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Wiener–Askey and Wiener–Haar 
Expansions for the Analysis and 
Prediction of Limit Cycle 
Oscillations in Uncertain 
Nonlinear Dynamic Friction 
Systems

This paper is devoted to the robust modeling and prediction of limit cycle oscillations in 
nonlinear dynamic friction systems with a random friction coefficient. In recent studies, 
the Wiener–Askey and Wiener–Haar expansions have been proposed to deal with these 
problems with great efficiency. In these studies, the random dispersion of the friction 
coefficient is always considered within intervals near the Hopf bifurcation point. How-
ever, it is well known that friction induced vibrations—with respect to the distance of the 
friction dispersion interval to the Hopf bifurcation point—have different properties in 
terms of tansient, frequency and amplitudes. So, the main objective of this study is to ana-
lyze the capabilities of the Wiener–Askey (general polynomial chaos, multielement gener-
alized polynomial chaos) and Wiener–Haar expansions to be efficient in the modeling 
and prediction of limit cycle oscillations independently of the location of the instability 
zone with respect to the Hopf bifurcation point.
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1 Introduction

Great interest has been attached to self-excited friction induced
vibrations due to their high importance in broad varieties of engi-
neering applications, such as the aeronautic, railway and automo-
tive fields. Braking, clutch, and wiping systems are well known
examples of self-excited friction systems where different unforced
vibrations may be observed [1–7]. For example, in the automotive
field, self-excited friction induced vibrations occur during a brak-
ing event and are identified by means of quasimonochromatic
sounds emitted at high frequencies (>10 Khz) named braking
squeal. Numerous recent studies continue to be devoted to the de-
velopment of approaches and tools for the prediction of brake
squeal noise; see Ref. [8] where nonlinear statistical analysis is
used or in Ref. [9] where brake squeal is treated as a chaotic
phenomenon.

Another example of friction induced vibrations concerns the
sliding phase of clutch engagement [2,3,7]. They lead to audible
disturbance defined as clutch squeal noise [5].

Several studies have focused on the mechanisms which are re-
sponsible for self-excited friction induced vibrations. So, various
mechanisms have been defined to explain the self-friction-induced
vibration phenomenon. They are classified into two main families.
The first one is related to the tribological aspects of friction sys-
tems and includes the stick-slip and speed dependent friction force
mechanisms, while the second family is related to geometrical
and structural properties and includes the so-called sprag-slip and
mode coupling mechanisms [7,10–15]. The stick-slip and speed

dependent friction force rely on changes in the friction coefficient
according to the relative sliding speed between two bodies in con-
tact. The stick-slip received greater interest. It characterizes insta-
bilities as a consequence of a low sliding speed phenomenon
caused when the static friction coefficient is higher than the
dynamic friction coefficient. The stick-slip was shown to be rele-
vant in modeling friction induced instabilities such as low fre-
quency brake vibrations [1,16–21]. Nevertheless, numerous
studies have pointed out that a decrease in the friction coefficient
is not sufficient to explain other types of friction-induced vibra-
tions [12,22–24]. For example, squeal noise, known to be a rela-
tively high frequency phenomenon (up to several Khz), may occur
even when the friction coefficient is almost constant versus sliding
speed. The tribological properties are not the only cause of insta-
bilities. In this context, the structural and geometrical based mech-
anisms were proposed, namely the sprag-slip and mode coupling,
by which friction-induced oscillations are generated with a con-
stant friction coefficient. The sprag slip was presented in 1961 by
Spurr who gave a purely structural interpretation of the self-
excited friction induced vibrations [12]. A more developed theory
describes instabilities as geometrically induced or kinematic con-
straint instability. D’Souza and Dweib have shown analytically
that friction is responsible for the presence of a coupling term
between modes, which induces the destabilization of a stationary
state [23]. The same conclusion appears in numerous other stud-
ies. Hoffmann proposes a two degree of freedom system in which
the friction-induced vibrations are explained by a mode coupling
phenomenon defined by a coalescence of the system’s modes
which occurs with a constant friction coefficient [25]. In Meziane
and Baillet’s study, authors have studied vibrations generated at
contact with friction for two different applications: one of which
is to analyze friction-induced vibrations of a beam-on-beam sys-
tem in contact with friction. The authors have shown the
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requirement to have the complementarity between a linear analy-
sis of the stability and a nonlinear temporal analysis to well char-
acterize friction induced vibrations [26].

