follows from (ii).
O

If E is not reflexive, a symplector may not have a dense range, as the following exam-
ple'® shows. Let

E={uel (Rd)]| /Ru(x)dx:0} c L'(R)

and define

Fulx) = / u(y)dy € I7(R) C E*.

10pye to S. Keraani.
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This is clearly bounded, injective and antisymmetric. But it is clear that

| Fu—1]e=1,
for all u € E. So the range is not dense in L*(R) and a fortiori not dense in E*.

We are now ready to define what we mean by a symplectic transformation and by a
Hamiltonian vector field. First we recall a very basic definition: when F : E; — E; is
a function between two Banach spaces E; and E5, and when u € E;, one says that F is
(Fréchet) differentiable at u if there exists D,F € Z(E,E,) so that
|F(utw)— F(u) = DuF (w)| £,

lim

=0.
w0 [Iwll,

Also, one says that F' : E; — Ej; is differentiable on some subset of E if for all u in that
subset, F is differentiable in the above sense.

In particular, if E; = E,E, =R, and if F is differentiable at u € E, we have D,F € E*.
And if 2 is a domain in E, saying that F : E — R is differentiable on 9 means that F is
differentiable at each u € Z. In that case, one can define

uc 9 CcE —-D,F cE".

As a last comment, we stress that, in these definitions, the only topology used is the one on
E. This is important to keep in mind in the applications, where the domain & often carries
a natural topology, stronger than the one induced by the norm on E, and for which & is
closed. One can think of E = H'(R) and 2 = H*(R). Such a topology is NOT used in the
above statements, nor in the following general definition. We refer to the examples treated
in Sections 5.4 and 5.5 for several illustrations of this last comment.

Definition 5.5. Let E be a Banach space, 2 a domain in E (See Section 2.1) and ¢ a
symplector.
(i) We will refer to (E, 2, _#) as a symplectic Banach triple.
(ii) Let (E,2, ¢ ) be a symplectic Banach triple and ® € C°(E,E)NC'(2,E). We
say & is a symplectic transformation if
Vue 2,Nv,w € E,( #D,®(v))(Dy®(w)) = (_Zv)(w). (5.3)
(iii) We say that a function F : E — R has a _# -compatible derivative if F is differen-
tiable on 2 and if, forallu € 2, D,F € %/. In that case we write F € Dif(2, 7).

(iv) Foreach F € Dif(2, #), the Hamiltonian vector field Xr : 2 C E — E associated
to F is defined by

Xr(u)= #'D,F, Yuc 9. (5.4)

The analogy between (5.3) and (A.3.17) as well as between (5.4) and (A.3.10) is ev-
ident. Note however that, when dealing with weak symplectors, as is often the case in
applications, the vector field Xr does not inherit the continuity or smoothness properties
that F may enjoy. In particular, even if

DF:9CE—E"

is continuous, the same may not hold for Xr. We shall for that reason avoid making use of
the vector fields X where possible and state all our hypotheses in terms of F' directly. We
finally point out that, here and in what follows, and unless otherwise specified, all functions
we consider are globally defined'! on E.

Hhis is a difference with [CM74], as we will explain in some detail in Section 5.4.
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5.2. Hamiltonian flows and constants of the motion
Definition 5.6. Let (E,Z, #) be a symplectic Banach triple. Let F € Dif(Z, #). A
Hamiltonian flow for F is a separately continuous map ®* : R x E — E with the following
properties:
(i) Forallt,s € R, ®f = dF o @l I =1d;
(ii) Forallt € R, ®f(2) = 2;
(iii) For all u € 9, the curve t € R — u(t) := ®F (u) € 2 C E is differentiable and is
the unique solution of

/u(t) = Du(t)F, M(O) = Uu. (5.5)

Local Hamiltonian flows are defined in the usual way. We refer to (5.5) as the Hamil-
tonian differential equation associated to F' (Compare to (A.3.11) and (A.3.4)) and to its
solutions as Hamiltonian flow lines. Note that in this setting separate continuity implies
continuity (See [CM74], Section 3.2). We refer to Section 5.5 for examples of PDE’s
generating Hamiltonian flows.

Observe that (5.5) implies that, for all u € 2,

d
VaeZy, fEa(u(t)) =D, F( 7 '), (5.6)

which is a weak form of (5.5). With this in mind, one could think of changing Defini-
tion 5.6 by replacing (iii) by the following alternative statement'?:

(ii’) Forall u € E, the curve t € R — u(t) := ®f (u) € E belongs to C(R, E) and (5.6) holds.

This has the advantage of eliminating the introduction of the domain 2 (and therefore of
condition (ii)) and is precisely the definition of “solution” to (5.5) used in [GSS87, GSS90].
In [Stu08], E is a Hilbert space and still a different formulation is adopted. Basically, the
domain & is not introduced, the equation (5.5) is interpreted as an equation in E* and
the time derivative is understood as a strong derivative for E*-valued functions. Those
alternative formulations do not allow for a direct proof of the kind of natural “conservation
theorems” such as Theorem 5.8 below, that are typical for Hamiltonian systems and that we
need for the stability analysis. As a result, the conclusions of such conservation theorems
are added as assumptions in the general setup of the cited works. It turns out that, in
examples, the proof of such assumptions requires a stronger notion of “solution” than the
ones used in [GSS87, GSS90, Stu08], so we found it more efficient to adopt from the start
the stronger notion of Hamiltonian flow found in Definition 5.6.

Definition 5.7. Let F,G € Dif(Z, ¢ ). Then the Poisson bracket of F and G is defined by
{F,G}(u) =D,F( 7 'D,G), Vue9. (5.7)
Equation (5.7) is the obvious transcription of (A.3.12) to the infinite dimensional setting.

We now have the following crucial result, which is a simple form of Noether’s Theorem in
the Hamiltonian setting. A more complete form follows below (Theorem 5.11).

Theorem 5.8. Let (E, 2, 7 ) be a symplectic Banach triple. Let H,F : E — R be differ-
entiable on E and suppose they have a 7 -compatible derivative, i.e. H,F € Dif(2, ¢ ).
Suppose there exist Hamiltonian flows ® ®F for H and F. Then:

12Note that for this formulation one needs F € Dif(E,R), but it is not necessary that it has a _# -compatible
derivative.
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(i) Forallue 9, and for allt € R,
d
3 H (@ () = {H,F}(®] (u)). (5.8)
(ii) The following three statements are equivalent:
(a) Forallue 9, {F,H}(u)=0.
(b) Forallu € E, and forallt € R,

(Ho®f )(u) = H(u). (5.9
(c¢) Forallu € E, and forallt € R,
(Fo®")(u) = F(u). (5.10)

In this result, the roles of H and F are interchangeable. But in practice, one of the flows,
say ®F, is simple, explicitly known, and often linear, whereas ®/ is obtained by integrat-
ing a possibly nonlinear PDE of some complexity, such as the nonlinear Schrédinger or
wave equations. It is then often very easy to check by a direct computation that H o &
is constant in time for all u € E: one says that H is invariant under the flow @, or that
the @/ are symmetries of H. The important conclusion of the theorem is that this implies
that F is a constant of the motion for ®. This is a strong statement, since in applications,
the flow @ is complex and poorly known. So being able to assert that it leaves the level
surfaces of F invariant is a non-trivial piece of information. Several examples are given in
Section 5.5.

Proof. (i) Letu € 2. Thent € R — H(®! (u)) € E is differentiable and the chain
rule applies: writing u(t) = ®f (u), we have
d

EH(‘I’f(”)) = Dy, H (u(1)),

which yields the first equality in (5.8) since #Zu(t) = D, F. Exchanging the
roles of H and F, the second equality follows similarly.

(ii) That (5.9) or (5.10) imply {H,F}(u) = 0 for u € 2 is immediate from (i). Con-
versely, it follows from (i) and the fact that {H,F}(u) = 0, for all u € 2, that
(Ho®f)(u) = H(u). Since Z is dense in E, H € C(E,R) and ®f € C(E,E), (b)
now follows for all u € E. Similarly for (c).

O

It should be noted that condition (ii) of Definition 5.6 is crucial here. We are assuming
there is a common invariant domain for both flows. To obtain conservation theorems of the
above type without such an assumption requires other technical conditions [CM74].

We end with some technical remarks. First, it follows from Theorem A.3.5 in the Ap-
pendix, that Hamiltonian flows @/ are symplectic as soon as F € C*(E,E) and ®F €
C*(E,E). But these two assumptions (especially the latter) are generally too strong to be of
use in infinite dimensional dynamical systems generated by PDE’s, except possibly when
they are linear. Of course, one can conceive of weaker conditions that imply the result.
For efforts in that direction, we refer to [CM74]. In other words, proving that Hamiltonian
flows, as defined above, are symplectic, can be painful. A second, related issue is the fol-
lowing. In finite dimensional systems, we know that, if {F},F>} = 0, with F|,F> € C*(E),
then the corresponding Hamiltonian flows commute: see (A.3.14) and Lemma A.1.1. This
is a very useful fact: indeed, computing a Poisson bracket is a routine matter of taking
derivatives, and the information obtained about the flows is very strong. Again, this is not
immediate in infinite dimensional systems under reasonable conditions. For our purposes,
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and in particular for the proof of Theorem 5.11, the following analog of Lemma A.3.4 will
suffice.

Lemma5.9. Let (E, 2, ¢ ) be a symplectic Banach triple. Let ® be a C L_diffeomorphism
on E and suppose that ®(2) = 9 and that @ is symplectic. Let F € C'(E,R)NDif(2, ¥)
and let Xp be its Hamiltonian vector field. (See Definition 5.5 (iv)). Then, for allu € &

D@ (Xpop(u)) = Xp(P(u)). (5.11)
Moreover, for allt € R,
Dod[Pod ! =f. (5.12)
In particular, if F o ® = F, then ® commutes with ®F, for all t € R. And if ® commutes
with ®F, for all t € R, then there exists c € R so that Fo® = F +c.

The proof is identical to that of Lemma A.3.4 and we omit it. The point here is that we
suppose P to be a symplectic transformation. As we just saw, that is a strong assumption.
In practice, to avoid the difficulties just mentioned, we will always assume that the symme-
try group of the system under consideration acts with symplectic transformations. Since
the latter are often linear, that they are symplectic can then be checked through a direct
computation. We finally point out that, if one wanted to exploit the presence of a formal
constant of the motion with a nonlinear flow, such as in completely integrable systems, it
could in general be difficult to prove it acts symplectically and commutes with the dynam-
ics. This, in turn, makes it difficult to exploit such formal constants of the motion in the
stability analysis that is our main interest here.

5.3. Symmetries and Noether’s Theorem
When dealing with a symplectic Banach triple, the appropriate type of group action to
consider is the following.

Definition 5.10. Let (E,2, #) be a symplectic Banach triple. Let G be a Lie group
and @ : (g,x) € G X E — ®,y(x) € E, an action of G on E. We will say @ is a globally
Hamiltonian action if the following conditions are satisfied:

(i) Forall g € G, ®, € C'(E,E) is symplectic.

(i) Forallg € G, ®,(2) = 2.

(iii) For all & € g, there exists Fz € C!'(E,R)NDif(2, #) such that Deypre) = CIng,

and the map § — F is linear.

This definition reduces to Definition A.3.7 in the Appendix, for finite dimensional
spaces E: in that case Z = E and the restriction that F € Dif(Z, ¢ ) is superfluous. We
can now state the version of Noether’s Theorem that we need. It links the invariance group
of Hamiltonian dynamics to constants of the motion and is to be compared to the finite di-
mensional version given in the appendix (Theorem A.3.9). As in (A.3.22), we will identify
g and g* with R” and view F asamap F : E — R™ (See (A.3.24)). This allows us to write

Fe = E-F,
where - refers to the canonical inner product on R™.

Theorem 5.11. Let (E, 2, ) be a symplectic Banach triple. Let G be a Lie group and ®
a globally Hamiltonian action of G on E. Let H € C'(E,R) NDif(2, #) and let P be
the corresponding Hamiltonian flow. Suppose that

VgeG, Hod,=H. (5.13)
Then:
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(i) Forall§ € g, {H,F¢} =0.
(ii) Forallt € R, F o = Fe.
(iii) G is an invariance group"> for o,

This is an immediate consequence of Theorem 5.8 and Lemma 5.9. In the applications,
the result is used as follows. The action ® of G is simple and well known. It is then easy to
check (5.13) directly. One then concludes that (ii) and (iii) hold, which are the important
pieces of information for the further analysis. In particular, the level surfaces ¥, defined
in (2.5) are invariant under the dynamics ®/. Examples are given in the next section. The
result in [CM74] that is closest in spirit to Theorem 5.11 is Theorem 2 of Section 6.2.

5.4. Linear symplectic flows

Since invariance groups often act linearly on the symplectic Banach space (E, ¢ ), and
since the nonlinear dynamical flows studied often are perturbations of linear ones, it is
important to have a good understanding of linear symplectic flows. Their study also sheds
some light on the various technical difficulties mentioned above, and in particular on the
role of the domain 2, the definition of Hamiltonian flow we adopted, etc.

Proposition 5.12 below (which corresponds to Theorem 2 in Section 2.3 of [CM74])
characterizes all strongly continuous linear symplectic one-parameter groups on a sym-
plectic Banach space in terms of their generators. We adopt the following notation. Given
a strongly continuous group of linear transformations on E, we denote its generator by A,
with domain 2(A). By the Hille-Yosida theorem, we then know thatt € R — u(t) = du €
E satisfies

i(r) = Ya(u(t)), (5.14)
provided u € 2(A), where we introduced the vector field

Yy:ue P(A) CE —AuckE.

Note that Y4 is not continuous if A is an unbounded operator. Clearly, the &, form a
dynamical system as defined in Section 2. We introduce the function

Hy:u€ P(A) = Hy(u) = %@/(Au,u) eR.
Observe that Hy admits directional (or Gateaux) derivatives 8,H4 (v), for all u,v € Z(A):

O Hy(v) = liml(HA(u—i—tv)—HA(u))

t—0t

1
= 3 (07 (Av,u) + 0 7 (Au,v)) .
Nevertheless, if A is an unbounded operator, Hy is not continuous since, for all u,w € Z(A)
Hy(u+w) — Ha(u) = © g (Au,w) + 0 7 (Aw,u) + @ 7 (Aw,w)

and the last term in particular does not necessarily converge to 0 as w — 0 in the topology
of E. It follows that, a fortiori, Hy is not Fréchet differentiable.

Proposition 5.12. Let (E, 7)) be a symplectic vector space. Let ®; be a strongly con-
tinuous one-parameter group of bounded linear operators on E. Let (A, 2(A)) be the
generator of ®;. Then the following are equivalent.

(i) The ®, are symplectic, i.e. @ y (Pru, Dv) = o 4 (u,v) for all u,v € E;

135ee Definition 2.1
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(ii) Forallu,v € 2(A),
O 7 (Au,v) = —@ 7 (u,Av);
(iii) Forallu € 2(A), one has
FYi(u) = 8,Hy € E*. (5.15)
In this case, ,Ha(v) = @ 7 (Au,v), Ha(Pru) = Ha(u) for allu € P(A) and for all t € R.

Proof. The three equivalences are obvious. To prove Hy is a constant of the motion, it
suffices to remember that the Hille-Yosida theorem implies A®;u = ®;Au provided u €
2(A). (|

In other words, when the &, are symplectic, the equation of motion (5.14) can be rewrit-

ten

/M(l) = 6M(,)HA, (5.16)
which is to be compared to (5.5). Clearly, the symplectic linear flows considered here
are NOT Hamiltonian in the sense of Definition 5.6. Still, (5.16) gives meaning to the
idea that in infinite dimension as well, linear strongly continuous symplectic flows are of
“Hamiltonian nature,” with a quadratic Hamiltonian. Moreover, the Hamiltonian Hy is a
constant of the motion for the flow ;. But note that, whereas in (5.9), the conservation of
energy holds for all u € E, this makes no sense here, since Hy is only defined on Z(A).

Generally, because of the appearance of the Gateaux derivative rather than a Fréchet
differential in the right hand side, it turns out that the above formulation is inadequate for
various reasons. For example, the absence of a chain rule for Gateaux derivatives does
not allow one to compute derivatives such as 5 Hy (u(t)) directly to prove Hy is constant
along the motion. In fact, in the proof above, this result is proven using the Hille-Yosida
theorem, and without computing a derivative at all. This approach cannot work for non-
linear flows of course. Similar problems arise when dealing with other constants of the
motion than the Hamiltonian himself, even in the linear case, due to various domain ques-
tions and the complications in defining commutators. Finally, for our purposes, we need to
restrict the motion to the level sets of the constants of the motion, and to use their manifold
structure. This requires sufficient smoothness, a property not guaranteed at all by Gateaux
differentiability alone. Again, as pointed out before, an approach to the resolution of these
technical difficulties other than the one chosen here can be found in [CM74].

In applications to PDE’s, the function spaces that occur naturally are often complex
Hilbert spaces. To make the link with Hamiltonian dynamics, one then proceeds as follows.
Let 27 be a complex Hilbert space and let us write (-,-) for its inner product. First, it is
clear that ¢ is a real Hilbert space for the real inner product defined by Re(:,-), which
induces the same topology on J# as the original inner product since both inner products
have the same associated norm. Let us write E for this real Hilbert space. We now identify
E* with E using the corresponding Riesz isomorphism. Note that this is not the same as
identifying J#* with JZ through the Riesz isomorphism associated to {-,-) and that there
is no natural identification between .727* and E* as sets: each non-zero element of .7
necessarily takes complex values, whereas the elements of E* take real values only.

On the real Hilbert space E, one checks readily that

o(u,v) =Im(u,v) € R

defines a strong symplectic form. Note in particular that @ is real bilinear, but not complex

bilinear. To identify the corresponding symplector ¢ : E — E in a convenient manner'?,

14We identified £* with E, so the symplector can be seen as a map from E to E.
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one proceeds as follows:
o(u,v) = Re (iu,v)

so that _#u = iu. The reader should not let itself be confused by the fact that we write
iu, while considering u as an element of the real vector space E. The way to see this is as
follows: the real vector space E is, as a set, identical to 5. And on #°, multiplication by
i is well defined and actually an isometric complex linear map. So multiplication by i is
well defined on E as an isometric real linear map.

To sum up, we showed how to associate to a complex Hilbert space (7, (-,-)) a real
Hilbert space (E, (-,-)g) with symplectic structure

o(u,v)=(fuv)eg, Ju=iu.
Now let us return to the linear symplectic flows. Suppose B is a self-adjoint operator on 57,
with domain 2(B). Then U, = exp(—iBt) is a strongly continuous one-parameter group
of unitaries'” . The corresponding Hille-Yosida generator is A = —iB, with Z(A) = 2(B).
Clearly, each U; is a symplectic transformation on E with the symplectic form @. We are
therefore in the setting of Proposition 5.12 and

Hy(u) = %(u,Bu).

