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ABSTRACT

Maintenance and repair of complex systems are an increas-

ing part of the total cost of final product. Efficient diagno-

sis and prognosis techniques have to be adopted to detect,

isolate and anticipate faults. Moreover the recent industrial

systems are naturally hybrid: their dynamic behavior is both

continuous and discrete. This paper presents an architecture

of health monitoring and prognosis for hybrid systems. By

using model and experience-based approach we propose an

implementation of an integrated diagnosis/prognosis process

based on Weibull probabilistic model. This article focuses

particularly on the prognosis algorithm description. The pro-

cess has been implemented and tested on Matlab. Simulation

results on a water tank system show how prognosis and diag-

nosis interact into the architecture.

1. INTRODUCTION

Due to new technologies, the development of industrial sys-

tems is increasingly complex. It becomes difficult to manage

and anticipate the behavior of these systems, especially when

they are exposed to failures. In time of economic crisis, it

is particularly essential to improve the system availability by

reducing maintenance and repair costs. Efficient diagnosis

and prognosis techniques have to be adopted to detect, isolate

and anticipate faults leading to failures. Health monitoring

of industrial systems aims at determining the health state of

systems at any time in order to optimize their functioning and

act in case of malfunctions. Diagnosis helps to determine the

current health state of a system. Malfunctions or failures may

be anticipated by a prognostic reasoning on the system. No

definition of prognosis is really stated in the scientific com-

munity. It is more often related to the health state prediction
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in the future or to the calculation of the remaining useful life

(RUL). This temporal prediction gives the date at which the

system is not operational anymore and must to be repaired.

When the system is in such a state, it is said to be in a failure

mode. Before this state, it can be either in a nominal mode, or

after the occurrence of one or several faults in a faulty mode

or degraded mode. Prognosis requires the knowledge of the

current health state of the system through a diagnosis, hence

the need of a health monitoring method integrating diagnosis

and prognosis.

Recent industrial systems exhibit an increasing complexity

of behaviors that are both continuous and discrete. It has be-

come difficult to ignore the fact that most systems are hybrid.

Therefore this paper proposes to use the techniques of model-

based diagnosis and prognosis in the framework of hybrid

systems. We propose to enrich the commonly used model-

ing framework for hybrid systems with available knowledge

about aging or degradation of the system. Systems are con-

tinuously degrading according to operational conditions. Ac-

cording to information available on the system, it is possible

to establish physical aging laws or time-dependent fault prob-

abilities based on the feedback. This temporal and/or stochas-

tic information should be taken into account in the model of

the hybrid system.

The main ideas on the integrated architecture for diagnosis

and prognosis of hybrid systems we proposed have been pub-

lished in (Chanthery & Ribot, 2013). This paper focuses par-

ticularly on the prognosis algorithm description. It begins

with a brief overview of the related work in diagnosis and

prognosis on hybrid systems. Section 3 gives an overview

of our architecture for interleaving diagnosis and prognosis

processes. The diagnosis process is briefly described. Then

section 4 presents the hybrid system modeling for prognosis.

Section 5 is the core of the article. It details the prognosis

algorithm. The algorithm has been implemented. Simula-

tion results are given on Section 6, illustrated by a water tank
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system. Finally, Section 7 concludes the paper and proposes

some future work.

2. RELATED WORK

There has been considerable work on diagnosis of hybrid sys-

tems on one hand, and on prognosis on the other hand. How-

ever, to the best of our knowledge, very few studies succeed

in coupling diagnosis and prognosis and the authors could not

find related work dealing with prognosis on hybrid systems.

A formal generic modeling framework for a complex sys-

tem is presented in (Ribot, Pencolé, & Combacau, 2009) that

encapsulates the knowledge used by diagnosis and progno-

sis. In this work, the authors establish a coupling of di-

agnosis and prognosis based on a characterization of com-

plex system modes but no algorithm and implementation

have been proposed. Another approach has been proposed

in (Roychoudhury & Daigle, 2011). The authors propose a

common framework for diagnosis and prognosis thanks to a

state representation that describes the nominal behavior of the

system and fault progression. However, there is absolutely

no hybrid or discrete aspect in this work. The model used is

a state model that specifies the system behavior in nominal

modes and in faulty modes. A parameter vector and an asso-

ciated evolution equation are used to represent fault progres-

sion over time. The method consists in building an observer

from the nominal behavior to perform fault detection. The

identification is made from a set of observers that are built

for each fault. Prognosis consists in predicting the remaining

useful life (RUL) for each fault using an estimator based on a

fault progression model.

