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During the last decades, it had been highlighted the duality between chaotic numbers and pseudo-random numbers. Emergence of pseudo-randomness from chaos via various under-sampling methods has been recently discovered. Instead of opposing both qualities (chaos and pseudo-randomness) of numbers, it should be more interesting to shape mixed Chaotic/Pseudo-random number generators, which can modulate the desired properties between chaos and pseudo-randomness. Because nowadays there exist increasing demands for new and more efficient number generators of this type it is important to develop new tools to shape more or less automatically various families of such generators. Mathematical chaotic circuits have been recently introduced for such a purpose among several others. There some analogy between them and electric circuits, but the components. Mathematical circuits use new ones we describe therein. The combination of such mathematical components leads to several news applications which improve the performance of well known chaotic attractors (Hénon, Chua, Lorenz, Rössler, ...). They can be also used in larger scale to shape numerous architectures of mixed Chaotic/Pseudo Random Number Generators.

Introduction

During the last decades, on one hand, it had been highlighted the duality between chaotic numbers and pseudo-random numbers (e.g. sometimes chaotic numbers used in particle swam optimisation are more efficient than pseudo-random numbers, sometimes high quality pseudo-random numbers are needed for cryptography).

On the other hand, emergence of pseudo-randomness from chaos via various under-sampling methods has been recently discovered. Instead of opposing both qualities (chaos and pseudo-randomness) of numbers, it should be more interesting to shape mixed Chaotic/Pseudo-random number generators, which can modulate the desired properties between chaos and pseudo-randomness.

Because nowadays there exist increasing demands for new and more efficient number generators of this type (these demands arise from different applications, such as multi-agents competition, global optimisation via evolutionary algorithms or secure information transmission, etc.), it is important to develop new tools to shape more or less automatically various families of such generators.

Mathematical chaotic circuits have been recently introduced for such a purpose among various others. By analogy of electronic circuitry: i.e. the design of electronic circuits which are composed of individual electronic components, such as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires through which electric current can flow; mathematical chaotic circuits are composed of individual components (generators, couplers, samplers, mixers, reducers and, shapers, etc.) connected through streams of data. The combination of such mathematical components leads to several news applications such as improving the performance of well known chaotic attractors (Chua, Lorenz, Rössler, Hénon, Lozi, Logistic or Symmetric Tent map, etc.).

They can be also used in larger scale to shape numerous architectures of mixed Chaotic/Pseudo Random Number Generators.

In Sect. 2 we recall briefly those famous chaotic attractors. In Sect. 3 we introduce the chaotic mathematical circuits. In Sect. [START_REF] Tucker | The Lorenz attractor exists[END_REF] we show some applications of chaotic circuits.

Chaotic and random numbers

Chaos theory studies the behavior of dynamical systems that are highly sensitive to initial conditions. Small differences in initial conditions (such as those due to rounding errors in numerical computation) yield widely diverging outcomes for chaotic systems, rendering long-term prediction impossible in general. This property is popularly referred to as the "butterfly effect". This happens even though these systems are deterministic (i. e. their future behavior is fully determined by their initial conditions), with no random elements involved. In other words, the deterministic nature of these systems does not make them predictable. We recall first the most studied examples of systems of differential equations (continuous dynamical systems) and mappings (discrete dynamical systems) which we will use in this article to explain the new paradigm of chaotic circuitry. We then introduce several types (chaotic, mixing and geometric) of undersampling in order to overcome the poor quality of chaotic generators. Those mechanisms allow the emergence of pseudo-randomness from chaos. A number of (chaos based) Chaotic Pseudo Random Number Generators (CPRNG) can be built using those undersampling methods.

Continuous dynamical systems: Lorenz, Rössler models and Chua's electronic circuit

The first example of such well known chaotic continuous system in the dissipative case was pointed out by the meteorologist E. Lorenz in1963 [START_REF] Lorenz | Deterministic nonperiodic flow[END_REF] who introduced the following non linear system of differential equations as a extremely simplified model of atmospheric dynamics. It is precisely these equations which led Lorenz to the discovery of the sensitive dependence of initial conditions -an essential factor of unpredictability in many systems. suggest that almost all points in phase space tend to a strange attractor the: Lorenz attractor (see Fig. 1).

x ( x y ), y x y xz , z xy z ,

σ ρ β ɺ ɺ ɺ  =- +  = --   = -  ( 
Figure 1: The Lorenz attractor Figure 2: The Rössler attractor