It turns out that in the applications we have in mind, the one parameter subgroups of the
symmetry group G act with such unitary groups on the relevant Hilbert space 7. But
within this framework, as we pointed out above, the U; are NOT Hamiltonian flows. To
remedy this situation, one can, and we will, proceed along the following lines. First re-
mark that the function Hy above is C! if we view it as a function on the Banach space Ep
obtained by considering on Z(|B|'/?) the graph norm. And that the flow U is strongly
differentiable on 2 := Z(|B[*/?), viewed as a subset of Eg. So now we are in the setting of
Definition 5.6, and U; is a Hamiltonian flow on Eg, on which _¢ still defines a weak sym-
plector. The trouble with this reformulation so far is that now the Banach space Ep and the
domain Z depend on B. If the symmetry group is multi-dimensional, it will have several
generators, and we need a common domain and Banach space on which to realize them all
as Hamiltonian flows. We will see several examples where this formalism is implemented.

In practice, very often, J# = # © = # ®i# , where ¥ is areal Hilbert space. One has
u=gq-+ipe 4 with q,p € 2. Then, clearly E = J# x ¢ with its natural Hilbert space
structure. Moreover, identifying u € 7 with (¢, p) € & x &, clearly ¢ (q,p) =(—p.q)
and we are back to the examples of symplectors given in Section 5.1.

5.5. Hamiltonian PDE’s: examples

In this section we give some examples of PDE’s generating Hamiltonian flows in the
sense of Definition 5.6.

Let E = H'(RY,C), 2 = H*(R?,C) and consider the nonlinear Schrodinger equation

{ idpu(t,x) + Au(t, x) + Au(t,x)|°u(t,x) = 0

.1
u(0,3) = 1o() G

introduced in Section 2.4, defined on R, d = 1,2,3. Ford =1, suppose that 3 < 0 < 4o
in the defocusing case and 3 < o < 5 in the focusing case. In dimension d = 2,3, consider
only the defocusing case and assume 3 < o < 1+ ﬁ. Let @ : E — E be the global flow

15By Stone’s theorem, every strongly continuous one parameter group of unitaries is of this form.
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defined in (2.35). Recall that the existence of <I>f( is ensured by Theorem 2.5 and, thanks
to Theorem 2.6, ®X (%) = 2 forall € R.

Our purpose is to show that Equation (5.17) is the Hamiltonian differential equation
associated to the function H defined by (2.32) and ®X = ®# for all t € R.

As explained in the end of Section 5.4, we usually identify u = g +ip € H*(R¢,C) with
(¢,p) € H*(R? R) x H*(R?,R) for all s € R. Hence, let (E,2,_#) be the symplectic
Banach triple given by

E=H'(RYR) x H'(R?,R),

2 = H*(RY,R) x H3(RY,R),

J(a,p) = (—p.q), V(q,p) €E.
Clearly fu=iuand # y = E C E*. Now consider

o+l

1 2 2 A 2 A
Hig.p) = 5 (IVallZ +IVpIE) - =5 [ (P +1p) 7,

and remark that if we write u = g+ ip with (¢, p) € E, H(u) = H(q, p) is exactly the energy
defined in (2.32). A straightforward calculation, using the Sobolev embedding theorem,
shows that H € C*(E,R). In particular,

DigpH = (~8q,~8p) ~ A(laP +1pP)°T (4.p) € E°
which can be written as
DyH = —Au—A|ul® 'u
in terms of u = g + ip. Next, using the fact that the Sobolev space H>(R?) is an algebra

ford =1,2,3, we have DH(Z) C % 7 so that H has a 7 -compatible derivative on Z.
Moreover, the curve (g(t), p(t)) = ®X (g, p) is the unique solution to

F(q(t),p(t)) = (—~Ag,—Ap) — A(|q]* + |P|2)%1 (@,P) = Dge),p)H

that is Equation (5.5). As a consequence, ®X is a Hamiltonian flow for H in the sense of
Definition 5.6, X = &/’ and the nonlinear Schrodinger equation (5.17) is a Hamiltonian
differential equation.

In Section 2.4, we prove directly from the equation that G = SO(d) x RY x R with the
action defined by (2.36) is an invariance group for the dynamics. In general, the action
of this group is not globally Hamiltonian. Nevertheless, let us consider the subgroup G =
R¢ x R and the restricted action

®:GxE—E
(a,7,u) = Py y(u) = e"u(x—a). (5.18)
Forall g € G, ®, € C!(E,E) is symplectic, ®,(2) = Z and for all
&=1(81,---,8a:8ar1) €9
point (iii) of Definition 5.10 is satisfied by taking ng = §;F;j with
i

Fj(u):_i dﬁ(x)axju(x)dejzl,...,d, (5.19)
R

: a(x)u(x)dx. (5.20)
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As a consequence the action ® of G on E is globally Hamiltonian. Moreover, in Section
2.4, we showed that H o @, = H, hence we may apply Theorem 5.11 and conclude that
Fg; o o = Fg; that means that each Fj is a constant of the motion.

Finally we show that the action ® : (R,u) € G x E — ®g(u) = u(R"'x) €E of G =
SO(d) on E is not globally Hamiltonian. For simplicity, let us consider d = 2 and let us
identify a matrix & € so(2) with § e R

_(0 ¢
= (% 5):
Then for each § € R, @gype) = <I>,Fg with Fz = §F and

Fu) = —é [ (101, — 00, ) d.

The issue is that F is not even well-defined on the Banach space H' (R?)!

Finally, let us remark that if we choose 2 = H?(R¢) x H?(R?), then DH(2) C L*(R¢) x
L*(RY ¢ # s =H I(R?) x H'(RY) and H does not have a _# -compatible derivative
for this new choice of 2. In the same way, if we take E = L>(RY) x L?>(R?) and 2 =
H'(RY) x H'(R?), the same function H is not even continuous.

Next, let (E, 2, _#) be the symplectic Banach triple given
E =H'(R?R) x L*(RY,R),
2 =H*(RY,R) x H'(R? R),
Z(4,p) = (-p,q), ¥(q.p) €E.

and consider the nonlinear wave equation

AZu(t,x) — Au(t,x) + Alu(t,x)|° u(t,x) = 0 (5.21)
u(0,x) = up(x), du(0,x) = uy (x) '

introduced in Section 2.6, defined on R?, d = 1,2,3. Suppose A > 0 and ¢ an odd integer
such that 3 < 6 < +o in dimensiond =1 and 3 < 0 < 1+ﬁ for d = 2,3. Leth;X:
E — E the global flow defined in (2.53). Thanks to the persistence of regularity, we have
®X(9) = P for all t € R (see Section 2.6).

As before, our purpose is to show that Equation (5.21) is the Hamiltonian differential
equation associated to the function H defined by (2.52) and ®X = ®# forallr € R.

First of all, note that Z , = L*(R?) x H'(R?) C E* = H™'(RY) x L*(R?). Next, con-
sider

1 2 2 A +1
Hig,p) = 5 (1Val+1pl3:) + =5 [ (al”,

and remark that if we write ¢ = u and p = dyu with (q,p) € E, H(u) = H(q, p) is exactly
the energy defined in (2.52). As for the nonlinear Schrodinger equation, a straightforward
calculation, using the Sobolev embedding theorem, shows that H € C*>(E,R). In particular,

D(q,p)H = (*AQ+A’|Q|0—71%17) EE".

Next, using the fact that the Sobolev space H?(R?) is an algebra for d = 1,2,3, we have
DH(Z) C % y so that H has a _# -compatible derivative on Z.
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Moreover, the curve (u(t),du(t)) = ®X (u(0),du(0)) is the unique solution to (5.21).
As a consequence, using u = g and du = p, we have that (q(t), p(t)) = ®X(q,p) is the
unique solution to

J(4(1).p(t)) = (=Aq+Algl°'q.p) = D) ppH,

that is, Equation (5.5). Finally, if (¢, p) € 2, the curvet — ® (¢, p) € C(R, 2)NC' (R,E).
As a consequence, ¥ is a Hamiltonian flow for H in the sense of Definition 5.6, ®F = ®H
and the nonlinear wave equation (5.21) is a Hamiltonian differential equation.

6. IDENTIFYING RELATIVE EQUILIBRIA

We now dispose of the necessary tools that will allow us to characterize the relative
equilibria of Hamiltonian systems with symmetry and that will yield the candidate Lya-
punov function to study their stability. Before stating the main result (Theorem 6.1), we
recall some of the terminology used below, but refer to the appendices for details. First,
for u € g*, we have (see (A.2.12)),

Gu={g€G|Adu=pn};
g,9u are the Lie algebras of G and G, respectively, and g*, g; their duals. We always

identify g* with R™ (see (A.2.13)). Hence, if ® is a globally Hamiltonian action, we think
of its momentum map as a map F : E — R and define, for all u € R™,

Su={u€E|F(u)=p).

We then know from Proposition A.3.11 that G, = Gy, provided the momentum map is
Ad*-equivariant.

Theorem 6.1. Let (E, 9, _# ) be a symplectic Banach triple. Let H € C' (E,R)NDif(Z, 7)
and suppose H has a Hamiltonian flow @f{. Let furthermore G be a Lie group, and ® a
globally Hamiltonian action on E with Ad*-equivariant momentum map F. Suppose that,

VgeG, Hod,=H. (6.1)

(i) Then G is an invariance group for ®.

(ii) Letu € E and let 4 = F (u) € R™ ~ g*. Consider the following statements:
(1) uis a relative G-equilibrium.
(2) uis arelative Gy-equilibrium.
(3) There exists & € gy so that, for allt € R,

D7 (u) = Pexpiee (u)- 6.2)
(4) There exists & € gy so that

DuH — & -D,F =0. 6.3)
(5) There exists & € g so that

DuH — & -DyF =0. (6.4)

Then (1) < (2) < (3).

Ifue 9, then (1)< (2) <= (3) = (4) & (5).

If in addition, W is a regular value of F (See Definition A.1.3), then
(1)< (2) <= (3) = (4) = (5) < (6), where (6) is the statement:
(6) uis a critical point of H, on ¥y, where Hy, = H|Eu'

In addition, & is then unique.
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That (1) is equivalent to (2) is a particular feature of Hamiltonian systems. In fact, its
statement makes no sense outside of the Hamiltonian setting. It implies that, if u is a G-
relative equilibrium, it is automatically a relative equilibrium for the smaller group G,. So
the relevant invariance group depends on the point u through the value 4 = F(u) of the
constants of the motion at u. This is important since, as we will see in Section 7, one then
ends up showing u is Gy -orbitally stable, which is a stronger result than G-orbital stability.
We already saw examples of this mechanism in Section 4. The proof of the equivalence
between (1) and (2), although very simple, uses the subtle relations between constants of
the motion and symmetries for Hamiltonian systems explained in the previous section.

For our purposes, the most interesting information obtained in this result is the obser-
vation that if u € & satisfies (6.3), sometimes referred to in the PDE literature as “the
stationary equation”, then it is a relative equilibrium. And that, if u is a regular value of F,
those solutions are precisely the critical values of Hy,. This means that, given a Hamilton-
ian system with symmetries, one can find relative equilibria by looking for critical points
of the Hamiltonian H restricted to the surfaces X, In practice, this can be done concretely
by solving (6.4), which in applications to Hamiltonian PDE’s often takes the form of a
stationary PDE in which £ is treated as a (vector valued) parameter. Examples are given in
the following sections. See also Section 4 for examples in finite dimension.

One immediately suspects that the Lagrange theory of multipliers for the study of con-
strained extrema should be of relevance here. This is indeed the case: introducing, on E,
the Lagrange function

WeE, ZWv)=HW)—E&-F(v), (6.5)
one sees that (6.4) expresses the vanishing of its first variation at u: D,.Z = 0. Here,
£ € g ~ R™ plays the role of a Lagrange multiplier. From the experience gained with the
examples given so far, one suspects that, to show u is a stable relative equilibrium, one
could try proceeding in two steps. First, show u is not just a critical point, but actually a
local minimum of H, by studying the second variation of the Lagrange function .Z on X,.
Next, use the Lagrange function as Lyapunov function in the proof of stability. Indeed,
u € Xy is a local minimum of Hy, if and only if

E|p>O,VVGZ,u, d(V,M)SpﬁHu(V)*H“(M)ZO,
which is equivalent to
dp>0WweXy, dvu)<p=2ZLVv)—ZL(u) >0,

since F is constant on X;,. This is clearly the strategy used in the proofs of Section 4. We
will see in Section 7 how to implement it in a general setting and give examples from the
nonlinear Schrodinger equation in Sections 8 and 9. This is the approach that goes by the
name of energy-momentum method.

Proof. (1) This is an immediate consequence of Theorem 5.11 (iii).
(i) (1)< (2). Ifuis arelative G-equilibrium, then there exists, foreachs € R, g(r) € G
so that ®ff (u) = P, (u). Since u € Ly, so is Df (u), since F is a constant of the
motion for H, by Theorem 5.11 (ii). Hence

W=F(u) = F(®} () = F(Py() (u)) = Ady, 1.

It follows that g(t) € Gy, which concludes the argument. The reverse implication
is obvious.

(3) = (2). Obvious from the definition.

Now suppose u € 2.
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(3) & (4). Suppose (3) holds. Since u € Z, this implies that /*'DMH =
Z7'D,(& - F), which implies (4). Now suppose (4) holds. Since u € & and
since H o @' = H and Fz o ®f' = F; by Theorem 5.11 (ii), we have, forall € R,

Dyt () HDu®}' = DuH, Doyt (& - F)Du®f' = Dy(§ - F).

Writing u(t) = CI)ZH (u), this yields Du(z)H = Du(,) ((g - F) so that /u(t) = Du(,) ((g :
F), which shows ¢t — u(z) is a flow line of the Hamiltonian & - F, with initial
condition u. Since the latter is unique, we find u(r) = <I>}§'F(u), which concludes
the argument since CI>,‘:'F = D,ps¢) (See Definition 5.10 (iii)).

(4) & (5). We only need to establish that (5) implies (4). As above, (5) implies
u(t) = Peypse). Hence

Adep(tE)’J = Adep(zé)F(”) = (Foq)exp(té)>(”> =F(u(t)) =F(u)=pu,

since F;o ®' = F;. Hence & € g.

Now suppose in addition u is a regular value of F.
(4) & (6). We remark that, since [t is a regular value of F, X, is a co-dimension
m submanifold of E and (see (A.1.6))

T.Ly={ve€E|D,F(v)=0}.

Hence clearly (4) implies (6). Conversely, suppose D, H vanishes on T, X. Since
U is a regular value of F, we know that D, F" is onto R”. Let W be a subspace of E
complementary to 7,,X, so that E = T, X ® W. It follows dimW = m and that the m
one-forms D, F; e W*,i=1,...mform a basis of W*. Consequently, the restriction
of D,H to W can be written uniquely as D,H = Y, D, F; = D, (& - F). Since
both sides vanish on 7, X, (4) follows.

(]

We conclude this section with two technical remarks that can be skipped in a first read-
ing.
Remark 6.2. First, we have seen that (3) implies (2). Under suitable technical conditions,
the reverse is also true. This can be understood as follows. If u € Z is a Gy-relative
equilibrium then, for all 7 € R, there exists g(1) € Gy, so that u(t) = @ u = 4 u. So the
curve

teR— @ (u) € Guu:={®,(u)| g€ Gy} CE

is a smooth curve on the group orbit G, u. Under appropriate topological conditionson G,
and G, (defined in (2.7)), and if the action ® of the group G, is sufficiently smooth!® | this
orbit is an immersed submanifold of X, that can be identified with the homogeneous space
G, /Gy, and its tangent space at u is therefore

Tu(Guu) = {Xp, (u) | & € gu}-
We recall that ng is the Hamiltonian vector field associated to the function Fy = E.F.
Since Xp (1) = $ @ (u);,— € T,,(Guu), it follows that there exists & € gy so that
X (u) = Xe.p (u),

which is equivalent to (6.3) and therefore implies (3). We refer to [AM78, LM87] for
the detailed argument, in the finite dimensional setting. We shall not have a need for the

16gee for example Section 4 of [AM78], and in particular Corollary 4.1.22.
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implication (2) = (3), but will point out that, “morally”, there is a one-one relationship
between the critical points of H); and the relative equilibria of the Hamiltonian flow o,

Remark 6.3. Second, what is the role of the condition that i be a regular value of F'? This
has several consequences. First, it guarantees that X, is a co-dimension m submanifold
of E and that T,X;, = KerD,F. This is convenient in the further stability analysis, as we
will see. Second, if u € 2 and RankD,F = m, then £ € R" ~ g — CID‘}]’:'F(M) €0, =
Gu C E is a local immersion and the action is locally free, meaning that the isotropy
group G, of u is discrete. Hence & € g, — CI>§'F(u) € 0,NXy =Guu CE is also a
local immersion. This observation will be used in Lemma 7.9 in the next section. If u
is not regular, various additional technical difficulties arise in the stability analysis of the
next section, even in finite dimensional settings, where they have been studied in [LS98,
MROI1]. As an example of such a singular value u, consider the action of SO(3) on R®
introduced in Section 2.3, on the level set L(u) = u = 0. The corresponding isotropy group
Gy is SO(3) itself in that case. Its action is not locally free, since G, for u = (g, p), with ¢
and p parallel, is the copy of SO(2) given by the rotations about the common axis of ¢ and
p. We will see another example of such a situation when treating the nonlinear Schrodinger
equation on the torus in Section 8. In both these cases, the ensuing complication is easily
dealt with on an ad hoc basis.

7. ORBITAL STABILITY: AN ABSTRACT PROOF

7.1. Introduction: strategy

We have seen that in many situations the relative equilibria of Hamiltonian systems
with symmetry are precisely the critical points of the restriction Hy, of the Hamiltonian
H to a level surface X, for some u € g, of the constants of the motion F associated to
the symmetry group via the Noether Theorem. This at once explains why they tend to
come in families uy, indexed by y in some open subset of g* ~ R™. Indeed, considering
equation (6.4), it is natural to think of it as an equation in which both & and u are unknown.
And so, under suitable circumstances, one can hope to find a family of solutions u¢ of (6.4)
by letting & run through some neighbourhood inside g. Typically, as & changes, so does
Mg = F (ug) € g*. Depending on the situation, it may be more convenient to label the
solutions by (g than by & € g. In these notes, we use mostly [ as a parameter, except
in Section 9 where & is used. The question of the existence of such families of relative
equilibria — a problem related to bifurcation theory — is studied, in the finite dimensional
setting, in [Mon97] and [LS98]. We already saw several examples of this phenomenon and
more will be provided in Sections 8 and 9.

