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Abstract: During the last decades, it had been highlighted the duality between chaotic numbers and pseudo-random 
numbers. Emergence of pseudo-randomness from chaos via various under-sampling methods has been recently 
discovered. Instead of opposing both qualities (chaos and pseudo-randomness) of numbers, it should be more 
interesting to shape mixed Chaotic/Pseudo-random number generators, which can modulate the desired properties 
between chaos and pseudo-randomness. 
Because nowadays there exist increasing demands for new and more efficient number generators of this type it is 
important to develop new tools to shape more or less automatically various families of such generators. 
Mathematical chaotic circuits have been recently introduced for such a purpose among several others. There some 
analogy between them and electric circuits, but the components. Mathematical circuits use new ones we describe 
therein. 
The combination of such mathematical components leads to several news applications which improve the performance 
of well known chaotic attractors (Hénon, Chua, Lorenz, Rössler, ...). 
They can be also used in larger scale to shape numerous architectures of mixed Chaotic/Pseudo Random Number 
Generators. 
 
Keywords: Mathematical circuits, chaos, pseudo-random numbers, attractors, mathematical engineering, Chua’s 
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1   Introduction 
During the last decades, on one hand, it had been highlighted the duality between chaotic numbers and pseudo-random 
numbers (e.g. sometimes chaotic numbers used in particle swam optimisation are more efficient than pseudo-random 
numbers, sometimes high quality pseudo-random numbers are needed for cryptography). 
     On the other hand, emergence of pseudo-randomness from chaos via various under-sampling methods has been 
recently discovered. Instead of opposing both qualities (chaos and pseudo-randomness) of numbers, it should be more 
interesting to shape mixed Chaotic/Pseudo-random number generators, which can modulate the desired properties 
between chaos and pseudo-randomness. 
     Because nowadays there exist increasing demands for new and more efficient number generators of this type (these 
demands arise from different applications, such as multi-agents competition, global optimisation via evolutionary 
algorithms or secure information transmission, etc.), it is important to develop new tools to shape more or less 
automatically various families of such generators. 
     Mathematical chaotic circuits have been recently introduced for such a purpose among various others. By analogy of 
electronic circuitry: i.e. the design of electronic circuits which are composed of individual electronic components, such 
as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires through which electric current 
can flow; mathematical chaotic circuits are composed of individual components (generators, couplers, samplers, mixers, 
reducers and, shapers, etc.) connected through streams of data. The combination of such mathematical components 
leads to several news applications such as improving the performance of well known chaotic attractors (Chua, Lorenz, 
Rössler, Hénon, Lozi, Logistic or Symmetric Tent map, etc.). 
     They can be also used in larger scale to shape numerous architectures of mixed Chaotic/Pseudo Random Number 
Generators. 
     In Sect. 2 we recall briefly those famous chaotic attractors. In Sect. 3 we introduce the chaotic mathematical circuits. 
In Sect. 4 we show some applications of chaotic circuits. 
 
2   Chaotic and random numbers 
Chaos theory studies the behavior of dynamical systems that are highly sensitive to initial conditions. Small differences 
in initial conditions (such as those due to rounding errors in numerical computation) yield widely diverging outcomes 
for chaotic systems, rendering long-term prediction impossible in general. This property is popularly referred to as the 



“butterfly effect”. This happens even though these systems are deterministic (i. e. their future behavior is fully 
determined by their initial conditions), with no random elements involved. In other words, the deterministic nature of 
these systems does not make them predictable. We recall first the most studied examples of systems of differential 
equations (continuous dynamical systems) and mappings (discrete dynamical systems) which we will use in this article 
to explain the new paradigm of chaotic circuitry. We then introduce several types (chaotic, mixing and geometric) of 
undersampling in order to overcome the poor quality of chaotic generators. Those mechanisms allow the emergence of 
pseudo-randomness from chaos. A number of (chaos based) Chaotic Pseudo Random Number Generators (CPRNG) can 
be built using those undersampling methods. 
 
