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Abstract: During the last decades, it had been highlighteel duality between chaotic numbers and pseudo-rando
numbers. Emergence of pseudo-randomness from chiaosarious under-sampling methods has been regentl
discovered. Instead of opposing both qualities ¢sh@and pseudo-randomness) of numbers, it shouldnbee
interesting to shape mixed Chaotic/Pseudo-randomb@r generators, which can modulate the desirechgnties
between chaos and pseudo-randomness.

Because nowadays there exist increasing demandsefiorand more efficient number generators of thetit is
important to develop new tools to shape more @& sagomatically various families of such generators

Mathematical chaotic circuits have been recentlyyaduced for such a purpose among several othengrel some
analogy between them and electric circuits, but thenponents. Mathematical circuits use new onesdeseribe
therein.

The combination of such mathematical componentisiéa several news applications which improve thifgpmance
of well known chaotic attractors (Hénon, Chua, breRdossler, ...).

They can be also used in larger scale to shape mumsearchitectures of mixed Chaotic/Pseudo Randamidér
Generators.

Keywords: Mathematical circuits, chaos, pseudo-random numbaittractors, mathematical engineering, Chua'’s
circuit.

1 Introduction

During the last decades, on one hand, it had biegridghted the duality between chaotic numbers pseludo-random
numbers (e.g. sometimes chaotic nhumbers used fitlpaswam optimisation are more efficient thanyskerandom
numbers, sometimes high quality pseudo-random ntsrdye needed for cryptography).

On the other hand, emergence of pseudo-ranglesnfrom chaos via various under-sampling metheds een
recently discovered. Instead of opposing both tjealichaos and pseudo-randomness) of numbetspuids be more
interesting to shape mixed Chaotic/Pseudo-randombeu generators, which can modulate the desiregepties
between chaos and pseudo-randomness.

Because nowadays there exist increasing desrfanchew and more efficient number generatorsisf type (these
demands arise from different applications, suchmasti-agents competition, global optimisation vigokitionary
algorithms or secure information transmission,)etit. is important to develop new tools to shaperenor less
automatically various families of such generators.

Mathematical chaotic circuits have been rdgentroduced for such a purpose among variousrettgy analogy of
electronic circuitry: i.e. the design of electroniccuits which are composed of individual electcocomponents, such
as resistors, transistors, capacitors, inductotdsdédes, connected by conductive wires througtckvielectric current
can flow; mathematical chaotic circuits are comploskindividual components (generators, couplampers, mixers,
reducers and, shapers, etc.) connected througansiref data. The combination of such mathematioalponents
leads to several news applications such as impga¥ia performance of well known chaotic attrac{@kua, Lorenz,
Réssler, Hénon, Lozi, Logistic or Symmetric Tentanetc.).

They can be also used in larger scale to shapgerous architectures of mixed Chaotic/Pseuda&anNumber
Generators.

In Sect. 2 we recall briefly those famous dltaattractors. In Sect. 3 we introduce the chaot@thematical circuits.
In Sect. 4 we show some applications of chaotizudtis.

2 Chaotic and random numbers

Chaos theory studies the behavior of dynamicaksystthat are highly sensitive to initial conditio8snall differences
in initial conditions (such as those due to rougdénrors in numerical computation) yield widely eliging outcomes
for chaotic systems, rendering long-term predictimpossible in general. This property is populagferred to as the



“butterfly effect”. This happens even though thesetems are deterministic (i. e. their future bétrais fully
determined by their initial conditions), with nondlom elements involved. In other words, the deteistic nature of
these systems does not make them predictable. W& fiest the most studied examples of systemglitferential
equations (continuous dynamical systems) and mgpgiiscrete dynamical systems) which we will us¢his article
to explain the new paradigm of chaotic circuitrye\When introduce several types (chaotic, mixing gedmetric) of
undersampling in order to overcome the poor qualitghaotic generators. Those mechanisms allovethergence of
pseudo-randomness from chaos. A number of (chasedp&haotic Pseudo Random Number Generators (CPBNG
be built using those undersampling methods.