In this paper, emphasis is placed on friction-induced vibrations
issued from a mode coupling phenomenon; thus, a constant fric-
tion coefficient is considered. However, numerous recent studies
focus on the mode coupling instability with an uncertain friction
coefficient for the robust analysis of dynamic behaviors of dry
friction systems. In fact, dynamic behaviors of dry friction sys-
tems have been demonstrated to be very sensitive to design pa-
rameters in particular to the friction coefficient. This sensitivity
appears in changes of stability properties and thus in the ampli-
tude of the friction induced vibrations. Otherwise, friction has
been shown to admit dispersions which may be due to the manu-
facturing process. So, it is necessary to take this uncertainty into
account to ensure robustness of the analysis of friction systems
and thus robustness of design of this class of systems. Ragot et al.
propose the interval theory to surround the dispersion of friction
induced vibrations (limit cycle oscillations (LCOs)) due to the
uncertainty of the friction coefficient. The method used has been
shown to be inefficient due to the pessimism phenomenon which
induces the divergence of the envelopes of limit cycle amplitudes
[27]. The polynomial chaos formalism has been proposed as a
more efficient alternative to take account of the random uncer-
tainty of the friction coefficient in the study of the dynamic behav-
ior of friction systems, [28,29]. In the Lee et al. study [28], the
polynomial chaos formalism is used to analyze a three dimen-
sional nonlinear dry friction model at the wheel-rail contact. The
authors show that the probability density function (PDF) of the
friction coefficient is affected by the stochastic variation of
dynamic parameters as the lateral displacement of the wheel and
the rail roughness. The probabilistic dispersion of the friction
coefficient was taken into account in the robust analysis of the
dynamic behavior of a drum brake developed in the Nechak et al.
study [29]. In a first step, the intrusive scheme of the polynomial
chaos was combined with the direct Lyapunov approach to ana-
lyze the stability. In a second step, the intrusive and nonintrusive
schemes were exploited to estimate the maximum amplitudes for
the limit cycle oscillations when the system was submitted to flut-
ter instabilities. The nonintrusive schemes proved more efficient
than the intrusive one. The robust stability of the same system has
been analyzed using a nonintrusive scheme of the generalized
polynomial chaos in a new study of Nechak et al. [30]. The main
idea is to express system’s eigenvalues using GPC expansions.
The indirect Lyapunov approach is then applied to analyze the sta-
bility through the Monte Carlo procedure or solutions of nonlinear
optimization problems. In other studies [31,32], Nechak et al.
have shown the deficiency of the generalized polynomial chaos
(GPC) formalism in the modeling and prediction of long time
self-excited friction induced vibrations. This conclusion can be
found in other studies related to flutter in aerodynamic systems
[33]. The multielement GPC method and the Wiener–Haar expan-
sion have been shown to be more efficient tools to well predict
long time self-excited friction induced vibrations [31,32]. In these
studies, the random dispersion of the friction coefficient has
always been considered within intervals near the Hopf bifurcation.
However, it is well known that friction induced vibrations—with
respect to the distance of the friction dispersion interval to the
Hopf bifurcation point—have different properties in terms of tran-
sient, frequency and amplitudes. The main objective of this pres-
ent study is to analyze the abilities of the GPC, multielement
generalized polynomial chaos (ME-GPC), and the Wiener–Haar
expansions to well model and predict limit cycle oscillations. In
other words, this paper deals with robustness of Wiener–Askey
and Wiener–Haar expansions with respect to the location of the
friction uncertainty in the flutter instability. It gives an evaluation
of how efficiency and accuracy of Wiener–Askey and Wiener–
Haar in the modeling and prediction of LCOs are dependent on
the distance of the flutter zones from the Hopf bifurcation point.
This evaluation helps to perform a comparison between both

Wiener–Askey and Wiener–Haar expansions which; conse-
quently, help to select the well suitable expansion for the model-
ing and prediction of friction-induced vibrations. The final goal is
to well estimate the amplitude of limit cycle oscillations and its
dispersion corresponding to the random dispersion of the friction
coefficient. Otherwise, this study completes results of previous
studies [31,32] devoted to the modeling and prediction of long
time friction-induced vibrations. This paper is organized as fol-
lows. The generalized polynomial chaos and the ME-GPC method
formalisms are presented in Secs. 2 and 3 followed by a descrip-
tion of the Wiener–Haar expansion in Sec. 4. Followed by the
results of the analysis presented in Sec. 5. The friction based
mechanism used is described, its stability is investigated, and its
dynamic behavior analyzed. All the results are compared to the
referential Monte Carlo (MC) method. Finally, the conclusion is
given in Sec. 6.

2 Generalized Polynomial Chaos

Let X; b; Prð Þ be a probability space where X is the sample
space of the random events x, b is the r-algebra of the subsets of
X and Pr : b! 0; 1½ � is the probability measure. Let
n xð Þ : X; bð Þ ! R;=ð Þ be an R-valued continuous random vari-
able, where = is the r-algebra of Borel subsets of R. For conven-
ience reasons, n is used to represent n(x).