2.1   Continuous dynamical systems: Lorenz, Rössler models and Chua’s electronic circuit 

The first example of such well known chaotic continuous system in the dissipative case was pointed out by the 
meteorologist E. Lorenz in1963 [1] who introduced the following non linear system of differential equations as a 
extremely simplified model of atmospheric dynamics. It is precisely these equations which led Lorenz to the discovery 
of the sensitive dependence of initial conditions - an essential factor of unpredictability in many systems. 
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     Numerical simulations for an open neighbourhood of the classical parameter values 
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suggest that almost all points in phase space tend to a strange attractor the: Lorenz attractor (see Fig. 1).  
 
 

   
 

Figure 1: The Lorenz attractor      Figure 2: The Rössler attractor 
 

    In 1976, O.  E.  Rössler followed a different direction of research to obtain a chaotic model. Considering that, due to 
extreme simplification used by Lorenz in order to obtain equation (1), there is no actual link between this equation and 
the Rayleigh-Benard problem from which it is originate; he followed a new way in the study of a chemical multi-
vibrator. He started to design some three-variable oscillator based on a two-variable bistable system coupled to a slowly 
moving third-variable. The resulting three-dimensional system was only producing limit cycles at the time. At an 
international congress on rhythmic functions held on September 8-12, 1975 in Vienna, he met A. Winfree, a theoretical 
biologist who challenged him to find a biochemical reaction reproducing the Lorenz attractor. Rössler failed to find a 
chemical or biochemical reaction producing the Lorenz attractor but, he instead found a simpler type of chaos in a paper 
he wrote during the 1975 Christmas holidays [2]: 
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     The obtained chaotic attractor for the parameter value 
a 0.2= , b 0.2= , and c 5.7 ,=      (4) 

 
(see Fig. 2), does not have the rotation symmetry of the Lorenz attractor defined by (5), but it is characterized by a map 
equivalent to the Lorenz map. 
 

S( x, y, z ) ( x, y, z )= − − −       (5) 
 
     The Chemical reaction scheme leading to (3) is meticulously analyzed by Ch. Letellier and V. Messager [3]. The 
structure of the Rössler attractor is simpler than the Lorenz’s one. However even if hundreds of papers has been written 
on it, the rigorous proof of its existence is not yet established as done for Lorenz equations [4].  
     Few years later, in October 1983, visiting T. Matsumoto at Waseda University, L. O. Chua found an electronic 
circuit [5] mimicking directly on an oscilloscope screen a chaotic signal (Fig 3). 
 

 
 

Figure 3: The Chua attractor 
 

This circuit (Fig. 4) contains three linear energy-storage elements (an inductor and two capacitors), a linear resistor, 
and a single nonlinear resistor, namely Chua's diode (Fig. 5) with three segment linear characteristics defined by 

R p R pR 0 R 1 0

1
f ( v ) m v ( m m ) v B v B

2
 = + − + − −      (6) 

where  the  slopes  in the inner and  the  outer  regions are 0m  and 1m , respectively, and 
p

B±   denote  the  breakpoints. 

     The dynamics of Chua's circuit is governed by (7) where 
1CV , 

2CV , and LI  are respectively the voltages  across  the 

capacitors 1C  and 2C , and the intensity of the electrical current through the inductor L : 
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Figure 4 (left): Realization of Chua’s circuit the Lorenz attractor 

Figure 5 (right): Three-segment piecewise-linear v-i characteristic of nonlinear 
voltage controlled resistor (Chua’s diode) 



 
     Equation (7) can be transformed into the system of three first-order autonomous differential equations whose 
dimension-less form is 
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for which the set of parameter values 
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7

=      (9) 

is very often used in order to generate chaotic signals. All those models are studied very thoroughly since their 
discovery 30 years ago. However, even if their equations are very simple, their dynamics is not easily understandable, 
hundreds of articles have published in this aim. The technique often used to simplify those models is the use of the 
Poincaré map [6]. 
 
2.2   2-Dimensional discrete dynamical systems: Hénon and Lozi mapping. 