2.1 Continuous dynamical systems: Lorenz, Rosslenodels and Chua’s electronic circuit

The first example of such well known chaotic contins system in the dissipative case was pointedbguthe
meteorologist E. Lorenz in1963 [1] who introducéda tfollowing non linear system of differential etjoas as a
extremely simplified model of atmospheric dynamitss precisely these equations which led Loremthe discovery
of the sensitive dependence of initial conditiorms essential factor of unpredictability in mangteyns.

X==o(x+Yy),
Y=pX=y-XZ, (1)
z=xy-L£ z,
Numerical simulations for an open neighbourhobthe classical parameter values
8
0=10, p=28,andf=7 , (2

suggest that almost all points in phase spacetteadtrange attractor the: Lorenz attractor (sgelf.

Figure 1: The Lorenz attractor Figure 2: Thisster attractor

In 1976, O. E. Rossler followed a differeiredtion of research to obtain a chaotic model. Stgring that, due to
extreme simplification used by Lorenz in order lain equation (1), there is no actual link betwtes equation and
the Rayleigh-Benard problem from which it is origiie; he followed a new way in the study of a chamioulti-
vibrator. He started to design some three-variab@@llator based on a two-variable bistable systenpled to a slowly
moving third-variable. The resulting three-dimemsib system was only producing limit cycles at timet At an
international congress on rhythmic functions hetidSeptember 8-12, 1975 in Vienna, he met A. Winfeetheoretical
biologist who challenged him to find a biochemioahction reproducing the Lorenz attractor. Rosislded to find a
chemical or biochemical reaction producing the barattractor but, he instead found a simpler tyfjpghaos in a paper
he wrote during the 1975 Christmas holidays [2]:

X==y=-2z,
y=x+ay, 3)
z=b+z(x c)



The obtained chaotic attractor for the paremetlue
a=02, b=0.2,andc=5.7, (4)

(see Fig. 2), does not have the rotation symmédttigeoLorenz attractor defined by (5), but it isacicterized by a map
equivalent to the Lorenz map.

S(X,¥,ZF € x5+ ¥ 2z (5)

The Chemical reaction scheme leading to (3pasiculously analyzed by Ch. Letellier and V. Magsr [3]. The
structure of the Rossler attractor is simpler tthenLorenz’s one. However even if hundreds of papes been written
on it, the rigorous proof of its existence is net gstablished as done for Lorenz equations [4].

Few years later, in October 1983, visitingMatsumoto at Waseda University, L. O. Chua foundebattronic
circuit [5] mimicking directly on an oscilloscopersen a chaotic signal (Fig 3).

z

A,
Figure 3: The Chua attractor

This circuit (Fig. 4) contains three linear enegigrage elements (an inductor and two capacitarkjear resistor,
and a single nonlinear resistor, namely Chua'sed{fdy. 5) with three segment linear charactesdtiefined by

() =Myt 5 (my= iy ] e B - 6] (6)

where the slopes in the inner and the ouégions arem, and m;, respectively, andB_ denote the breakpoints.
The dynamics of Chua's circuit is governec(‘,{)ywhereVCl , V. ,andl _ are respectively the voltages across the
capacitorsC, and C, , and the intensity of the electrical current thylothe inductorl :

d
Cio =6, 6, ) 1(% )

d
Com =G, %, Wit ™

di
==y .
dt - @

MWN———
i .
R R i 90v)
+ + + G,
- G
—— Vo2 Vo1 —— VR a
c2 c1 4 1 v,
i L _ _ _ N p +Bp
R Gy
(a) ()

Figure 4 (left): Realization of Chua'’s circuit therenz attractor
Figure 5 (right): Three-segment piecewise-lineacharacteristic of nonlinear
voltage controlled resistor (Chua'’s diode)



Equation (7) can be transformed into the systd three first-order autonomous differential eiprss whose
dimension-less form is

x=a(y-x-f(x)),
Y=X-y+z,
z==By, (8)

1
f(x)=bx+ 2 (a- b)| % H * [

for which the set of parameter values
1 2
a=1560, ,lg=2858, a=_?, and,b=7 (9)
is very often used in order to generate chaotinagy All those models are studied very thorougsilyce their
discovery 30 years ago. However, even if their 8qoa are very simple, their dynamics is not easiigerstandable,
hundreds of articles have published in this aime Téchnique often used to simplify those modelthésuse of the
Poincaré map [6].

