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OPTIMAL DESIGNS FOR LASSO AND DANTZIG SELECTOR USING EXPANDER

CODES

YOHANN DE CASTRO

ABSTRACT. We investigate the high-dimensional regression problem using adjacency
matrices of unbalanced expander graphs. In this frame, we prove that the ℓ2-prediction
error and the ℓ1-risk of the lasso and the Dantzig selector are optimal up to an explicit
multiplicative constant. Thus we can estimate a high-dimensional target vector with an
error term similar to the one obtained in a situation where one knows the support of the
largest coordinates in advance.

Moreover, we show that these design matrices have an explicit restricted eigenvalue.
Precisely, they satisfy the restricted eigenvalue assumption and the compatibility con-
dition with an explicit constant.

Eventually, we capitalize on the recent construction of unbalanced expander graphs
due to Guruswami, Umans, and Vadhan, to provide a deterministic polynomial time
construction of these design matrices.

1. INTRODUCTION

One of the recent breakthrough in Statistics and Image processing has been brought
by the idea that one can recover a high-dimensional target vector from few (non-
adaptative) linear measurements as soon as the target vector depends only on few co-
efficients in a well-chosen basis. Some seminal works can be found in [CDS98, Tib96,
CT06, CT07] and references therein. One of the major observation in this field relies
on the fact that an optimal way of gathering information on the target is at random.
Recently much emphasis has been put on the lasso (1), the Dantzig selector (2) and
their ability to recover an almost sparse vector β ⋆ ∈ Rp from n linear measurements in
the high-dimensional setting, i.e., where n is much smaller than p . Consider the linear
model:

y = Xβ ⋆+ z ,

where X ∈ Rn×p is a design matrix and z ∈ Rn a random noise vector. Assume that
z = (z i )

n
i=1 is such that z 1, . . . , z n are identically distributed according to a centered

Gaussian random variable with variance σ2. At first glance, it seems impossible to re-
cover β ⋆ from the noisy observation y . As a matter of fact, we may ask whether there
exists an integer s , as large as possible, such that one can recover the s largest, in abso-
lute value, coordinates of β ⋆, i.e., a sparse approximation. This issue can be addressed
by considering the lasso [Tib96]:

(1) β ℓ ∈ arg min
β∈Rp

�



y −Xβ




2

2
+λℓ


β




1

	

,

where λℓ is a tuning parameter; or a solution to the ℓ1-regularized problem called
Dantzig selector [CT07]:

(2) βd ∈ arg min
β∈Rp



β




1
s.t. ‖X⊤(y −Xβ )‖∞≤λd ,

where λd a tuning parameter. A large literature has shown that these estimators are
suited to uncover sparse approximations from few observations as soon as the design
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matrix X satisfies, for instance, the RIP2 property [CRT06] or the coherence property
[CP09]. Although one can prove that random design matrices satisfy these properties
with high-probability, providing a deterministic design matrix is challenging. However,
a recent breakthrough [BDF+11] gives an explicit construction of design matrices satis-
fying the RIP2 property of order n 1/2+η, for some small η> 0.

In this article, we consider adjacency matrix of an unbalanced expander graph with
expansion constant no greater than 1/12, see Definition 1. For the sake of simplicity,
we refer to it as expander design matrices. Observe that the expander design matrices
satisfy neither the RIP2 property nor the coherence property, see Section 4. Hence we
have to carry out a new analysis of the lasso, and the Dantzig selector, in the expander
design matrix framework. This analysis is inspired by a companion paper of the au-
thor which studies these estimators in the geometric functional analysis frame. More
precisely, the article [dC13] analyzes the design matrices with small distortion, i.e., for
which the kernel has small ℓ2-intersection with the ℓ1-ball. Nevertheless, we follow a
quite different path here since we are not able to compute the distortion of the kernel of
a expander design matrix. Interestingly, our proof show that the expander design ma-
trices satisfy four standard properties in the high-dimensional regression theory: the
restricted eigenvalue assumption [BRT09], the compatibility condition [vdGB09], the
Hs ,1(1/5) condition [JN11], and the universal distortion property [dC13], see Section 4.
Furthermore, we prove that these conditions hold with explicit constants, see Proposi-
tion 4.1. Moreover, it gives an example of design matrix that satisfies these four proper-
ties but satisfies neither the RIP2 property nor the coherence property.

Theorem 1.1 — Let Φ ∈ {0, 1}n×p be the adjacency matrix of a (2s ,ǫ)-unbalanced ex-

pander with an expansion constant ǫ ≤ 1/12 and left degree d . Set X = (1/
p

d )Φ. If the

quantities 1/ǫ, d are smaller than p and λℓ = 20σ
p

logp , then it holds:

(3)


β ℓ−β ⋆




1
≤ 4 min
S ⊆{1,...,p},
|S |≤s .

h

1.5λℓ |S |+


β ⋆S c





1

i

,

where βS c denotes the sub-vector of β obtained by removing all the coordinates having

indexes inS , and:

(4)


Xβ ℓ−Xβ ⋆




2
≤ min
S ⊆{1,...,p},
|S |≤s .