Most of the works on discrete event systems consider prog-

nosis as a prediction of an event trajectory (Cao, 1989) or

fault event occurrences (Genc & Lafortune, 2006). The term

”predictability” of a fault event introduced by (Cao, 1989) is

based on the system observability property. It is clearly re-

lated to the diagnosability notion in discrete event systems:

”it is certain that a critical event will take place”. (Genc &

Lafortune, 2009) demonstrates that any predictable event is

diagnosable. An extension for the prediction of event pat-

terns is proposed in (Jéron, Marchand, Genc, & Lafortune,

2008). In these studies, the system model is a classical au-

tomaton in which only ordered, undated and without delay

event sequences are considered.

To perform prognosis, it is required to take the temporal

aspect into account to compute the RUL of the system.

Only (Khoumsi, 2009) uses a timed automata (TA) in order to

prognose a fault event on the system. Clock ticks are added to

transitions of the TA to determine the dated trajectories lead-

ing to fault events. No notion of uncertainty (neither by mean

of probabilities nor intervals) is taken into account in these

timed automata. However, uncertainty is intrinsically linked

to prognosis.

In (Zemouri & Faure, 2006), the evolution of the system oper-

ating state is modeled by a stochastic timed automaton (STA).

A stochastic distribution f(t) is associated to each transition

of the automaton. The distribution f(t) gives the probability

of occurrence for xj+1 at time tj+1 after the occurrence of

xj at time tj . In this study, events occurring in the system

are represented in the states of the stochastic timed automa-

ton that does not take the hybrid dynamics of the system into

account.

(Castaneda, Aubry, & Brinzei, 2010) proposes a stochastic

hybrid automaton to evaluate the system dynamic reliability.

The stochastic hybrid automaton represents the possible be-

havioral modes of the system. The stochastic part helps to

take faults and uncertainties about system knowledge into ac-

count. The system switches from one mode to another with

events that may be deterministic or stochastic. Stochastic

events occur when a threshold on their probability law has

been reached. In this study, stochastic transitions have a con-

stant rate. The model is simulated to obtain availability and

reliability defined as the probabilistic evaluation of the hybrid

system failure.

In order to complete previous works, the first issue investi-

gated in this paper is the representation of the behavior of the

hybrid system and the uncertainty of its degradation into a

single model. The second issue concerns the implementation

and the test of a health monitoring method coupling diagnosis

and prognosis.

3. ARCHITECTURE FOR INTERLEAVING DIAGNOSIS

AND PROGNOSIS PROCESSES

In this study, a system is supposed to start operating in nom-

inal behavior. A set of critical faults has been anticipated for

the system and each one of them may occur at any time from

each nominal state. Faults are supposed to be permanent: it

means that once a fault has occurred, the system evolves in

what is called a faulty mode. This degradation can evolve

into a worst degraded mode. Finally, when the system is not

operational anymore, it is said to be in a failure mode. With-

out maintenance or repair action, the evolution of a system

is then supposed to be unidirectional. This evolution of the

system from a nominal mode to a failure mode is illustrated

in Figure 1.

The combination of faults leading to a failure can be estab-

lished from a fault tree analysis (Rausand & Hoyland, 2004).

With this analysis and the sequence of fault dates predicted

by prognosis, it is simple to obtain the system RUL that cor-

responds to the remaining time until the system failure. This

fault analysis allows to link our prognosis definition to the

one commonly used in the PHM community (Prognostics and

Health Management).

This section begins by describing the architecture interleav-
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Figure 1. Unidirectional system evolution without mainte-
nance or repair action.

ing diagnosis and prognosis. It will then go on the description

of the diagnosis process.

3.1. Overview of the architecture

The originality of our work is to interleave diagnosis and

prognosis processes that are too often considered separately.

This section presents an architecture coupling diagnosis and

prognosis into a single new process called InterDP. This ar-

chitecture, illustrated in Figure 2, has already been described

in (Chanthery & Ribot, 2013).

Enriched hybrid model S+ 

 

InterDP 

Diagnoser 

Prognoser 

(k, k) 

observation k 

Behavioral hybrid model 

Aging model 

Figure 2. InterDP process interactions

Inputs of the InterDP process are an enriched hybrid model

S+ defined for our methodology and observations that will

be formally defined in the next section. To put it in simple

terms, the enriched hybrid model contains all the knowledge

about the system behavior and degradation that is required to

perform diagnosis and prognosis. Observations are a set of

observable events. These events are built from information

issued for example from the sensors that are embedded in the

system.

The output of InterDP at each clock tick tk is a couple

(∆k,Πk) of diagnosis and prognosis results. Diagnosis ∆k is

performed by a hybrid diagnoser (Bayoudh, Travé-Massuyes,

Olive, & Space, 2008). It is built off-line from the hybrid au-

tomaton part of the enriched hybrid model. On-line, it takes

as input the observations and provides a vector containing all

possible modes (nominal, faulty or failure modes) for the sys-

tem that are consistent with observations:

∆k =











∆1
k

∆2
k

...

∆D
k











where D is the number of diagnosis hypotheses. ∆k can be

seen as a belief state of the hybrid system.