Let

f : Rn �R! Rn

x; lð Þ ! f x;lð Þ

such that

_x tð Þ ¼ f x tð Þ; lð Þ (1)

be a nonlinear dynamic system where f is a smooth nonlinear vec-
tor field, x tð Þ 2 Rn is the state vector and l is a real parameter
supposed to be uniformly distributed within a given interval [a,
b]. l is then as random function in the standard variable n uni-
formly distributed within �1; 1½ �,

l nð Þ ¼ aþ bð Þ=2ð Þ þ b� að Þ=2ð Þn (2)

As a consequence of the random character of parameter l, state
variables xi tð Þ become stochastic processes xi t; nð Þ depending on
the time t and the uncertainty modeled by n.

From the GPC theory [34–38], it is possible to express a second
order (with finite variance) process xi t; nð Þ in a truncated orthogo-
nal Legendre polynomial function series such as

xi t; nð Þ �
XP

j¼0

�xi;jLj nð Þ (3)

�xi;j tð Þ are the stochastic modes of the stochastic process xi t; nð Þ
with i ¼ 1; :::; nð Þ and Lj are the Legendre polynomials which are
known to be orthogonal within the interval �1; 1½ � with respect to
the constant density function W nð Þ ¼ 1=2 of the uniform variable
n [37,38].

Using the truncated Legendre polynomial expansion requires
the computing of the stochastic modes �xi;j tð Þ. Intrusive and nonin-
trusive schemes are defined in this perspective [39–41]. For non-
linear systems with hard nonlinearities and a high number of
degrees of freedom, the nonintrusive schemes (such as the regres-
sion and the nonintrusive spectral projection methods) are shown
to be more efficient than the intrusive scheme in the prediction of
short time friction induced vibrations [29]. Indeed, with the nonin-
trusive scheme, computing the stochastic modes only needs some
calculations of the system responses for a set of particular samples
of the random variable which models the uncertain parameter.
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This is not the case for the intrusive scheme in which the stochas-
tic modes are calculated from the solution of deterministic differ-
ential equations obtained from the Galerkin projection of the
uncertain system onto the generalized polynomial chaos basis
[29]. So, only nonintrusive methods, in particular the regression
technique, are considered in this study. Details on the regression
method can be found in several studies as [29,41].

3 Multi-Element Generalized Polynomial Chaos

Approach

Let X; b; Prð Þ be a probability space where the main step in the
ME-GPC based method is to divide the random space into m non-
intersecting elements [38]. Here, the random space is defined by
the interval B ¼ �1; 1½ � in which the standard uniform variable n
is defined. So, the decomposition D of B is considered, as follows:

D ¼

Bk ¼ akbk½ Þ; k ¼ 1; :::;m

B ¼
Sm

k¼1

Bk

Bk \ Bj ¼ ;j 6¼ k

8>>><
>>>:

(4)

The indicator random variables Zk is defined with respect to the
previous decomposition of B,

Zk ¼
1 if n 2 Bk

0 otherwise

(
(5)

Consequently, it is shown in Ref. [42], that
Sm

k¼1 Z�1
k 1ð Þ is a

decomposition of the X space where

X ¼
Sm

k¼1

Z�1
k 1ð Þ

Z�1
k 1ð Þ \ Z�1

j 1ð Þ ¼ ;; j 6¼ k

8><
>: (6)

In each element Bk, a local random uniform variable
fk : Z�1

k 1ð Þ7!Bk, is defined with the conditional probability func-
tion ffk

ffk
¼ 1

2d Pr Zk ¼ 1ð Þ ; k ¼ 1; :::;m (7)

and

Pr Zk ¼ 1ð Þ ¼ bk � ak

2
(8)

In practice, the local variables fk are expressed in terms of inde-
pendent random uniform variables �nk k¼1;:::mð Þ in �11½ � so the
Legendre polynomials can be exploited.

fk ¼
bk � ak

2
�nk þ

bk þ ak

2
(9)

Let xi;k t; �nk

� �
be the random process corresponding to the kth ele-

ment and to the ith state variable of the system, Eq. (1). Its expan-
sion in the Legendre polynomial is given by the following
expression:

xi;k t; �nk

� �
�
XP

j¼0

�xi;k;j tð ÞLj
�nk

� �
; i ¼ 1; :::; n (10)

The global approximation of the stochastic process xi t; nð Þ is
given by

xi t; nð Þ �
Xm

k¼1

XP

j¼0

�xi;k;j tð ÞLk;j
�nk

� �
Zk (11)

4 Wiener–Harr Chaos Expansion

The Wiener–Haar chaos formalism is a generalization of the
well-known Haar wavelets expansion to represent random proc-
esses. It states the possibility to write a square integrable random
function using Haar wavelet series weighted by the generalized
Fourier coefficients, also known as detail coefficients. The Wie-
ner–Haar chaos expansion helps to approximate the localized
behavior of stochastic processes in the random dimension. This is
performed with the decomposition of the random dimension by
the Haar wavelets. The stochastic character of the decomposed
stochastic process is concentrated in the orthonormal basis gener-
ated by the Haar wavelets while the deterministic character is
modeled by the detail functions which, in this case, are functions
in time named the generalized Fourier coefficients. In the sequel,
a brief presentation of the Wiener–Haar chaos expansion is given.
A more detailed description of this tool can be found in Refs.
[32,33].