It remains to see how one can prove the orbital stability of those relative equilibria.
The basic intuition is that — modulo technical problems — they should be stable if they are
not just critical points, but actually local minima of Hy;. To understand the origin of this
intuition, recall that, if uy, € X is a relative equilibrium of the Hamiltonian dynamics CIDIH,
then the orbit Gyu = {®4(u) | g € Gy} of Gy, viewed as an element of the orbit space
X, /Gy, is a fixed point of the reduced dynamics. And, since Hy is invariant under the
action of Gy, it can be viewed as a function on this orbit space. If Hy, has a local minimum
atuy, it thus has a local minimum at the orbit Gyu € X / G, Finally, since Hy, is a constant
of the motion for the reduced dynamics, we are precisely in the situation described in the
introduction: Guu is a fixed point of the reduced dynamics, and H; is a constant of the
motion for which Gyu is a minimum. We can therefore hope to use the Lyapunov method
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to prove the stability of G,u. To do so, it would suffice to prove a coercive estimate of the
type (1.2) for Hy, on X, /G

There are two obvious problems one has to face when trying to implement this strategy.
First, even if one executes this program, one will have proven only that u, is orbitally stable
with respect to perturbations v of uy, with v € ¥;,. But one would like to prove this is true for
arbitrary perturbations v € E. Second, it is difficult to work on the abstract quotient space
Zu/Gu» which, even in finite dimensional systems, but particularly in infinite dimensional
ones, may not have a nice topological or differentiable structure, so that analytical tools to
prove estimates are not readily available. To deal with both these problems, the idea is to
use the theory of constraint minimization and Lagrange multipliers. This has the obvious
advantage that one can work in the ambient space E, which has the added redeeming
feature of being linear. As already outlined in the dicussion following Theorem 6.1, it
turns out that it is the Lagrange function

associated to the relative equilibrium uy, (see (6.5)) that plays the role of Lyapunov function
in the proofs. In practice, one uses a Taylor expansion to second order of .%}; about points
on the orbit Gy u and controls the second derivative of .Z), to prove it is a minimum; this
in turn gives the necessary coercivity to conclude stability. The reader will have noticed
that the above strategy was worked out in all detail in the simple example of motion in a
spherical potential presented in Section 4.

In this section, we will provide a detailed implementation of the above strategy in the
following general setup. We refer to Section 2 for the definitions of the objects introduced
below.

HYPOTHESIS A
(i) E is a Banach space and 2 a domain in E.
(ii) ®¥ is a dynamical system on E with a vector field X : ¥ — E.
(iii) F € C*(E,R™) is a vector of constants of the motion for ®X with level surfaces
Yy, u € R™ asin (2.5).
(iv) @) admits an invariance group G, with an action ® of G on E.
Recall that if p is a regular value for F' then X, is a co-dimension m submanifold of E.
In this setting, we consider relative equilibria of the following type.
Let p € R™.

HYPOTHESIS Bu
(1) There exists uy, € X, which is a relative equilibrium of the dynamics for the group
Gy, ={g€G| DXy =2y}
(ii) There exists .}, € C(E,R) which is a Gy, - invariant constant of the motion.
(iii) There exist n > 0,c¢ > 0 so that

Vue Oy, Yu' €y, duu’) <n = L) — Ly(u) > cd* (i, Ouy) (7.1)

where
ﬁuﬂ = ‘I’qu (u) ={Dg(u) | g € Gz“}. (7.2)

Under the above conditions, we say -Z), is a coercive Lyapunov function on 0, along
Ey. If the Gy, -action is isometric then it is enough to check (7.1) holds at one single point
ue ﬁuy. It will then hold everywhere, with the same 1, ¢, as a result of the qu -invariance
of .Z),. Isometric actions are common in applications and this is one of the places where
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they provide a simplification. For what follows, the power 2 in the right hand side of (7.1)
is of no consequence. One can generalize the definition by replacing the right hand side
in (7.3) by f(d(u', O, )), for some function f : R* — R*, f(0) =0, f(d) >0ifd > 0. In
practice, as we will see below, one gets the lower bound in (7.1) from a Taylor expansion of
Z, so that the square appears naturally. We point out that condition (iii) in Hypothesis Bu
implies (i). Indeed, if u € O, and u’ = u(z") for small enough ¢/, then (iii) implies that
0= L. (u(t') — L. () > e (u(t'), Oy,)-

We have however found it convenient to keep this redundancy in the statement of the
hypothesis.

We point out that Hypotheses A and Bu are formulated without imposing the dynamical
system to be Hamiltonian. Nor do they impose any link between the symmetry group G,
the constants of the motion F' and the Lyapunov function .Z),. The first goal of this sec-
tion is to formulate and prove very general abstract theorems establishing orbital stability
under the above general assumptions and some extra technical conditions. The first such
result, Theorem 7.1, is a general version of Proposition 4.1: it imposes a strong coercivity
condition, but is nevertheless sometimes of use, as we will see in Section 8. Theorem 7.4
and Theorem 7.5 correspond essentially to the first two arguments proposed in the proof of
Proposition 4.2. The proofs of these results are quite simple, as we shall see. These three
results show that the essential ingredient in the proof of orbital stability is the coercivity
condition in Hypothesis Bu (iii).

It therefore remains to understand how to find a Lyapunov function satisfying in partic-
ular Hypothesis Bu (iii). It is at this point that the Hamiltonian nature of the dynamical
system plays an important role. We already saw in Section 6 that a candidate Lyapunov
function arises naturally in that context. We will furthermore show in Proposition 7.7 how
to obtain the coercivity condition Hypothesis Byt (iii) from a lower bound on the Hessian
of the Lyapunov function, in the case of Hamiltonian systems with symmetry. Combining
this with Theorem 7.4 and Theorem 7.5 then yields a complete proof of orbital stability.

We will end this section with Theorem 7.10 which provides a slightly different proof
of orbital stability of relative equilibria in Hamiltonian systems, and which is a general-
ization of the third argument proposed in the proof of Proposition 4.2. The argument uses
Proposition 7.7 again, but combines it with the construction of an “augmented” Lyapunov
function.

In applications of the theory developed in this section, the work is therefore reduced
to solving (6.4) to identify the relative equilibria, and to proving a suitable lower bound
on the Hessian of the corresponding Lyapunov function. This usually involves non-trivial
(spectral) analysis, as one may expect. Illustrative examples are presented in Sections 8
and 9.

In conclusion, the theorems of this section isolate the “soft analysis” part of the proof
of orbital stability of relative equilibria from the more concrete and model dependent esti-
mates needed to prove coercivity.

7.2. A simple case
Before turning to the general results, we first formulate and prove a simple orbital sta-
bility result, under a stronger coercivity condition than (7.1).

Theorem 7.1. Let Hypotheses A and Bl (i)~(ii) for some . € R™ be satisfied. Let O,
be as in (7.2). Suppose there exist 1 > 0,c > 0 so that

Yue€ O, v eE, dvu)<n= Zu(v)— Ly (u)>cd*(v, Oy, )- (7.3)

Uy,
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Then, all u € Oy, are orbitally stable Gy, -relative equilibria.

We refer to Definition 3.1 for the definition of orbital stability. Observe that in (7.3) the co-
ercivity estimate is imposed for all perturbations v in E, rather than only in X, as in (7.1).
So here we are assuming that the Lyapunov function reaches a local minimum at «, when
viewed as a function on E, rather than only as a function on X,. This therefore constitutes
a strengthening of Hypothesis B . (iii).The theorem can be used to prove orbital stability
in some cases: for the fixed points in the spherical potentials treated in Section 4.1, for
example, this is how we proceeded. Similarly, to establish the stability of the plane waves
for the nonlinear Schrddinger equation on a one-dimensional torus, this theorem will also
be sufficient, as we will see in Section 8. But we have already noticed in Section 4 that the
coercivity imposed in (7.3) may be too strong a condition: we saw it is not satisfied for the
natural choice of Lyapunov function for the circular orbits of Section 4.2, for example. It
is too strong also in many situations involving the stability of solitons or standing waves.
An example is treated in Section 9.
The proof is very simple, and based on the usual argument by contradiction.

Proof. Suppose there exists a point u € 0, that is not orbitally stable. Then there ex-
ists & > 0 and for all n € N*, there exists v, € E so that d(v,,u) < % and Jr, € R so

that d(v,,(t,,),ﬁuy*) = &. We can suppose & < 7. Then there exists ¥, € ,,, so that
d(va(tn),vs) < M and hence, since .Z},, is both a constant of the motion and constant on

L. (v) = L. () = Ly, (va(tn)) = Ly, (%) 2 cd? (va(1n), Ow,.) = ceg.

Since .Z),, is continuous, the left hand side tends to zero when n — oo, which is a contra-
diction. m

7.3. Coercivity implies stability I
We now turn to the task of showing that Hypotheses A and By, imply the Gy, -orbital
stability of uy,, . For our first result, we need the following hypothesis.

HYPOTHESIS F Let F : E — R™. Let u € R™. We say F satisfies Hypothesis F at u if,
for any bounded sequence u, in E,

Hm F (i) =t = d(un, ) — 0. (7.4)

The following lemma gives sufficient conditions for this to be satisfied.

Lemma 7.2. (a) Suppose dimE < +oo. Let F € C(E,R™). Then F satisfies Hypoth-
esis F forall u € R™.
(b) Suppose F € C(E,R™) and that there exists C > 0 so that {u € E | F (u)?> < C?} is
compact. Let 11 € R™ with u*> < C*. Then F satisfies Hypothesis F at 1.
(c) Let F : E — R. Suppose that there exists k € R* so that, Vu € 9, for all A € R¥,
F(Au) = AXF (u). Suppose u # 0. Then F satisfies Hypothesis F at \.

Proof. (a) Suppose there exists & > 0 and a bounded sequence u,, so that F (u,) — U,
but d(u,,X;) > €. Then the boundedness of the sequence implies the existence
of a convergent subsequence u,, — v € E. By continuity of F, it follows that
F(v) = sothatv € Xy. Sod(uy,Xy) — 0. This is a contradiction.

(b) The proof is similar to the one in (a).
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(c) Let (uy), be a bounded sequence satisfying F(u,) — @ # 0. Then, for large
1

/k
enough n one has u/F(u,) > 0 and we can define v, = (%) uy. Then

F(vp) = u. Clearly ||v, — up|| — 0 so that d(u,,Xy) — 0.
O

Remark 7.3. (i) The boundedness of the sequence is important, even in finite dimension.
2
", 4 = 0 and remark that F (x,x) — 0 as

Indeed, consider on R? the function F(x,y) = S

X —> oo,
(i1) Condition (c) can be used for linear actions of one-parameter groups on a Hilbert space
(E,(-,-)), which have a quadratic hamiltonian of the type

F(u) = 5 (u,Bu),

such as in (5.19).

Theorem 7.4. Suppose Hypotheses A and B, (Section 7.1) are satisfied for some [, € R™.
Then

Vue 0,, Ve >0,36 >0, (Vu' € £y, ,d(u,u) < 8 = supd(u/(t),0,,,) <€). (1.5)

teR
If in addition,
(i) Ly, is uniformly continuous on bounded sets,
(ii) O, is bounded,
(iii) F : E — R™ satisfies Hypothesis F,

then all u € ﬁ“u* are orbitally stable qu* -relative equilibria.

We point out that (7.5) is already an orbital stability result for all u € &,,,, = Gy, u, but
only with respect to perturbations of the initial condition u inside X, . The theorem asserts
that, with the extra conditions (i)—(ii)—(iii), orbital stability with respect to all perturbations
within E is obtained. It is the observation that coercivity along X, (Hypothesis Bu (iii))
suffices to establish orbital stability that explains, in fine, the advantage of Theorem 7.4
over Theorem 7.1. This is already illustrated in Section 4.2 on a simple example. Note
furthermore that conditions (i) and (iii) of the theorem are automatically satisfied in finite
dimension. The boundedness of ﬁ"u* (condition (ii)) is guaranteed for example when the
group is compact, or when E is a Hilbert space and the group acts with unitary transforma-
tions, which is often the case in infinite dimensional systems.

The argument in the proof of Theorem 7.4 is extracted from the proof of Theorem 5.3
in [GSS87] and is used in [GSS90] as well. We point out however, that conditions (i)
and (iii) are left implicit there. The first one is usually easy to check in examples, where
the Lyapunov function tends at any rate to be uniformly Lipschitz on bounded sets. For the
second one, we gave some sufficient conditions in Lemma 7.2.

Proof. We will prove (7.5) by contradiction, yet again. Let us therefore suppose there
exists u € ﬁuu* and & > 0 so that for all n € N, there exists u, € X, so that

1 - -
d(up,u) < =, and 37, € R so that d(un(#), O, ) > -
n

We can choose, without loss of generality, & < 1, where 7 is defined in (7.1) and choose
t, the smallest value of ¢ so that

d(uy,u) < l, and  d(un(tn), O, ) = €0 <M.
n
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Consequently, there exists y, € O, so thatd(u,(t,),y,) < 1. Note that u,(t,) € £, , since
¥, is invariant under the dynamical flow. Then, since .Z},, is a constant of the motion, and
since it is constant and coercive on &, along ¥,

L, (un) = 2Ly, (u) = Ly, (un(tn)) = L, (u)
=2y, (un(tn)) — L, (Vn) > Cdz(”n(tn)v 0,

2

Uy, ) = CSO .

Since .Z),, is continuous, one obtains a contradiction by taking n — +oco. This shows (7.5).
To prove the last statement, suppose &, is bounded and .Z},, uniformly continuous on

bounded sets. We need to show that

Vu e Oy, ,Ve>0,36 >0, (Vu' € E,d(u',u) < & = supd(u(1),0,,.) <€). (7.6)

» Yy,
teR

We proceed again by contradiction. Suppose there exists u € 0y, and 0 < & < 1 so that,
for all n € N, there exists u, € E,

1
d(up,u) < —, and 3, € R so that d(un(tn), Ou,, ) = €0 < 1.
n
Note that, this time, u, € E and u,(t,) € E, not in Xy,. So we can’t use the coercivity
of £, along X, directly. We do know, however, that F(u,(t,)) = F(u,), since F is a
constant of the motion. Hence
Hm F(u,(ty)) = M.

n—r—+oo

Since the orbit 7, is bounded, and since d(uy,(t,), Oy, ) = €, it follows that the sequence
un(t,) is bounded. Hypothesis F then implies there exist z, € X, so that |[u,(t,) — z,|| — 0.
We can now conclude. Since, for n large enough, %0 < d(zp, ﬁuu*) <1, we have

Ly (un) = L () = Ly, (un(tn)) — Ly, (u)
=Ly (un(tn)) = L. (@n) + L. (2n) — L, (u)
> Ly, (un(tn)) — Ly, (zn) + cdz(z,,, ﬁu’l* ).
Since the orbit ﬁuu* is bounded, the sequences u,(f,) and z, are bounded. This, combined

with the uniform continuity of .%},, on bounded sets, leads again to a contradiction upon
taking n — 4-oo. (]

We now give a third proof of orbital stability starting from a coercive Lyapunov func-
tion, along the lines of the third argument in the proof of Proposition 4.2. The point here
is that we exploit the fact that the relative equilibria u, often come in families.

Theorem 7.5. Suppose the following.
(i) Hypothesis A holds.
(ii) There exists a continuous map L € U C R"™ — uy € Xy C E so that Hypothesis Bu
is satisfied for all u € U, with 1 and c in (7.1) independent of L.
(iii) supyey |Juull < +eo.
(iv) There exists C > 0 so that
VueUvu €%y, |u' —uu| <n= Lu()— Lu(uy) <Cllu’ —uyl|. (1.7
(v) Vg € G, @y is an isometry on E: Yu,u' € E, d(Pq(u), Pg(u')) = d(u,u’).
Then, any u € O, is an orbitally stable Gy, -relative equilbrium of the flow ol
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Condition (iii) is not very restrictive. It is sufficient to take U bounded, for example.
Condition (iv) follows if we know that D,.Z), is bounded for u in bounded sets. This is
a reasonable condition. Condition (v) is commonly satisfied in PDE systems, but is quite
restrictive, as we already explained. It implies we can use Proposition 2.3 and Lemma 3.2.

Proof. Let u, € U. As aresult of Lemma 3.2, it is enough to show the orbital stability of
uy,. So we need to show that, for all € > 0, there exists & > 0 so that, for all ' € E, one
has

I —uy | < 8= Ve € R,d( (1), Oy ) < €. (71.8)

For that purpose, we need three preliminary estimates. We first show that Ve > 0, there
exists 0 > 0 so that, forall p € U, forall ' € X,

u —up|| <& =Vr € R,d(W (1), 00,) < £/2. (7.9)

In other words, we first show that the u,, are all orbitally stable for perturbations within X;.
The method of proof — by contradiction — is the same as several times before, but we need
to make sure to obtain the necessary uniformity in y. If the above is not true, then there
exists & > 0 so that for all n € N* there exist yt, € U and u, € X, t, € R, so that

) 80

1
H“n*“ﬂnng? d(un(ta), O :3<77-

Upp

Here 1) is given in Hypothesis Bu (iii) and we recall that it is independent of u,. Hence

82
gﬂn (u”) - gﬂn(uun) = gﬂn (M” (tn)) - gu)l(uu)l) Z Cdz(un (t”)’ ﬁun) = CZO'

Now, since the uy, form a bounded set by hypothesis (iii) of the theorem, the same is true
for the u,. Hence, it follows from hypothesis (iv) of the theorem that

Zﬂn(“”) - Zﬂn(u#n) S C”Mn - u,unH’

2
where C does not depend on n. Hence Clu, — uy, || > c%", so that, taking n — 40, we
obtain a contradiction. This proves (7.9).
As a second step, we show the following estimate. Let u. € U. Then, for all € > 0,
there exists p > 0 so that,
N €
Ve, (Iu—pll<p=We b, dvo,)<5). (7.10)

MH7

To see, this, note that hypothesis (i) of the theorem implies that there exists p > 0 so that
[l — ]| < p implies ||uy —uy, || < €/2. Hence d(uy, Oy, ) < €/2. The result then follows
from Proposition 2.3, since we suppose the action ® of G is isometric.

The third ingredient for the proof of (7.8) is the following:

V6 >0,vp >0,38 >0,V €E,
(I = < 8= ' = pll < ool —wl <8), 7.1D)

where ' = F(u'). This follows immediately from the continuity of F and of p — uy, at
M.

We can now conclude. Let , € U and € > 0. Choose 6 as in (7.9), p as in (7.10) and
6 asin (7.11). Then, by (7.9) and (7.11), we find that

v € B, (|lu' — | <8 =¥ €R,AW (1), 60,) < f) .
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Hence, for all # € R, there exists v(¢) € Ou,,» so that d(u'(r),v(z)) < €/2. Next, from (7.11)
and (7.10) , there exists w(r) € 0y, so that d(v(z),w(t)) < §. Hence d(u'(z), 0,,,) < &.
This proves (7.8). (I

7.4. Sufficient condition for coercivity

We now turn to the task of showing how one can obtain Hypothesis By (iii) from an
estimate on the Hessian of .Z), (Proposition 7.7). We work in the following setting.