Prognosis Πk is performed by a prognoser. On-line, at each

clock tick tk, the prognoser takes as input the enriched hybrid

model and the result of the diagnosis process and provides a

vector:

Πk =











Π1
k

Π2
k

...

ΠD
k











where Πi
k is associated to a diagnosis ∆i

k and represents the

most likely sequence of dated faulty modes leading to the sys-

tem failure:

Πi
k = ({f1, d1}, . . . , {fj , dj}, . . . , {fN , dN}).

where di is the date occurrence of fault fj and N represents

the number of degraded modes before the failure mode.

One hypothesis in our work is that the system is assumed to

be diagnosed after each new observation, that is to say when

a change in measurements is detected. As diagnosis consists

in monitoring the diagnoser, the diagnosis computation dura-

tion can be considered as instantaneous. It is also supposed

that between two different observations, both diagnosis and

prognosis can be performed. Let tk be an occurrence of an

observation, tk+1 be the occurrence of the next observation

and CTp be the computation time for prognosis.

Hypothesis 1. The computation time of the prognosis pro-

cess is smaller than the interval between two different obser-

vations.

CTp ≤ (tk+1 − tk) (1)

3.2. Diagnosis process

The diagnosis process in InterDP has been described in detail

in (Chanthery & Ribot, 2013) and is not the focus point of this

paper. We just recall here the main steps of the process. The

hybrid diagnoser is built from the hybrid behavioral automa-

ton of S+ that is formally defined is the next section. On-line

it takes as input the set of observations on the system. The

diagnosis method for hybrid systems that is adopted for our

approach is the one developed in (Bayoudh, 2009), (Bayoudh

et al., 2008). It interlinks a standard diagnosis method for

continuous systems, namely the parity space method, and a

standard diagnosis method for DES, namely the diagnoser

method (Sampath, Sengputa, Lafortune, Sinnamohideen, &
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Teneketsis, 1995). The diagnosis part of the methodology

may be decomposed into three parts:

• diagnose the continuous part of the system,

• abstract the continuous part in terms of discrete events

and enrich the discrete part of the system with discrete

events that come from the abstraction of the continuous

part,

• then apply the diagnoser method on the resulting discrete

event system in order to build a diagnoser able to follow

on-line the behavior of the system according to the ob-

servable events.

4. HYBRID SYSTEM MODELING FOR PROGNOSIS

4.1. Hybrid formalism

The modeling framework that is adopted for hybrid sys-

tems is based on a hybrid automaton (Henzinger, 1996).

The hybrid automaton is defined as a quintuple S =
(ζ,Q,Σ, T, C, (q0, ζ0)) where:

• ζ is the set of continuous variables that comprises input

variables u(t) ∈ Rnu , state variables x(t) ∈ Rnx , and

output variables y(t) ∈ Rny . The set of directly mea-

sured variables is denoted by ζOBS .

• Q is the set of discrete system states. Each state qi ∈
Q represents a behavioral mode of the system. It in-

cludes nominal and anticipated faulty modes, including

failure modes. The anticipated faulty modes are faulty

modes that are known to be possible on the system.

The unknown mode can be added to model all the non-

anticipated faulty situations.

• Σ is the set of events that correspond to discrete control

inputs, autonomous mode changes and fault occurrences.

Σ = Σuo ∪ Σo, where Σo ⊆ Σ is the set of observable

events and Σuo ⊆ Σ is the set of unobservable events.

• T ⊆ Q × Σ → Q is the partial transition function. The

transition from mode qi to mode qj with associated event

σij is noted t(qi, σij , qj) and we have T (qi, σij) = qj .

T also denotes the set of transitions.

• C =
⋃

i Ci is the set of system constraints linking con-

tinuous variables. Ci denotes the set of constraints asso-

ciated to the mode qi. C represents the set of differential

and algebraic equations modeling the continuous behav-

ior of the system. The continuous behavior in each mode

is assumed to be linear.

• (ζ0, q0) ∈ ζ ×Q, is the initial condition.

The occurrence of a fault is modeled by a discrete event

fi ∈ ΣF . ΣF is the set of fault events associated to the an-

ticipated faults of F . Without loss of generality it is assumed

that ΣF ⊆ Σuo. The discrete part of the hybrid automaton

is given by M = (Q,Σ, T, q0), which is called the underly-

ing discrete event system (DES) and the continuous behavior

of the hybrid system is modeled by the so-called underlying

multi-mode system Ξ = (ζ,Q,C, ζ0). An example of a hy-

brid system is given in Figure 3.