The Scaling function / zð Þ and Haar wavelets w zð Þ are piece-
wise continued functions defined, respectively, by

/ zð Þ ¼
1 0 < z < 1

0 otherwise

(
(12)

w zð Þ ¼
1; 0 � z < 0:5

�1 0:5 � z < 1

0 otherwise

8><
>: (13)

Translated and dilated versions of the scaling Haar function and
the Haar wavelet function are given as

/j
k zð Þ ¼ 2j=2/ 2jz� k

� �
(14)

wj
k tð Þ ¼ 2j=2w 2jt� k

� �
(15)

Consider the nonlinear differential equation given by the system,
Eq. (1), in which the uncertain parameter l is modeled by the uni-
form variable n within the interval �1; 1½ �. To extend the use of
Haar wavelets from the unit interval 0; 1½ � to non unit interval
a; b½ � � R (here, ab½ � is the Legendre interval �1; 1½ �), it is neces-

sary to set

�wj
k nð Þ ¼ wj

k Pr nð Þð Þ (16)

such as

�wj
k yð Þ ¼ wj

k zð Þ (17)

with z ¼ T yð Þ where y is a realization of the uniform variable n, z
is a realization of a uniform variable in the unit interval 0; 1½ � and
T is strictly increasing on ab½ � so that z ¼ T yð Þ is one-to-one and
invertible. With the orthonormality condition it can be written that

ð1

0

wj
k zð Þwl

m zð Þdz ¼
ðb

a

�wl
m yð Þ �wl

m yð ÞdT yð Þ ¼ djldkm (18)

The latter expression means that the wavelets fwj
k nð Þg are ortho-

normal with respect to the distribution of n and form a multi reso-
lution of the space of second order random processes on a; b½ �
with continuous distributions.

The Wiener–Haar chaos expansion states the possibility to ap-
proximate a second order stochastic process xi t; nð Þ, i ¼ 1; :::; n,
with the Haar wavelet series expansion.

xi t; nð Þ � ~x0
i;0 tð Þ þ

XJ

j¼0

X2j�1

k¼0

x̂j
i;k tð Þwj

k Pr nð Þð Þ (19)
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where ~x0
i tð Þ is the instantaneous mean value of the stochastic pro-

cess xi t; nð Þ such that

~x0
i;0 tð Þ ¼ xi t; nð Þh i ¼

ð1

0

xi t;T�1 zð Þ
� �

/0
0 zð Þdz (20)

and the generalized Fourier coefficients are defined by the follow-
ing integrals

x̂k
i;j tð Þ ¼

ð1

0

xi t;T�1 zð Þ
� �

wk
j zð Þdz (21)

The truncation order of the expansion J defines the resolution
level needed to keep the scales which contain significant energy
of the approximated process. Like the GPC expansion, the prob-
lem is related to the computation of the generalized Fourier coeffi-
cients, Eq. (21), for j ¼ 0; :::; J. Numerical integration methods
(such as the Monte Carlo, Simpson, and trapezoidal methods) can
be used for this aim. However, they are too costly since they need a
high number of realizations of the stochastic process xi t;T�1 zð Þð Þ
to ensure reasonable accuracy. The Mallat algorithm is a more effi-
cient tool for this computation. Only this algorithm is used in this
paper to compute the generalized Fourier coefficients. More details
about this result can be founded in the recent work [43].

5 Application

As mentioned in Sec. 1, we focus on self-excited friction
induced vibrations due to the mode coupling phenomenon. From
the latter, self-friction induced oscillations may occur even with a
constant friction coefficient [2,3,12,23,44]. In these same studies,
it has been shown that a two degree-of-freedom model may be
sufficient to investigate the mode coupling instability in mechani-
cal friction systems. For instance, Hultèn [45] has defined a two
degree-of-freedom model to analyze squeal vibrations. He has
demonstrated that the model used is representative of the dynamic
behavior of braking systems. Consequently, the same model has
been considered in numerous other studies such as the robust
damping factor in self-exciting friction mechanism [46] and to an-
alyze the mode coupling instability and its dependency on system
parameters including damping [44]. Hultèn has also been consid-
ered in Nechak et al. studies [29–32] in the context of robust sta-
bility analysis and the prediction of short and long time friction
induced vibrations. For all these considerations, the Hultèn model
with the same variables and parameters values used in previous
studies [29–32] is considered, but in the particular framework
which consists of the analysis of efficiency and accuracy of Wie-
ner–Askey and Wiener–Haar expansions in the modeling and pre-
diction of self-excited friction induced vibrations in different
flutter instability zones. A description of the Hultèn system is
summed up below.