2.2 2-Dimensional discrete dynamical systems: Hén and Lozi mapping.

In order to study numerically the properties of tlseenz attractor, M. Hénon an astronomer of theeolmatory of Nice,
France, introduced in 1976 a simplified model af #oincaré map of this attractor [7]. The Lorerzaator being
imbedded in dimension 3, the corresponding Poinozap is a mapping from the plae? into R ?. Therefore the
Hénon mapping is also defined in dimension 2 as

o () 5

It is associated to the dynamical system

Xn+1=Ynt - a)‘ﬂ2 (11)
Yn+1=b>,
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Figure 6 (left): Hénon strange attractor, 1000@sssive points obtained by iteration of the mapping
Figure 7 (right): Lozi strange attractor

For the parameter val@e= 1.4 andb = 0.3 (see Fig. 6) M. Hénon pointed out numerically ttiare exists an
attractor with fractal structure. This was thetfegsample of strange attractor (previously intraetl®y D. Ruelle and
F. Takens [8]), for a mapping defined by an analfgirmula. The like-Cantor set structure in onesdiion orthogonal
to the invariant manifold in this simple mapping sva dramatic surprise in the community of physiciahd
mathematicians. In order to go further in the wégimplifying such a model, few years later, usoge of the first
desktop electronic calculator HP-9820, we found that the linearized version of the Hénon mapgkimpwn as Lozi

mapping)



o ()= @)

displayed numerically (foa = 1.7 andb = 0.5) the same structure of strange attractdrtHhmicurves were replaced by
straight lines (Fig. 7).

2.3 1-Dimensional discrete dynamical systems: Liggic and Tent Map

In mathematics, computations done on one dimenksabjacts are more tractable than those done ordimensional
features. Hence it is interesting to consider oingedsional discrete dynamical systems. The mosiiesiuiexamples are
the logistic and the tent (symmetric or skew) méphe interval. In 1838 the belgium mathematicidarf® Frangois
Verhulst [9] introduced a differential equation netithg the grow of population in a simple demogrigpinodel, as an
improvement of the Malthusian growth model, in whigome resistence to the natural increase of ptpules added.
He later, in 1845 [10], called logistic functionetisolution of this equation. In 1973, the biolodgit R. M. May
introduced the nonlinear, discrete time dynamigatem

Xoe1 = rxn(l— X, ) (13)

as a model for the fluctuations in the populatidrirait flies in a closed container with constanbél [11]. Due to the
similarity of both equations although one is a ewmus dynamical system, and the other a discreé& be called

Eq. (13) logistic equation. The logistic map (Fiyf, :[0.4] - [0,
f(x)= (1= x) (14)

associated to (13) and generally considered rf|{0,4] is often cited as an archetypal example of how pler;
chaotic behavior can arise from very simple noedindynamical equations.
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Figure 7: Cobweb of the logistic map for 4 Figure 8: Graph of the symmetric tent map

Similarly to the linearization of the Hénon mapoiritozi map, one can consider the linearized versibthe logistic
map which is called, due to its shape (see Figh&)Tent map

f(x)=1-2/4% (15)
associated to the dynamical system
Xpep = 1- 2‘ >h‘ (16)

When the summit of this tent is not exactlytie middle of the interval of definition, the cesponding map is also
called the skew tent map.

Chaotic dynamical systems in low dimension @ften used since their discovery in the 70’ inesrtb generate
chaotic numbers, because they are very easy temwpit in numerical algorithms [12]. However, aspeint out in
[6], the computation of numerical approximation tbkir periodic orbits leads to very different reésufrom the
theoretical ones. The collapsing of iterates ofadyital systems or at least the existence of veoyt gieriodic orbits,
their non constant invariant measure, and theyesstbgnized shape of the function in the phaseespgoid the use of
one-dimensional map (logistic, baker, or tent, .s. aaPseudo Random Number Generator (PRNG). Howdnevery
simple implementation in computer program of chaalynamical systems led some authors to use it lagsa of
cryptosystem [13, 14]. In addition it seems thatdome applications, chaotic numbers are moreiefiichan random
numbers. That is the case for evolutionary algor@hl5, 16] or chaotic optimization [17].