σ12 

u 

y 

Hybrid system 

… 

σ21 

σ1i σ 

x1(n+1)=A1x1(n)+B1u(n)  

Y1(n)=C1x1(n)+D1u(n) 

q1 

C1 

xi(n+1)=Aixi(n)+Bu(n)  

Yi(n)=Cixi(n)+Diu(n) 

qi 

Ci 

x2(n+1)=A2x2(n)+B2u(n)  

Y2(n)=C2x2(n)+D2u(n) 

q2 

C2 

Figure 3. Example of an hybrid system

This hybrid automaton describes the set of knowledge useful

to achieve model-based diagnosis. In order to perform prog-

nosis, it is necessary to enrich the hybrid model by adding

the available knowledge about the aging or the degradation of

the system. A way to take the uncertainty on the degradation

function into account is to introduce probability measures for

each state that represents a mode of the system.

4.2. Aging modeling

The modeling framework that is adopted for the sys-

tem degradation is based on the Weibull probabilistic

model (Ribot & Bensana, 2011). A particular way for rep-

resenting the remaining useful life of systems is to establish

a fault probability from reliability analyses at different stress

levels (operating conditions) (Hall & Strutt, 2003; Vachtse-

vanos, Lewis, Roemer, A.Hess, & Wu, 2006). Stress is de-

fined as the set of internal and external conditions/factors

that may have an impact on the system behavior. The

parametrized Weibull model is often used in reliability for life

data analyses due to its flexibility (Ferreiro & Arnaiz, 2008):

W (t, β, η, γ) =
β

η

( t− γ

η

)(β−1)

e−( t−γ
η

)β (2)

where t ≥ 0, β ≥ 0, η ≥ 0 and γ ∈ [−∞;∞]. The scale

characteristic η defines the characteristic life of the system

and corresponds to the mean life expectancy for a studied

population sample. The shape characteristic β modifies the

probability density function (pdf) nature and allows to model

the different life phases of a system defined by the ideal-

ized bathtub curve of reliability. The location characteristic

γ shifts the curve from the origin. It defines the system min-

imal life. The case γ > 0 means that the fault probability is

zero until a date γ. In most cases, we assume γ = 0. The

characteristic η is stress-dependent while β is assumed to re-

main constant across different stress levels.
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Weibull characteristics βqi
j , ηqij , γqi

j model the aging evolu-

tion of a system that leads to a fault fj in a behavioral mode

qi and totally define the fault probability distribution fqi
j :

fqi
j (t) =

∫ t

0

W (t, βqi
j , ηqij , γqi

j )dt. (3)

The fault probability density function W (t, βqi
j , ηqij , γqi

j ) has

to give at any time the probability that the fault fj occurs

in the system from a mode qi. Weibull characteristics βqi
j

and ηqij are fixed by the mode qi of the system. The location

characteristic γqi
j can be used to memorize the degradation

evolution of the system in the past modes from the operation

start of the system (Ribot & Bensana, 2011). At first, the

system is in a mode q0. If the system has never been used, q0
obviously represents the nominal mode and we suppose that

∀fj , γq0
j = 0 as previously explained. This characteristic

γqi
j will be modified to take degradation in each behavioral

mode into account during the system operation.

The occurrence date dfj of a fault event fj for the system in

mode qi can be determined from a decision criterion Pmaxfj

that corresponds to a probability threshold beyond which the

risk becomes unacceptable:

dfj such that

∫ dfj

0

W (t, βqi
j , ηqij , γqi

j )dt = Pmaxfj
. (4)

4.3. Enriched hybrid model

In each mode qi, the system is subject to different aging laws.

The set of aging laws is supposed to be accurately known.

Hypothesis 2. An aging law of a system is supposed to be

continuous over time.

The consequence of this hypothesis is that the initial condi-

tion for an aging law at time t+k+1 is the value at t−k+1, when

the system has not yet commuted between two modes.

To take into account the different aging laws, the hybrid

system is then described as an enriched hybrid automaton

S+ = (ζ,Q,Σ, T, C,F , (q0, ζ0)), where F = {F qi , i ∈
{1, . . . , card(Q)}} is the set of aging laws associated to be-

havioral modes or the system. F qi is a vector of aging laws

for each anticipated fault in the mode qi. For example, in a

system where NF faults are considered:

F qi(t) =









fqi
1 (t)
fqi
2 (t)
. . .

fqi
NF

(t)









(5)

where fqi
j represents the probability distribution of the fault

fj at any time in mode qi.

It can be noticed that as opposed to (Ribot & Bensana,

2011), the hybrid automaton we propose represents behav-

ioral modes and not operational modes based on function

availability.

For example, for a system with two nominal modes q01, q02,

two possible actions a1, a2 that are observable events, and

two faults f1 and f2, a possible model is given in Figure 4.