Fig. 1 Hultèn system

Fig. 2 Evolution of real and imaginary parts of system eigenvalues

4



5.1 System Description. The system consists in a mass M
held against a moving band; the contact between the mass and
the band is modeled by two plates supported by two different
springs. For simplicity’s sake, it is assumed that the mass and

band surfaces always keep in contact. This assumption is justi-
fied by a preload applied to the system. The contact can be
expressed by two cubic stiffnesses. Damping is integrated as
shown in Fig. 1.

Fig. 3 Realization of the displacement x1 (t, n) for particular samples of the friction coeffi-
cient l

Fig. 4 Density functions of amplitudes corresponding to the friction dispersion near the Hopf bifurcation point

Table 1 Statistics of the amplitude of X1 estimated with the
GPC and the Wiener-Haar expansion near the Hopf bifurcation

Mean
value

Standard
deviation (Std) Min Max

MC 0.2571 0.0465 �0.3309 0.3309
GPC (P ¼ 30) 0.2570 0.0465 �0.3309 0.3309
Wiener-Haar (J ¼ 7) 0.2582 0.0462 �0.3309 0.3309

Table 2 Statistics of the amplitude of dX1/dt estimated with the
GPC and the Wiener–Haar expansion near the Hopf bifurcation

Mean Std Min Max

MC 138.6277 28.9007 �180.9520 180.9983
GPC (P ¼ 30) 141.6692 25.8141 �181.2867 181.3285
Wiener–Haar (J ¼ 7) 140.9610 25.3625 �180.9766 180.9760
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The friction coefficient at contact is assumed to be constant and
the band moves at a constant velocity. Then it is assumed that the
direction of the friction force does not change because the relative
velocity between the band speed and X1 or X2 is assumed to be
positive. The friction coefficient is assumed to be constant but
uncertain. This uncertainty is generally related to the manufactur-
ing process which yields uncertain tribological characteristics for
the contact surfaces. For two manufactured systems, the corre-
sponding friction coefficients are constant but with different val-
ues since the tribological characteristics are different.

The tangential force Ft due to friction contact is assumed to be
proportional to the normal force Fn as given by Coulomb’s law:
Ft¼ l Fn. Assuming that the normal Fn is linearly related to the
displacement of the mass normal to the contact surface, the result-
ing equations of motion can be expressed as [29–32].

_x ¼ f x; lð Þ ¼ A lð Þxþ fNL x;lð Þ (22)

where

x ¼ X1
_X1 X2

_X2

� �T
is the state vector,

A lð Þ ¼

0 1 0 0

�x2
1 �g1x1 lx2

2 0

0 0 0 1

�lx2
1 0 �x2

2 �g2x2

2
66664

3
77775

fNL x;lð Þ ¼

0

�uNL
1 X3

1 þ luNL
2 X3

2

0

�luNL
1 X3

1 � uNL
2 X3

2

2
66664

3
77775

gi ¼ ci=
ffiffiffiffiffiffiffiffi
Mki

p
are the relative damping coefficients, xi ¼

ffiffiffiffiffiffiffiffiffiffi
ki=M

p
are the natural pulsations and uNL

i ¼ kNL
i =M for i ¼ 1; 2. For

a numerical application: M¼ 1 Kg, x1 ¼ 2p� 100 rad/s,

x2 ¼ 2p� 75 rad/s, g1 ¼ g2 ¼ 0:02, uNL
1 ¼ x2

1 and uNL
2 ¼ 0.

The evolution of Eq. (22) linearized around its equilibrium
point (origin, x¼ 0) is plotted against the values of the friction
coefficient in Fig. 2. The system has two pairs of conjugate eigen-
values. The evolution of real and imaginary parts of eigenvalues
shows the well-known mode coupling phenomenon: with the

Fig. 5 Limit cycle oscillation corresponding to l 5 0.5

Fig. 6 Density functions of the LCO amplitude corresponding to the friction dispersion far
from the Hopf bifurcation point estimated with the GPC based model
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increase of the friction coefficient, the two modes of the system
are close in frequency until coalescence in a particular point
(l ¼ l0 � 0:2894) is called the Hopf bifurcation point. At this
point, the two modes become equal while the corresponding real
parts separate; one of the latter becomes positive. Consequently,
the equilibrium position of the system becomes unstable for an in-
finitesimal perturbation and thus, self-friction induced vibrations
occur. The main aim is to model and predict these oscillations and
to estimate the dispersion of their amplitude when the friction dis-
persion is located near and far from the Hopf bifurcation point.
The GPC, the ME-GPC, and the Wiener–Haar expansions are pro-
posed to deal with these problems. The main idea is to express the
system’s states as polynomial chaos or Wiener–Haas wavelets
expansions as given by Eqs. (3), (11), and (19).

The friction coefficient l is uncertain and supposed to be driven
by a uniform distribution law within the interval [0.3, 0.33]. Con-
sequently, the dynamic behavior of Eq. (22) becomes stochastic.
To predict its behavior according to the parameter requires the nu-
merical resolution of Eq. (22). This operation is in general very
difficult and costly due to complex nature of nonlinear dynamic
systems. The modeling of Eq. (22) with the Wiener–Askey and
Wiener–Haar expansions is analyzed below.