In 1976, O. E. Rössler followed a different direction of research to obtain a chaotic model. Considering that, due to extreme simplification used by Lorenz in order to obtain equation ( 1), there is no actual link between this equation and the Rayleigh-Benard problem from which it is originate; he followed a new way in the study of a chemical multivibrator. He started to design some three-variable oscillator based on a two-variable bistable system coupled to a slowly moving third-variable. The resulting three-dimensional system was only producing limit cycles at the time. At an international congress on rhythmic functions held on September 8-12, 1975 in Vienna, he met A. Winfree, a theoretical biologist who challenged him to find a biochemical reaction reproducing the Lorenz attractor. Rössler failed to find a chemical or biochemical reaction producing the Lorenz attractor but, he instead found a simpler type of chaos in a paper he wrote during the 1975 Christmas holidays [START_REF] Rössler | Chaotic behavior in simple reaction system[END_REF]:
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The obtained chaotic attractor for the parameter value 

(see Fig. 2), does not have the rotation symmetry of the Lorenz attractor defined by ( 5), but it is characterized by a map equivalent to the Lorenz map.
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The Chemical reaction scheme leading to (3) is meticulously analyzed by Ch. Letellier and V. Messager [START_REF] Letellier | Influences on Otto Rössler's earliest paper on chaos[END_REF]. The structure of the Rössler attractor is simpler than the Lorenz's one. However even if hundreds of papers has been written on it, the rigorous proof of its existence is not yet established as done for Lorenz equations [START_REF] Tucker | The Lorenz attractor exists[END_REF].

Few years later, in October 1983, visiting T. Matsumoto at Waseda University, L. O. Chua found an electronic circuit [START_REF] Chua | The Double Scroll Family[END_REF] mimicking directly on an oscilloscope screen a chaotic signal (Fig 3). This circuit (Fig. 4) contains three linear energy-storage elements (an inductor and two capacitors), a linear resistor, and a single nonlinear resistor, namely Chua's diode (Fig. 5) with three segment linear characteristics defined by
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where the slopes in the inner and the outer regions are 0 m and 1 m , respectively, and p B ± denote the breakpoints. The dynamics of Chua's circuit is governed by [START_REF] Hénon | A Two-dimensional mapping with a strange attractor[END_REF] where C , and the intensity of the electrical current through the inductor L : Equation ( 7) can be transformed into the system of three first-order autonomous differential equations whose dimension-less form is
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for which the set of parameter values 

is very often used in order to generate chaotic signals. All those models are studied very thoroughly since their discovery 30 years ago. However, even if their equations are very simple, their dynamics is not easily understandable, hundreds of articles have published in this aim. The technique often used to simplify those models is the use of the Poincaré map [START_REF] Lozi | Can we trust in numerical computations of chaotic solutions of dynamical systems?[END_REF].

2-Dimensional discrete dynamical systems: Hénon and Lozi mapping.

In order to study numerically the properties of the Lorenz attractor, M. Hénon an astronomer of the observatory of Nice, France, introduced in 1976 a simplified model of the Poincaré map of this attractor [START_REF] Hénon | A Two-dimensional mapping with a strange attractor[END_REF]. The Lorenz attractor being imbedded in dimension 3, the corresponding Poincaré map is a mapping from the plane

2 ℝ into 2 ℝ .
Therefore the Hénon mapping is also defined in dimension 2 as
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It is associated to the dynamical system Hénon pointed out numerically that there exists an attractor with fractal structure. This was the first example of strange attractor (previously introduced by D. Ruelle and F. Takens [START_REF] Ruelle | On the nature of turbulence[END_REF]), for a mapping defined by an analytic formula. The like-Cantor set structure in one direction orthogonal to the invariant manifold in this simple mapping was a dramatic surprise in the community of physicists and mathematicians. In order to go further in the way of simplifying such a model, few years later, using one of the first desktop electronic calculator HP-9820, we found out, that the linearized version of the Hénon mapping (known as Lozi mapping)
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displayed numerically (for a = 1.7 and b = 0.5) the same structure of strange attractor, but the curves were replaced by straight lines (Fig. 7).