This system is in a failure mode when f1 and f2 have oc-

curred. If only one fault occurred, then the system is in a

faulty mode.

f2

q11 q12a1
f1

f2

f2

q01 q02a1

a2

q01 q02

f1

f

q31 a2

f
a2

q01 q02a1

a2

f2

f

a1
f1

ff2

nominal modes faulty modes failure modes

time

f1

Figure 4. Example for a system with 2 nominal modes

5. PROGNOSIS

The focus of this article is on the prognosis process. It con-

sists, at each clock tick tk, in computing the most likely fault

sequence Πk until the system failure. Algorithm 1 describes

how the prognosis process is structured and introduces the

three main functions of the process.

Algorithm 1: Prognosis of a hybrid system

Inputs: enriched model S+, on-line diagnosis ∆k

Outputs: RUL, fault sequences Πk

1: k = 0
2: q− ← q0 {Mode initialization}
3: for each anticipated fault fj ∈ Σf do

4: (fq−
j , dfj )← InitializeAgingParameters(q−)

5: end for
6: (Π0, RUL)← PredictFaultSequence(S+, q−, {dfj})
7: repeat
8: k++
9: if ∆k 6= q− then

10: q+← ∆k

11: {(fq+
j , dfj )} ←

UpdateAgingParameters(S+, q−, q+)
12: q− ← q+
13: (Πk, RUL)← PredictFaultSequence(S+, q−,

{dfj})
14: end if
15: until RUL = 0

5
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Prognosis takes as input information on aging laws in S+ as-

sociated to the set of anticipated faults F and the set of be-

havioral models Q. It takes also as input the current result of

the diagnosis ∆k to update on-line the system aging laws ac-

cording to the operation time in each behavioral mode. After

each observable event, the appropriate aging laws are selected

(l.11) according to the mode that is estimated by the diagno-

sis and the fault probability value reached in previous modes.

Then the prognosis process predicts the most probable fault

sequence (l.6,14) supposing that the system remains in the

current mode.

Thus three main functions may be distinguished: the aging

parameters initialization (l.3), the aging parameters update

(l.11) and the fault sequence prediction (l.6,14). The follow-

ing subsections describe precisely how the prognosis process

is built and interleaved with diagnosis.

5.1. Aging function parameters initialization

The system is degrading in different ways leading to fault oc-

currences that may provoke a failure. This degradation de-

pends on the mode of the hybrid system. For each mode, the

degradation embodies the impact of stress factors. We recall

that the aging dynamic of the system exposed to a fault fj in

mode qi is modeled by a set of Weibull parameters βqi
j ,ηqij

and γqi
j in the enriched model S+.

For the simplicity of the presentation, we first assume that

there is no problem of diagnosability in the system that is

studied. It means that at each clock tick, the system mode is

totally known, i-e. non ambiguous and is given by the diag-

nosis process. This is a high hypothesis, and the case of ambi-

guity in the system state has to be studied in the future. Nev-

ertheless, an easy solution to transform an ambiguous case

into a non ambiguous one is to consider that the system is in

its most probable state.

When the prognosis process is started, the system is in initial

state (q0, ζ0). The aging law fq0
j (t) associated to each antic-

ipated fault fj is initialized. Parameters βq0
j and ηq0j are as-

sumed to be fixed and derived from reliability analyses. If the

studied system has never been used before, q0 obviously rep-

resents the nominal mode and we suppose that ∀fj , γ
q0
j = 0

as previously explained. If q0 is not nominal, the enriched

model has to give information about the initial values of γq0
j .

The occurrence date dfj of each anticipated fault fj for the

system in mode q0 is then determined from a decision crite-

rion Pmaxfj
:

∫ dfj

0

W (t, βq0
j , ηq0j , γq0

j )dt = Pmaxfj
. (6)

All along its operation, the aging probability of the system

exposed to a fault fj is denoted by Pfj . It is evaluated on-line

with diagnosis and predicted to determine the RUL. Know-

ing the aging dynamic of the system in the initial mode and

the different aging threshold, the prognosis process predicts

the most probable fault sequence until the failure mode. This

prediction process is done each time the diagnosis process

updates the current mode of the system. The next two sec-

tions describe how the aging parameters need to be updated

after a new diagnosis result and how fault sequences are then

predicted.

5.2. Aging parameters update

Algorithm 2 describes how the aging functions are updated

after each new diagnosis result.

Algorithm 2: UpdateAgingParameters

Inputs: Enriched model S+, previous behavioral mode q−,
new behavioral mode q+ provided by diagnosis

Outputs: New aging laws fq+
j for each anticipated fault fj ,

new dates of fault occurrences dfj

1: for each anticipated fault fj ∈ Σf do

2: Pfj ← ComputeAgingProbability(fq−
j ) {with

Equation (7)}
3: γq+

j ← ComputeLocationParameter(Pfj ,q+) {with

Equations (8) (9)}
4: end for

On receipt of a new mode estimation q+ at time t+, the

Weibull aging functions associated to faults in the mode q+
are updated according to the time spent by the system in pre-

vious mode q−. The aging probability associated to a fault fj
that the system has reached in past mode(s) at t+ is computed

with

Pfj =

∫ t+

0

W (t, βq−
j , ηq−j , γq−

j )dt. (7)