2.4 The route from chaos to pseudo-randomness waaotic or mixing undersampling

In this subsection we show how to overcome the poatity of chaotic generators using two types @tica mixing) of
undersampling. Before presenting both undersamptieghanisms, we have to show how to stabilize treotic
properties of chaotic number when realized on apeger. In order to simplify the presentation below, we asean
example a system of 2-coupled symmetric tent majp, @ven though other chaotic maps of the intefaslithe logistic
map, the baker transform, etc.) can be used fosdnee purpose (as a matter of course, the invameasure of the
chaotic map considered is preserved).

The system is simply described by

{xnﬂ =(L1-e)f(x,)+e,f(y,) (17)

Yo =€, (X, )+ (1-¢,)f(y,)

We use generallys, =10, £, = 2, when computations are done with double precisiambrers. With these
numerical values, the collapsing effect disappaardsthe invariant measure of any component is #igesgue measure
[18]. When computations are done with double prenisiumber it is not possible to find any perioditbit, up to
n=5x10" iterations.

More generally, the coupling pfmaps takes the form

X,a = F(X,)= A f (X, ) (18)
where
f(x) X
f(X)=| | X = | (19)
f(x7) X3
and
i=p
51,1:1'281,j €12 Tt €1pa €1p
=2
j=p
€1 &~ "Z € " Eapa €ap
A= , R . . (20)
jzp-t
€pa o Eppa gnpzl'z €

=
i=p
with £ ,=1- z &, on the diagonal (the matriA is always a stochastic matrix iff the coupling stamts verify
j=1,j#
&, >0 for everyi andj).

It is noteworthy that these families of vergakly coupled maps are more powerful than the uswalulas used to
generate pseudo-random sequences, mainly becalysedditions and multiplications are used in thenpotation
process, no division being required. Moreover thengutations are done using floating point or doytecision
numbers, allowing the use of the powerful Floatimjnt Unit (FPU) of the modern microprocessorsadtidition, a
large part of the computations can be parallelizdihg advantage of the multicore microprocessdngchvare used
nowadays. Moreover, a determining property of stmipled map is the high number of parameters uped p—1)for

p coupled equations) which allows to choose themiser-keys, when used in chaos based cryptogragazithms,
due to the high sensitivity to the parameters \&a[d8].
However Chaotic numbers are not pseudo-random nariecause the plot of the couples of any component

()q, ij1+1) of iterated points( X, Xn+1) in the corresponding phase plane reveals thefmapd as one-dimensional

dynamical systems to generate theim (18). Nevertheless, we have recently introducéaialy of enhanced Chaotic
Pseudo Random Number Generators (CPRNG) in ordeortgpute faster long series of pseudorandom nunvaiéns



desktop computer [20]. This family is based onphevious ultra weak coupling which is improved nder to conceal
the chaotic genuine function.

The first process of undersampling, the cluamtie is used in order to hidk of (18), in the phase space,i ,x,jHl)
for any j, the sequence{xg xi >32 >{1 kH " generated by thé-th componentxj, is sampled chaotically,
selecting x,’; every time the vaIuexr:n of the m-th component™, is strictly greater than a threshdldelonging to the

interval [-1,1] of the real line.
The pseudo-code, for computing such chaoyicalb-sampled iterates is:

Xo =(x(1),x§,.. >bp_1,>é)) = see
n=0;q=0;
do { while n< N
do{ while X < T compute(x:,x’ .. X" x" y:nt +}
compute x5 ... X710 s thenn(q)=n; xq = >$11(q)? N+ g+ )}
This chaotic under-sampling is possible duthéindependence of each component of the itepadéds X, vs the
others [21].

A second mechanism can improve the unprediitiabf the pseudo-random sequence generated agealusing
synergistically all the components of the vecly, instead of two.

Given p-1 thresholdsO<T, < T, <--- Tp—l

pseudo-code, for computing such chaotically subgdagniterates is

< 1 forming a partitonJ;, J,..., J,_, of the interval[-1,1], the

XO=(><é,x§,.. >bp_1,>é) ) = see
n=0;q=0;
do { while n< N

m

do{ while x,

0J, compute(x, % ... X7+, x0 )t +}
compute(xrl],x,f xqp_l,xf’ );
letk be such thax” 0 J, ; thenn(q)=n; x = >g'f(q); n++ g+ + ).
This second mechanism is called the mixingeusampling.