Let E be a Banach space, G a Lie group and ® a G-action on E. Let F € C*(E,R™).
We recall that, for u € R™,

Su={ueE|F(u)=p).
Let (-,-) be a scalar product on E, which is continuous in the sense that
waweE, [ < [Pl[wll,

where we recall that || - || is our notation for the Banach norm on E. This inner product
induces a metric on E, that we shall denote by

ds(v,w) = (v—w,v—w). (7.12)

Clearly ds(v,w) < d(v,w). We point out that we are not supposing E is a Hilbert space for
this inner product, and that the only topology we will be using is the one induced by the
Banach norm on E. We introduce this inner product since we need a notion of orthogonality
as will become clear below.

As an example, if E = H'(R¢,C) and depending on the problem considered, one may
want to use either the L? inner product or the H' inner product: in Section 8 the first choice
is made and in Section 9 the second one.

Let u € R™ and uy, € X;. We need the following hypothesis.

HYPOTHESIS Cu

(i) @y is linear and preserves both the structure (-,-) and the norm || - || for all g € G;
(i) Ad, € O(m) forall g € Gy, ;
(iii) p is a regular value of F;
(iv) upisaC I_vector for ® and the map

E € gy, — Pexp(e)it € E (7.13)

is one to one in a neighbourhood of & = 0.

The meaning of condition (ii) of Hypothesis Cu is explained in Remark A.2.1.
Remark 7.6. We say u € E is a C'-vector for the action @ if the map
g€G—P,(u) €E

is Cl. Now, ifu' € 0, = D;(u), then ' is also a C!-vector. Indeed, there exists g eGso
that @u = i’ and, since g — gg’ is smooth, it follows that g — Ppu is C'.
Let G be a subgroup of G, we can define, for all ' € 0, = D (u),

TyO,:={weE |3 ecgw=X:(u)}, (7.14)
where we recall from (A.2.15) that
d
Xe(u) = 5 Pexp(re) (1) p=o-

Note that hypothesis Cu and the following proposition involve G and its action on E,
as well as F, but not the dynamics CIDf‘ itself.
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Proposition 7.7. Let E be a Banach space and (-,-) be a continuous scalar product on
E. Let G be a Lie group and ® a G-action on E. Let F € C*(E,R™). Let . € R™ and
Uy, € Ly,. Let &, € C*H(E,R) be a Gy, -invariant function. Suppose Hypothesis CL
holds and that, for all u € ﬁu“* (defined in (7.2)),

Vj=1,...,m 3VF;(u) € E such that D,F;j(w) = (VFj(u),w) Yw € E. (7.15)

If
(a) DLy, (w) =0foralluc O, andw € E;
(b) there exists C > 0 so that

Vue 0, ,YweEE, DXy (wyw) <C|w|%
(c) there exists ¢ > 0 so that

Yue 0y, ,Yw € T,Zy, N(T,04, )t D2Ly (wyw) > c||lwl? (7.16)

Uty >
where
(Tw0.) " ={z€E| (z,y) =0,%y € T, O.}; (7.17)
then Hypothesis B, (iii) holds.

Condition (7.15) is automatically satisfied when E is a Hilbert space and (-, -) the Hilbert
space inner product. But not in general. For example, let E = H'(R,C) and let (u,v) =
Re [ @(x)v(x)dx. Now, if Fy (u) = 5 [(x)dxu(x)dx, (7.15) s satisfied if u € H*(R,C) but
not arbitrary u € E.

For the proof of this proposition, we need some simple technical results.

First, let V be a bounded open neighbourhood of e in a subgroup G of G with the
property that, forall g € G, gVg~! = V. Let us introduce

Ry (1) = min{d(®g(u),u) | g € IV}

It then follows that, for all «’ € &, Ry (') = Ry (u). Indeed, there exists g’ € G so that
@, (u) =u'. Hence

Ry (u') = min{dy (P, (1), Py (1)) | g € OV}
= min{ds(ég,flgg,(u ,u)| g €dV}=Ry(u),

since g ' aVg = V.
We can now formulate the following simple but crucial technical result, which is a multi-
dimensional version of Lemma 2.1 in [Stu08].

Lemma 7.8. Let E be a Banach space and {-,-) be a continuous scalar product on E. Let
G be a Lie subgroup of G and ® a linear G-action on E which preserves the inner product
(-,-). Supposeu € E is a C'-vector for ® and let V be a bounded open neighbourhood of
e € G which is conjugation invariant (i.e. gVg~' =V, for all g € G). Suppose Ry (u) > 0.
Then, forallv € E,

1
dv,0,) < §Rv(u) =>3we 0, =Ps(u),w—ve (Twﬁu)L. (7.18)

The lemma states that if v is not too far from the orbit &), then there exists a point w on
the orbit so that the segment from v to w is orthogonal to the orbit at w. This point does not
necessarily realize the distance between v and the orbit, which can vanish.
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Proof. Let v € E and d(v,0,) < 1Ry(u). Then there exists u’' € 0, so that d(v,u’) <
1Ry (u) = $Ry (u') and hence dy(v,u’) < 1Ry (u'). Now consider

g€V = d2(v, @) eRT.

Since V is compact, this function reaches a minimum at some point § € V. We set w =
@z’ € O, so thatds(v,w) < ds(v,u') < Ry (u'). We now show that § cannot belong to 9V
Indeed, if § were on the boundary of V, then, by the definition of Ry («), ds(w,u’) > Ry (/).
But then

1 2

§RV (M,) = §RV (I/l/).

which is a contradiction because ds(v,w) < 1Ry (). So & belongs to V. Now choose £ € g
and consider

ds(w,v) > —ds(u/,v) +ds(u’,w) > Ry (u) —

teR— dg(v, q)exp(té)g(“/)) S R+,

which now reaches a local minimum at ¢ = 0 since for small ¢, exp(r&)g belongs to V.
Hence its derivative vanishes. So

d d
0= Edg(\/, q)exp(té)g(u/))\tzo = a <v - (I)exp(t?j) (W)av - (I)exp(tf:) (W)> |t=0
= 72<X5 (W),V - W>7
which proves the result in view of (7.14). [l

In the proof of Proposition 7.7, we will need to apply the previous lemma to the group
Gy, for some p, € R™ and uy, € Xy,. The following lemma gives hypotheses for this
to be possible. It appears in various guises in the literature, and can be referred to as a
“modulation” argument.

Lemma 7.9. Let E be a Banach space and (-,-) be a continuous scalar product on E. Let
G be a Lie group and ® a G-action on E. Let F € C*(E,R™). Let i, € R and uy, €Xy,.
Suppose Hypothesis CLL, holds. Then, there exists R > 0 such that, for allv € E,

d(v,0,,.) <R=3we Oy . w—ve (T,0,.)" (7.19)

)

where O, = CI)GZM* Uy, .

Proof. Thanks to Lemma 7.8, it is enough to prove that there exists V' a bounded open
neighbourhood of e € Gy, , which is conjugation invariant (i.e. gVg ' =V, forall g€
Gy,,,) and such that Ry (uy,) > 0.

First of all, we recall that the exponential map

exp: & gy —exp(§) € Gy,

is a local diffeomorphism from some neighbourhood of 0 € g, to a neighbourhood of
ee Gzy*. In other words, there exists & > 0 such that

exp: & € Bs5(0) C g, — exp(§) € Gy,
is a local diffeomorphism onto a bounded open neighbourhood V := exp(Bg(0)) of e in
Gy, . In particular, note that dV = exp(dB;(0)).
Since, thanks to Hypothesis Cp,(ii), Bs(0) is Adg-invariant for all g € Gy, .V is con-

jugation invariant. Indeed, for all £ € B5(0) and all g € Gy, , we have that gexp(&) g =
exp(AdgE) e V.
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Hence, it only remains to show that Ry (uy, ) > 0, which is equivalent to G,,,, NV = @.
Thanks to Hypothesis Ci.(iv), there exists & > 0 such that

5 S 350 (O) — CIDGXp(é)uu* ek

is one to one. As a conclusion, choosing 8 < &, we have dV C exp(Bs,(0)) which implies
D&ty 7 Uy, for all exp(§) € V. Hence, for all exp(§) € IV, exp(§) ¢ Gy, - O

We can then conclude this section with the proof of Proposition 7.7.

Proposition 7.7. Recall that we have to prove there exist 7 > 0,¢ > 0 so that

Vu € Oy Vi €%y, du,u) <n = L W)~ Ly, () > ed* O, )-

Upgy o
Letu' € Xy, d(u', Oy,
u—ve ( /ﬁ“ll*) .
Next, let W,/ be the subspace of E spanned by {VF;(V')}j=1.._n. It follows from (A.1.6)
and hypothesis (7.15) that T, X, = (W,)*. As a consequence, we can write E = T,Z,, @

W,. Indeed, since W, has finite dimension, it admits an orthonormal basis {e,... e}
w.r.t. (-,-). Hence, all w € E can be written as

m m
W:<W—Z wej ) Z wej
= =

Clearly w—Y""; (w,ej)e; € W)t =T,%,,, Yy (wej)e; € W, and W, N(W, ) ={0}.
Then,

) < R. Thanks to Lemma 7.9, there exists Vv e ﬁ"u* such that

W —v = (M/ o V/)l + (u/ o V')z
: 1
where (' —V'); € TyZ,, and (' —V'), € Wy, Moreover, since ' —V' € (T 0, )", we
. 1 L
can easily show (' —V); € T,2y. N (T, 0, )" and (u' —v')2 € Wy N (T, 0y, ) . Now,
Lemma A.1.4 ensures the existence of constants ¢y, co so that, for ||’ — /|| small enough,
one has

ol =)l > collu’ = /|| and ||/ =] < el = |- (7.20)

Since the action @, is linear and preserves both (-,-) and || - ||, the decomposition above is
group invariant and the constant ¢y and ¢; do not depend on v'.

We can now conclude the proof as follows, using respectively conditions (a), (b) and (c),
and (7.20):

gu*(u/)_gu*(uu*) == gu*(u/)_gu*(v/)
1
= DL (U —V)+ ED%/Z”* (' —v',u —V)+o([|u’ —V|*)

1

= 3P0 (W =V, (0 =v)1) +O(|u’ =/ |P) +o( [l = v'|1%)
1

= DU (W =V, (W =V)1) o —V[?)

Y

c
EH(M'*V')I 1+ o(]|u’ —v'||?)
> 5||u'7v'||2 > 5d2(u ﬁ”u*)

Remark that as before, the constant ¢ is independent of Vv € €, . O
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7.5. Coercivity implies stability II

We can now state and prove a fourth theorem yielding orbital stability under slightly
different technical assumptions. We will work in the Hamiltonian setting and in particular
use the characterization of relative equilibria given by Theorem 6.1. Recall that in this
context, for each u € g* ~R™, Gy, = G (Proposition A.3.11).

Theorem 7.10. Let E be a Banach space and {-,-) be a continuous scalar product on E,
9 a domain in E and ¢ a symplector. Let H € C*(E,R)NDif(Z, 7). Let G be a Lie
group, and ® a globally Hamiltonian G-action on E with Ad*-equivariant momentum map
F. Let 1, € R™ ~ g* and uy,, € P NL,,. Suppose that Hypothesis Cl.(i)—(iii) is satisfied,
and Ho®, = H forall g € G. Let £y, = H— &, - F with &, € gy, given by Theorem 6.1
and assume D, 2y, = 0. Suppose in addition that

Vji=1,...,m 3VF;(uy,) € E such that D, Fj(w) = (VF;(uy,),w) Yw €E.  (7.21)

and

(a) Gy, is commutative;
(b) there exists C > 0 so that

YweE, Dﬁ“* Ly, (w,w) <

(c) there exists ¢ > 0 so that
VYw € Ty, Ty, N (T, Ouy, )L, Dﬁﬂ* Ly, (wyw) > cHw||2.
Thenall u € O, are orbitally stable G, -relative equilibria.

Hypothesis (a) in Theorem 7.10 is not very restrictive (see [DV69]).
Proof. Let K > 0 and define

L) = Ly, (u) + K(F(u) — ).

Here (F(u) — w.)? = (F(u) — ) - (F (u) — p1.) where, - is the G, -invariant inner product
described in Remark A.2.1. It follows that Z% is a Gy, -invariant constant of the motion.
Indeed, for all g € G, and forallu € E,

Lk (Pgu) = H (P )*éu*'F(¢g“)+K(F(<I’g“)*#*)2

— H() & - AGF (1) + K(AGF (1) — Adja.

=H(u) - Adgéu* F () + K(F (u) — p)? as Ad, € O(m)
=H(u)— &y, - F(u)+K(F(u) — w)? as Gy, is commutative
= Zk(u).

The main idea is to prove that the hypotheses of Proposition 7.7 are satisfied by .Zx and
then use its proof to conclude that all u € &), are orbitally stable G, -relative equilibria.
First, note that in this setting Hypothesis Ci,(iv) follows from Remark 6.3.
Next, we claim that D, %k (w) =0 for all u € ﬁ"u* and for all w € E. Indeed, it is clear
that Dy, (F (u) — p.)* = 2(F (u) — ) - D, F = 0 for all u € &, and, thanks to the fact that
Dy, Zk,. (w) =0, we obtain Dy, Zx(w) =0forallw € E. Next, letu € 0,, and g € Gy,
such that u = ®g(uy, ), then

Dugk(w) = [Dq)g(u“*)gl(oq)g—l](w) = [D“u* Lk ODq,g(uH*)CI)gq](W) =0.
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Using the fact that @, is linear and preserves both (-,-) and || - ||, we can easily show, as
a consequence of hypothesis (c), that
Vu € Oy,,, Dr Ly, (ww) > cl|lw|]?, (7.22)

forall w € T2y, N (T, 0y, )" Indeed, for all u € O, and w € T, 2y, N (T, 0y, )",
Dﬁgﬂ* (W,W) = D(ZI’gu“* (gﬂ* © cI)g" )(W?W)
=D, Ly (Du®y 1w, D@y 1w) + Dy, Ly, (Dp @1 (w, W)
= Dﬁu*,fﬂ* (P 1w, Py1w) > c||<I>g7|wH2 =c||lw||?

because @, 1w € Ty, Xy, N (T, O,

wpy @y

Similarly, using hypothesis (b), we prove that

)L

D%y, (w,w) < Cllwl?
forallu € 0,, andw € E.

Next, by a straightforward calculation, we obtain for all u € 0, and w € E, D2(F —
W) (w,w) = 2D, F (w) - D,F(w), and

DyF(w) = [Dagyu,, F o Pgo®@,1](w) = [Dy,, F o Dg|(Du®@,-1w)
= [Du,, Ady o F(®,1w) = Ad, (D, F (P, 1w)). (7.23)

As a consequence, since Ady € O(m),
D (F — 11.)*(w,w) = 2Dy, F (P 1w) - Dy, F(Ppo1w). (7.24)

It is then clear that D3(F — p1..)*(w,w) < Cy,,||w||* for all u € O, and w € E, and hypoth-
esis (b) of Proposition 7.7 is satisfied by Zk. In addition (7.23) together with the fact that
the ®, preserve the inner product (-,-) shows that (7.21) implies (7.15).

Now let w € (Tuﬁu“*)L and write w = wy +wy with wy € T,Z;, N (Tuﬁu“*)L and wy €
W, N (T, 0y, )" Then

D, Zx(w,w) = Dy Ly, (w,w) +2KDy, F(®,-1w3) - Dy, F(Py1w2)
> D5 Ly (wi,wi) = C(will[wal| + [[w2|?)
+ ZKDMM*F(CI)gq w2) 'DMM*F(CI)gfl wy)
> cllwil? = C(lwi[[[w2 ]l + w2 ]|?) + Kep. w2,

where in the last line we use the fact that dimW,,,, = m and Dy, F : Wy, = R™is an

Wi,
isomorphism. Finally, thanks to Young’s inequality, there exists € > 0 so that

Ce C 5
Diilnn) 2 (e= 5 ) P+ (Kew, —C = 52 ) IvalP 2 cll?

with ¢ > 0 provided that K > 0 is chosen large enough. As a consequence, using the same
arguments as in the proof of Proposition 7.7, we conclude that there exist 7 > 0,¢ > 0 so
that

Yu € 0,

Uy )

WeE, du,v)<n= %) - Lu)>cd* (v, Ou,)

which implies, thanks to Theorem 7.1, that all u € &, are orbitally stable G, -relative
equilibria. ([
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8. PLANE WAVE STABILITY ON THE TORUS FOR NLS

In this section we will illustrate the general theory described above on a simple example,
that is the orbital stability of plane waves of the cubic focusing and defocusing nonlinear
Schrodinger equation on the one-dimensional torus. More precisely, let us consider the
cubic Schrodinger equation

iou(t,x) + BA2u(t,x) 4+ Alu(t,x)|?u(t,x) = 0 8.1)

in the space periodic setting Ty, the one-dimensional torus of length L > 0, and with
u(t,x) € C. The constants  and A are parameters of the model; BA < O corresponds
to the defocusing case and BA > 0 to the focusing one. In what follows, we fix f > 0.

Using the same arguments as in Section 5.5, we can show that Equation (8.1) is the
Hamiltonian differential equation associated to the function H defined by

H(u) = % ([3 /0L|axu(x)|2dx—%/O'L|u(x)|4dx) . 82)

As before the symplectic Banach triple is given by (E,2, #) with E = H'(T,C), Z =
H3(Ty,C), both viewed as real Hilbert spaces, and F u=iu (see Section 5.4 to under-
stand how a complex Hilbert space can be viewed as a real Hilbert space with symplectic
structure). We recall that the scalar product on E = H'(T;,C) is

L
()5 = Re / (Quu(x)97(x) + u(x)7(x))dx  u,v € E, 8.3)
0
and the dual space E* can be identified with H~!(Ty,C) through the pairing
L
(,v) = Re/ u(x)P(x)dx, u€E*, veE. (8.4)
0

Moreover, since the action @ of the group G = R x R defined by @, (1) = eu(x —a) is
globally Hamiltonian (see Section 5.5) and H o ®, = H (see Section 2.4), the quantities
i L
Fi(u)=—= | a(x)du(x)dx, (8.5)

2 Jo
1 L
Fa(u) = — /0|u(x)|2dx (8.6)

are constants of the motion.
As pointed out in Section 2.4, the two-parameter family of plane waves

Ugi(t,x) = e eist (8.7)

with & €R, k € ZT”Z and a € R are G-relative equilibria of (8.1) whenever &,k and o
satisfy the dispersion relation
E+BI* = Alal’. (8.8)

In the notation of the previous sections, ug x = uy,, with tg i € R? given by

Fi(ug.x) o [k
= ) =——L .
Hok <Fz(ua,k) 27\
Remark that in this case 4 4 is not a regular value of F = (Fy,F>) as is readily checked
(see Definition A.1.3).
The G-orbit of the initial condition u , (x) = ae~** is given by

0,

Up ok

= {aee 9 (a,7) € G}. (8.9)
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Our goal is to investigate the orbital stability of these particular solutions by applying the
general arguments presented above. Our main result is the following theorem showing the
orbital stability of plane waves in the defocusing case (A < 0) as well as in the focusing

case provided 0 < 2A|a|?> < B (%)2

Theorem 8.1. If 3 (ZT”)Z —2A|af> >0, then all u € Ou,,,, are orbitally stable relative

equilibria.