�

4.8λℓ
p

|S |+0.9



β ⋆S c





1
p

|S |

�

,

with a probability greater than 1−1/(p
p

2π log p ).

These inequalities are optimal up to a multiplicative constant less than 6. Indeed, ob-
serve that Equation (3) shows that the ℓ1-risk (the left hand side) is upper bounded by
the optimal risk (given by the best approximation by s -sparse vectors



β ⋆S c





1
) and a

soft-thresholding term λℓ s , see Figure 1. It shows that we recover the s largest coeffi-
cients of β ⋆ up to a coordinate wise error of the order λℓ. Note this is essentially the
noise level σ up to the square root of a log factor.

Moreover, the ℓ2-prediction error (4) is upper bounded byσ
p

s (up to the square root
of a log factor) which is the best prediction error in the linear model. As a matter of fact,
it corresponds to a situation where one performs ordinary least squares on the set of
columns of X given by the support of the s largest entires of β ⋆. The remaining term


β ⋆S c





1
/
p

s can be understood has the approximation error by s -sparse vectors.
Eventually, observe the upper bound given by Theorem 1.1 is optimal in the sense

that it is the ℓ1-risk and the ℓ2-prediction error that we get if we would have known the
support of the s largest coordinates, in absolute value, of the signal β ⋆ in advance and
the remaining term β ⋆S c . We prove the same result for the Dantzig selector.

Theorem 1.2 — Let Φ ∈ {0, 1}n×p be the adjacency matrix of a (2s ,ǫ)-unbalanced ex-

pander with an expansion constant ǫ ≤ 1/12 and left degree d . Set X = (1/
p

d )Φ. If 1/ǫ,
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FIGURE 1. Lasso estimator β ℓ obtained from expander code designs
exhibits a soft-thresholding phenomenon: coordinate wise error is of
the order λℓ. This well-established behavior is captured in the upper
bound (3).

d are smaller than p and λd = 9σ
p

log p , then it holds:



βd−β ⋆




1
≤ 9 min
S ⊆{1,...,p},
|S |≤s .

h

1.5λd |S |+


β ⋆S c





1

i

,



Xβd−Xβ ⋆




2
≤ min
S ⊆{1,...,p},
|S |=≤s .

�

4.8λd

p

|S |+0.9



β ⋆S c





1
p

|S |

�

,

with a probability greater than 1−1/(p
p

2π log p ).

In Section 5, we prove that the expander design matrices can be deterministically
constructed [GUV09] based on Paravaresh-Vardy codes [PV05]. In this frame, our anal-
ysis gives the following results.

Proposition 1.3 — There exists a positive universal constant θ0 such that the follow-

ing holds. For all s , p such that 8≤ s ≤ p/2, there exists a deterministic polynomial time

construction of a design matrix X ∈Rn×p where:

(5) n ≤ e s (12θ0 log p logs )3log(s ),

with e the Euler number, such that for λℓ = 20σ
p

log n, we have:



β ℓ−β ⋆




1
≤ 4 min
S ⊆{1,...,p},
|S |≤s .

h

1.5λℓ |S |+


β ⋆S c





1

i

,



Xβ ℓ−Xβ ⋆




2
≤ min
S ⊆{1,...,p},
|S |≤s .

�

4.8λℓ
p

|S |+0.9



β ⋆S c





1
p

|S |

�

,

with a probability greater than 1−1/(p
p

2π log p ).

Similarly, we have the following result for the Dantzig selector.

Proposition 1.4 — There exists a positive universal constant θ0 such that the follow-

ing holds. For all s , p such that 8≤ s ≤ p/2, there exists a deterministic polynomial time

construction of a design matrix X ∈Rn×p where:

n ≤ e s (12θ0 log p logs )3log(s ),
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such that for λd = 9σ
p

logn, we have:



βd−β ⋆




1
≤ 9 min
S ⊆{1,...,p},
|S |≤s .

h

1.5λd |S |+


β ⋆S c





1

i

,



Xβd−Xβ ⋆




2
≤ min
S ⊆{1,...,p},
|S |≤s .

�

4.8λd

p

|S |+0.9



β ⋆S c





1
p

|S |

�

,

with a probability greater than 1−1/(p
p

2π log p ).

It shows that, with a sensible budget of observations (5), one can construct in polyno-
mial time a design matrix X for which the lasso, or the Dantzig selector, recovers a sparse
approximation of all signal β ⋆.