To memorize this aging probability Pfj , a new value for char-

acteristic γq+
j of aging model associated to the fault fj in the

new mode q+ is computed:

γq+
j = (t+ − δ) such that

∫ δ

0

W (t, βq+
j , η

q+
j , 0)dt = Pfj . (8)

With the above equation, we introduce a mathematical ma-

nipulation to memorize the aging probability Pfj reached in

past modes into new aging models for mode q+ from t+. By

this calculation, the continuity of any aging function is guar-

anteed in all mode change points and

∫ t+

0

W (t, βq+
j , ηq+j , γq+

j )dt = Pfj (9)

Figure 5 illustrates how Weibull pdf associated to a fault f1

6
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evolves in order to describe the fault aging in two behavioral

modes q01 and q02. The two curves on the top illustrate the

Weibull pdf associated to fault f1 in mode q01 (on the left)

and in mode q02 (on the right). Let suppose that the system

is in mode q01 at t = 0, then Pf1 corresponds to the area

under the curve. When the system switches into mode q02, the

continuity condition on the aging law (Hypothesis 2) implies

that the area under the first curve is equal to the area under

the second one. So the second curve is translated on the left.
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Figure 5. Weibull pdf associated to a fault f1 for a system in
two behavioral modes

5.3. Fault sequence prediction

To determine the sequence of fault events that leads to the

system failure, we need to define a discrete fault event au-

tomaton (l.4) to extract the system faulty evolutions. This

automaton describes all the possible fault transitions between

operating modes until the system failure. The Discrete Fault

Event System (DFES) is obtained by the projection of the

underlying DES on the fault events (see Section 4.1). It cor-

responds to an abstraction of the hybrid system which con-

tains fault events only. The DFES is a finite state machine

Mf = (Qf ,Σf , Tf , qf0) formally defined as follows:

• Qf is the set of discrete states of the system,

• Σf is set of the fault events,

• Tf ⊆ (Qf ×Σf → Qf ) is the partial transition function,

• qf0 = q0 is the initial state corresponding to the nominal

mode of the system.

The DFES of the example described in Figure 4 is illustrated

by Figure 6.

Once a mode change is detected by diagnosis, the idea is to

run through the DFES and predict the fault sequences until

the system failure. A state qc in a DFES is a deadlock if

∀f ∈ Σf , Tf (qc, f) = ∅ (10)

Figure 6. The DFES

The stop criterion for the prediction function is a dead-lock

(for example mode q31 in Figure 6).

For each fault fj that has not occurred yet, the algorithm com-

putes the date of occurrence of fj . The minimum value in this

set of dates is denoted dmin1
: it corresponds to the date of

occurrence of the next fault, denoted fmin1
(l.6). The set of

faults whose occurrence has not been predicted yet is denoted

by Σff , then Σff is updated and Σff = Σf\fmin1
(l.7).

It then contains faults whose occurrence date is superior to

dmin1
. At dmin1

, the system is predicted to switch into fault

mode qfmin1
. New aging models in fault mode qfmin1

(de-

scribed by the Weibull pdf W (t, β
qfmin1

j , η
qfmin1

j , γ
qfmin1

j ))
have to be updated for each fault fj in Σff (l.12). The mode

change predicted at dmin1
may result in a modification of

fault dates {dfj} that have been previously computed.

As for an aging parameter update resulting from a change in

diagnosis, characteristic γ
qfmin1

j of aging models in future

mode qfmin1
has to be computed from the fault probability

P 1
fj

the system could have reached at predicted commutation

time dmin1
. Let qc denotes the current system mode, for each

fault fj in Σff :

Pfj =

∫ dmin1

0

W (t, βqc
j , ηqcj , γqc

j )dt, (11)

and γ
qfmin1

j = (dmin1
− δ) such that

∫ δ

0

W (t, β
qfmin1

j , η
qfmin1

j , 0)dt = Pfj . (12)

Characteristic γ
qfmin1

j allows to memorize the system aging

in all past modes from q0 and guarantee the continuity of ag-

ing laws. The date dfj of fault occurrences in Σff are modi-

fied as follows:

∫ dfj

0

W (t, β
qfmin1

j , η
qfmin1

j , γ
qfmin1

j )dt = Pmaxj
. (13)

7
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The next possible fault fmin2
after fmin1

is determined from

the minimal predicted fault date dmin2
for faults in Σff . Then

Σff = Σff\fmin2
. Fault propagation is studied as explained

above to compute γ
qfmin2

j for faults that have not reached

their probability threshold at dmin2
using new aging models

for mode qfmin2
and the process reiterates.