In order to study numerically the properties of the Lorenz attractor, M. Hénon an astronomer of the observatory of Nice, 
France, introduced in 1976 a simplified model of the Poincaré map of this attractor [7]. The Lorenz attractor being 
imbedded in dimension 3, the corresponding Poincaré map is a mapping from the plane 2ℝ  into 2

ℝ . Therefore the 
Hénon mapping is also defined in dimension 2 as  
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     It is associated to the dynamical system 
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Figure 6 (left): Hénon strange attractor, 10000 successive points obtained by iteration of the mapping 
Figure 7 (right): Lozi strange attractor 

 
     For the parameter value a = 1.4 and b = 0.3 (see Fig. 6) M. Hénon pointed out numerically that there exists an 
attractor with fractal structure. This was the first example of strange attractor (previously introduced by D. Ruelle and 
F. Takens [8]), for a mapping defined by an analytic formula. The like-Cantor set structure in one direction orthogonal 
to the invariant manifold in this simple mapping was a dramatic surprise in the community of physicists and 
mathematicians. In order to go further in the way of simplifying such a model, few years later, using one of the first 
desktop electronic calculator HP-9820, we found out, that the linearized version of the Hénon mapping (known as Lozi 
mapping) 
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displayed numerically (for a = 1.7 and b = 0.5) the same structure of strange attractor, but the curves were replaced by 
straight lines (Fig. 7). 
 
2.3   1-Dimensional discrete dynamical systems: Logistic and Tent Map 

In mathematics, computations done on one dimensional objects are more tractable than those done on two-dimensional 
features. Hence it is interesting to consider one-dimensional discrete dynamical systems. The most studied examples are 
the logistic and the tent (symmetric or skew) map of the interval. In 1838 the belgium mathematician Pierre François 
Verhulst [9] introduced a differential equation modelling the grow of population in a simple demographic model, as an 
improvement of the Malthusian growth model, in which some resistence to the natural increase of population is added. 
He later, in 1845 [10], called logistic function the solution of this equation. In 1973, the biologist Sir R. M. May 
introduced the nonlinear, discrete time dynamical system 

n 1x rx (1 x )n n+ = −      (13) 

as a model for the fluctuations in the population of fruit flies in a closed container with constant food [11]. Due to the 
similarity of both equations although one is a continuous dynamical system, and the other a discrete one, he called 

Eq. (13) logistic equation. The logistic map (Fig. 7) [ ] [ ]f : 0,1 0,1r →  

f ( x ) rx(1 x )r = −       (14) 

associated to (13) and generally considered for [ ]r 0,4∈  is often cited as an archetypal example of how complex, 

chaotic behavior can arise from very simple non-linear dynamical equations. 

    
Figure 7: Cobweb of the logistic map for r = 4   Figure 8: Graph of the symmetric tent map 

 
Similarly to the linearization of the Hénon map into Lozi map, one can consider the linearized version of the logistic 
map which is called, due to its shape (see Fig. 8), the Tent map 

f ( x ) 1 2 x= −       (15) 

associated to the dynamical system  

n 1x 1 2 xn+ = −       (16) 

     When the summit of this tent is not exactly in the middle of the interval of definition, the corresponding map is also 
called the skew tent map.  

     Chaotic dynamical systems in low dimension are often used since their discovery in the 70’ in order to generate 
chaotic numbers, because they are very easy to implement in numerical algorithms [12]. However, as we point out in 
[6], the computation of numerical approximation of their periodic orbits leads to very different results from the 
theoretical ones. The collapsing of iterates of dynamical systems or at least the existence of very short periodic orbits, 
their non constant invariant measure, and the easily recognized shape of the function in the phase space avoid the use of 
one-dimensional map (logistic, baker, or tent, …) as a Pseudo Random Number Generator (PRNG). However, the very 
simple implementation in computer program of chaotic dynamical systems led some authors to use it as a base of 
cryptosystem [13, 14]. In addition it seems that for some applications, chaotic numbers are more efficient than random 
numbers. That is the case for evolutionary algorithms [15, 16] or chaotic optimization [17]. 