. 2 . . . -
Furthermore, in the case B (2£)” — 24 |a|? < 0, we can investigate the linear stability
of the plane waves and we obtain the following theorem.

Theorem 8.2. Let the plane wave ug (t,x) = ae' &%) pe a solution to (8.1) and (ZT”)Z —
2A|af?> < 0. Then the spectrum of the linearization of (8.1) around uqy in L*(Ty) has

eigenvalues with strictly positive real part. Consequently, this wave is spectrally unstable
in L*(Ty).

This second result follows from a rather straightforward computation that we do not
reproduce here.

As discussed in the introduction, the nonlinear (in)stability of plane waves for the cubic
focusing and defocusing nonlinear Schrodinger equation in a one-dimensional space is
a result known to the experts in the field (see the introduction of [GHO7b, GH07a], for
example). We did not however find a complete proof of it in the literature, so we furnish
one here as an illustration of the general theory presented in the previous sections.

In [ZhiO1], a related but slightly different analysis is proposed. The cubic nonlinear
Schrodinger equation is defined on the entire line R and not on the one-dimensional torus
T.. Using the Galilean invariance of the equation (see Section 2.7), the stability of any
plane wave is equivalent to that of u(¢,x) = e ** The main result on stability of plane
waves of [Zhi01] is given in Theorem II1.3.1. It states that, in the defocusing case (A < 0),
the plane wave u(t,x) = et g orbitally stable under small perturbations in H' (R).

Our approach is different: we focus on the Schrédinger equation on a one-dimensional
torus. Our functions live on a torus and the perturbations too. In other words, our definition
of stability is with respect to perturbations within H'(Ty) = Hp,,([0,L]). Moreover in
Zhidkov’s book nothing is said about the (in)stability of plane waves in the focusing case,
a situation we cover partially.

8.1. Orbital Stability
To study the stability of u,, , (x), it is useful to write the solutions of (8.1) in the form

u(t,x) = e U (t,x) (8.10)
where U (¢,x) is a function which satisfies the evolution equation
i0,U + BA2U —2iBkd.U + A|U*U — BK*U = 0. (8.11)

Equation (8.11) is the Hamiltonian differential equation associated to the function A de-
fined by
AU)=H(U)—-2BkF,(U) — BK*F(U). (8.12)
As before, the action @ of the group G = R x R defined by @, y(u) = e7u(x —a) is globally
Hamiltonian, H o D, = H and the quantities F, F> defined by (8.5) and (8.6) are constants
of the motion.
If €, k and o satisfy the dispersion relation (8.8), Uy, (f,x) = ae®’ is a solution to (8.11).
Moreover, Uy, (x) = Uy, (0,x) = ¢ is a one-parameter family of G-relative equilibria and
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our goal is to study their stability. Here g = — O‘TZL <(])) and, as above, Ly is not a regular

value of F = (F},F,).
Recall that the G-orbit of Uy, (x) = o is

Oy, = {"a,ye0,2m)}. (8.13)
and, by definition, U € ﬁyya is orbitally stable if
Ve, 36, YW € E, (dW,U) <8 = Vi eR, d(W(1,), 0Oy, ) <)
(see Definition 3.1).

Proposition 8.3. Ler 3 (ZT”)Z —2A|al? > 0. Then every U € Ou,,, is orbitally stable.

Our stability result in Theorem 8.1 is an immediate consequence of the previous state-
ment since the change of variables u — U is bounded in E.

Now, to prove this proposition, we would like to apply the general results given in the
previous section and more precisely Theorem 7.1. The idea is to construct a Lyapunov
function .Z which is a group invariant constant of the motion and such that D.# vanishes
on ﬁUua' Moreover, we require .Z to be coercive on ﬁUua , which means here that there

exist § > 0 and ¢ > 0, depending only on 3,L, A and |&|?, such that, for all W € E,
d(W,0u,,) <8=ZLW)—ZL(a)>cdW,0y,,)* (8.14)

Note that, since the group action is unitary in the present setting, this is equivalent to (7.3).
Since Uy, is a G-relative equilibrium, Theorem 6.1 ensures that it satisfies

DUWI:I—J; Dy, F =0

for some ‘g’~ € R%. As a consequence, H — E - F is a good candidate to be a Lyapunov
function. Nevertheless, since DUua F1 =0, uy is not a regular value of F, and the choice of

E € IR? is not unique. A convenient choice for L, 1s

L4, (U) =H(U) = (& +BR)R(U), (8.15)

which corresponds to ‘g: = _éﬁ k . By construction, Dy %}, vanishes for U € Oy, .
Indeed, since Dy.Z), € E*, Dy %y, (V) = (DuZLu,,V) with

Dy Ly, = —BOLU — MUPU + (E+ BKH)U € H (T, C), (8.16)

so clearly Dy £, = 0if U € Oy, . Furthermore, the bilinear form D} %y, :EXE —R
is given by D} Z(V,V) = (V2% (U)V,V) with
V2 Ly (U)W = —BIZV — AU PV = A(JUPV +VU?) + (E+ BK*)V € H'(T;C);
(8.17)
in particular, forall U € E, VZ.ZM (U) is a bounded linear operator from E to E* and the

expression above makes sense.
Now, as in Section 4.2, to prove (8.14), the main ingredient is the property:

e > 0,9 € (Ty,, Oy, )" DY, Lug W W) = | WP,

where N

(TUua ﬁUHoc) = {W cE, <i,W> = 0}
This is proven in the following proposition, from which coercivity is deduced in Proposi-
tion 8.6.
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Proposition 8.4. If 8 (QL—”)Z —2A|at|* > O then, given c; =min {3 (QL—”)Z .B (%”)2 —2A|a?},

Dl it W.W) = (V2L (U )V.V) = VP (8.18)
forallV € (TUM Oy, )l.

Proof. We will show that the linear operator VZ.ZM(OC) has a basis of eigenvectors be-
longing to E. Let § € C be an eigenvalue of V>.%),, (). Hence, by definition, there exists
V =vi +ivy = (v1,v2) € E, such that

e )=(PEHE g ) ()

is satisfied. Now, v and v, are real functions on the torus and we can write them in Fourier
representation, namely,

v(x) = @ +”w]an(v,>cos <2Tnnx) + ba(vy)sin <27”nx) ,

v (x) = “0(2”) +nia,,(vz)cos (%”nx) + bu(v2) sin (%”nx) .

As a consequence, for n = 0 we obtain

ao(v1) 2a0(v1)
—— = 2A|alf——=
¢ P22,
ao(Vz)
222
g —o,
and, for all n > 1, we have the following system:

canton) = (8 () ~2210)antr).
et = (8 () 2310t
cants) =8 (Zn) ).
et = (Zn) s

It follows that the set of the eigenvalues of VZ.ZM (@) is given by

2 \? 2 \?
{ﬁ il ,nEN}U{ﬁ il —2),|Oc|2,n€N}.
L L
It is clear that this is a subset of R} whenever 8 (ZT”)2 —2Alaf> > 0.
Moreover, if (ZT”)2 —2A|a|? > 0, the kernel of V2%, (@) is given by

ker(V2%y, (@) = spanR{ ( (1) ) } = spang {i}

and the coercivity property of V2., (o) on (ker(V2.Zy, (@)))* = (Ty,, Ov,, )L follows
easily. O
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The following lemma gives a representation of the elements of E which are close to the
G-orbit Oy, . Itis used in the proof of Proposition 8.6 and is a special case of Lemma 7.8.
We give a direct proof in the current simple setting.

Lemma 8.5. There exists 6 > 0 such that any W € E with d(W, Oy, ) < & can be repre-
sented as

W =a+V (8.19)

with y=7y(W) € [0,2x) and V € (TUM Oty )L. Moreover; there exists a positive constant
C such that

d(W,0y,,) < V| <Cd(W,0y,, ) (8.20)

Proof. Let W € E such that d(W, 0y, ) < 6 with § > 0 sufficiently small. Hence there
exists ¥, which depends on W, such that

|eTW —al| <2 inf [|W—etal <268
2€[0,2m)

Next, consider the functional

F: ExR—=R
. L
(v,9) = (e¥v,i) = —Re / ie'*v(x) dx.
0

Since .# (e,0) = 0 and dy.% (,0) = aL # 0, by means of the implicit function theorem,
we can conclude that there exists A : ¥ — (—&,€) with ¥ a neighbourhood of & in E and
€ > 0 sufficiently small, such that if v € ¥ then there exists a unique ¢ = A(v) € (—¢,€)
for which we have (v, i) = 0.

As a consequence, since ||e'"W — a|| < 28, if we choose § > 0 sufficiently small then
there exists ¢ € R such that (¢/®*PW i) = 0. By taking y = ¥+ ¢ modulo 27, we obtain
(8.19). Indeed, E = Ty, Ou,, & (TUua Oty )L and Ty,,, Ou,, = spang {i}. Hence,

W —a=ai+V
witha€eRandV € (TUM ﬁyya )L. As a consequence,
0= ("W — a,i) = ali,i)
and a has to be equal to 0.
Estimate (8.20) follows directly from the definition of V. [l

Finally, the following proposition proves the coercivity of .Z},, on Oy,,.

2
Proposition 8.6. Let 8 (%’) —2Alaf? > 0, L, be defined as in (8.15), and let c;, =

min { 8 (ZT”)Z,ﬁ (ZT”)2 —2A|a|?}. Then there exists 8 > 0 such that

Lo W) = Zy(Un,) = 4. 00, )? (8:21)

forall W € E, such that d(W, ﬁUua) < 6.

Proof. Let W € E such that d(W, 0y, ) < & with 6 > 0 sufficiently small. By Lemma
8.5, there exists y € [0,27] such that e"W — o =V with V € (Ty,, €y, )" and ||[V]| <
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Cd(W, 0y, ). As a consequence, since Dg.%),, =0,

Litg W) = Lo (@) =L (€"W) = Lo ()
1 , . .
=3 «Ziua (€W — 0, "W — a) +o([| "W — a||*)

1
:EDéZ#a (V.V)+o(IVI?)

1
>sellVIP+o(IVI?)
with ¢, defined in (8.18). Therefore for d(W, Oy, ) small,
A
W)~ Zyg(0) > Fa(W, 00,
(]

Now, a straightforward application of the proof of Theorem 7.1 with .%},, as Lyapunov
function allows us to conclude that Oy, is orbitally stable under small perturbations in E

2
whenever  (3£)” — 24 |a|?> > 0.
9. ORBITAL STABILITY FOR INHOMOGENEOUS NLS

This section is concerned with an NLS equation of the form
iOu+Au+ f(x,|u)u=0, u=u(t,x):RxR! = C. 9.1

We consider standing wave solutions u(z,x) = ¢!'w(x), where w : R? — R is localized'”
— typically w € H'(R?) and w(x) — 0 exponentially as |x| — 0. Such a solution exists if
and only if

Aw — Ew + f(x,w?)w =0, 9.2)
which is precisely the “stationary equation” (6.3). Note that the notation for the nonlinear-
ity in (9.1) is slightly different than in Section 2.4, and automatically ensures that (2.26)
holds, for all u € C\ {0}.

The existence of solutions of (9.2) can be obtained under various hypotheses on f, the
easiest case being the pure power nonlinearity, f(x,w?) = |w|°~!, ¢ > 1. Note that, unlike
in the case of periodic boundary conditions studied in the previous section, it is crucial
here that the nonlinearity be focusing for standing waves to exist. The stationary equation
(9.2) has no solutions if, for instance, f(x,w?) = —|w|°~!. In the sequel, we will indeed
suppose that the nonlinearity is focusing, which in the context of (9.1) means that f(x,s)
is positive and increasing in s > 0.

The purpose of this section is to further illustrate the general stability theory devel-
oped in Section 7. Orbital stability results for standing waves of (9.1) have been ob-
tained in [GSO08, Gen09, Genl0a, Gen13] and will be summarized here. The stability
analysis in these papers benefits from having solution curves & — we. In the setting
of Section 7, they can be seen as an application of Theorem 7.5. The approach used
in [GSO8, Gen09, Genl0a, Gen13] was to apply the celebrated Theorem 2 of Grillakis,
Shatah, Strauss [GSS87]. This result essentially relies on the set of spectral conditions
(S1)—(S3), formulated below in the context of (9.1), together with a convexity condition,
which here takes the form (9.14). In the framework developed in these notes, the role of
Theorem 2 of [GSS87] can be interpreted as follows. It will be shown in Proposition 9.8
that the conditions (S1)—(S3) and (9.14) ensure that the coercivity property (7.16) required

7Note that we focus here on situations where the wave profile w(x) is real-valued.
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by Proposition 7.7 is satisfied at the relative equilibrium we. Theorem 7.5 can then be ap-
plied. As already mentioned in the introduction to Section 7, and explained in more detail
after the proof of Proposition 9.8, the relative equilibria of (9.1) can be parametrized equiv-
alently by the parameter & appearing in (9.2), or by the corresponding value p = %Hwé ||i2
of the constant of the motion. It turns out that using £ is more convenient here. Note that,
since this constant of the motion satisfies Hypothesis F, one could also apply Theorem 7.4
instead of Theorem 7.5.

The notion of orbital stability we shall be concerned with here is that corresponding
to the group action (5.18) of Section 5.5. Note however that the explicit spatial depen-
dence in (9.1) breaks the invariance under translations, and one rather needs to consider
the restricted action @, on the phase space E = H!(R?,C),

@y (u) =e"u(x), uckE, yeR. 9.3)

The standing waves corresponding to solutions we of the stationary equation (9.2) are then
relative equilibria for the dynamics of (9.1), with respect to the action ®y.

Remark 9.1. If f does not depend on x then the full group action (5.18) is to be considered,
and the standing waves of (9.1) are in general not orbitally stable in the sense of (9.3).
Orbital stability in the sense of the full group action (5.18) was proved by Cazenave and
Lions [CL82] by variational arguments.

We will only consider here situations where the coefficient f explicitly depends on
the space variable x € RY — (9.1) is then often referred to as an inhomogeneous NLS —,
and decays as |x| — oo, in a sense that will be made more precise below. We shall also
suppose that f(x,w?) ~ V(x)|w|°"! as w — 0. Conditions relating the function V and
the power ¢ > 1 will be given for stability of standing waves to hold. In particular our
assumptions will imply ¢ < 1 + ﬁ, so that local existence in H'(R9) for the Cauchy
problem associated with (9.1) is ensured by the results of Section 2.4. Two cases will be
considered:

(PT) the power-type nonlinearity f(x,w?) =V (x)|w|°~;
(AL) the asymptotically linear case f(x,w?) — V(x) as [w| — oo

. o1
(e.g. with f(x,w?) =V (x) IJ‘:V‘L‘G,I ).

We will give a short account of the main arguments used in [GS08, Gen09, Gen10a,
Gen13] to establish the stability of standing waves along a global solution curve. We will
also briefly sketch the bifurcation analysis yielding a smooth branch of non-trivial solutions
of (9.2) emerging from the trivial solution w = 0. This part of the argument is crucial since,
in the approach originally developed in [GS08], the spectral properties and the condition
(9.14) required to obtain the coercivity of an appropriate Lyapunov functional are derived
by continuation from the limit wg — 0. It is worth emphasizing here that the verification
of these hypotheses is precisely that part of the stability analysis which strongly relies on
the model considered. Once the required coercivity properties are established, the orbital
stability can be deduced from the abstract results of Section 7.

9.1. Hamiltonian setting
Similarly to Section 8, we work here with

E=H'(R',C), (u,v)r=Re /R Vu(x) - Vo) + ul)o(x) d
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The Hamiltonian and the charge are respectively defined by H,Q : E — R,

_ 1 2 1 Juf? 1 5
H(u)fi/Rd IVul dxfszfo F(x,s) dsdx, Q(u)fE/RdM d, uckE. (94)

In the notation of Section 5.5, Q(u) = —F;1(u), but we will keep the customary notation
Q here. Under our assumptions, H,Q € C?(E,R).
Now (9.1) can precisely be written in the form
Jiy =D, H 9.5)
considered in Section 5, with E = H'(R?,C) ~ H'(R? R) x H'(R¢,R) and

0 -1
7=(i )
with I : H! — H~! the (dense) injection. Thatis, ¢ (¢,p) = (—p,q) € E*, forall (¢,p) €
E, as in Section 5.5. Note that we use the identification
H'(RY R) c L2(RY R) = L*(RY R)* ¢ H }(R?,R).

In this setting a solution of (9.1) is a function u € C'((—Tiin, Tmax ), E), for some
Tinins Tmax > 0 (depending on u(0)), satisfying (9.5) for all 7 € (—Tin, Tmax)- Standing
waves are particular solutions of the form u(t) = P(gnyw, w € E, and the stationary equa-
tion (9.2) now reads

D,H+&D,,Q =0. (9.6)
Hence, the discussion in Sections 6 and 7 indicates that
Sy =H+EQ ©.7)

is the natural candidate for the Lyapunov function. Furthermore, the invariance of H and
O under the action of @, implies that
D(I)y(w)H + qu)y(w)Q =0, yeR. 9.8)
Finally, note that the isometric action (9.3) can equivalently be expressed as
R —si R
o, eu \ _ (cosy siny eu . WEE, yER.
Imu siny cosy Imu
9.2. Bifurcation results
In this section we present bifurcation results ensuring the existence of smooth curves of
solutions of (9.2). From a bifurcation-theoretic viewpoint the peculiarity of these results is
that, in both the (PT) and (AL) cases, bifurcation occurs from the essential spectrum of the
linearization of (9.2), namely
Aw = Ew,

this linear problem set on R¢ having no eigenvalues.
We start with the power-type case (PT), that is, we first consider the problem

Aw(x) +V(x)|wx) [ 'w(x) = Ew(x), weH'(RYR), 9.9)
whered > 1 and V : RY — R satisfies:
(V1) V € C1(RY);
(V2) there exists b € (0,2) (b € (0,1) if d = 1) such that

l<o<®iZ ifd>3, l<o<w ford=1,2,

lim |x’V(x)=1 and
x| o0

g l‘im Ix|P[x- VV(x) + bV (x)] = 0;
X|—o0
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(V3) V is radial with V(r) > 0 and V'(r) < O for r > 0;
vi(r)
Vi(r)

Note that V (x) = (1 + |x|?)~?/? satisfies all of the above assumptions.

V) r is decreasing in r > 0 (and so — —b by (V2)).