This articles folds into four parts. First, we review some results on unbalanced ex-
pander graphs. Then we give the proofs of the main results. The third part gives evi-
dence that expander design matrices matrices satisfy neither the RIP2 property nor the
coherence property but they satisfy the restricted eigenvalue assumption, the compat-
ibility condition, the Hs ,1(1/5) condition, and the universal distortion property. More-
over, we give an explicit formulation of the constants involved in these four properties.
Last but not least, we present a deterministic polynomial time construction of expander
design matrices in the last part.

2. UNBALANCED EXPANDER GRAPHS

We recall some standard facts about adjacency matrices of unbalanced expander
graphs. Let us denote a bipartite graph G = (A , B , E ) where the set of the left vertices
is denoted A and has size p , the set of the right vertices is denoted B and has size n , and
E is the set of the edges between A and B . Suppose that G has regular left degree d , i.e.,
every vertex in A has exactly d neighbors in B , then consider the normalized adjacency
matrix X∈Rn×p given by:

Xi j =

(

1p
d

if i is connected to j ,

0 otherwise ,

where i ∈ {1, . . . , n} and j ∈ {1, . . . , p}.

Definition 1 ((s ,ǫ)-unbalanced expander) — An (s ,ǫ)-unbalanced expander is a bi-

partite simple graph G = (A , B , E )with left degree d such that for any S ⊂ A with |S| ≤ s ,

the set of neighbors N (S) of S has size:

(6) |N (S)| ≥ (1− ǫ)d |S| .

The parameter ǫ is called the expansion constant.

Subsequently we shall work with ǫ = 1/12. Note ǫ is fixed and does not depend on other
parameters. One important property of expander design matrices is that they satisfy the
RIP1 property.

Lemma 2.1 (Theorem 1 in [BGI+08]) — If the quantities 1/ǫ and d are smaller than

p then (1/
p

d )X satisfies the RIP1 property: ∀γ ∈Rp , ∀S ⊆ {1, . . . , p} such that |S| ≤ s ,

(7) (1−2ǫ)


γS





1
≤ (1/
p

d )


XγS





1
≤


γS





1
.

In Section 5, we present the state-of-the-art constructions in unbalanced expander
graph theory.
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3. MAIN RESULTS AND PROOFS

3.1. Lasso case.

Theorem 3.1 — Let Φ ∈ {0, 1}n×p be the adjacency matrix of a (2s ,ǫ)-unbalanced ex-

pander with an expansion constant ǫ ≤ 1/12 and left degree d . Set X = (1/
p

d )Φ. If the

quantities 1/ǫ and d are smaller than p then for all λℓ > 10σ
p

logp/3, it holds:



β ℓ−β ⋆




1
≤

2
�

1− λ0

λℓ

�

− 2
5

min
S ⊆{1,...,p},
|S |=k , k≤s .

h36

25
λℓ k +


β ⋆S c





1

i

,

where λ0 := 2σ
p

log p , and:



Xβ ℓ−Xβ ⋆




2
≤ min
S ⊆{1,...,p},
|S |=k , k≤s .

�

24

5
λℓ

p

k +
5


β ⋆S c





1

6
p

k

�

,

with a probability greater than 1−1/p
p

2π log p .

3.2. Proof of Theorem 3.1. We denote by Φ the adjacency matrix so that Φ =
p

d X. We
begin with a lemma.

Lemma 3.2 — For all γ∈Rp and for all S ⊆ {1, . . . , p} such that |S| ≤ s ,



γS





1
≤
p

s

1−2ǫ



Xγ




2
+

2ǫ

1−2ǫ



γ




1
.

Proof. Without loss of generality, assume S consists of the s largest, in magnitude, co-
efficients of γ. Partition the coordinates into sets S0, S1, S2, ... ,Sq , such that the coordi-
nates in the set S l are not larger than the coordinates in S l−1, l ≥ 1, and all sets but the
last one Sq have size s . Observe that we can choose S0 = S. Let Φ′ be a sub matrix of Φ
containing rows from N (S), the set of neighbors of S. Using Cauchy-Schwartz inequality,
it holds:

p

s d


Φγ




2
≥
p

s d


Φ′γ




2
≥
p

s d
p

|N (S)|



Φ′γ




1
≥


Φ′γ




1
.

We finish the proof with a standard argument, see Lemma 11 in [BGI+08]. From (7) we
get that:



Φ′γ




1
≥


Φ′γS





1
−
∑

l≥1

∑

(i ,j )∈E ,i∈Sl ,j∈N (S)

�

�γi

�

�

≥d (1−2ǫ)


γS





1
−
∑

l≥1

|E ∩ (S l ×N (S))|min
i∈Sl−1

�

�γi

�

�

≥d (1−2ǫ)


γS





1
− 1

s

∑

l≥1

|E ∩ (S l ×N (S))|


γSl−1





1
.