2.4   The route from chaos to pseudo-randomness via chaotic or mixing undersampling 

In this subsection we show how to overcome the poor quality of chaotic generators using two types (chaotic, mixing) of 
undersampling. Before presenting both undersampling mechanisms, we have to show how to stabilize the chaotic 
properties of chaotic number when realized on a computer. In order to simplify the presentation below, we use as an 
example a system of 2-coupled symmetric tent map (15), even though other chaotic maps of the interval (as the logistic 
map, the baker transform, etc.) can be used for the same purpose (as a matter of course, the invariant measure of the 
chaotic map considered is preserved). 
     The system is simply described by 
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We use generally 14
1 2 110 2,ε ε ε−= =  when computations are done with double precision numbers. With these 

numerical values, the collapsing effect disappears and the invariant measure of any component is the Lebesgue measure 
[18]. When computations are done with double precision number it is not possible to find any periodic orbit, up to 

115 10n = ×  iterations.  
More generally, the coupling of p maps takes the form 
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with 
j p

i , i i , j
j 1, j i

= 1-ε ε
=

= ≠
∑  on the diagonal (the matrix A  is always a stochastic matrix iff the coupling constants verify 

0i , jε >  for every i and j). 

     It is noteworthy that these families of very weakly coupled maps are more powerful than the usual formulas used to 
generate pseudo-random sequences, mainly because only additions and multiplications are used in the computation 
process, no division being required. Moreover the computations are done using floating point or double precision 
numbers, allowing the use of the powerful Floating Point Unit (FPU) of the modern microprocessors. In addition, a 
large part of the computations can be parallelized taking advantage of the multicore microprocessors which are used 
nowadays. Moreover, a determining property of such coupled map is the high number of parameters used (( 1)p p× − for 

p coupled equations) which allows to choose them as cipher-keys, when used in chaos based cryptographic algorithms, 
due to the high sensitivity to the parameters values [19]. 
     However Chaotic numbers are not pseudo-random numbers because the plot of the couples of any component 

( )1,j j
n nx x +  of iterated points ( )1,n nX X + in the corresponding phase plane reveals the map f used as one-dimensional 

dynamical systems to generate them via (18). Nevertheless, we have recently introduced a family of enhanced Chaotic 
Pseudo Random Number Generators (CPRNG) in order to compute faster long series of pseudorandom numbers with 



desktop computer [20]. This family is based on the previous ultra weak coupling which is improved in order to conceal 
the chaotic genuine function. 

     The first process of undersampling, the chaotic one is used in order to hide f  of (18), in the phase space 
j j
n n 1( x , x )+  

for any j, the sequence 
j j j j j

0 1 2 n n 1( x , x , x , x , x , )… …+  generated by the j-th component 
j

x , is sampled chaotically, 

selecting 
j
nx  every time the value 

m
nx  of the m-th component 

m
x , is strictly greater than a threshold T belonging to the 

interval [ ]1,1−  of the real line. 

     The pseudo-code, for computing such chaotically sub-sampled iterates is: 

1 2 p 1 p
0 0 0 0 0X ( x , x , x , x ) seed…

−= =  

n 0; q 0;= =  

do { while n N<  

  do{ while 
m
nx T<  compute 

1 2 p 1 p
n n n n( x , x , , x , x ); n…

− + + } 

compute
1 2 p 1 p
n n n n( x , x , , x , x )…

− ; then 
1
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     This chaotic under-sampling is possible due to the independence of each component of the iterated points nX  vs. the 

others [21]. 
 
     A second mechanism can improve the unpredictability of the pseudo-random sequence generated as above, using 

synergistically all the components of the vector nX  instead of two.  

     Given p 1−  thresholds 1 2 p 10 T T T 1⋯ −< < < <  forming a partition 1 2 1, , , pJ J J −…  of the interval [ ]1,1− , the 

pseudo-code, for computing such chaotically sub-sampled iterates is 
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     This second mechanism is called the mixing undersampling. 
 
2.5   Geometric undersampling 

Geometric undersampling is based on the coupling in another way of p tent maps on the p-dimensional torus 

[ ]p pp
J 1,1 ℝ= − ⊂ , which can directly generate random numbers, without sampling or mixing, provided p is large 

enough, although it is possible to combine those processes with it. After presenting this ring coupling in high 
dimension, we introduce the geometric undersampling fitted to obtain randomness with small values of p (e.g. p = 2). 