2.5 Geometric undersampling
Geometric undersampling is based on the couplingnother way ofp tent maps on the p-dimensional torus

JP =[—1,]]Io O }Rp, which can directly generate random numbers, witteampling or mixing, provideg is large

enough, although it is possible to combine thosecgsses with it. After presenting this ring couglim high
dimension, we introduce the geometric undersamfiiteyl to obtain randomness with small valuep ¢¢.g.p = 2).

We first define the mappiniy b PP

XY (%) [12%lrko
X

Ry | | 1-2%[+ kXX
: : (21)

Xy XPa 1- Z‘an‘+kp><)¢1

with the parameterg =+1. In order to confine every variabberj] on P = [—1,]] PorP we do, for every iteration,
the transform



if(x!,,<-1) add 2

n+l

if (x!,, >-1) substract 2

n+l

(22)

The particularity of this coupling is that &aecariable erl is coupled only with itself andﬁiﬂ, as displayed on
Fig. 9.

Figure 9: Ring coupling between the variabk%s

To evaluate the random properties of these gemnsratoe set of NIST tests have been used (Fig. Ti®®. random
properties validations of both a 4-dimensionaleysaind a 10-dimensional one have been carrie®gjt [

RESULTS FOR THE

generataor is

g 5 &R 9 L 27 6 19 8 ‘11 0.10252 96/100 Freguency
11 16 9 16 10 10 14 6 8 6 0.437274 956,/100 8lockFregquency
Ll 5 8 11 IU 5 11 11 13 15 0.419021 97/100 Cumulativesums
8 6 17 10 10 =] 7 11 15 10 0.213309 97/100 cumulativesums
5 8 17 15 & 8 6 14 20 11 0.075719 99,100 RUNS
T4 2. 3§ 13 ] 5 8 8 15 20 0.637119 99,/100 LongesTrRUn
5] 8 17 14 10 8 g A5 7 6. 0.122325 95,/100 Ran
g: 10 5 I3 IO 10 o B 12 10 0.991468 95,/100 FET
14 15 g 10 14 10 1Ll o 4 5 0.191687 G8/100 Nornover TappingTemplate
10 8 11 9 2 ds 7 12 10 11 0.964295 99/100 overlappingTemplate
13 16 (5] 8 b - o [ L e o | 8 9 0.455937 100,100 universal
8 10 12 8 10 11 5 14 11 10 0.816537 97/100 ApproximateEntropy
g 5 (5] 5 9 11 5 6 8 5 0.637119 65,/66 RandomExcursions
3 5 4] 7 10 10 9 6 4 6 0.407091 65/66 RandomExcursionsvariant
3 8 H L2 k2 g9 1z 8 13 14 0.319084 100/100 serial
4 5 12 18 I 8 8 14 9 12 0.028817 100,100 Linearcomplexity

Figure 10: Example of NIST Test fdx{ = (—1)'+1, i=1,4, each sequence of
components satisfies the NIST test for randomness

Although system (21) is a good PRNG wher 4, in lower dimension 2 and 3, the chaotic numbees reot
equidistributed on the torus (see Fig. 11).

-08 -06 -04

Figure 11: Invariant densities of iterates in 3B-segions

bounded by critical lines oﬁflzon the torus]2 [22]



In order to improve the ring coupling mechamis low dimension, a geometric undersampling basedeometric
nature of the invariant measure is used. We presgefly this new mechanism which allows the emere of

randomness from chaos, in the simplest case, thien@nsional ring mapping}/l2 on the torus]2 (i.e. a square) into

itself, with k) =k, =1. For this mapping

K =1-2J%] + X .
=12+
with

if(x),,<-1) add 2

! (24)
if (x},, >-1) substract 2

it is possible to define several critical lines wlinsplit the square in a partition of 32 sub-regjan which the density is
uniform [22]. Each density can be computed exgjicising a cell-to-cell analysis by the means Markov process.
The geometric undersampling process congistsaignifying a square G included in one regionf¢agxample the

square G =[0.36,0.64] x [0.36,0.64]) includedeégionmon Fig. 12, up to the size of the squarze.
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Figure 12: The square G = [0.36,0.64][0.36,0.&4hich
the iterates of (23) are geometrically undersampled

We have also used NIST test to confirm theloam property of the geometrical undersampling psec&hey are all
successful (Fig. 13).