From the expansion property (6) of G it follows that, for l ≥ 1, we have |N (S ∪ S l )|≥
d (1− ǫ)|S ∪S l |. Hence at most 2ǫd s edges can cross from S l to N (S), and so

p

s d


Φγ




2
≥ d (1−2ǫ)


γS





1
−2ǫd
∑

l≥1



γSl−1





1
/s

≥ d (1−2ǫ)


γS





1
−2ǫd


γ




1
.

The result follows since Φ=
p

d X. �

Since 1/(1−2ǫ) ≤ 6/5 and 2ǫ/(1−2ǫ) ≤ 1/5, the aforementioned lemma shows that for
all γ∈Rp , for all S ⊆ {1, . . . , p} such that |S| ≤ s ,

(8) 5


γS





1
≤ 6
p

s


Xγ




2
+


γ




1
.

We have the following lemma.
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Lemma 3.3 — Assume that X satisfies (8). Conditioned on the event:

(9)


X⊤z




∞ ≤ λ0 ,

for all λℓ > 5λ0/3, it holds:



β ℓ−β ⋆




1
≤ 2
�

1− λ0

λℓ

�

− 2
5

min
S ⊆{1,...,p},
|S |=k , k≤s .

h36

25
λℓ k +


β ⋆S c





1

i

;



Xβ ℓ−Xβ ⋆




2
≤ min
S ⊆{1,...,p},
|S |=k , k≤s .

�

24

5
λℓ

p

k +
5


β ⋆S c





1

6
p

k

�

.

Proof. This lemma is given by Theorem 2.1 and Theorem 2.2 in [dC13]. �

Lemma 3.3 gives the result on the event (9). Thus, we need to give an upper bound
on the probability of this event. Combining Lemma 3.3 and Proposition 3.6 (choose
λ0 := λ0(1)), we finish the proof.

3.3. Dantzig selector case.

Theorem 3.4 — Let Φ ∈ {0, 1}n×p be the adjacency matrix of a (2s ,ǫ)-unbalanced ex-

pander with an expansion constant ǫ ≤ 1/12 and left degree d . Set X = 1p
d
Φ. If the

quantities 1/ǫ and d are smaller than p then for all λd > 3σ
p

log p , it holds:



βd−β ⋆




1
≤

4
�

1− λ0

λd

�

− 1
3

min
S ⊆{1,...,p},
|S |=k , k≤s .

h36

25
λd k +


β ⋆S c





1

i

,

where λ0 := 2σ
p

log p , and:



Xβd−Xβ ⋆




2
≤ min
S ⊆{1,...,p},
|S |=k , k≤s .

�

24

5
λd

p

k +
5


β ⋆S c





1

6
p

k

�

,

with a probability greater than 1−1/p
p

2π log p .

3.4. Proof of Theorem 3.4. Note that (8) holds. We begin with a lemma.

Lemma 3.5 — Assume that X satisfies (8). Conditioned on the event


X⊤z




∞ ≤ λ0, for

all λℓ > 3λ0/2, it holds:



βd−β ⋆




1
≤ 4
�

1− λ0

λd

�

− 1
3

min
S ⊆{1,...,p},
|S |=k , k≤s .

h36

25
λd k +


β ⋆S c





1

i

,



Xβd−Xβ ⋆




2
≤ min
S ⊆{1,...,p},
|S |=k , k≤s .

�

24

5
λd

p

k +
5


β ⋆S c





1

6
p

k

�

.

Proof. This lemma is a consequence of Theorem 2.1 and 2.2 in [dC13]. �

Combining Lemma 3.5 and Proposition 3.6, we finish the proof.

3.5. Noise control.

Proposition 3.6 — Suppose z = (z i )
n
i=1 is a centered Gaussian noise with varianceσ2

such that the z i ’s areN
�

0,σ2
�

-distributed and could be correlated. Then, for t ≥ 1 and

λ0(t ) = (1+ t )σ
p

log p , it holds:

(10) P
�



X⊤z




∞ >λ0(t )
�

≤
p

2

(1+ t )
p

π logp p
(1+t )2

2
−1

.