1-Dimensional discrete dynamical systems: Logistic and Tent Map

In mathematics, computations done on one dimensional objects are more tractable than those done on two-dimensional features. Hence it is interesting to consider one-dimensional discrete dynamical systems. The most studied examples are the logistic and the tent (symmetric or skew) map of the interval. In 1838 the belgium mathematician Pierre François Verhulst [START_REF] Verhulst | Notice sur la loi que la population poursuit dans son accroissement[END_REF] introduced a differential equation modelling the grow of population in a simple demographic model, as an improvement of the Malthusian growth model, in which some resistence to the natural increase of population is added. He later, in 1845 [START_REF] Verhulst | Recherches mathématiques sur la loi d'accroissement de la population[END_REF], called logistic function the solution of this equation. In 1973, the biologist Sir R. M. May introduced the nonlinear, discrete time dynamical system
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as a model for the fluctuations in the population of fruit flies in a closed container with constant food [START_REF] May | Stability and Complexity of Models Ecosystems[END_REF]. Due to the similarity of both equations although one is a continuous dynamical system, and the other a discrete one, he called Eq. ( 13) logistic equation. The logistic map (Fig. 7)

[ ] [ ] f : 0,1 0,1 r → f ( x ) rx( 1 x ) r = - (14) 
associated to ( 13) and generally considered for

[ ] r 0,4 ∈
is often cited as an archetypal example of how complex, chaotic behavior can arise from very simple non-linear dynamical equations. Similarly to the linearization of the Hénon map into Lozi map, one can consider the linearized version of the logistic map which is called, due to its shape (see Fig. 8), the Tent map

f ( x ) 1 2 x = - (15) 
associated to the dynamical system
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When the summit of this tent is not exactly in the middle of the interval of definition, the corresponding map is also called the skew tent map.

Chaotic dynamical systems in low dimension are often used since their discovery in the 70' in order to generate chaotic numbers, because they are very easy to implement in numerical algorithms [START_REF] Sprott | Chaos and Time-Series Analysis[END_REF]. However, as we point out in [START_REF] Lozi | Can we trust in numerical computations of chaotic solutions of dynamical systems?[END_REF], the computation of numerical approximation of their periodic orbits leads to very different results from the theoretical ones. The collapsing of iterates of dynamical systems or at least the existence of very short periodic orbits, their non constant invariant measure, and the easily recognized shape of the function in the phase space avoid the use of one-dimensional map (logistic, baker, or tent, …) as a Pseudo Random Number Generator (PRNG). However, the very simple implementation in computer program of chaotic dynamical systems led some authors to use it as a base of cryptosystem [START_REF] Baptista | Cryptography with chaos[END_REF][START_REF] Ariffin | Modified Baptista type chaotic cryptosystem via matrix secret key[END_REF]. In addition it seems that for some applications, chaotic numbers are more efficient than random numbers. That is the case for evolutionary algorithms [START_REF] Pluhacek | Extended Initial Study on the Performance of Enhanced PSO Algorithm with Lozi Chaotic Map[END_REF][START_REF] Tang | Parrondo's games with chaotic switching[END_REF] or chaotic optimization [START_REF] Araujo | Particle swarm approaches using Lozi map chaotic sequences to fuzzy modelling of an experimental thermal-vacuum system[END_REF].

The route from chaos to pseudo-randomness via chaotic or mixing undersampling

In this subsection we show how to overcome the poor quality of chaotic generators using two types (chaotic, mixing) of undersampling. Before presenting both undersampling mechanisms, we have to show how to stabilize the chaotic properties of chaotic number when realized on a computer. In order to simplify the presentation below, we use as an example a system of 2-coupled symmetric tent map [START_REF] Pluhacek | Extended Initial Study on the Performance of Enhanced PSO Algorithm with Lozi Chaotic Map[END_REF], even though other chaotic maps of the interval (as the logistic map, the baker transform, etc.) can be used for the same purpose (as a matter of course, the invariant measure of the chaotic map considered is preserved).

The system is simply described by

1 1 1 1 2 2 1 1 n n n n n n x ( ε ) f ( x ) ε f ( y ) y ε f ( x ) ( ε ) f (y ) + + = - +   = + -  (17)
We use generally ) 

1 n n n X F X A f (X ) + = = ⋅ (18) where 1 ( ) ( ) ( ) 
n n p n f x f X f x       =         ⋮ ⋮ , 1 n n p n x X x       =         ⋮ ⋮ , (19) and 1 
=1-ε ε ε ε ε =1- ε ε ε A ε ε =1- ε ε ε ε ⋯ ⋯ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋯ ⋯ = = = = ≠ = - =             =               ∑ ∑ ∑ (20) 
with

j p i ,i i , j j 1, j i = 1- ε ε = = ≠
∑ on the diagonal (the matrix A is always a stochastic matrix iff the coupling constants verify 0 i , j ε > for every i and j).