Theorem 9.2. Suppose that the hypotheses (V1) to (V4) hold. Then there exists a curve
w € C1((0,00),H' (RY)) such that, for all & € (0,e0), wg = w(§) is the unique positive
radial solution of (9.9), we € C2(RY)NL>(RY), and we is strictly radially decreasing, with
we (x), |[Vwe (x)| — O exponentially as |x| — oo. Furthermore, the asymptotic behaviour of
the curve reads

lim [lwe || ;1 = { A <£2<b 1+%7 4-2b

£S0 o if 1+ <o<1+77,
and

4-2b

élim [wellgr =0 forall 1<o <1+,
—o0

This theorem has been proved in [Gen10b] by a combination of variational and ana-
Iytical arguments. It provides a global continuation, in the radial case, of the local curve
of solutions of (9.9) obtained in [GS08] (parametrized by & € (0,&), with & > 0 small)
under the much weaker assumptions (V1) and (V2). Note in particular that (V2) only re-
quires the problem to be focusing at infinity, no further sign restrictions being imposed on
V. The orbital stability of the solutions we, £ €(0,&), is also discussed in [GS08], and it
is found that they are stable provided

l<o<1++2 (9.10)
and unstable if 1 —I—% <o<1+42

Remark 9.3. In fact, more information about the asymptotic behaviour as & — 0 is obtained
in [GSO8]. In particular,

0 if l<o<l+®2

li = .
dim ez {oo if 1+42<o<1+42

whereas
4-2b

%ig})HVw&HLz:O foralll <o <1+75.

We now state a global bifurcation result similar to Theorem 9.2, for (9.2) in dimension
d = 1, in the asymptotically linear case (AL). That is, we consider

w (x) + f(x,w(x)*)w(x) = Ew(x), weH' (RR), 9.11)

where, to fix the ideas'®, we let
2\ _ wje~!
fle,w )*V(X)W-
In the asymptotically linear case, one cannot expect to find positive solutions of (9.11)—
(9.12) for large values of & > 0. Heuristically, letting u — oo in (9.11)—(9.12) leads to the
so-called asymptotic linearization

W (x) + V(x)w(x) = Ew(x), (9.13)

9.12)

8More general assumptions on the coefficient f in (AL) can be given, under which the bifurcation and
stability results presented here still hold, see [Gen13].
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having a ray of positive eigenfunctions { Uws : 1t > 0} corresponding to a principal eigen-
value &, > 0. This has been put on rigorous grounds in [Genl11], where it is shown that
positive even solutions of (9.11)~(9.12) only exist for § < &, and satisfy [[wg ;1 — oo as

G = G-

Theorem 9.4. Suppose (V1) to (V3) and 1 < o < 5—2b. Then there exists a curve w €
C'((0,&.),H' (R)) such that, for all & € (0,&), we is the unique positive even solution
of (9.11)~(9.12), wg € C*(R) NH*(R) with ng (x) <0 for x >0, and we (x),we (x)" — 0

exponentially as |x| — oo. Furthermore, there holds

lim [weli gy =0 and  Jim fwglm ) ==

Remark 9.5. The reader might wonder why (V4) is not needed for Theorem 9.4. It turns out
that this assumption is essential in the proof of Theorem 9.2, where it ensures uniqueness
of positive radial solutions of (9.9), for any fixed & > 0. In the one-dimensional problem
(9.11)—(9.12), uniqueness can be proved without invoking (V4). 19 However, we will see in
the next section that this hypothesis is crucial to the stability analysis, in both the (PT) and
(AL) cases.

Remark 9.6. Thanks to the form of the nonlinearity in (9.12) the global branch of Theo-
rem 9.4, bifurcating from the trivial solution u# = 0 at & = 0, is obtained by perturbation
from the (PT) nonlinearity dealt with in Theorem 9.2. In fact, the case where asymptotic
bifurcation occurs at & = 0, corresponding in dimension d =1 to 5 —2b < ¢ < oo, could
also be extended to the (AL) case, where instability could be inferred, in the limit & — 0.
We refrain from going in this direction here since we were only able so far to extend the
discussion to a global branch in the stable case. We shall therefore assume (9.10) from
now on, both for (PT) and (AL).

9.3. Stability

In dimension d = 1, assuming that 1 < ¢ < 5 — 2b, the global curves of standing wave
solutions given by Theorems 9.2 and 9.4 are stable. This has been proved in [Gen10a] for
the (PT) case and in [Gen13] for the (AL) case. The proofs rely on the theory of orbital
stability in [GSS87] and we will now outline the main arguments.

We shall start by convincing the reader that, in the context of (9.1), one cannot hope for
stability in the usual sense (1.1). Indeed, suppose &, — & and consider

ug(t,x) = eiétwé (x) and uu(t,x) = eié"tw{:)l (x).
Then
V6 >03Ns €N, n> N5 = [[us(0,-) —ug(0,-) || g1 = [[wg, —wel[g1 < 0.

However,

lun(1,) = g (1) | = [[€ = € [[lwe |1 = Iwe, = we |
= Sup [un(t) =g (1)l = 2wl = 8, n = Ns.
>

Therefore, for n large enough, the initial datum u,(0) may be chosen §-close to ug(0),
un(t) will nevertheless drift at least 2||wg || ;1 — 0 far away from ug (t).

9Note that the main reason for restricting the discussion to d = 1 in Theorem 9.4 is the lack of uniqueness
results in higher dimensions for the (AL) case.
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Theorem 9.7. Suppose that d = 1 and the hypotheses (V1) to (V4) are satisfied. Then the
standing waves ug (t,x) = ei‘glwé (x) of (9.1) given by either Theorem 9.2 or Theorem 9.4
are orbitally stable.

The proofs of Theorem 9.7 given in [Gen10a, Gen13] used Theorem 2 of [GSS87], and
so relied upon verifying Assumptions 1-3 of [GSS87], as well as the condition

[[we |2 is strictly increasing in & > 0. (9.14)

The latter is often referred to as the slope condition or the Vakhitov-Kolokolov condition.
It seems to have indeed first appeared in the paper [VK73] of Vakhitov and Kolokolov
(1968), in the context of nonlinear optical waveguides.zo

Assumption 1 of [GSS87] is about the well-posedness of the Cauchy problem for (9.1)
which, under our hypotheses, follows from Section 2.4. Assumption 2 pertains to the
existence of smooth solution curves and is ensured by Theorem 9.2/9.4. It is this property
which allows us to apply Theorem 7.5 of Section 7.

We will see that Assumption 3 of [GSS87], together with the slope condition (9.14),
ensure the required coercivity property of the Lyapunov function %% introduced in (9.7).
In order to formulate Assumption 3 in the present context, consider the bounded linear

operator D%vg L E—E7,

szvg,fé :D@H%DQQ, E>0. (9.15)
We define the spectrum of Di,g % as the following subset of R:
G(Di,g,iﬂé) ={1eR: vagfg — AR : E — E* is not an isomorphism }, 9.16)

where R = diag(R,R) and R = —(fx—i +1:H'(R,R) — H !(R,R) is the Riesz isomor-
phism. Under the hypotheses of Theorem 9.2/9.4, ﬁ’lD%vg ¢ 1 E — E is a bounded self-

2

w
s

for this definition of the spectrum of Da,g Ze will be discussed in Remark 9.9.

adjoint Schrédinger operator, and its spectrum coincides with o(D L ). The motivation

A straightforward calculation shows that Da,g Z is explicitly given by
d2

[ _ 2 2\ 2
0,z @ VD E S0 0

d2 ) )
0 S )

and the spectral conditions formulated in Assumption 3 of [GSS87] are:

(S1) 3az € R such that G(Di,g L) N (—00,0) = {—ag} and ker(Di,g L + aéﬁ) is one-
dimensional;

(S2) kerD%V5 L = span{iwe };

(S3) cr(Da,5 Ze)\ {—chz,O} is bounded away from zero.

9.17)

The fact that iwg € kerD?, : Z directly follows by differentiating (9.8) with respect to y at
v=0. So (S2) really only states that kerD»ZV‘g Z is one-dimensional.

We now explain how hypotheses (S1)—(S3), together with (9.14), imply the coercivity
property (7.16) in Proposition 7.7. In order to explicitly write down condition (7.16), let us

20The mathematical theory of NLS has been intimately connected to nonlinear optics from its early days. See
[Gen10a] for additional references on this.
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first observe that we parametrized the standing waves by the “frequency” £ here, whereas
in Section 7 the relative equilibria are rather labelled using the value u of the constraint.
In the present context, i = p(§) = Q(we ), and we only deal with situations where . is a
smooth, strictly increasing function of &, so both parametrizations are equivalent. Now the
level surface

={ucE|Q(u)=Q(wg)}
and, given a standing wave ug (1) = ® (g, wg we have, for any u = e”'y(”)w;; € Oy,
TuZ 0w, ={veE]| (e Dng, v) =0}.
On the other hand, T}, ﬁug = span{e”y u) iwe }, so that
TEgwe) N (Tubug )" = {v €E | (77D, 0,v) = (¢~ "iw,v)g = 0}.

Next, differentiating
Dy H+ED,,,0 =0
with respect to & yields

dW;’:
D fé}(;’: WgQ where Xe = dé (9.18)
so that d
<Di§$§x§,x§>:—(Dng,x{:):—EQ(wé)<O (9.19)
by (9.14).
Proposition 9.8. Suppose that (S1) to (S3) hold, as well as (9.14). Then there exists ¢ > 0
such that
Vu € Oy, Vv € TMZQ(‘%) N (Tuﬁug)l, Dﬁfé (v,v) > c||v||%.

Proof. Let u = ¢~ ") we € ﬁ’ug. First remark that, by the invariance of .Z on the orbit
{®ywe | v € R}, we have

2 2 2 2
Du,iﬂ;’: = Dcpy(u)w‘5 ,E/ﬂ;’: = DW5 (,S/ﬂ;’: Oqu(u)) = DW§Z§'

Therefore, we need only prove the result at u = we, i.e. that there exists ¢ > 0 such that
. 2 2
Vv EE, <DW§ Q,v) = (le,v)E =0 éDw L (v,v) >clv||z-

Introducing the bounded self-adjoint operator S¢ := R D2 . Ze i E — E, this is equivalent
to

YveE, (S;’:%;;,V)E = (l'W;’: ME=0= (S;’:V,V)E > C||VH%
Now by (9.19) we see that (Sg x¢, Xg )£ < 0, and the result readily follows from Lemma 5.3
in [Stu08]. O

The verification of properties (S1)—(S3) and of the slope condition (9.14) in [Gen10a,
Gen13] is intimately connected with the behaviour as & — 0 of the solutions given by The-
orem 9.2/9.4. The main idea is to show that the required properties hold true for a limiting
problem obtained by letting & — 0 in the stationary equation (9.2) (in suitably rescaled
variables), and then to deduce them for the original problem by perturbation and contin-
uation along the global curve given by Theorem 9.2/9.4. In other words, it is first shown
that (S1)—(S3) and (9.14) hold for small values of £ > 0, and then that these properties
cannot change along the global curve. It is worth noting here that, in both Theorem 9.2
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and Theorem 9.4, it can be shown that ||wg||z= — 0 as & — 0 (see Section 9.3.1 below).
Therefore, case (AL) can be seen as a perturbation of (PT), in the limit of small £, and the
stability properties of standing waves are the same in both cases for small & > 0.

The remainder of this section is devoted to the proof of Theorem 9.7. We will sketch the
arguments yielding the local stability results close to & = 0, and the continuation procedure
extending these to the whole curves of solutions in Theorem 9.2 and Theorem 9.4. For the
local results, we shall only consider case (PT), the details of the perturbation argument
one has to go through to deal with (AL) being cumbersome and not very enligthening (see
[Gen09] for more details). We will however present the global continuation procedure
for both cases in a unified manner. For this we will use the general notation of (9.1)—
(9.2) rather than the particular form of f in each case, and we will merely write & > 0
throughout, of course really meaning 0 < & < & in the (AL) case.

9.3.1. Local stability by bifurcation. We consider here (9.2) in dimension d = 1, and with
f(x,5%) =V(x)|s|°~!. The scaling

&=k, u(x):ké%blv(y), yi=kx, k>0, (9.20)

yields
Vi—v kY (y/k)C v =0, k>0. (9.21)
Then, by (V2),

lim K=V (y/k) = [y "Iy /k"V (y/k) = [y ™" ¥y #0,
which suggests considering the limit problem
V= vy Pple v =o. (9.22)

It turns out [Gen10a] that (9.22) has a unique positive radial solution v € H 1(IR). This
solution can be shown to have a variational characterization, from which it bears the name
ground state of (9.22).

The advantage of the scaling is that, in the new variables (k,v), one can now obtain
solutions by perturbation of (9.22), which is non-degenerate. More precisely, one can
apply a version of the implicit function theorem to the function F : R x H'(R) — H~!(R)
defined by

_ Vv KTV O/, k£ 0,

Flk = { Vv e, k=0,

at the point (k,v) = (0,vp) € R x H'(R), where D,F (0,vg) : H'(R) — H~!(R) is an iso-
morphism (see [Gen10a, Proposition 2.1]). This provides a small ky > 0 and a local C"
curve of solutions {(k,v¢) : [k| < ko} C R x H'(R) of F(k,v) = 0. The local bifurcation
in Theorem 9.2 can then be obtained by going back to the original variables using (9.20),
which yields a local C' curve of solutions

{(E,we):0<E<kg} CRxH'(R)

of (9.2). The various solution norms in the two sets of variables are related by

g2 = € vgualiZe, 19wz = £Vl
et 4—2b+(o—1
gl = €777 g allie,  where o = £224e-)

The behaviour of we as & — 0 follows readily from these relations and the fact that v — vo
both in H'(R) and in L*(R) (see [Gen10a, Proposition 3.1]).
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The slope condition. Let us now explain how the slope condition (9.14) can be derived
from this analysis, for small & > 0. We show that -& Hw5 || > 0 for & > 0 small enough.

Observe that

1d
where
4-2b—(c—1
ﬁ:%:z(afl). (9.23)
Now

d 2 -1 2 d
AR i) = BRE vl 2 K2 (v v 2

d
= kﬁ*l{ﬁHkaiz —|—2k<vk, J{vk>L2}'

Since ||vk|\i2 — ||vo|\i2 > 0 as k — 0, we have that
d
sgn{ﬁﬂw; ||i2} =sgn{a—1} for & = K small, (9.24)

provided

d
k(v i) p = O as k= 0. (9.25)

On the other hand,

d
F(k,vk) =0= DkF(k,vk) +DVF(k,Vk)@V

d
= k@vk = —D,F (k,vi) 'kDyF (k,vi) = —DyF (k,vi) k=W (y/k)v

=0

where W (x) := x-V'(x) + bV (x) appears in hypothesis (V2). Then, using (V2), it is not
difficult to show that
k=W (y/k)ve — 0in H ' as k — 0.
Finally, it follows from the open mapping theorem that
D,F (k,vi)™' = D,F(0,v9) " inBH ', H") as k — 0,

and we conclude that k%vk — 0in H' as k — 0, from which (9.25) follows. Recalling
our assumption that 1 < o < 5 — 2b, the slope condition (9.14) now readily follows from
(9.23) and (9.24).

The spectral assumptions. Regarding the verification of (S1)—(S3), we shall not give as
much detail as for the slope condition. That the solutions wg indeed give rise to a Hessian
Dﬁ,5 Ze 1 E — E* with the appropriate spectral structure also follows from the properties

of the limit problem (9.22) through the perturbation procedure outlined above. The crucial
point is the variational characterization of the ground state vy, which can be shown to

minimize the functional
1 N2, 2 1 / —by, 10+1
= dx— —— dx
> [0 vare —— [

on an appropriate codimension 1 submanifold N of H'(R). Note that the direct method of
the calculus of variations cannot be applied to the functional .Zo since it is not coercive. In
fact it turns out that v is a saddle-point of ,Zo More precisely, v is a critical point of ,,%
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(i.e. Dy,-%y = 0), and the quadratic form D%OD% CHYxH!' S5 Ris positive definite tangen-
tially to N, and negative along the ray spanned by vg, transverse to N. This information
— together with some Schrodinger operator theory — precisely implies that D%O% enjoys
the properties (S1)—(S3). Furthermore, if we and vy are related by the change of variables
(9.20), a straightforward calculation shows that

3-2btc —~
Qgg’: (Wé) =k (-1 fo(vk),

where £ is the Lyapunov function defined in (9.7). However, it is by no means trivial to
verify that the spectral properties of D%O% are carried through to D2, ’ L, for & > 0 small,
in the perturbation procedure. This was shown in [GSO08] in arbitrary dimension.

Note that, if the solutions w¢ are themselves saddle-points of Z¢, the perturbation pro-
cedure can be dispensed of, and the spectral properties of the Hessian D?, Ze derived
directly from this variational characterization. This is in fact the case for the solutions ob-

tained in Theorem 9.2, but it is not known in the (AL) case, where the variational structure
is much less transparent.

Remark 9.9. When verifying assumptions (S1)—(S3) in the context of (9.1)—(9.2) (which
are set on the whole of RY) one has to deal with the continuous spectrum of vag Ze in
addition to the negative eigenvalue lying at the bottom of the spectrum. The standard
approach to tackle this is via the theory of Schrodinger operators applied to the self-adjoint
operator 1?*103% ¢ : E — E. This motivates the definition of G(szvg Z) given in (9.16).
On the other hand, the problem considered in Section 8 (set on a compact manifold) only
gives rise to discrete spectrum in the linearization, and so can be handled with a more
elementary spectral analysis, not requiring to introduce the Riesz isomorphism R:E > E*
explicitly.

9.3.2. Global continuation. In this section we show how both the slope condition (9.14)
and the spectral properties (S1)—(S3) extend from the previous local analysis to the global
curve given by either Theorem 9.2 or Theorem 9.4. We will handle the two cases in a
unified approach, using the general notation f(x,w?)w for the nonlinearity. As earlier, we
will often merely write £ > 0, really meaning & € (0,0) in the (PT) case and £ € (0, &)
in the (AL) case. Again, we only consider here the case d = 1.

The slope condition. From the previous analysis, (9.14) holds for & > 0 small enough.
Hence we need only verify that

%/Rw%dx;éO VE > 0.

First notice that, since the solutions we are even,

d 2. d B 0
£/H§W§dX—2/IRW5d5W5dX—4/O weXe,

where y: = dd% satisfies
XE+{f (o0, wE) + 202 f (x, wE)WE } ote = E e +we.

To simplify the notation, we will drop the subscript & in the remainder of the argument. It
can be shown [Gen10a, Gen13] that

/OOo {Zf(x,wz) +x0) f(x,w?) — 82f(x,w2)w2}wxdx: 2¢ /Omwxdx (9.26)
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and that there exists xo > 0 such that
x>0o0n(0,xp), x(x)=0, x <0 forx>xp.
Supposing by contradiction that [;”wx dx = 0, we can write (9.26) as

/‘°° { 21 (o, w?) + x01 f (x,w?)
0 o f (x, w2 )w?
Denoting by §(x) the function in the curly brackets, this becomes
[ etz =0
Jo

Now using the unique zero xg of ), we can rewrite this identity as

| = S arftew? i rdvr Lo [ st w de=o.

Moreover, multiplying the equation for w by y, the equation for ¥ by w, subtracting and
integrating, yields

—1}82f(x,w2)w3xdx=0.