5.2 Modeling and Prediction of LCO Near the Hopf Bifur-
cation Point. The first problem is to model LCOs and to estimate
the dispersion of their amplitude corresponding to a uniform fric-
tion coefficient within [a, b]¼ [0.3, 0.33] located near the Hopf

Fig. 7 The evolution of the displacement X1 with respect to the friction coefficient in the zone near the Hopf bifurcation
point, [0.3, 0.33]

Fig. 8 The evolution of the displacement X1 with respect to the friction coefficient in the zone near the Hopf bifurcation
point, [0.5, 0.55]

7



bifurcation point lm ¼ l0 1þ eð Þ, e¼ 0.09 with lm ¼ 0:315 being
the mean value of the friction dispersion and l0 � 0:2894 is the
estimated Hopf bifurcation point. This problem has been dealt
with in previous studies [29–32]. This study compares performan-
ces of the GPC (in particular, the Legendre polynomial chaos
expansion (LePC)) and Wiener–Haar expansions.

Particular realizations of the displacement x1 t; nð Þ approxi-
mated by the LePC and Wiener–Haar expansions are compared in
Fig. 3 to the ones obtained from the solution of Eq. (22) by using
the ODE MATLAB function. The LePC order P and the resolution
level J are fixed, respectively, to P¼ 30 and J¼ 7, as shown in

previous studies [29,32] to be the orders which gives the best
LePC and Wiener–Haar approximations. Otherwise, the density
functions of the amplitudes of the displacement X1 and the corre-
sponding velocity _X1 are plotted in Fig. 4. The Monte Carlo
method using N¼ 10.000 solutions of Eq. (22) helps to estimate
the referential density functions while those estimated with the
LePC and Wiener–Haar expansions are obtained by sampling,
respectively, the random variables n and z and computing the cor-
responding sums. It is obvious that the MC procedure is too costly
since the solutions from the LePC and Wiener–Haar expansions
only require functions to be evaluated and summed. Note that the

Fig. 9 Limit cycle oscillation corresponding to l 5 0.5 predicted with the ME-GPC model

Fig. 10 Density functions of the LCO amplitudes corresponding to the friction disper-
sion far from the Hopf bifurcation point estimated with the ME-GPC based model

Table 3 Statistics of the amplitude of X1 estimated with the
ME-GPC far from the Hopf bifurcation

CPG-ME m ¼ 2 m ¼ 4 m ¼ 8 m ¼ 16 MC

Mean 0.8650 0.8654 0.8683 0.8703 0.8730
Std 0.0485 0.0328 0.0321 0.0322 0.0316
Min. �1.0448 �0.9202 �0.9220 �0.9263 �0.9260
Max. 1.0448 0.9198 0.9208 0.9263 0.9260

Table 4 Statistics of the amplitude of dX1/dt estimated with the
ME-GPC far from the Hopf bifurcation

ME-LePC m ¼ 2 m ¼ 4 m ¼ 8 m ¼ 16 MC

Mean 518.0657 488.2448 489.5521 490.6609 492.3341
Std 36.7938 20.0271 19.4584 19.5841 19.2087
Min. �602.1431 �521.8708 �521.2620 �525.1518 �524.1963
Max. 602.2645 521.6795 521.5239 525.2058 524.1963
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number N has been fixed to ensure high confidence and accuracy
(99% with error margin 1%).

From all the results, it can be noted that both GPC and
the Wiener–Haar expansions model the referential LCOs
obtained from the solution accurately, using the MATLAB
ODE function of Eq. (22) with l ¼ 0:3;l ¼ 0:315, and
l ¼ 0:33. GPC and Wiener– Haar expansions approximate the
referential density functions of amplitudes of the displacement
X1 and the corresponding velocity _X1 almost with the same
accuracy. The corresponding statistics (mean value, standard
deviation and global minimum and maximum) of the LCO
amplitudes, given in Tables 1 and 2, confirm the high accu-
racy of both the GPC and Wiener–Haar expansions, MC
results being the reference. However, it must be noted that

the GPC is more efficient than the Wiener–Haar. Indeed, the
computing of the GPC expansion using the regression tech-
nique has required only 35 solutions of Eq. (22), while the
computing of the Wiener–Haar expansion by the Mallat algo-
rithm has required 256 solutions.

5.3 Modeling and Prediction of LCOs Far From the Hopf
Bifurcation Point. The main focus in Sec. 5.3 is to model LCOs
and to estimate the dispersion of their amplitude corresponding to
a uniform friction within [a, b]¼ [0.5, 0.55] located far from the
Hopf bifurcation point lm ¼ l0 1þ eð Þ; e¼ 0.8 with lm ¼ 0:525.
The frequency and amplitude of LCO in these flutter region are
greater than those of LCOs near the Hopf bifurcation point. The

Fig. 11 The evolution of the displacement X1 with respect to the friction coefficient in the zone near the Hopf bifurcation
point, [0.5, 0.55] estimated with the ME-LePC

Fig. 12 Limit cycle oscillation corresponding to l 5 0.5 predicted with the Wiener–Haar
expansion
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objective is to check the capacities of GPC and Wiener–Haar
expansions in the modeling and prediction of such LCOs.