Proof. This is a standard result, see Lemma A.1 in [dC13] for instance. �

Note that, by replacing λ0 by λ0(t ) in the statements of our theorems, it is possible to
replace all the probabilities of the form 1−ηn by probabilities of the form (10).
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4. STANDARD CONDITIONS

4.1. RIP properties. We begin with the following generalized definition of the Re-
stricted Isometry Property (RIP).

Definition 2 — A matrix X ∈Rn×p satisfies RIP(q , s ,δ) if and only if, for any s -sparse

vector γ:

(1−δ)‖γ‖q≤ ‖Xγ‖q≤ (1+δ)‖γ‖q ,

Lemma 2.1 shows that an expander design (1/
p

d )X constructed from a (2s ,ǫ)-
unbalanced expander graph satisfies the RIP(1, s , 2ǫ) property, RIP1 for short. Con-
versely, any binary matrix X which satisfies the RIP1 property with proper parameters,
and with each column having exactly d ones, is an adjacency matrix of an unbalanced
expander, see [BGI+08]. Hence, expander design matrices are closely related to RIP1

property but they do not satisfy RIP2 property.
Restricted isometry property, for the case q = 2, was introduced in [CRT06]. It was

shown [CRT06, CT07] that if X satisfies this property, then the lasso and the Dantzig
selector uncover a sparse approximation of the signal. Since then there has been a
tremendous amount of work on RIP2 matrices. Unfortunately, expander designs can-
not satisfy the RIP2 property, unless their number of rows is large [Cha08]. As a matter
of fact, sparse binary matrices must have at least n =O (s 2) rows.

4.2. Coherence property. In 2007, [CP09] obtained an estimate in prediction for the
lasso. They used a so-called coherence property following the work of [DET06]. For any
design matrix satisfying the coherence property, Theorem 1.2 in [CP09] shows that, with
high probability, it holds:

1

n



Xβ ⋆−Xβ ℓ




2

2
≤C ′ .σ2 s log p

n
,

for a large set of s -sparse vectors β ⋆, where C ′ > 0 is some positive numerical constant.
The coherence µ is the maximum correlation between pairs of predictors:

µ= sup
1≤i<j≤p

X⊤
i

Xj .

The coherence property [CP09] is then µ ≤ A0(logp )−1, where A0 is some positive con-
stant. This property allows to deal with random design matrices.

In the context of adjacency matrices, one can check that the coherence property is
equivalent to the definition of a (2,ǫ0)-unbalanced expander graph with an expansion
constant ǫ0 such that:

ǫ0 =
µ

2
≤

A0

2
(log p )−1 ,

which is severely restrictive and cannot be used in the frame of expander codes.

4.3. Restricted eigenvalue and compatibility condition. The restricted eigenvalue as-
sumption [BRT09] and the compatibility condition [vdGB09] consider the smallest
eigenvalue with respect to a cone restriction. For the sake of simplicity, we present only
the compatibility condition but the same analysis can be carried out for the restricted
eigenvalue assumption.

Definition 3 (Compatibility(s , c0)) — A matrix X ∈Rn×p satisfies Compatibility(s , c0)

if and only if:

φ(s , c0) := min
S ⊆{1,...,p}
|S |≤s

min
γ 6=0

‖γS c ‖1≤c0‖γS ‖1

p

|S |‖Xγ‖2
‖γS ‖1

> 0.

The constant φ(S, c0) is called the compatibility constant or the (S, c0)-restricted ℓ1-

eigenvalue.
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One can established that [vdGB09], with high probability, if β ⋆ is an s -sparse vector
then:

(11)
1
p

n



Xβ ⋆−Xβ ℓ




2
≤C ′′ .

σ

φ(s , 3)
.

Ç

s log p

n
,

where C ′′ > 0 is some positive constant depending on φ(s , 3) the (s , 3)-restricted ℓ1-
eigenvalue. Note that, invoking (8), we derive the following proposition.

Proposition 4.1 — Let Φ ∈ {0, 1}n×p be the adjacency matrix of a (2s ,ǫ)-unbalanced

expander with an expansion constant ǫ ≤ 1/12 and left degree d . Set X= (1/
p

d )Φ. If the

quantities 1/ǫ and d are smaller than p then for all c0 < 4, for all S ⊆ {1, . . . , p} such that

|S| ≤ s , and for all γ 6= 0 such that ‖γSc ‖1≤ c0‖γS‖1, it holds:

(12)

p

|S |‖Xγ‖2
‖γS ‖1

≥ 4− c0

6
.

Hence, the (s , c0)-restricted ℓ1-eigenvalue is lower bounded by the right hand side of (12).

Thus, expander design matrices satisfy the compatibility condition with a constant
φ(s , 3) = 1/6. Note the same conclusion can be drawn for the restricted eigenvalue as-
sumption.

4.4. The Juditsky-Nemirovski condition. In parallel to our work, [JN11] gave a verifi-
able condition of performance of the lasso and the Dantzig selector. Although the ma-
trices constructed from the expander graphs are not specifically studied in [JN11], they
study uncertainty conditions similar to the one stated in (8). More precisely, Section
5.3 in [JN11] says that a design X satisfies Hs ,1(1/5) if and only if for all γ ∈ Rp , for all
S ⊆ {1, . . . , p} such that |S| ≤ s ,

‖γS‖1≤ λ̂s ‖Xγ‖2+
1

5
‖γ‖1 ,

for some constant λ̂ > 0. Observe that (8) is a stronger requirement than Hs ,1(1/5).
Hence (8) implies Hs ,1(1/5). Thus Lemma 3.2 shows that expander design matrices sat-
isfy Hs ,1(1/5).