     We first define the mapping 
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with the parameters k 1i = ± . In order to confine every variable 
j

xn  on [ ]p pp
J 1,1 ℝ= − ⊂  we do, for every iteration, 

the transform 
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     (22) 

     The particularity of this coupling is that each variable 
j

xn  is coupled only with itself and 
j 1

xn
+

, as displayed on 

Fig. 9. 

 

Figure 9: Ring coupling between the variables 
j

xn  

To evaluate the random properties of these generators, the set of NIST tests have been used (Fig. 10). The random 
properties validations of both a 4-dimensional system and a 10-dimensional one have been carried out [22]. 
 

 

Figure 10: Example of NIST Test for 
i 1

k ( 1)i
+= − , i = 1,4 , each sequence of 

components satisfies the NIST test for randomness 

     Although system (21) is a good PRNG when p 4≥ , in lower dimension 2 and 3, the chaotic numbers are not 

equidistributed on the torus (see Fig. 11).  
 

 

Figure 11: Invariant densities of iterates in 32 sub-regions 

bounded by critical lines of M2 on the torus
2

J  [22] 



 
     In order to improve the ring coupling mechanism in low dimension, a geometric undersampling based on geometric 
nature of the invariant measure is used. We present briefly this new mechanism which allows the emergence of 

randomness from chaos, in the simplest case, the 2-dimensional ring mapping M2  on the torus
2

J  (i.e. a square) into 

itself, with k k 11 2= = . For this mapping 
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with 
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    (24) 

it is possible to define several critical lines which split the square in a partition of 32 sub-regions, in which the density is 
uniform [22]. Each density can be computed explicitly using a cell-to-cell analysis by the means of a Markov process. 
     The geometric undersampling process consists in magnifying a square G included in one region (as for example the 

square G = [0.36,0.64] × [0.36,0.64]) included in region m on Fig. 12, up to the size of the square 
2

J . 
 

 
 

Figure 12: The square G = [0.36,0.64]´[0.36,0.64] in which 
the iterates of (23) are geometrically undersampled 

 
     We have also used NIST test to confirm the random property of the geometrical undersampling process. They are all 
successful (Fig. 13). 

 

 
 

Figure 13: Geometrical undersampling: each sequence of components 



satisfies the NIST test for randomness 
     In the case of 2 coupled maps the geometric undersampling allows the building of a PRNG which passes all NIST 
Test. It is very effective for generating 2 parallel streams of pseudo-random numbers, as shown in [23], in which 
sequences up to 1012 consecutives iterates of (23) have been computed, providing more than 3.5×1010 random numbers 
in a very short time. 
 
3   Mathematical chaotic circuits 
In this Section we introduce the new paradigm of mathematical (chaotic) circuits, which should constitute a new branch 
of mathematical engineering, in the sense of building models using equations like electronics engineering do using 
transistors, diodes, etc.  
     An electronic circuit is composed of individual electronic components, such as resistors, transistors, capacitors, 
inductors and diodes, connected by conductive wires through which electric current can flow. The combination of 
components and wires allows various simple and complex operations to be performed: signals can be amplified, 
computations can be accomplished, and data can be moved from one place to another. Very complex systems can be 
analyzed using various sophisticated methods [24]. We introduce in the same way mathematical circuits which are 
composed of individual components (generators, couplers, samplers, mixers, reducers, cascaders and shapers, etc.) 
connected through streams of data. The combination of such mathematical components leads to several new 
applications such as improving the performance of well known chaotic attractors (Chua, Lorenz, Rössler, Hénon, 
logistic) presented in Sect. 2 for application purposes. 
     Analog electric circuits are very commonly represented by schematic diagrams, in which wires are shown as lines, 
and each component has a unique symbol (See Fig.14).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14: Electrical symbols (left-hand side column) and electronic circuit symbols  
(right-hand side column) used for drawing schematic diagram 

 
     We present in this Section some symbols we design in order to draw mathematical schematic diagrams. First, we 
describe generator symbols, which are, from a mathematical point of view, equivalent to a battery or a variable current 
generator in an electric circuit. In the paradigm of mathematical circuitry they generate a digital signal (in one or several 
dimensions) rather than an electrical current characterized by its voltage and intensity variations (nonetheless, a voltage 
or an intensity variation can be considered as a physical signal which can be discretized). This signal can be either 
continuous as in Chua's circuit, Lorenz or Rössler attractors or discrete as in the Hénon, Lozi, Logistic or the symmetric 
Tent mapping. We consider first the continuous ones. 
 