It is noteworthy that these families of very weakly coupled maps are more powerful than the usual formulas used to generate pseudo-random sequences, mainly because only additions and multiplications are used in the computation process, no division being required. Moreover the computations are done using floating point or double precision numbers, allowing the use of the powerful Floating Point Unit (FPU) of the modern microprocessors. In addition, a large part of the computations can be parallelized taking advantage of the multicore microprocessors which are used nowadays. Moreover, a determining property of such coupled map is the high number of parameters used ( ( 1) p p ×for p coupled equations) which allows to choose them as cipher-keys, when used in chaos based cryptographic algorithms, due to the high sensitivity to the parameters values [START_REF] Lozi | Emergence of randomness from chaos[END_REF]. However Chaotic numbers are not pseudo-random numbers because the plot of the couples of any component ( )

1 , j j n n x x + of iterated points ( ) 1 ,
n n X X + in the corresponding phase plane reveals the map f used as one-dimensional dynamical systems to generate them via [START_REF] Lozi | Giga-Periodic Orbits for Weakly Coupled Tent and Logistic Discretized Maps, Modern Mathematical Models, Methods and Algorithms for Real World Systems[END_REF]. Nevertheless, we have recently introduced a family of enhanced Chaotic Pseudo Random Number Generators (CPRNG) in order to compute faster long series of pseudorandom numbers with desktop computer [START_REF] Lozi | Complexity leads to randomness in chaotic systems[END_REF]. This family is based on the previous ultra weak coupling which is improved in order to conceal the chaotic genuine function.

The first process of undersampling, the chaotic one is used in order to hide f of [START_REF] Lozi | Giga-Periodic Orbits for Weakly Coupled Tent and Logistic Discretized Maps, Modern Mathematical Models, Methods and Algorithms for Real World Systems[END_REF], in the phase space j j n n 1

( x , x )

+ for any j, the sequence of the real line. The pseudo-code, for computing such chaotically sub-sampled iterates is:

1 2 p 1 p 0 0 0 0 0 X ( x , x , x , x ) seed … - = = n 0; q 0; = = do { while n N < do{ while m n x T < compute 1 2 p 1 p n n n n ( x , x , , x , x ); n … - + + } compute 1 2 p 1 p n n n n ( x , x , , x , x ) … - ; then 1 ; q n( q ) n( q ) n; x x n ; q ) = = + + + + }
This chaotic under-sampling is possible due to the independence of each component of the iterated points n X vs. the others [START_REF] Lozi | New Enhanced Chaotic Number Generators[END_REF].

A second mechanism can improve the unpredictability of the pseudo-random sequence generated as above, using synergistically all the components of the vector n X instead of two.

Given p 1

thresholds

1 2 p 1 0 T T T 1 ⋯ - < < < < forming a partition 1 2 1 , , , p J J J - … of the interval [ ] 1,1 -
, the pseudo-code, for computing such chaotically sub-sampled iterates is

1 2 p 1 p 0 0 0 0 0 X ( x , x , x , x ) seed … - = = n 0; q 0; = = do { while n N < do{ while m n 0 x J ∈ compute 1 2 p 1 p n n n n ( x , x , , x , x ); n … - + + } compute 1 2 p 1 p n n n n ( x , x , x , x ) … - ; let k be such that p n k x J ∈ ; then k ; q n( q ) n( q ) n; x x n ; q ) = = + + + + }.
This second mechanism is called the mixing undersampling.

Geometric undersampling

Geometric undersampling is based on the coupling in another way of p tent maps on the p-dimensional torus [ ]

p p p J 1,1 ℝ = - ⊂
, which can directly generate random numbers, without sampling or mixing, provided p is large enough, although it is possible to combine those processes with it. After presenting this ring coupling in high dimension, we introduce the geometric undersampling fitted to obtain randomness with small values of p (e.g. p = 2).