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES

ClC2CIC4CICeCTCECY Clo P-VALUE PROPORTION STATISTICAL TEST
129 791211 §1113 /100
1 434 75 9I1¢ 0/ 100
9 5101211 8 9
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Figure 13: Geometrical undersampling: each sequehcemponents



satisfies the NIST test for randomness
In the case of 2 coupled maps the geometriergampling allows the building of a PRNG whichgmssall NIST
Test. It is very effective for generating 2 partatreams of pseudo-random numbers, as shown ih {23vhich
sequences up to ¥consecutives iterates of (23) have been compptedjding more than 3.5x1brandom numbers
in a very short time.

3 Mathematical chaotic circuits

In this Section we introduce the new paradigm oftramatical (chaotic) circuits, which should cong#ta new branch
of mathematical engineering, in the sense of bugjdinodels using equations like electronics engingedo using
transistors, diodes, etc.

An electronic circuit is composed of individwgectronic components, such as resistors, tramsiscapacitors,
inductors and diodes, connected by conductive wihesugh which electric current can flow. The condtion of
components and wires allows various simple and ¢exnpperations to be performed: signals can be iéieghl
computations can be accomplished, and data canolvedrfrom one place to another. Very complex systeam be
analyzed using various sophisticated meth@d$. We introduce in the same way mathematicatuiis which are
composed of individual components (generators, lepsipsamplers, mixers, reducers, cascaders amukrshaetc.)
connected through streams of data. The combinatibrsuch mathematical components leads to several ne
applications such as improving the performance efl Wwnown chaotic attractors (Chua, Lorenz, RosstéEnon,
logistic) presented in Sect. 2 for application msegs.

Analog electric circuits are very commonly megented by schematic diagrams, in which wiresshoavn as lines,
and each component has a unique symbol (See Fig.14)

And gate

—F Diode 4>

— |- Capacitor D_ Nand gate
AWFL Inductor D

—MW\— Resistor i

— |+_ DC voltage

Or gate

Nor gate

source jD_ Xor gate
@ AC voltage I
source —| >O— nvertar .
(Not gate)

Figure 14: Electrical symbols (left-hand side coh)rand electronic circuit symbols
(right-hand side column) used for drawing schemdiagram

We present in this Section some symbols wégdda order to draw mathematical schematic diagrafirst, we
describe generator symbols, which are, from a nmaiieal point of view, equivalent to a battery ovaiable current
generator in an electric circuit. In the paradighmathematical circuitry they generate a digitginsil (in one or several
dimensions) rather than an electrical current attar&zed by its voltage and intensity variationsri@etheless, a voltage
or an intensity variation can be considered as ysiphl signal which can be discretized). This sigten be either
continuous as in Chua's circuit, Lorenz or Résatractors or discrete as in the Hénon, Lozi, Libgisr the symmetric
Tent mapping. We consider first the continuous ones

3.1 Continuous generators: Chua’s circuit, Rossteand Lorenz attractors

From a mathematical point of view, at least in ortteimplement applications of chaotic behaviods tlee chaotic
attractors (1), (3), (8) have the same structurerginitial values and a set of parameters, theyide three streams of
data symbolized by three arrows. On the contrdry, dlectric realization of their equation leadsvesy different
electric circuits. For example, concerning the Chuwércuit, even if the scheme of Fig. 4 is easilyderstandable by
electric engineers, it is of no help to build aidewsing mathematical properties of chaos (lise@ure communication
system based on it [25]). This is why it is morefusto represent Chua’s circuit as a chaos geoebstthe diagram of
Fig. 15(a). On this detailed flowchart of continsogenerator, the solid line arrows coming out frih@ generator
represent the three components of the sigia) = (x(t), y(t), z(t),, the dashed line arrow which points Aatstands for

the parameter value, and the dot line arrow whimhtp atx, = x(0), the given initial value of the signal.
If there is no ambiguity on the nature of ¢femerator used, the symbol can be simplified &gn15(b).
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Figure 15 (a) Electrical Chuis circuit: continuous generator
(b) Simplified symbol of a continuous gener:

The diagram defined above is sule, everif we use others types of equations like tleeenz (1) or the Rdssler (3)
attractor for generating streams of d, provided the number of streams is the sama &hua’s circuit (if it is not th
case, more arrows can be added [Egel8)).