4.5. Universal distortion property. In [dC13], one presents Universal Distortion Prop-
erty.

Definition 4 (UDP(S0,κ0,∆)) — Given 1 ≤ S0 ≤ p and 0 < κ0 < 1/2, we say that a

matrix X ∈ Rn×p satisfies the universal distortion condition of order S0, magnitude κ0

and parameter∆ if and only if for all γ ∈Rp , for all integers s ∈ {1, . . . ,S0}, for all subsets

S ⊆ {1, . . . , p} such that |S |= s , it holds:


γS




1
≤∆
p

s


Xγ




2
+κ0



γ




1
.

Lemma 3.2 shows that if the quantities 1/ǫ and d are smaller than p then the normalized
adjacency matrix of an (s ,ǫ)-unbalanced expander with an expansion constant ǫ < 1/2
and left degree d satisfies UDP(S0,κ0,∆)with S0 = s ,∆= 1/(1−2ǫ), and κ0 = 2ǫ/(1−2ǫ).

4.6. Comparison of the standard conditions. Let X = (1/
p

d )Φ where Φ is the adja-
cency matrix of an unbalanced expander graph with left degree d . One sees that X satis-
fies neither the RIP2 property nor the coherence property. However, the aforementioned
subsections show that X satisfies Restricted Eigenvalue assumption, Compatibility Con-
dition, Hs ,1(1/5) and Universal Distortion Property with explicit constants. We have cho-
sen this latter to derive our results but one would have get the same upper bound of the
ℓ1-risk and ℓ2-prediction from the other conditions, see [dC13] for further details.
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5. DETERMINISTIC CONSTRUCTION OF DESIGN MATRICES USING PARVARESH-VARDY CODES

A long standing issue in error-correcting code theory is to give deterministic and
polynomial time constructions of expander codes [GUV09]. These constructions have
already been used in the compressed sensing framework, see [JXHC09] for instance.
To the best of our knowledge, this paper is the first work that uses these constructions
with the lasso and the Dantzig selector. The state-of-the-art constructions of expander
codes use Parvaresh-Vardy codes [PV05]. More precisely, Guruswami, Umans, and Vad-
han have recently proved the following theorem.

Theorem 5.1 ([GUV09]) — There exists a universal constant θ0 > 0 such that the fol-

lowing holds. For all α > 0 and for all p , s ,ǫ > 0, there exists a deterministic polynomial

time construction of a (2s ,ǫ)-unbalanced expander graph G = (A , B , E )with |A | = p , left

degree:

d ≤
�

(θ0 log p logs )/ǫ
�1+ 1

α ,

and right side vertices (of size n = |B |) such that:

(13) n ≤ s 1+α�(θ0 log p log s )/ǫ
�2+ 2

α .

Moreover, d is a power of 2.

Note the size n may depend on p and other parameters.

5.1. Probabilistic construction. Using Chernoff bounds and Hoeffding’s inequality,
the following proposition can be shown.

Proposition 5.2 (Theorem 4 in [HX07]) — Consider ǫ > 0, c > 1 and p ≥ 2s . Then,

with probability greater than 1− s exp(−c log(p )), there exists an (s ,ǫ)-unbalanced ex-

pander graph G = (A , B , E ) with |A | = p , left degree d such that d ≤ C1(c ,ǫ) log(p ) and

number of right side vertices, namely n = |B |, such that:

n ≤C2(c ,ǫ) s log(p ) ,

where C1(c ,ǫ),C2(c ,ǫ) do not depend on s but on ǫ.

Thus, with high probability, the normalized adjacency matrix of a random bipartite
graph with a number of left side vertices p and a number of right side vertices satis-
fying:

(14) n ≤C s log(p ) ,

where C > 0 is a universal constant, is an expander code design matrix. Observe that
the bound (14) is optimal, up to a subtractive s log(s ) factor, see for instance Proposition
2.2.18 in [CGLP11]. Hence, random expander design matrices match the optimal bound
(14) on the number of observations.

5.2. Deterministic construction. Consider the following polynomial time construc-
tion [GUV09] of an expander code design:

(1) Choose p the size of the signal β ⋆, and s the size of the sparse approximation,
(2) Set ǫ = 1/12 the expansion constant,
(3) Set α= 1/ log(s ) a tuning parameter,
(4) Construct an (2s ,ǫ)-unbalanced expander graph G , using Theorem 5.1.
(5) Set X= (1/

p
d )Φ, where Φ ∈ {0, 1}n×p denotes the adjacency matrix of the graph

G and d its left degree.