We first define the mapping

p p M : J J p → 1 2 1 1 1 1 2 3 2 2 2 1 1 1 1 2 1 2 1 2 n n n n n n n n p p p p n n n p n x k x x x x k x x x M x x x k x + + +   - + ×             - + ×           = =                         - + ×   ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ (21) 
with the parameters k 1 i = ± . In order to confine every variable

j x n on [ ] p p p J 1,1 ℝ = - ⊂
we do, for every iteration, the transform

1 1 1 2 1 2 j n j n if ( x ) add if ( x ) substract + +  < -  > -  (22)
The particularity of this coupling is that each variable j x n is coupled only with itself and To evaluate the random properties of these generators, the set of NIST tests have been used (Fig. 10). The random properties validations of both a 4-dimensional system and a 10-dimensional one have been carried out [START_REF] Taralova | Dynamical and statistical analysis of a new Lozi function for random numbers generation[END_REF]. 21) is a good PRNG when p 4 ≥ , in lower dimension 2 and 3, the chaotic numbers are not equidistributed on the torus (see Fig. 11). In order to improve the ring coupling mechanism in low dimension, a geometric undersampling based on geometric nature of the invariant measure is used. We present briefly this new mechanism which allows the emergence of randomness from chaos, in the simplest case, the 2-dimensional ring mapping M 2 on the torus 2 J (i.e. a square) into itself, with k k 1 1 2 = = . For this mapping

1 1 2 1 2 2 1 1 1 2 1 2 n n n n n n x x x x x x + +  = - +   = - +   (23) with 1 1 1 2 1 2 j n j n if ( x ) add if ( x ) substract + +  < -  > -  (24)
it is possible to define several critical lines which split the square in a partition of 32 sub-regions, in which the density is uniform [START_REF] Taralova | Dynamical and statistical analysis of a new Lozi function for random numbers generation[END_REF]. Each density can be computed explicitly using a cell-to-cell analysis by the means of a Markov process.

The geometric undersampling process consists in magnifying a square G included in one region We have also used NIST test to confirm the random property of the geometrical undersampling process. They are all successful (Fig. 13).

Figure 13: Geometrical undersampling: each sequence of components satisfies the NIST test for randomness In the case of 2 coupled maps the geometric undersampling allows the building of a PRNG which passes all NIST Test. It is very effective for generating 2 parallel streams of pseudo-random numbers, as shown in [START_REF] Lozi | From chaos to randomness via geometric undersampling[END_REF], in which sequences up to 10 12 consecutives iterates of ( 23) have been computed, providing more than 3.5×10 10 random numbers in a very short time.

Mathematical chaotic circuits

In this Section we introduce the new paradigm of mathematical (chaotic) circuits, which should constitute a new branch of mathematical engineering, in the sense of building models using equations like electronics engineering do using transistors, diodes, etc.

An electronic circuit is composed of individual electronic components, such as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires through which electric current can flow. The combination of components and wires allows various simple and complex operations to be performed: signals can be amplified, computations can be accomplished, and data can be moved from one place to another. Very complex systems can be analyzed using various sophisticated methods [START_REF] Vaidyanathan | Anti-synchronization of four-wing chaotic systems via sliding mode control[END_REF]. We introduce in the same way mathematical circuits which are composed of individual components (generators, couplers, samplers, mixers, reducers, cascaders and shapers, etc.) connected through streams of data. The combination of such mathematical components leads to several new applications such as improving the performance of well known chaotic attractors (Chua, Lorenz, Rössler, Hénon, logistic) presented in Sect. 2 for application purposes.

Analog electric circuits are very commonly represented by schematic diagrams, in which wires are shown as lines, and each component has a unique symbol (See Fig. 14). We present in this Section some symbols we design in order to draw mathematical schematic diagrams. First, we describe generator symbols, which are, from a mathematical point of view, equivalent to a battery or a variable current generator in an electric circuit. In the paradigm of mathematical circuitry they generate a digital signal (in one or several dimensions) rather than an electrical current characterized by its voltage and intensity variations (nonetheless, a voltage or an intensity variation can be considered as a physical signal which can be discretized). This signal can be either continuous as in Chua's circuit, Lorenz or Rössler attractors or discrete as in the Hénon, Lozi, Logistic or the symmetric Tent mapping. We consider first the continuous ones.