In fact, mathematical circuits capz2 the essential of dynamics of chaotic attrac

3.2 Discrete generatorsHénon, Lozi, Logistic and Tent may

Apart from chaotic circuits running th continuous signal, there are chaotic circuitsctioning with discrete signa
There is a need to design such genirs. For this purposthe classical chaotic mappingeesented in Sect. 2.2 and :
can be considered: the Lozi map X12repreented by thesymbols of Fig. 16, the Hénonap(10) also (provided the
name inside the symbol is changeld)dimension 1 the symbol of Fig. 17 stands fottthe symmetric tent map (1
and the logistic map (14).
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Figure16 (lett): (a) Discrete genetar (Lozi map, expanded syml)
(b) Simplified symbol of :-dimensional discrete generator
Figure 17 (rightOne-dimensional discrete generator (e.g. symmetrit map

Remark: In the rest of this artiel we use solid line arrow for continuous sigx(t), and dashed line arrow f

discrete signak,, .

3.3 Elementary circuitelements: caipler, mixer, sampler and reduce

We present in this section sorather symbols we design in order to draw mathematichematic diagrams. Ratt
than to give a tedious list of elemery mathematical components used for mathematircuit design, we introduc
them each time they are first used fi practical purpo:. That list includes: coupler, samr, mixel and reducer. They
are connected through streams of depresented by continuous or dashed line and al

There are two types of couplersag coupler or full couplerThe coupling ofp maps given by E. (18) can be
symbolized by the following circuit (g. 18) in which there arp generators on the left hd side and one full coupl
on the right hand side.
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Figure 18 (left)Circuit of coupling ofp 1-dimensional chaotic map (18splaying a full couple
Figure 19 (right)Reducer for the circui21) and the transform (2ith p = 3

The circuit of Fig. 19 displays a rij coupler in the middle of tkcircuit corresponding t¢he coupling defined by tt

mapping M D aP L gP (21), meanrhile the symbol on thright hand side is a redur which corresponds to tl

reduction of the signal to the tord” by means of Eq. (22). Note the similarity betwe®aring coupler of Fig. 1with
Fig. 9.

Mixerand sampler are used to syolize the undersampling processes. The circuitig. 20 symbolizs the chaotic
undersampling defined in Sec. 2with a sampler on the right hand <, while on Fig. 21 e mixing undersamplinis
displayed with a mixer at the samesition Both circuits on those figures are designeth 3 generators constitut:
with 1-dimensional symmetric Tent rp
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Figure 20(left): Circuit of chaotic undersampling using a sampler
Figure 21(right): Circuit of mixing undersampling using a mixer

3.4 Other circuit elements

As done for the schematization of eric circuits, severeother mathematical circuglements can be drawn fispecial
purpose:cascader(see Fig. 22for secure communication using twc four synchronizeiChua’s circuits in casca
(see Fig. 23) [25]geometric sampler(Fig. 24, in order to represent the geometric undmpling of Sect2.5; shaper
in order to modify the invariant meae of a chaotic genera (Fig. 25), etc.
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Figure 22 (left): Cascader symbol
Figure 23 (right):Two cascading receiver basedseveral Chua’s circuitsombinec [25]
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Figure 24 (left): Geometric sampler symbol
Figure 25 (right): Shaper symbol

4 Building families of mixed chaotic/random numbers generator

In the limited extend of this paper is difficult give examples of full developed rathematical circuits. We firs
consider the circuit of Cms-PRNf&cently defined The CmsPRNG have been used a novel ciphering methc
recently introduced in order to resito noise which is always present during the tm@ission of thesignal in any
channel [26].The main idea is to ewblish, between the transmitter and the receesorrespondence between !
alphabet constituting the plain text 1 some intervals defining a partition [-1,1]. Some realistic asumption about

the noise boundedneaiows restrictig the bounds of the aforementioned intervalsriger tc precisely resist to the
effects of the noiseAnother combintion of logistic and symmetric Tent mis also corsidere( [27]. Nowadays, it
seems mre interesting to shape mid Chaotic/Pseur-random number generators, wh can modulate the desir

properties between chaos and pseratwomnes for optimization using evolutionary algcoims [28, 29.