/wwzdx: Z/wazf(x,wz)w%(dx,
0

0
and so
A f e, wwW {&(x) — C(xo )(dx—i—M w?dx = 0. (9.27)
0 2 Jo
Now,
Ly (x)w® in the (PT) case
2.3 _ ’
o2 (e )w _{ Hv(x )W in the (AL) case,
hence 0 f(x,w?)w? > 0 on (0,0) in any case. On the other hand,
2 V') | 5-¢
IO -
L,[x v+ 350+ 4 [k 42w (AL

and we claim that { is positive and decreasing in any case, which immediately leads to a
contradiction with (9.27). To conclude, the claim follows from our hypotheses since

v’ 14
X —x () decreasing, x (x) >—b and ©<5-2b
V(x) V(x)
14 5—
X V((;)) + TG > 0 and decreasing
(note that hypothesis (V4) is crucial here). Furthermore,
: V/(x) o—1 :
w > 0 and decreasing = [x V(o) + 2} w > 0 and decreasing,
X
>—b+2>0

so that { is indeed positive and decreasing in any case.

The spectral conditions. The spectral conditions (S1)—(S3) can be reformulated in terms
of the self-adjoint operators L+,Lg :H?(R) C L*(R) — L?(R) defined by

Lérv =4 E&v— [f(x,w%) + 282f(x,w% )w%]v,
Liv= —V'+Ev— f(x, wé)v.
Then (S1)-(S3) are equivalent to
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(C) infous(L) >0, M(L{)=1, kerL{ ={0},
(C2)  infOes (Lg) >0, 0= infG(Lg), kerL, = vect{we },

where Oess(A) denotes the essential spectrum of a self-adjoint operator A, and M(A) its
Morse index, i.e. the dimension of the larger subspace where A is negative definite.

A first step toward verifying that (C1) and (C2) hold for all £ > 0 is to show that all
eigenvalues of Lg , LE are simple, which follows by standard ODE arguments. Then, since

lim f(x,we (x)%) = 1lim 205 f (x,we (x)*)we (x)* =0,

[x[—ee Jx[—ee

it follows from the spectral theory of Schrodinger operators (see e.g. [Stu98]) that
inf Oegs (Lg) = infGess(Ly ) =& > 0.

Furthermore, applying ODE comparison arguments to the equations Lgv =0and (9.2), it
can be seen that kerLg = {0}. On the other hand, since wg > 0 is a solution of (9.2), it
follows again from standard spectral theory that

kerL; = span{we } and 0 = infG(Lg).

It remains to show that Lg has exactly one negative eigenvalue. As discussed earlier, the
local bifurcation analysis close to & = 0 shows that M (Lg) =1 for & > 0 small enough. By
perturbation theory, the eigenvalues of Lg depend continuously on & > 0. Since kerLér =
{0} for all £ > 0, the eigenvalues cannot cross zero as & varies. Therefore, M (Lg) =1 for

all & > 0, which completes the proof of conditions (C1) and (C2).
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Appendix

The goal of this appendix is to present those very basic notions from differential ge-
ometry, Lie group theory and Hamiltonian mechanics that are indispensable to follow the
treatment of the main text and that are not necessarily familiar to all. The only prerequisites
for this part are a good grasp of differential calculus on finite dimensional normed vector
spaces not going much beyond a fluent mastery of the chain rule for differentiation and an
intuitive grasp of what a submanifold of such spaces is.

APPENDIX A.1. DIFFERENTIAL GEOMETRY: THE BASICS

We first recall some elementary notions of differential geometry and dynamical systems
on a normed vector space E. For the general theory on differentiable manifolds, one may
for example consult [AM78, LM87, Spi79].

By a vector field on E we will mean a smooth map X : E — E. Given u € E, one should
think of X (1) as a “tangent vector to E at #”. With this idea in mind, a vector field naturally
determines a differential equation

i(t) =X (u(t)), uo=u,
the solutions of which induce a flow on E defined as @ () = u(t). For ease of discussion,
we will suppose throughout the appendix that all solutions are global and hence all flows
complete. Most results carry over even if the flow exists only locally in time.

The diffeomorphisms21 ® of E act naturally on vector fields as follows. First note that,
when @ is a diffeomorphism, and y: 7 € (a,b) — E a curve with y(0) = u, ¥(0) = v, then
we can consider the curve 7: 7 € (a,b) — E defined by §(¢) = ®(y(¢)). This is the curve
7, “pushed forward” by ®: we invite the reader to draw a picture. This new curve satisfies
#(0) = ®(u), so it passes through ®(u). What is its tangent vector at that point? The chain
rule yields immediately

')7(0) = DM(I)(V),
where D,® is our notation for the Fréchet derivative of ® at y € E, which is a continuous
linear map from E to E. This equality gives a geometric interpretation to the purely ana-
lytical object D, ®(v): it is the tangent vector at P(u) to the curve ¥ at t = 0. With this in
mind, given a vector field X, we can now define a new vector field ®. X, the push forward
of the vector field X by the diffeomorphism ®, as follows:

@, X (D)) := Dy ®(X (u)).

Note that, with the above interpretation of the “push forward” of a vector at u, D, D(X (u))
is a vector “at ®(u)”, which explains why ®(u) appears in the argument in the left hand
side. Of course, we can write

DX (t) = D1,y P(X (D7 (). (A.L.1)

We will make little use of this notation from differential geometry, preferring to write out
the explicit expression D, ®(X (1)) whenever needed.
Diffeomorphisms also act naturally on flows, as follows. Given a diffeomorphism & :
E — E, one has, forall u € E,
d

o (2O (1) = Doy () (X (1 (1))).

2l\e mean @ € C! (E,E) with a C' (E,E) inverse.
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From this and (A.1.1), one concludes
d _ _
E(qmcpfoq) D) = D@13 @X (@} (@' (1))
= OX(Po®@ o d !(u)).
In other words, the flow ® o ®X o®d~! is generated by the pushed forward vector field . X.

It follows from the above and an application of the chain rule that, if X,Y are two vector
fields on E, then, forall u € E,

0?2 d
m@f o ®X 0@ (1) ooy = aD(p{Sw)@f (X (@, (1)))s—0
_ 4 y d y
- dsX((I),s(u))s:O + dsDXCI)S (X(M))x:o
= [X,Y](u), (A.1.2)

where the commutator [X,Y] of two vector fields is defined as follows:
[X,Y](u) =D,Y(X(u)) — DX (Y (u)).

This definition is justified by the following observation. Given a vector field X and a C'
function F : E — R, one can define a differential operator

X(F)(u) = D,F(X(u)), (A.1.3)

which is — geometrically — nothing but the directional derivative of F at u in the direction
X (u). A simple computation shows readily that

—

X.Y]=[x,r]. (A.1.4)
The following is then well known:

Lemma A.1.1. The following are equivalent:
(i) Foralls,t €R, <I>;X o<I>§ = <I>§ od)f‘;
(ii) [X,Y]=0.

Proof. That (i) implies (ii) follows immediately from the preceding computation. The
proof of the converse is slightly more involved, for a simple argument we refer to [Spi79].
O

Remark A.1.2. Note that, if X (u) = Au,Y (u) = Bu, where A,B : E — E are linear, then,
with our convention, [X,Y](u) = —[A, Blu. Here [A, B] = AB — BA is the standard commu-
tator of linear maps.

Definition A.1.3. Let F € C*(E,R™) for some k > 1. For each u € R™ we define a level
set of F by

Yy={u€E|F(u)=u}. (A.1.5)
We will say u € E is a regular point of F' if D, F' : E — R™ is surjective. We will say ( is a
regular value of F, if X, # @ and all u € ¥, are regular points of F'.

If p is a regular value of F, then X, is a co-dimension m submanifold of £ [BER99,
Theorem 6.3.34]. In that case, the tangent space to X, at u is defined as follows:

T,y ={w € E|D,F(w) =0} = Ker(D,F). (A.1.6)

We point out that if » = Rank(D,F) is constant on X, then X, is a co-dimension r sub-
manifold. We will need the following simple result in Section 7.4.
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Lemma A.1.4. Let F € CK(E,R™) for some k > 2. Let 1t € R™ be a regular value of F.
Letu € Xy and let Wy, be a subspace of E so that E = T,Xy, ®W,. Then, forallv € X,

Iv = w2l < O(llv—ul®),
and there exist 6,C > 0 such that
[v—ull <6 =|(v=—uhl = Cllv—ul,
where (v—u) = (v—u)i+(v—u) € L,L, ®&W,
Note that both ¢ and C depend on u and on the decomposition of E chosen.

Proof. Write u—v=wi+w,, withw; € T,X, and wo € W,,. Then, using that D,F(wy) =0,
we have
0= F(v) = F(u) = DuF (w2) + O(||v — u]]2).
Now, since D, F is a diffeomorphism from W, to R™, there exists ¢ > 0 so that
IDLF (w2)|| > c||wal|, hence  O(|lv—u]|?) > c[[wal|.

Finally
2
[will = llu—v—wa| = [lu—v[| = [lwal| = [lu—v|| = O(||v —ull"),
from which the result follows. (I

APPENDIX A.2. LIE ALGEBRAS, LIE GROUPS AND THEIR ACTIONS

In general, a Lie algebra is a vector space V equipped with a bilinear composition law
(u,v) €V xV — [u,v] € V, called a Lie bracket, which is anti-symmetric and satisfies the
Jacobi identity, meaning that for all u,v,w € V:

[[u,v],w] + [[v,w],u] + [[w,u],v] = 0. (A.2.1)

The basic example of this structure is given by spaces of matrices or, more generally, of
linear operators on vector spaces, where the Lie bracket is given by the usual commuta-
tor. Two other examples play an important role in these notes, namely the space of vector
fields on a normed vector space with the commutator defined in (A.1.2) and the space of
all smooth functions on a symplectic vector space, where the Lie bracket is given by the
Poisson bracket, as explained in Section A.3 below. The validity of the Jacobi identity
follows in all these examples from a direct computation, whereas the bilinearity and the
anti-symmetry are obvious. Lie algebras are intimately linked to Lie groups, as the termi-
nology strongly suggests, and as we now further explain.

In general, a Lie group is a group equipped with a compatible manifold structure. For
our purposes, it is however enough to define a Lie group G to be a subgroup of GL(R"),
such that G is also a submanifold of RV (i.e. for our purposes, typically the level surface
of a vector-valued function). As such, GL(RN ) itself, which is an open subset of RN 2, isa
Lie group. So are the rotation group

SO(N) = {Re€ GL(N,R) | RTR =y}
and the symplectic group
Sp(2N) = {S € GL(2N,R) | STJS =J}, with J= (_(;N I(’)V > : (A22)

A simple verification shows that Sp(2) = SL(2,R), the space of two by two matrices of
determinant one. The dimension of a Lie group is by definition its dimension as a manifold.
For SO(N), it is N(N — 1)/2, and for Sp(2N), it is N(2N + 1), as is readily checked. The
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group R” is also a Lie group in this sense. Indeed, putting N = n+ 1, and defining, for
each a € R",

one readily sees that A(a)A(b) = A(a+ D), so that one can view R” as a subgroup of
GL(n+ L,R).

We recall that, in general, an action of a group GonasetLisamap®: (g,x) EGX L —
®,(x) € X which satisfies ®,(x) = x, for all x € X, and ®,, 0 P,, = P, ,,. In these notes,
we consider actions that are defined on a normed vector space E. If the ®, are linear, one
says @ is a representation of the group. This will not always be the case in these notes:
actions may be nonlinear. Furthermore, all actions considered will be at least continuous,
and very often they will have additional smoothness properties. In this appendix, where
we deal with finite dimensional systems only, the actions are supposed to be separately C'
in each of their two variables g € G and u € E. Appropriate technical conditions to deal
with infinite dimensional spaces E are given in the main part of the text as needed.

By definition, the Lie algebra g of a Lie group G is the tangent space to the manifold G
at the unit element e € G:

g=T,G.

In other words, for each & € g, there exists y: 7 € R — G, a smooth curve with y(0) = e =
Iy, and 7(0) = &. Note that one should think of & as a matrix, since for each ¢, ¥(r) is one.
In addition, it turns out that, given & € g,
exp(t€) € G,

for all + € R where exp(¢&) is to be understood as the exponential of the matrix ¢&. Indeed,
given § and y as above, for all n € N, y(£) € G and so y(%)" € G. Taking n — +oo, the
result follows. A one-parameter subgroup of G is, by definition, a smooth curve y: ¢t €
R — ¥(r) € G, which is also a group diffeomorphism: (¢ +s) = y(r)y(s). What precedes
shows that any such one-parameter group is of the form 7 — exp(¢&). So there is a one-
to-one correspondence between the one-parameter subgroups of G and its Lie-algebra,
which starts to explain the importance of this latter notion. In addition, it turns out that, if
&,n € T,G, then so is their commutator (seen as matrices)

[§,n]=¢&n—ng,
which justifies calling 7,G a Lie algebra. Indeed, consider, for each s € R, the curve
y:t € R — exp(sn)exp(t&)exp(—sn) € G.
Clearly y(0) = Iy and 7(0) = exp(sn)& exp(—sn) € T.G. So we have a curve
s € R — exp(sn)é exp(—sn) € T.G.
Taking the derivative with respect to s yields [n,&] € T,G:

= exp(s1)g exp(—s)jo—o = [1.£] (A23)

As an example, the Lie algebra of SO(N), denoted by so(N), is given by
so(N) ={A € .#(N,R) | AT +A=0},

which is the space of all anti-symmetric N X N matrices. This is easily established by
writing exp(tAT)exp(tA) = Iy and taking a t-derivative at = 0. And it is obvious that the
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commutator of two anti-symmetric matrices is anti-symmetric. A basis for so(3) is

00 O 0 0 1 0o -1 0
ei=[0 0 <1]. ea=|0 0 0|, es={1 0 o0, (A2.4)
01 0 -1 0 0 0o 0 O
and one readily checks that
ler,e2] = e3, [e2,e3] =e1, [e3,er] =ea. (A.2.5)
One then identifies & € so(3) with £ € R? via
3 0 -& &
E=Yéei=|& 0 -&]|. (A.2.6)
i=1 & & 0

Similarly, a basis for sl(2,R), the Lie algebra of SL(2,R), is

1 1
ey = (0 01) , ey = (8 O) ,e_ = ((1) 8) , (A.2.7)

and one has
[eo,e+] =2es, leo,e—]=—2e_, [e_,ei]=—ep. (A.2.8)
In general, if ¢;, i = 1,...,m is a basis of g, there exists constants cfj so that
lei.ej] = cfjex, (A2.9)

where the summation over k is understood; the ci-‘j are called the structure constants of g.
There exists a natural /inear action of G on its Lie algebra, called the adjoint action or
adjoint representation, defined as follows, for all g € G,& € T,G:

AdgE =gEg™!

Clearly Adg,¢, = Adg, Ad,,. Note that for a commutative Lie group G, such as R”, it is
trivial: Ad,& = &. It is instructive to compute some non-trivial adjoint actions explicitly.
For SO(3), one finds, with the above (somewhat abusive) notation

0 —(RE)s  (RE):
Adré = [ (RE); 0 —(RE)1 | =RE. (A.2.10)
—(RE)>  (RE), 0

We invite the reader to do the analogous computation for sl(2,IR), determining the matrix
of Ady in the basis given above.

The dual of the Lie algebra g (as a vector space) is denoted by g*. It appears very natu-
rally in the study of symplectic group actions arising in the study of Hamiltonian systems
with symmetry, as we will see in Section A.3.2. Given a basis e; of g, we denote by e} the
dual basis defined by €] (e;) = J;;.

Moreover, there is a natural action of G on g*, obtained by dualization as follows. For
all u € g*, for all £ € g, we define

Adou(8) = p(Ad, 1 8). (A2.11)
This is called the co-adjoint action of G. For later purposes, we define, for all u € g*,
Gu={g€G|Ad,u =p}, (A.2.12)

the so-called stabilizer or isotropy group of U € g*.
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As above, given a basis ¢; of g, one identifies u € g* with u = (uy,...,Un) € R” by
writing

On

“:

m
wier sothat u(§) = Zuiéi. (A.2.13)
1 i=1

Let i € 50(3)*; we write u(€) = Y3, ;& and identify u € so(3)* with u = (uy, o, u3) €
R3. Again, one readily checks that

Adg*u = RLL. (A2.14)

Remark A.2.1. Tt is often useful to suppose there exists an Euclidian structure on g that is
preserved by Ad, for all g € G. This is equivalent to supposing that there exists a basis ¢;
of g so that the matrix of Ad, in e; belongs to O(m). We will simply write Ad, € O(m) in
this case. It follows that the matrix of Adj, in the dual basis ¢; belongs to O(m) as well.
This implies that the natural Euclidian structure induced on g* by the one on g is preserved
by Adj, for all g € G. Such a structure always exists if the group G is compact.

Suppose now we have a C'-action @ : (g,u) € G x E — ®,(u) € E of a Lie group G on
a normed vector space E. Then, for all & € T,G, one can define the vector field Xe on E
via
d
X (1) = Eq)exp(lé) (”)\1:0- (A.2.15)

Lemma A.2.2. If ® is a C*-action, then for all g € G, E,m € g, for all u € E, one has

[Xe, Xn] = —Xen (A.2.16)
Xado£ (P (1)) = Du®y(X (u)). (A2.17)
Proof. 1t follows from (A.1.2) that
82
3537 Pexplsn) exp(eE) exp(—sm) o = [X&:Xn] -
Now, by definition,

d

X a7 Dexp(sm) exp(r) exp(—sm) o

exp(sn)& exp(—sn)

and furthermore
d
Oy Xexp(sm)E exp(—sm) js— = X(n.&]-

This proves (A.2.16). For (A.2.17), note that the chain rule implies
d
Eq)g(q)exp(té) (u))j1=0 = Du®Py(Xe (u)).

On the other hand, @ cxp(;g) (1) = Pyexpre) o1 (Pg(u)). Hence

d

aq)g (q)exp(té) (”))\z:o = XAdgé :

O

Lemma A.2.2 shows that the map & € g — X is a Lie algebra anti-homomorphism.
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APPENDIX A.3. HAMILTONIAN DYNAMICAL SYSTEM WITH SYMMETRY IN FINITE
DIMENSION

We now turn to a very short description of Hamiltonian dynamical systems and their
symmetries on a finite dimensional normed vector space E. We present the theory in a
simple but slightly abstract formalism that is well-suited for the generalization to the infi-
nite dimensional situation needed for the main body of the text and presented in Section 5.
The modern theory of finite dimensional Hamiltonian dynamical systems finds its natural
setting in the theory of (finite dimensional) symplectic geometry [AM78, Arn99, LM87,
Sou97]. We shall however have no need for this more general formulation in these notes.