3.1   Continuous generators: Chua’s circuit, Rössler and Lorenz attractors 

From a mathematical point of view, at least in order to implement applications of chaotic behaviors, all the chaotic 
attractors (1), (3), (8) have the same structure: given initial values and a set of parameters, they provide three streams of 
data symbolized by three arrows. On the contrary, the electric realization of their equation leads to very different 
electric circuits. For example, concerning the Chua’s circuit, even if the scheme of Fig. 4 is easily understandable by 
electric engineers, it is of no help to build a device using mathematical properties of chaos (like a secure communication 
system based on it [25]). This is why it is more useful to represent Chua’s circuit as a chaos generator by the diagram of 
Fig. 15(a). On this detailed flowchart of continuous generator, the solid line arrows coming out from the generator 
represent the three components of the signal x( t ) ( x( t ), y( t ), z(t))= , the dashed line arrow which points at λ  stands for 

the parameter value, and the dot line arrow which points at 0x x( 0 )= , the given initial value of the signal. 

     If there is no ambiguity on the nature of the generator used, the symbol can be simplified as in Fig. 15(b). 
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     Another combination recently studied [27] is obtained using in the same time both logistic (14) and symmetric Tent 
map (15) with the reduction process (24): 
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     (26) 

 
     The corresponding circuit is displayed on Fig. 27, each horizontal generator being, for example, the logistic map, and 
the vertical generator, the Tent map. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 27: Circuit of Cms-PRNG with only 3 streams 
 
4.2   Mixed Chaotic/Pseudo-random number generators 

Taking advantage of properties as ergodicity and stochasticity of chaos, some new algorithms called chaos optimization 
algorithms (COA) are developed [28, 29]. Those algorithms depend strongly on the shape of the invariant measure of 
the chaotic mapping they use (see Fig. 28 for the shape of the numerical computed invariant measure of the Lozi map 



(12) and Fig. 29 for the invariant measure of the logistic map). In fact there is a need of to choose the good shape of 
invariant measure for each specific optimization problem. 
 

   
 

Figure 28 (left): density of iterated values of y(k) of Lozi map (10) fitted to the  
interval [0; 1] which is split in 100 boxes for 10,000,000,000 iterated values 

Figure 29 (right): density of iterated values of logistic map (14) 
 
     Hence, instead of looking for family of chaotic generators having the requested shape, it is more simple to use a 
standard CMS-PRNG which provides pseudo-random numbers with Lebesgue invariant measure, and to transform this 
equal repartition on the interval adding a new transform to these iterated points. As an exemple of such method, one can 
consider the transform S defined by Eq. (27) applied after Eq. (26). Such “shaper” transform can be symbolized by 
adding a shaper circuit element after any circuit of CPRNG (Fig. 28). 
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  (27) 

 
5   Conclusion 
We have introduced the paradigm of chaotic mathematical circuitry which shows some similarity to the paradigm of 
electric circuitry –the design of electronic circuits. This new paradigm allows, as an example, the building of new 
chaotic and random number generators. Mathematical circuitry should constitute a new branch of mathematical 
engineering, in the sense of building models using equations like electronics engineering do using transistors, diodes, 
etc.  
     Alongside to electronic circuits, the new theory of mathematical circuits allows many new applications in chaotic 
cryptography, genetic algorithms in optimization and in control [30], etc. Due to the versatility of the new components 
we introduce, the combined operation of these chaotic mathematical circuits remains largely unexplored. 
     Emergence of pseudo-randomness from chaos via various under-sampling methods has been recently discovered. 
Instead of opposing both qualities (chaos and pseudo-randomness) of numbers, it should be more interesting to shape 
mixed Chaotic/Pseudo-random number generators, which can modulate the desired properties between chaos and 
pseudo-randomness. Chaotic circuitry is the perfect mathematical frame in which such improvement can be easily 
designed. 
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