Continuous generators: Chua's circuit, Rössler and Lorenz attractors

From a mathematical point of view, at least in order to implement applications of chaotic behaviors, all the chaotic attractors (1), ( 3), ( 8) have the same structure: given initial values and a set of parameters, they provide three streams of data symbolized by three arrows. On the contrary, the electric realization of their equation leads to very different electric circuits. For example, concerning the Chua's circuit, even if the scheme of Fig. 4 is easily understandable by electric engineers, it is of no help to build a device using mathematical properties of chaos (like a secure communication system based on it [START_REF] Lozi | Secure communications via chaotic synchronization II: noise reduction by cascading two identical receivers[END_REF]). This is why it is more useful to represent Chua's circuit as a chaos generator by the diagram of Fig. 15(a). On this detailed flowchart of continuous generator, the solid line arrows coming out from the generator represent the three components of the signal x( t ) ( x( t ), y( t ), z(t)) = , the dashed line arrow which points at λ stands for the parameter value, and the dot line arrow which points at 0 x x( 0 ) = , the given initial value of the signal. If there is no ambiguity on the nature of the generator used, the symbol can be simplified as in Fig. 15(b). 

Apart from chaotic circuits running wit

There is a need to design such generator can be considered: the Lozi map ( 12) is name inside the symbol is changed). In and the logistic map [START_REF] Ariffin | Modified Baptista type chaotic cryptosystem via matrix secret key[END_REF]. 

Elementary circuit elements: cou

We present in this section some other than to give a tedious list of elementary them each time they are first used for a are connected through streams of data re There are two types of couplers: rin symbolized by the following circuit ( ) , and dashed line arrow for schematic diagrams. Rather circuit design, we introduce ler, mixer and reducer. They s given by Eq. ( 18) can be and side and one full coupler 

Other circuit elements

As done for the schematization of electr purpose: cascader (see Fig. 22) for sec (see Fig. 23) [START_REF] Lozi | Secure communications via chaotic synchronization II: noise reduction by cascading two identical receivers[END_REF]; geometric sampler ( in order to modify the invariant measure (left): Circuit of chaotic undersampling using a sampler (right): Circuit of mixing undersampling using a mixer ctric circuits, several other mathematical circuit element secure communication using two or four synchronized C (Fig. 24), in order to represent the geometric undersam ure of a chaotic generator (Fig. 25), etc. In the limited extend of this paper; it consider the circuit of Cms-PRNG rece recently introduced in order to resist to channel [START_REF] Cherrier | Noise-resisting ciphering based on a chaotic multi-stream pseudo-random number generator[END_REF]. The main idea is to estab alphabet constituting the plain text and the noise boundedness allows restricting effects of the noise. Another combinati seems more interesting to shape mixed properties between chaos and pseudo-ran . Some ting the bounds of the aforementioned intervals in orde ation of logistic and symmetric Tent map is also cons ed Chaotic/Pseudo-random number generators, which randomness for optimization using evolutionary algorith ndom number generators (Cms-PRNG) ations in order to design chaotic multistream pseudo r related sequences of pseudo-random numbers, possessin ly obtained by adding a full coupler as a keyer as show duction process of Eq. ( 24)) when p = 3. Finally we con re 26: Circuit of Cms-PRNG with only 3 streams thematical circuits. We first or a novel ciphering method mission of the signal in any correspondence between the e realistic assumption about rder to precisely resist to the nsidered [START_REF] Garasym | Design of Gigaperiodic Robust Chaotic Pseudo Random Number Generator and applicable to cryptography[END_REF]. Nowadays, it ch can modulate the desired rithms [START_REF] Hamaizia | Fast chaotic optimization algorithm based on locally averaged strategy and multifold chaotic attractor[END_REF][START_REF] Hamaizia | An improved chaotic optimization algorithm using a new global locally averaged strategy[END_REF]. random number generators sing a large number of keys own in the circuit of Fig. 26, onsider 
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Conclusion

We have introduced the paradigm of chaotic mathematical circuitry which shows some similarity to the paradigm of electric circuitry -the design of electronic circuits. This new paradigm allows, as an example, the building of new chaotic and random number generators. Mathematical circuitry should constitute a new branch of mathematical engineering, in the sense of building models using equations like electronics engineering do using transistors, diodes, etc. Alongside to electronic circuits, the new theory of mathematical circuits allows many new applications in chaotic cryptography, genetic algorithms in optimization and in control [START_REF] Pluhacek | Designing PID controller for DC motor system by means of enhanced PSO algorithm with discrete chaotic Lozi map[END_REF], etc. Due to the versatility of the new components we introduce, the combined operation of these chaotic mathematical circuits remains largely unexplored.