A.3.1. Hamiltonian dynamical systems
The central object of the theory in its usual formulation is a symplectic form, that we
now define. Let @ : E X E — R be a bilinear form which is anti-symmetric, meaning

Vu,u' €E, o(u,u') = —o(u',u),
and non-degenerate, meaning that, for all u € E,
(Vu' €E, o(uu')= O) =u=0.
Such a form is called a symplectic form. The standard example is £ = R" x R" with
u=(g,p)and
o(uu)=q-p'~q - p, (A3.1)

where - indicates the standard inner product on R”. Given a C!-function F : E — R, one
defines the Hamiltonian vector field Xr associated to F as follows: for all u € E,

o(Xr(u),u')=D,F(), Vu €E. (A3.2)

We recall that D,F € E* is our notation for the Frechet derivative of F at u. Observe
that one can think of the map u € E — D,F € E* as a differential one-form on E. The
vector field Xr is well-defined and unique, thanks to the non-degeneracy of the symplectic
form. If @ were symmetric, rather than anti-symmetric, it would define an inner product
on E, rather than a symplectic form, and (A.3.2) would actually define the gradient of F’;
in analogy, one sometimes refers to Xr as the symplectic gradient of F'. We will see it has
radically different features from the gradient.
For later reference, we point out that

Xr=0=3ccR,VuckE, Fu)=c. (A3.3)

The flow of the Hamiltonian vector field Xz, for which we shall write CI>,F , 18 obtained
by integrating the differential equation

u(t) = Xr(u(t)), wuo=u, (A3.4)

referred to as the Hamiltonian equation of motion. One writes @/ (1) = u(¢). In this
section we suppose that (A.3.4) admits a unique and global solution and that, for all r € R,
®, € C(E,E).

As a typical example from elementary mechanics, let V € C!(R*;R) and define the
function

H(q,p)=1p*+V(q) (A3.5)

on E = R, with the symplectic form as above. The equations of motion corresponding to
H are then

q(t)=p(t), pt)=-VV(q(t)). (A.3.6)
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Note that they lead to Newton’s force law in the form ¢(t) = —VV(¢(t)). More generally,
in the example above, with E = R?"_ one finds

Xelq.n) = (500 ).

7aqF(q7 p)
which leads to the familiar Hamiltonian equations of motion:
q(t) = IpF(q(t), p(1)), p(1) = —4F (q(1), p(1))-

We give several other explicit examples of such flows in the main part of these notes.
Let us return to the general situation. Given two functions F,F; : E — R, one defines
their Poisson bracket {F}, F> } via

{F],Fz}: a)(XFl,XFZ) = 7{F2,F]}. (A37)
Observe that, with the notation from (A.1.3), we have
5(\]-*' (Fz) = DFZ(XI-]) = a)(sz,Xpl) = {Fz,Fl}, (A38)

ie forallu e E,
Xp, (Fy) () = DuFa(Xp, (u) = @ (X, (), X5, (1)) = {Fa, F1 } (1),

It is then immediate from what precedes that, for all u € E,

: B2 (X, (@01 (1))

E(on‘bf')(u) = Dy
= {F,FR}® ()

which in turn yields:

Theorem A.3.1. Let Fi,F, € C'(E,R). Then Fio® = F, forallt iff F,o®'' = F, for
allt, iﬁ({Fl,Fz} =0.

When Fj o <I>fp2 = F for all ¢, one says either that the <I>fp2 form a symmetry group??
for F; or that F} is a constant of the motion?? for the flow <I>,F 2. The theorem, which is
a Hamiltonian version of Noether’s theorem (See [AM78, Arn99, LM87, Sou97] for a
general treatment), can therefore be paraphrased by saying that F, is a constant of the
motion for the flow <I>f‘ iff the flow <I>fp2 of F, forms a group of symmetries for F;. Several
instances and applications of this result appear in the main body of the text. It is typically
used in the following manner. One wishes to study the dynamical flow CI>f . One has a
simple and well-known one parameter group CIDfZ for which one readily establishes with
an explicit computation that Fj o CID,F 2 = F|. From this, one can then conclude that F, is
a constant of the motion for the dynamical group CID,F . 'We will elaborate on this point in
Section A.3.2.

The radical difference between the properties of the symplectic gradient and the “usual”
gradient is now apparent. The anti-symmetry of the Poisson bracket implies )?F(F )=0,
that is, the symplectic gradient is fangent to the level surfaces of F (See (A.1.6)), rather
than orthogonal. Hence its flow @/ preserves these surfaces rather than moving points to
increasing values of F' as does the usual gradient. These features, together with the Jacobi
identity, are at the origin of all special properties of Hamiltonian systems.

223¢e Definition 2.1.
23Defined in (2.4).
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To prepare for the treatment of Hamiltonian dynamical systems in infinite dimension
(see Section 5), we reformulate the above as follows. Given a symplectic form @ on a
finite dimensional normed vector space E, one can define a bijective linear map

JucE— JuckE”
by Zu(v) = @(u,v). It is clear that

Juv)=—_gZv(u). (A.3.9)
With this notation, we find that
Xp= ¢ 'DF, or _¢Xp=DF (A.3.10)
so that the Hamiltonian equations of motion (A.3.4) can be equivalently rewritten as
Ju(t) =Dy F. (A3.11)

This formulation is the one that we carry over to the infinite dimensional setting in the main
body of these notes. Note that the Poisson bracket of two functions can now be written as

{F,G}=DF(_#'DG). (A.3.12)

The point to make is that all objects of the theory can be expressed in terms of _#. This is
illustrated in the proof of the following result.

Lemma A.3.2. If Fi,F>,F; € C*(E,R), then the Jacobi identity holds:
{{F, R}, B+ {{B, B} {{F,F}B=0 (A.3.13)
IfFy,F> € C*(E,R), then
X(r, 5y = — X, X, (A.3.14)
Proof. To prove (A.3.13), one first easily checks that
{{F, R}, F3}(u) =
DR ( 7 'DuFs, 7 'D,Fs) +D,Fi( 7 'DIR(-, 7 ' D,F))
= DyFi( 7 'Dubs, 7 DuFs) = DiFa( T DuFi, T D),
where we used (A.3.9). The result is then immediate. To prove (A.3.14) we use (A.1.3)—
(A.1.4) to write
X Xe)(F) = %6 (R (F5) — X (X, (F3))
= Xn({F,R}) - Xp({F.R}))
= {{BRLA-{{F A} R}
= {{F.B}F} =X 5 (B),
where we used the Jacobi identity in the last line. (I

For the case where E = R?" with the standard symplectic structure, one readily finds
{FI,F2} = 04F - 0,F> — 9pF: - 0,F). (A.3.15)

The above lemma then follows from a direct computation.

The lemma implies that the vector space C*(E,R), equipped with the Poisson bracket,
is a Lie algebra. In addition, it follows that the constants of the motion of a given function
F € C*(E,R) form a Lie subalgebra. Indeed, introducing the space of constants of the
motion of F,

¢ ={GeC”(E,R)| Go®F =G,V € R}, (A.3.16)
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which is clearly a vector space, it follows immediately from (A.3.13) that
Gl,Gz S %p = {Gl,Gz} S %p,
so that € is a Lie subalgebra of C*(E,E).

We finally need to introduce symplectic transformations.

Definition A.3.3. A symplectic transformation on a symplectic space (E,®) is a C! dif-
feomorphism @ : E — E so that, for all u,v,w € E

o(D,®(v),D,D(w)) = w(v,w). (A3.17)

This is often paraphrased by the statement that “® preserves the symplectic structure.”
To understand what this means, one should recall the interpretation of D, ®(v) as the “push
forward” of v by @, explained in Section A.1. Equation (A.3.17) states that a diffeomor-
phism is symplectic if the symplectic form is left invariant by the “push forward” operation
of its arguments. Note that, if ® is linear, (A.3.17) reduces to @(®(v),P(w)) = o(v,w).
And if E = R?" with its standard symplectic structure, this then means that ® € Sp(2n),
defined in (A.2.2).

Lemma A.3.4. Let F € C'(E,R) and let ® € C'(E,E) be a symplectic transformation.
Then, forallu € E,

Duq)(XFOCI)(M)) :XF(CI)(M)) (A3]8)
Moreover, for allt € R,
Do o ! = @f. (A.3.19)

In particular; if F o ® = F, then ® commutes with ®F, for all t € R. And if ® commutes
with ®F, for all t € R, then there exists c € R so that Fo® = F +c.

Equation (A.3.18) asserts that the push forward of the vector field Xp.¢ by ® is Xr.

Proof. For all u,v € E, one has
O(Xpop(u),v) = Du(Fo®)(v) = Do F (Du®(v))
= OXr(2(u)),Du®(v))-

Hence, since @ is symplectic and since D)@' D, @ = Idg = D, PD e,y @',

o (D@ (Xroa(1)),v) = O(Xpon (), Doy @' (v)) = @(Xr(P(u)),v)
which yields (A.3.18). Next, for all u € E, one finds from the chain rule and (A.3.18)

SR P@ W) = Dopesior 1y ® (Xrea (@ F(@ W)

= Xp((@od o) (u)).

This shows t € R — (® o ®°®o®~1)(u) € E is a flow line of Xr. Since the latter are
unique, (A.3.19) follows. Il

We end with a proof of a basic fact about Hamiltonian flows: if they are smooth, they
are symplectic.

Theorem A.3.5. Let F € C*(E,R). Suppose that the corresponding Hamiltonian flow
®F : R x E — E is of class C%. Then, for all t € R, ®F is a symplectic transformation.
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Proof. Tt will be sufficient to show that, for all u,v,w € E, and for all € R,
d
E(/Duq)fv)(Ducbfw) =0.
Using the group property of the flow, one sees it is enough to show this at t = 0. Then

%(/Duq’fV)(Duq)tFW)\z:o = J(JTIDIF ()W) + (I V) (7 T DaF (w.-)).

where we used the continuity of ¢, the Schwarz Lemma (exchange of partial derivatives)

and the observation that
ooF .
/ ot (u):Du(l)FeE )

and hence, att =0,
plodd
A Dy <T> (u) = (D}F),
which means that, forallv € E,

#0u( %) = (D3) )

Note that both sides are elements of E* since u € E — % € E so that D, (%) (u) €
ZB(E,E). Using the anti-symmetry of ¢, one then finds

%(/Ducbfv)(DuCwa)‘,:O = DﬁF(v,w) — DﬁF(w, v)=0.

O
Remark A.3.6. We point out that the proof, as it stands, is valid in infinite dimensional
systems. Remark however that the conditions imposed on the flow ®/ are very strong for
systems in infinite dimension. Too strong actually to be of much use in that context. We
use/need those conditions to apply the Schwarz Lemma at several points in the proof. Also,
it is known that Hamiltonian flows in infinite dimension need not always be symplectic. In
the framework of Section 5 it is possible to give sufficient smoothness conditions on the
restriction of the flow to 2 that will guarantee the result, but we shall not need this. For
a different set of technical conditions guaranteeing the symplecticity of the flow, we refer
to [CM74].

A.3.2. Symmetries and constants of the motion

Hamiltonian dynamical systems have many special features, but the one important to
us here is that there exists for them a special link between the symmetries of the dynamics
and the constants of the motion. This link takes the form of a Hamiltonian version of
Noether’s Theorem, of which we already gave a simple version in Theorem A.3.1, and
has far-reaching consequences, some of which we further explore in this section. Again,
a general treatment can for example be found in [AM78, LM87]; we give just those few
elements needed in these notes.

We start with some notions on Hamiltonian Lie group actions on a symplectic vector
space.

Definition A.3.7. Let G be a Lie group and @ : (g,x) € G x E — P, (x) € E, an action of

GonE with®, €C Y(E,E). We will say @ is globally Hamiltonian if @, is symplectic for

all g € G and if, for all £ € g, there exists Fr € C*(E,R) so that Dexpre) = @fg.
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In other words, an action is globally Hamiltonian if all ®, are symplectic and if all
one parameter groups are realized by Hamiltonian flows. In the notation of the previous
sections this means that

Xg = ng .
Here, the left hand side is the generator of the action, defined in (A.2.15) and the right hand
side is the Hamiltonian vector field associated to Fg.

Remark A.3.8. In view of Theorem A.3.5, if g = exp(§) for some & € g and @, can be

written as ey, (z) = CI>):‘5 for some Fy € C*(E,R) such that CI>):‘5 is C2, then @, is symplectic.
This will obviously hold as well for all g that can be written as a finite product of elements
of the form exp(&), which is the case for all g in the connected component of G containing
e € G (See [LMB&T7], page 145, Proposition 2.10). So the assumption that &, is symplectic
is only needed for elements g that are not connected to e € G. In infinite dimensional
systems, as indicated in Remark A.3.6 at the end of the previous section, the condition
that all ®, must be symplectic is more restrictive. In practice, one often works with linear
actions of the symmetry group, for which the symplectic property can be checked directly.

The above definition is a special case of the more general definition of globally Hamil-
tonian action for infinite dimensional systems that we introduced in Definition 5.10. It
suffices to take & = E in the latter to obtain the definition here.

We shall now continue with the abstract theory where, in particular, we will see through
a version of Noether’s theorem that, if the Hamiltonian is invariant under a globally Hamil-
tonian action P as above, then the functions ¢ € C 2(E,R) are constants of the motion. The
theory will be illustrated in Example A.3.13 at the end of the section, in the simple case
where E = R® and G = SO(3).

Theorem A.3.9. Let G be a Lie group and ® a globally Hamiltonian action of G on a
symplectic vector space E. Let H € C'(E,R) and let ® be the corresponding Hamiltonian
flow. Suppose that
VgeG, Hod,=H. (A.3.20)
Then the following statements hold.
(i) Forall§ € g, {H,F¢} =0.
(ii) Forallt € R, Fz o ®f' = F;.

(iii) G is an invariance group* for ®H,
Proof. This is an immediate consequence of Theorem A.3.1 and of Lemma A.3.4. (I

This result is useful because it is often easy to check (A.3.20), whereas the conclusions
(ii) and (iii) are statements about the flow ®, which is usually not explicitly known, and
are therefore hard to check directly. In particular, (iii) says that if the Hamiltonian H is G-
invariant as a function, then G is an invariance group of the dynarnics25 . And (ii) ascertains
that the group generators F are then constants of the motion for o,

Let us point out that (iii) implies neither (i), (ii) or (A.3.20) (See Lemma A.3.4.)

So the hypothesis that the Hamiltonian is invariant under the group action is strictly
stronger than the statement that the Hamiltonian flow is invariant under G. The map

Eeg— F; € C*(E,R) (A3.21)

24See Definition 2.1
Z5This is the point in the proof where the symplectic nature of the @, is used, via Lemma A.3.4.
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can be chosen to be linear. Indeed, if ¢;,i = 1,...,d is a basis of g, if we choose F; = F,,
and if we write & = Y; &;e;, we can define
Fr =Y &F, (A.3.22)
i

by linearity. This allows one to define the momentum map for the action ®, as follows:
FucE— Fu)eg, F(u)(&)=Fe(u). (A.3.23)

This, of course, is just a rewriting of (A.3.21). In the main body of the text we shall always
assume a basis has been chosen for g, as above, so that we can identify g ~ R". And we
shall simply write

F:ucE— (Fi(u), -, Fn(u) e R" ~g*. (A3.24)
We shall refer to .% or to F' as a momentum map for the action, indifferently.

Definition A.3.10. Let @ be a globally Hamiltonian action of G on E, with momentum
map F. One says the momentum map is Ad*-equivariant if, for all g € G, forall £ € g,

Feo®y=Fa ¢ (A.3.25)

The terminology comes from the following observation. If (A.3.25) holds, then it fol-
lows from (A.3.23) and (A.2.11) that

Fody=Ad,0 7. (A.3.26)
Since we identify g* ~ R™, this can be written
Fo®, = Ad;F. (A.3.27)

We can now formulate the final result from the theory of invariant Hamiltonian systems
that we need. It is an immediate consequence of (A.3.27) or, for the reader weary of duals,
of (A.3.25).

Proposition A.3.11. Let ® be a globally Hamiltonian, Ad*-equivariant action of a Lie
group G on a symplectic vector space E. Let L € g* ~R"™ and define

Sy={ucE|F(u)=pu} (A.3.28)

Then Gy = Gy, where Gy is the stabilizer of U, defined in (A.2.12) and Gy, is defined
in (2.11).

The situation we have in mind is the one where G is such that Ho ®, = H, forall g € G.
By Theorem A.3.9, the functions F; are then constants of the motion for the flow CI>,H and
hence the surfaces ¥, are ®f! invariant. We can therefore consider the dynamical system
(X4, @), which has G, as an invariance group (G, leaves invariant both £, and the flow
®M). This viewpoint will prove useful in the study of orbital stability in several situations.

Definition A.3.12. Let ® be a globally Hamiltonian action of a Lie group G on a symplec-
tic vector space E. Let i € g*. We say U is a regular point of the momentum map F if, for
allu € Xy, D,F is surjective.

This definition simply guarantees that X is a co-dimension m submanifold of E, where
m is the dimension of g.

Example A.3.13. For the simple Hamiltonian system with spherical potentials considered
in Section 2.3 and Section 4, one has E = R®, G = SO(3), and it is not difficult to check
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that, for all u(q,p) € R®, F(u) = L(q,p) € R?® ~ s0(3)* and Fe(q,p) =& -L(q,p), where
we use the identifications (A.2.6) and (A.2.13). Furthermore, for all R € SO(3),

L(Rq,Rp) = RL(q,p),

which shows the action is Ad*-invariant, in view of (A.2.14).

We end this section with some comments on the Poisson brackets of the components
of the momentum map. Remark first that the momentum map of a globally Hamiltonian
action is not unique since, for any choice of A € g*, Fz = F + (&) also satisfies Xz = Xﬁ§ .
Note furthermore that, in view of (A.2.16) and (A.3.14), the momentum map satisfies, for
allé,neg,

Xrig ) = Xig.m) = Xrg.Fn)-
It then follows from (A.3.3) that, for all £, 1 € g, there exists a constant ¢(&,7) so that

F[f:,T[] = {ngan}+C(€an)

The following lemma is useful and an easy consequence of (A.3.27):

Lemma A.3.14. Let @ be a globally Hamiltonian action of G on E, with momentum map
F. If F is Ad*-equivariant, then, for all £, 1 € g,

Fig ) = {Fe, Fn - (A.3.29)

Conversely, if (A.3.29) holds, then (A.3.25) holds for all g € G of the form g = exp(n), for
some 1 € g and then for all g in the connected component of e.

What one has to remember here is this. In applications, we often wish to assure (A.3.25)
holds. The preceding lemma states this is essentially guaranteed by (A.3.29), at least for
all g = expn, which, for many Lie groups, means all of G. Finally, (A.3.29) is guaranteed
by

{F,F;} = c;Fx, (A.3.30)

where we used the notation introduced in (A.2.9) and (A.3.22). As an example, one may
remark that the components of the angular momentum vector L satisfy the commutation
relations of the Lie algebra of SO(3), namely

{LiaLj}:gijkLk7 iaj7k:]7273'

One may therefore show that an action is Ad*-equivariant by showing (A.3.30) holds.
However, in infinite dimension, this is not immediate since the necessary smoothness prop-
erties of the F;’s and even of the corresponding Hamiltonian vector fields are not readily
verified.
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