The prognosis process computes the most likely future se-

quence Πk of dated fault events according to a diagnosis ∆k:

Πk = ({fmin1
, dmin1

}, {fmin2
, dmin2

}, . . . ,

{fminN
, dminN

}). (14)

Algorithm 3 sums up the procedure of fault sequence predic-

tion.

Algorithm 3: PredictFaultSequence

Inputs: Enriched model S+, Current mode qc, Dates of
fault occurrence {dfj}

Outputs: Fault sequence Πk, RUL

1: Πk = ∅
2: Σff ← Σf {Σff is the set of faults to be predicted}
3: i← 1
4: ConstructDFES(S+)
5: while ∃f ∈ Σff | Tf (qc, f) 6= ∅ {qc is not a dead-lock}

do
6: (fmin(i), dmin(i))← PredictNextFault(Σff , {dfj})
7: Σff ← Σff\fmin

8: Πk = Πk ∪ {(fmin(i), dmin(i)}
9: RUL← dmin(i)

10: qf ← Tf (qc, fmin(i)) {System is predicted to switch

in mode qf at dmin}
11: for each anticipated fault fj ∈ Σff do

12: (f
qf
j , dfj )← UpdateAgingParameters(qc,qf ) {with

Equations (11) (12) (13)}
13: end for
14: i← i+ 1
15: qc ← qf
16: end while

6. EXPERIMENTAL RESULTS

HYDIAG is a software program on MATLAB developed by

the DISCO team. It performs diagnosis of hybrid systems

(Bayoudh et al., 2008). The idea was to enrich it with Weibull

aging models to performs prognosis, to implement the prog-

nosis algorithm and interleave diagnosis and prognosis pro-

cesses into a single one module named InterDP. This has

been implemented and tested on a water tank system.

6.1. Modeling of a Water tank system

InterDP has been applied to the case study of a water tank

system (Figure 7). This system is composed of one tank with

two hydraulic pumps (P1, P2) providing water with differ-

ent rates. Water flows through a valve at the bottom of the

tank depending on the system control. Three sensors located

Pump P1 Pump P2 

hmax 

h2 

h1 h 

Figure 7. Water tank system

at different tank levels (h1, h2, hmax) detect the water level

and allows to set the control of the pumps (on/off). If the

water level h is between h1 and h2, both pumps P1 and P2

are turned on. If h2 < h < hmax, only P1 is on and when

h ≤ hmax, the pumps are turned off. It is assumed that the

pumps may fail only if they are on.

The discrete model of water tank and the controls of pumps

are given in Figure 8. Eight discrete behavioral modes

has been identified Q = {q1, q2, . . . , q8}. Discrete events

in Σ = {h1, h2s, h2i, hmax, f1, f2} allow the system to

switch into different modes. Observable events are Σo =
{h1, h2s, h2i, hmax}. They result from sensor measurements

of water level in the tank. Two faults are anticipated Σf =
{f1, f2} and are not observable: f1 corresponds to the fail-

ure of P1 and f2 is the failure of P2. The parameter values

of aging models F = {F qi} associated to every behavioral

mode qi are reported in Table 1. Let us recall that the Weibull

characteristics γ is assumed to be equal to zero at the system

start.

Figure 8. Water tank DES model

8
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Table 1. Weibull parameters of aging models

Aging laws β η

F q1 fq1
1 1.5 3000
fq1
2 1.5 4000

F q2 fq2
1 2 3000
fq2
2 1 7000

F q3 fq3
1 1 8000
fq3
2 1 7000

F q4 fq4
1 NaN NaN
fq4
2 2 4000

F q5 fq5
1 2 3000
fq5
2 NaN NaN

F q6 fq6
1 NaN NaN
fq6
2 1 7000

F q7 fq7
1 1 8000
fq7
2 NaN NaN

F q8 fq8
1 NaN NaN
fq8
2 NaN NaN

The underlying continuous behavior of every discrete mode

qi for i ∈ {1..8} is represented by the same state space:

{

X(k + 1) = AX(k) +BU(k)
Y (k) = CX(k) +DU(k)

(15)

where the state variable X is the water level in the tank,

continuous inputs U are the flows delivered by the pumps

P1, P2 and the flow going through the valve, A =
(

1
)

,

B =





eTe/S
eTe/S
eTe/S



 with Te the sample time, S the tank base

area and ei = 1 (resp. 0) if the pump is turned on (resp.

turned off), C =
(

1
)

and D =





0
0
0



.

The continuous behavior is abstracted to build new observ-

able discrete events Rox y using the parity space approach.

The enriched discrete event model of the hybrid system is

used to build the diagnoser that will allow to track the system

mode after each new observation.

The process InterDP was tested on this water tank hybrid

model. Both diagnosis and prognosis are performed.

6.2. Simulation results

6.2.1. Simulation parameters

The time horizon is fixed at Tsim = 4000h, the sampling

period is Ts = 36s and the filter sensitivity for the diagnosis

is set as Tfilter = 3min. The residual threshold is 10−12 as

in (Bayoudh, 2009).