Emergence of pseudo-randomness from chaos via various under-sampling methods has been recently discovered. Instead of opposing both qualities (chaos and pseudo-randomness) of numbers, it should be more interesting to shape mixed Chaotic/Pseudo-random number generators, which can modulate the desired properties between chaos and pseudo-randomness. Chaotic circuitry is the perfect mathematical frame in which such improvement can be easily designed.
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 6 Figure 6 (left): Hénon strange attractor, 10000 successive points obtained by iteration of the mapping Figure 7 (right): Lozi strange attractorFor the parameter value a = 1.4 and b = 0.3 (see Fig.6) M. Hénon pointed out numerically that there exists an attractor with fractal structure. This was the first example of strange attractor (previously introduced by D. Ruelle and F. Takens[START_REF] Ruelle | On the nature of turbulence[END_REF]), for a mapping defined by an analytic formula. The like-Cantor set structure in one direction orthogonal to the invariant manifold in this simple mapping was a dramatic surprise in the community of physicists and mathematicians. In order to go further in the way of simplifying such a model, few years later, using one of the first desktop electronic calculator HP-9820, we found out, that the linearized version of the Hénon mapping (known as Lozi mapping)
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  done with double precision numbers. With these numerical values, the collapsing effect disappears and the invariant measure of any component is the Lebesgue measure[START_REF] Lozi | Giga-Periodic Orbits for Weakly Coupled Tent and Logistic Discretized Maps, Modern Mathematical Models, Methods and Algorithms for Real World Systems[END_REF]. When computations are done with double precision number it is not possible to find any periodic orbit, up to 11 5 10 n = × iterations. More generally, the coupling of p maps takes the form ( ) (
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 10 Figure 10: Example of NIST Test for i 1 k ( 1 ) i + = -, i = 1,4 , each sequence of components satisfies the NIST test for randomness Although system (21) is a good PRNG when p 4 ≥ , in lower dimension 2 and 3, the chaotic numbers are not
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 112 Figure 11: Invariant densities of iterates in 32 sub-regions bounded by critical lines of M 2 on the torus 2 J [22]

  (as for example the square G = [0.36,0.64] × [0.36,0.64]) included in region m on Fig. 12, up to the size of the square 2 J .
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 12 Figure 12: The square G = [0.36,0.64]´[0.36,0.64] in which the iterates of (23) are geometrically undersampled
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Another combination recently studied [START_REF] Garasym | Design of Gigaperiodic Robust Chaotic Pseudo Random Number Generator and applicable to cryptography[END_REF] is obtained using in the same time both logistic [START_REF] Ariffin | Modified Baptista type chaotic cryptosystem via matrix secret key[END_REF] and symmetric Tent map [START_REF] Pluhacek | Extended Initial Study on the Performance of Enhanced PSO Algorithm with Lozi Chaotic Map[END_REF] with the reduction process (24):

The corresponding circuit is displayed on Fig. 27, each horizontal generator being, for example, the logistic map, and the vertical generator, the Tent map. 

Mixed Chaotic/Pseudo-random number generators

Taking advantage of properties as ergodicity and stochasticity of chaos, some new algorithms called chaos optimization algorithms (COA) are developed [START_REF] Hamaizia | Fast chaotic optimization algorithm based on locally averaged strategy and multifold chaotic attractor[END_REF][START_REF] Hamaizia | An improved chaotic optimization algorithm using a new global locally averaged strategy[END_REF]. Those algorithms depend strongly on the shape of the invariant measure of the chaotic mapping they use (see Fig. 28 for the shape of the numerical computed invariant measure of the Lozi map [START_REF] Sprott | Chaos and Time-Series Analysis[END_REF] and Fig. 29 for the invariant measure of the logistic map). In fact there is a need of to choose the good shape of invariant measure for each specific optimization problem. Hence, instead of looking for family of chaotic generators having the requested shape, it is more simple to use a standard CMS-PRNG which provides pseudo-random numbers with Lebesgue invariant measure, and to transform this equal repartition on the interval adding a new transform to these iterated points. As an exemple of such method, one can consider the transform S defined by Eq. ( 27) applied after Eq. ( 26). Such "shaper" transform can be symbolized by adding a shaper circuit element after any circuit of CPRNG (Fig. 28).