5.3.1 Study With the GPC Expansion. First the 30th order
GPC expansion is used, as it showed good accuracy in the first
zone. As shown in Fig. 5, where one example of LCO correspond-
ing to l¼ 0.5 is plotted, the GPC expansion with P¼ 30 com-
puted by using the regression technique is not well suited to
model LCOs in the considered flutter instability. The accuracy of
the GPC expansion has not been enhanced significantly even with
a significant increase of the GPC order (P¼ 40). The GPC expan-
sion fails to well model and predict LCOs. This deficiency is also
shown in Fig. 6 with the density functions of amplitudes of the
displacement X1 and the velocity _X1. In order to explain how the
GPC fails to well model LCO in flutter instability zone located far
from the Hopf bifurcation point in contrast to the case when the
flutter instability zone is near the Hopf bifurcation zone, the evo-
lutions of the displacement X1 with respect to the random friction
coefficient in the two zones considered (near and far from the

Fig. 13 Limit cycle oscillation corresponding to l 5 0.5 predicted with the Wiener–Haar
expansion Density functions of the LCO amplitude corresponding to the friction disper-
sion far from the Hopf bifurcation point estimated with the Wiener–Haar based model

Table 5 Statistics of the amplitude of X1 estimated with the
Wiener-Haar model far from the Hopf bifurcation

Wiener–Haar J ¼ 7 J ¼ 8 J ¼ 9 MC

Mean 0.8666 0.8757 0.8743 0.8730
Std 0.0318 0.0308 0.0313 0.0316
Min. �0.9259 �0.9257 �0.9259 �0.9260
Max. 0.9259 0.9257 0.9259 0.9260

Table 6 Statistics of the amplitude of dX1/dt estimated with the
Wiener–Haar model far from the Hopf bifurcation

Wiener–Haar J ¼ 7 J ¼ 8 J ¼ 9 MC

Mean 488.4426 493.9819 493.1156 492.334
Std 19.4170 18.6994 18.9798 19.2097
Min. �524.1760 �524.0464 �524.1750 �524.1963
Max. 524.1755 524.0464 524.1747 524.1963

Fig. 14 The evolution of the displacement X1 with respect to the friction coefficient in the
zone near the Hopf bifurcation point, [0.5, 0.55] estimated with the Wiener–Haar expansion
(J 5 9)
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Hopf bifurcation point, [0.3, 0.33] and [0.5, 055]) are plotted at
different times t, respectively, in Figs. 7 and 8.

The evolution of the displacement X1 in the random dimension
estimated using the referential MC method is well approximated
with the LePC expansion in the zone near the Hopf bifurcation
point ([0.3, 0.33], Fig. 7) in contrast to the zone far from the Hopf
bifurcation point ([0.5, 0.55], Fig. 8). This can be justified by the
incapability of the LePC expansion to well follow the variations
of the displacement X1 which become very fast and nonlinear as
the distance of the uncertainty zone from the Hopf bifurcation
point increases. The MC solution shows these fast and nonlinear
variations in [0.5, 0.55].

The ME-GPC and Wiener–Haar expansions are proposed to cir-
cumvent the drawbacks of the LePC expansion.

5.3.2 Study With ME-GPC Expansion. Equation (16) is used
with P¼ 30 and different numbers m of elements (2, 4, 8, 16).
The LCO corresponding to l¼ 0.5 estimated with this model is
plotted in Fig. 9, while the density functions of LCO amplitudes
are shown in Fig. 10.

The accuracy of the ME-LePC based model Eq. (16) increases
with the number m of elements. Good convergence properties
with respect to m are shown. The density functions of LCOs
amplitudes (Fig. 10) and the corresponding statistics (mean value,
standard deviation, minimum and maximum) (Tables 3 and 4) are
suitably estimated in particular with m¼ 16. With the latter, the
maximum vibration levels are estimated with an error not exceed-
ing 0.2% while the number of Eq. (22) solutions established for
the computation of the ME-LePC model is 560. This is obviously
much lower than the one required by the MC method
(N¼ 10.000) fixed to have a 99% confidence interval with an error
width about 1%. Otherwise, the evolution of the displacement in
the stochastic dimension (with respect to the friction coefficient)
plotted in Fig. 11 shows the positive contribution of the ME-LePC
based model with respect to the observed limits of the LePC
expansion. Indeed, the ME-LePC model, in particular the one
with m¼ 16 plotted in Fig. 11, is better following the very fast,
nonlinear variations of the displacement X1 with the friction
coefficient.