The scenarios involve a variant use of water (max flow rate =

1200L/h) depending on user needs during 4000h. Pumps are

automatically controlled to satisfy the specifications indicated

above. Flow rate of P1 and P2 are respectively 750L/h and

500L/h.

The diagnoser issued from the diagnosis process is given in

Figure 9. Its computation is done off-line. Each state of the

diagnoser indicates the belief state in the model enriched by

the abstraction of the continuous part of the system, with a tag

that gives the set of faults that have occurred on the system.

This set is empty in case of nominal mode. This diagnoser

shows that the tested system is diagnosable.

Figure 9. Diagnoser state tracker

Two fault scenarios have been simulated. In the Scenario 1,

fault f1 on the pump P1 was injected after 3500h, fault f2
is not injected. In the Scenario 2, fault f2 is injected after

2000h, fault f1 is not injected.

6.2.2. Scenario 1

Figure 10 shows the diagnoser belief state for Scenario 1 just

before and after the fault f1 occurrence. Results are consis-

tent with the scenario: before 3500h, the belief states of the

diagnoser are always tagged with a nominal diagnosis. After

3500h, all the states are tagged with f1.

Figure 11 illustrates the predicted date of fault occurrence

(df1 and df2 ). At the beginning of the process, the progno-

sis result is: Π0 = ({f1, 4120}, {f2, 5105}). It can be noted

that the predicted dates df1 and df2 of f1 and f2 globally in-

crease. Indeed, the system oscillates between stressful modes

and less stressful modes. To make it simple, we can consider

that in some modes, the system does not degrade, so the pre-

dicted dates of f1 and f2 are postponed.

Before 3500h, the predicted date of f1 is lower than the one of

f2. After 3500h, the predicted date of f2 is updated, knowing

that the system is in a degraded mode. The prognosis result

is Π3501 = ({f2, 5541}).

9



Annual Conference of the Prognostics and Health Management Society 2013

q_32,{} 

q_75,{f2} 

q_64,{f1} 

q3,{}       

q7,{f2} 

q6,{f1} 

q_23,{} 

q_21,{} 

q_57,{f2} 

q8,{f1,f2} 

q_46,{f1}  

q2,{}    

q5,{f2}  

q4,{f1}  

q12,{}   

q1,{}    

 

Time (h) 

f1 

Figure 10. Diagnoser belief state for scenario 1
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Figure 11. Prognosis results for scenario 1: df1 , df2

Figure 12 shows the RUL of the system. Because of the oscil-

lation of the system between stressful modes and less stress-

ful modes, the RUL value oscillates between two values that

globally decrease. The maximum bound corresponds to the

less stressful mode whereas the minimum bound corresponds

to the more stressful one. After the occurrence of the fault,

the RUL is updated.

6.2.3. Scenario 2

Figure 13 shows the diagnoser belief state for Scenario 2 just

before and after the fault f2 occurrence. Results are coher-

ent with the Scenario: before 2000h, the belief states of the

diagnoser are always tagged with a nominal diagnosis. After

2000h, all the states are tagged with f2.

Figure 14 illustrates the predicted date of fault occurrence
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Figure 12. Prognosis results for scenario 1: RUL
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Figure 13. Diagnoser belief state for scenario 2

(df1 and df2 ). At the beginning of the process, the prognosis

result is: Π0 = ({f1, 4120}, {f2, 5105}).

Before 2000h, the predicted date of f1 is lower than the one

of f2. The prognosis result is After 2000h, the predicted date

of f1 is updated, knowing that the system is in a degraded

mode. The prognosis result is Π2010 = ({f1, 3947}).

Figure 15 shows the RUL of the system.

7. CONCLUSION AND FUTURE WORK

This paper proposed an architecture of health monitoring and

prognosis for hybrid systems. Diagnosis and prognosis are

interleaved into a single process called InterDP. An original

enriched hybrid model is proposed. It is used both for de-

scribing the hybrid behavior dynamic and for modeling the

degradation of the system. This paper is focused on the prog-

nosis process whose algorithm is given in detail. An imple-

mentation has been done in Matlab and InterDP has been
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Figure 14. Prognosis results for scenario 2: df1 , df2
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Figure 15. Prognosis results for scenario 2: RUL

tested on a water tank system. Simulation results show how

the prognosis is updated thanks to the diagnosis.

In future work, we will study the case of a non diagnosable

system, where the diagnoser provides a set of belief states.

This will lead to a complexity problem both for diagnosis

and prognosis processes. If a fault sequence has to be pre-

dicted for each belief state, this could combinatorial explode.

Another complexity problem concerns the number of antic-

ipated faults in each behavioral state. To reduce the model

size of the hybrid system, only the most critical fault in each

behavioral mode could be taken into account.
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