Observe that the number of observation n satisfies (13). Moreover, Proposition 4.1
shows X satisfies the compatibility condition.
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Proposition 5.3 — With the same constant θ0 > 0 as in Theorem 5.1, the following

holds. For all s , p such that 8 ≤ s ≤ p/2, there exists a deterministic polynomial time

construction of a design matrix X ∈Rn×p , where:

(15) n ≤ e s (12θ0 log p logs )3log(s ) ,

with (s , c0)-restricted ℓ1-eigenvalue φ(s , c0) larger than 4−c0

6
.

Proof. Invoke (13) with α= 1/ log(s ) and ǫ = 1/12:

n ≤ s 1+1/ log(s )�12θ0 log p log s
�2+2log(s ) ,

≤ e s
�

12θ0 log p log s
�3log(s ) ,

using log(s )≥ 2 for s ≥ 8. Using Proposition 4.1, we finish the proof. �

Observe that the number of observations (15) is almost optimal, see (14) for the optimal
bound in compressed sensing theory.

5.3. Lasso case. Using the aforementioned deterministic construction we derive the
following results.

Proposition 5.4 — With the same constant θ0 > 0 as in Theorem 5.1, the following

holds. For all s , p such that 8 ≤ s ≤ p/2, there exists a deterministic polynomial time

construction of a design matrix X ∈Rn×p where:

n ≤ e s (12θ0 log p logs )3log(s ),

satisfying that for all λℓ > 10σ
p

log p/3, it holds:



β ℓ−β ⋆




1
≤

2
�

1− λ0

λℓ

�

− 2
5

min
S ⊆{1,...,p},
|S |=k , k≤s .

h36

25
λℓ k +


β ⋆S c





1

i

,

where λ0 := 2σ
p

log p , and:



Xβ ℓ−Xβ ⋆




2
≤ min
S ⊆{1,...,p},
|S |=k , k≤s .

�

24

5
λℓ

p

k +
5


β ⋆S c





1

6
p

k

�

,

with a probability greater than 1−1/p
p

2π log p .

Proof. The proof follows from Theorem 3.1 and Theorem 5.1. �

5.4. Dantzig selector case.

Proposition 5.5 — With the same constant θ0 > 0 as in Theorem 5.1, the following

holds. For all s , p such that 8 ≤ s ≤ p/2, there exists a deterministic polynomial time

construction of a design matrix X ∈Rn×p where

n ≤ e s (12θ0 log p logs )3log(s ),

satisfying that for all λd > 3σ
p

log p , it holds:



βd−β ⋆




1
≤ 4
�

1− λ0

λd

�

− 1
3

min
S ⊆{1,...,p},
|S |=k , k≤s .

h36

25
λd k +


β ⋆S c





1

i

,

where λ0 := 2σ
p

log p , and:



Xβd−Xβ ⋆




2
≤ min
S ⊆{1,...,p},
|S |=k , k≤s .

�

24

5
λd

p

k +
5


β ⋆S c





1

6
p

k

�

,

with a probability greater than 1−1/p
p

2π log p .

Proof. The proof follows from Theorem 3.4 and Theorem 5.1. �
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FIGURE 2. Solution paths of Lasso using expander code designs (top
panel) or Gaussian designs (bottom panel). The original target β ⋆ has
10 non-zero coefficients equal to 1 (signal amplitude ‖β ⋆‖∞ is one) as
in Figure 1. The blue circles shows the estimated coefficients at the
true non-zero entries while the red crosses indicates the zero entries
in the target. In these experiments we have chosen p = 5000, n =

900, s = 10. In the left panel σ = 0.015 while in the right panel σ =
0.2. As expander code, we have drawn a uniform bi-partite graph with
left degree d = 60. The Gaussian matrix has i.i.d. N (0, 1/n ) entries.
Observe lasso exhibits the same behavior with expander code designs
or Gaussian designs.

6. CONCLUSIONS

We consider the design matrices derived form unbalanced expander graphs and
show that we can use them to recover an s -sparse approximation of any signal of size p

using the lasso or the Dantzig selector. We show that one needs only O (s log(p ))mea-
surements in the random case, and only O (s (log(p ) log(s ))3log(s )) using a deterministic
polynomial time construction.

Moreover, we have run numerical experiments to compare random expander code
design performances with Gaussian design performances. These latter are well-
established designs in high-dimensional regression, see for instance [CGLP11, CT06,
dC13]. Interestingly, expander code designs compares favorably and exhibit the same
performances as Gaussian designs, see Figure 2. Simulations agrees with the theoretical
guarantees of this paper. As a matter of fact, lasso using expander code designs enjoy
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the same (almost) optimal upper bound on its risk and prediction errors as lasso using
Gaussian designs.