5.3.3 Study With the Wiener–Haar Expansion. Different reso-
lution levels J are considered for the Wiener–Haar based model
Eq. (19) to find the most suitable resolution for the modeling and
prediction of LCOs in the flutter instability zone [0.5, 0.55] situ-
ated far from the Hopf bifurcation point. The realization corre-
sponding to l¼ 0.5 is plotted in Fig. 12 for J¼ 7, 8, and 9. The
same resolutions are used to plot the density functions of LCO
amplitude in Fig. 13. The corresponding statistics are illustrated in
Tables 5 and 6.

Contrary to the first study near the Hopf bifurcation point where
the Wiener–Haar expansion with the J¼ 7 was suitable to well
model LCOs and the corresponding amplitudes, in the zone far
from the Hopf bifurcation point, the same expansion is not suffi-
cient. The resolution level required is higher, as shown in particu-
lar in the density functions plotted in Fig. 13. Indeed, to keep the
same accuracy as in the study near the Hopf bifurcation point, it
was necessary to increase the resolution level of the Wiener–Haar
expansion until J¼ 9. The latter gave more accurate estimations
of both the density function of the LCO amplitudes and the corre-
sponding statistics given in Table 5 and Table 6. The maximum
vibration amplitudes of LCOs are estimated with a relative error
not exceeding 0.004%, MC based solutions being the referential
results obtained using N¼ 10,000 solutions of Eq. (22) to ensure a
high confidence level with a high accuracy (99% with an error
margin of 1%). For the same performances, it can be argued that
only (2Jþ1<N) solutions of Eq. (22) are required for the computa-
tion of the corresponding Wiener–Haar expansion. The contribu-
tion of the Wiener–Haar expansion can also be observed in the
stochastic dimension. Indeed, as shown in Fig. 14, the expansion
considered (in particular the one with J¼ 9) models the very fast

and nonlinear variations of the displacement X1 in the random
dimension better than the LePC expansion—with a small phase
shift.

All the illustrated results show the efficiency of both the ME-
LePC and Wiener–Haar expansions compared to the GPC in the
modeling and prediction of LCOs when the dispersion of the fric-
tion coefficient is far from the Hopf bifurcation point. As the
LePC expansion had shown good performance near the Hopf
bifurcation point, it was not interesting to use the ME-LePC. The
accuracy of the Wiener–Haar expansion is less sensitive at the
location of the friction dispersion with respect to the Hopf bifurca-
tion point.

6 Conclusion

This paper has been devoted to the modeling and prediction of
friction induced vibrations in dry friction systems, taking account
of the uncertainty of friction coefficients. The main aim was to
assess the capacities of spectral expansions based on the Wiener
chaos to well model and predict friction-induced limit cycle oscil-
lations when the friction dispersion is located at different distance
from the Hopf bifurcation point. It was interesting to consider this
problem as the frequency and amplitude of friction-induced vibra-
tions depend on the distance of the friction dispersion from the
Hopf bifurcation point. The study compares the performances of
GPC and Wiener–Haar expansion in the case the friction disper-
sion is located near the Hopf bifurcation point. Both expansions
give suitable predictions of LCOs and the probabilistic dispersion
of their amplitude. The GPC expansion proves to be more effi-
cient, since for the same accuracy, it requires a smaller number of
computations compared to the Wiener–Haar expansion. In the
case the friction dispersion is located far from the Hopf bifurca-
tion point, the GPC fails to well model and predict LCOs. In the
zone considered, friction induced vibrations are characterized by
LCOs with higher frequencies and amplitudes. The ME-GPC and
the Wiener–Haar expansions are proposed to overcome GPC
drawbacks. Indeed, the efficiency of the GPC based model is
enhanced, using the Wiener–Haar expansion with a higher resolu-
tion level compared to the one used when the friction dispersion
interval is near the Hopf bifurcation point. The efficiency of the
GPC based model is also enhanced using the ME-GPC, which
consists in dividing the friction dispersion interval into small ele-
ments and applying the GPC locally (in each element). There is a
good compromise between cost and accuracy for both methods.

A more general conclusion can be stated about the more general
use of the Wiener–Haar expansion compared to the GPC based
model. The latter shows a higher sensitivity to the location of the
friction dispersion with respect to the Hopf bifurcation point.

Finally, it can be recalled that this paper has been dedicated to
the modeling and prediction of self-friction induced vibrations by
taking into account the probabilistic dispersion of the friction
coefficient supposed to be constant in accordance with the mode
coupling phenomenon. In practice, other parameters hard to deter-
mine and thus uncertain should be taken into account. This is the
case of stiffness, damping and mass which have a non-negligible
effect on the dynamic behavior in particular on the vibration
amplitudes in dry friction systems. As a result, it is necessary to
take uncertainty of all these parameters into account in the model-
ing and prediction processes. This perspective is the aim of our
research in progress.
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