4.1 Chaotic multistream pseudoraniom number cenerators (Cms-PRNG)

It is possible to combine several etions in order to design chaotic multistream pserandom number generatc
(Cms-PRNG) which generatescorrelated sequences of pse-random numbers, posséng a large number of ke
for a cryptographic use. This is sim obtained by adding a full coupler as a keyeslaswn in the circuit of Fig26,
corresponding to Eq. (2%vith the recuction procss of Eq. (24)) whep = 3. Finally we coisider
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Figure 26: Circuit of Cms-PRNG with only 3 streams
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Another combination recently studied [27] i#taned using in the same time both logistic (1% aymmetric Tent

map (15) with the reduction process (24):

X%Hl:l_ kll( # X%

S

0P
_k22( )%3) 2)

_kzp(%)zj

Xr?+1:1_ klpH n

(26)

The corresponding circuit is displayed on Rig, each horizontal generator being, for exantpke]ogistic map, and

the vertical generator, the Tent map.
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Figure 27: Circuit of Cms-PRNG with only 3 streams

4.2 Mixed Chaotic/Pseudo-random number generators

Taking advantage of properties as ergodicity andhststicity of chaos, some new algorithms calleabshoptimization
algorithms (COA) are developed [28, 29]. Those algms depend strongly on the shape of the invania@asure of
the chaotic mapping they use (see Fig. 28 for ttape of the numerical computed invariant measutbeiozi map



(12) and Fig. 29 for the invariant measure of thgidtic map). In fact there is a need of to chabsegood shape of
invariant measure for each specific optimizatioobpem.
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Figure 28 (left): density of iterated values of )y@ Lozi map (10) fitted to the
interval [0; 1] which is split in 100 boxes for 800,000,000 iterated values

Figure 29 (right): density of iterated values djikiic map (14)

Hence, instead of looking for family of chaotenerators having the requested shape, it is siongle to use a
standard CMS-PRNG which provides pseudo-random ewsnbith Lebesgue invariant measure, and to tramsthis
equal repartition on the interval adding a newdfarm to these iterated points. As an exemple offisnethod, one can
consider the transform S defined by Eq. (27) apptifier Eq. (26). Such “shaper” transform can batsylized by
adding a shaper circuit element after any circl@BRNG (Fig. 28).

V1 Gt | [ Ofyed

) ” 2 0.5%=0.5 if —1<x<-0.:
Inil =g *nl |2 'S( | with s(X)={1.75x if -0.4<x< 0.4 (27)
: : : 0.5x+0.5 if 0.4x<1

yrl?+1 Xr?+1 g ’?E+1)

5 Conclusion

We have introduced the paradigm of chaotic mathieadatircuitry which shows some similarity to tharpdigm of
electric circuitry —the design of electronic cirsuiThis new paradigm allows, as an example, thiklihg of new
chaotic and random number generators. Mathematicalitry should constitute a new branch of mathicah
engineering, in the sense of building models usiggations like electronics engineering do usingdistors, diodes,
etc.

Alongside to electronic circuits, the new theof mathematical circuits allows many new appimas in chaotic
cryptography, genetic algorithms in optimizatiordan control [30], etc. Due to the versatility dfet new components
we introduce, the combined operation of these dhawdthematical circuits remains largely unexplored

Emergence of pseudo-randomness from chaosaviaus under-sampling methods has been recergbodered.
Instead of opposing both qualities (chaos and pseaddomness) of numbers, it should be more iniegeso shape
mixed Chaotic/Pseudo-random number generators,hwbén modulate the desired properties between chads
pseudo-randomness. Chaotic circuitry is the penfeathematical frame in which such improvement canebsily
designed.
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