Acknowledgments — The author would like to thank anonymous referees for their fruit-
ful remarks, their time and their patience.

REFERENCES

[BDF+11] J. Bourgain, S. Dilworth, K. Ford, S. Konyagin, and D. Kutzarova. Explicit constructions of rip ma-
trices and related problems. Duke Mathematical Journal, 159(1):145–185, 2011.

[BGI+08] R. Berinde, A. C. Gilbert, P. Indyk, H. Karloff, and M. J. Strauss. Combining geometry and combina-
torics: A unified approach to sparse signal recovery. In Communication, Control, and Computing,

2008 46th Annual Allerton Conference on, pages 798–805. IEEE, 2008.
[BRT09] P. J. Bickel, Y. Ritov, and A. B. Tsybakov. Simultaneous analysis of lasso and Dantzig selector. Ann.

Statist., 37(4):1705–1732, 2009.
[CDS98] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM J. Sci.

Comput., 20(1):33–61, 1998.
[CGLP11] D. Chafaı, O. Guédon, G. Lecué, and A. Pajor. Interactions between compressed sensing, random

matrices, and high dimensional geometry. forthcoming book, 2011.
[Cha08] V. Chandar. A negative result concerning explicit matrices with the restricted isometry property.

preprint, 2008.
[CP09] E. J. Candès and Y. Plan. Near-ideal model selection by ℓ_1 minimization. Ann. Statist., 37(5A):2145–

2177, 2009.
[CRT06] E. J. Candès, J. K. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate

measurements. Comm. Pure Appl. Math., 59(8):1207–1223, 2006.
[CT06] E. J. Candes and T. Tao. Near-optimal signal recovery from random projections: universal encoding

strategies? IEEE Trans. Inform. Theory, 52(12):5406–5425, 2006.
[CT07] E. J. Candes and T. Tao. The Dantzig selector: statistical estimation when p is much larger than n .

Ann. Statist., 35(6):2313–2351, 2007.
[dC13] Y. de Castro. A remark on the lasso and the dantzig selector. Statistics & Probability Letters,

83(1):304–314, 2013.
[DET06] D. L. Donoho, M. Elad, and V. N. Temlyakov. Stable recovery of sparse overcomplete representations

in the presence of noise. IEEE Trans. Inform. Theory, 52(1):6–18, 2006.
[GUV09] V. Guruswami, C. Umans, and S. Vadhan. Unbalanced expanders and randomness extractors from

Parvaresh-Vardy codes. J. ACM, 56(4):Art. 20, 34, 2009.
[HX07] B. Hassibi and W. Xu. Further results on performance analysis for compressive sensing analysis for

compressive sensing using expander graphs. Conf. Rec. 41st Asilomar Conf. Signals, Systems and

Computers (ACSSC 2007), pages 621–625, 2007.
[JN11] A. B. Juditsky and A. S. Nemirovski. Accuracy guarantees for l1-recovery. IEEE Trans. Inform. Theory,

57:7818–7839, 2011.
[JXHC09] S. Jafarpour, W. Xu, B. Hassibi, and R. Calderbank. Efficient and robust compressed sensing using

optimized expander graphs. IEEE Trans. Inform. Theory, 55(9):4299–4308, 2009.
[PV05] F. Parvaresh and A. Vardy. Correcting errors beyond the Guruswami-Sudan radius in polynomial

time. pages 285–294, 2005.
[Tib96] R Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B, 58(1):267–

288, 1996.
[vdGB09] S. A. van de Geer and P. Bühlmann. On the conditions used to prove oracle results for the Lasso.

Electron. J. Stat., 3:1360–1392, 2009.

YDC IS WITH THE DÉPARTEMENT DE MATHÉMATIQUES (CNRS UMR 8628), BÂTIMENT 425, FACULTÉ DES SCIENCES

D’ORSAY, UNIVERSITÉ PARIS-SUD 11, F-91405 ORSAY CEDEX, FRANCE.
E-mail address: yohann.decastro@math.u-psud.fr


	1. Introduction
	2. Unbalanced expander graphs
	3. Main results and proofs
	3.1. Lasso case
	3.2. Proof of Theorem ??
	3.3. Dantzig selector case
	3.4. Proof of Theorem ??
	3.5. Noise control

	4. Standard conditions
	4.1. RIP properties
	4.2. Coherence property
	4.3. Restricted eigenvalue and compatibility condition
	4.4. The Juditsky-Nemirovski condition
	4.5. Universal distortion property
	4.6. Comparison of the standard conditions

	5. Deterministic construction of design matrices using Parvaresh-Vardy codes
	5.1. Probabilistic construction
	5.2. Deterministic construction
	5.3. Lasso case
	5.4. Dantzig selector case

	6. Conclusions
	References

