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ABSTRACT: Multi-state systems have recently attracted a great deal of interest with regards to reliability and
maintenance. Since most mechanical equipment operates under some sorts of stress or load, it tends to degrade
over time, thus possibly resulting in discrete degradationstates (damage degrees), ranging from perfect function-
ing to complete failure. Over recent years, Hidden Markov Models (HMMs) have been applied to model these
discrete degradation states for diagnostic and prognosticpurposes. However, most of the reported researches
on HMMs for multi-state equipment in the literature consider only one degradation mechanism of degradation
processes. The present paper proposes a novel model called multi-branch HMM (MB-HMM) to deal with dete-
rioration processes modeling under multiple competing modes. To illustrate the proposed approach, a numerical
study is given.

1 INTRODUCTION

Condition-based Maintenance (CBM) plays nowa-
days an important role in the maintenance of engi-
neering systems since it has the ability to recommend
in advance proper maintenance actions by basing on
the information collected from condition monitoring
(Jardine et al. 2006). Within a CBM program, di-
agnostics and prognostics are two important aspects
where the former deals with fault detection, isola-
tion and identification when it occurs and the latter
helps to assess the current health state of the system
and predict the remaining time before a failure oc-
curs. An accurate prediction of the remaining use-
ful life (RUL) could provide ample time for main-
tenance engineers to schedule a repair, and to ac-
quire replacement components before they actually
fail (Zhang et al. 2005). Due to the stochastic nature
of the deterioration, stochastic processes have been
adapted to model the deterioration processes and have
shown the promising results within the CBM frame-
work (Van Noortwijk 2009, Le Son et al. 2012, Wang
and Wang 2012).

As a stochastic process, Hidden Markov Model
(HMM) has been successfully applied in many do-
mains, such as Speech recognition, genes and De-
oxyribonucleic acid (DNA) analysis (Rabiner 1989)
thanks to its strong mathematical basis. In the CBM
context, HMMs can divide equipment conditions into
several meaningful states, such as ”good”, ”minor
defect”, ”maintenance required” and ”failure” and

therefore easy to understand (Si et al. 2011). They
can also characterize the stochastic relationship be-
tween the features extracted from condition monitor-
ing data and the actual health states of the equip-
ment. For these reasons, HMMs, in the recent year,
are being more and more investigated to be used as
an efficient tool for the deterioration modeling and
the RUL estimation (Wang and Wang 2012). For ex-
ample, Baruahet al. employed HMMs for carrying
out both the diagnostics and the prognostics for metal
cutting tools (Baruah and Chinnam 2005). In (Zhang
et al. 2005), the authors used the HMMs to construct a
health/degradation index representing the current sys-
tem health status. This index was then fed into an
adaptive prognostic scheme in order to estimate the
RUL of a bearing. In order to better represent the real
degradation mechanism, several extensions of HMMs
have being adopted in the literature, such as Mix-
ture of Gaussian HMM (Tobon-Mejia et al. 2012),
age-based HMM (Peng and Dong 2011), segmented
HMM (Geramifard et al. 2012), segmented Hidden
Semi-Markov Model (Dong and He 2007), etc.

To our best knowledge, almost all of the HMM-
based frameworks in the literature consider only the
mono-mode case, meaning that there is only one
degradation mode occurring at one time. In prac-
tice, however, multiple degradation modes could ex-
ist in competition. In this paper, we propose a new
HMM-based structure called multi-branch Hidden
Markov Model (MB-HMM) to deal with this prob-
lem. In order to evaluate the effectiveness of the



proposed model with respect to a traditional mono-
branch HMM, a simulation study is implemented.

The remainder of the paper is organized as follows.
Section 2 is devoted to review some basic theories
of HMMs. Section 3 describes the extension to MB-
HMM and its application for diagnostics and prog-
nostics. To illustrate the methodology, a comparative
study is introduced in the section 4. Conclusion fol-
lows in Section 5.

2 METHODOLOGY

2.1 Basic theory of Hidden Markov Model

Hidden Markov Model is an extension of the Markov
chain in which the state process are latent and can be
only revealed through an observation process. This is
where the word ”hidden” comes from. In the deterio-
ration modeling framework, the hidden state process
represents the health states of the equipment, while
the observations can be measurable signals such as the
vibration signals or the features extracted from condi-
tion monitoring data. The relation between these two
processes is represented by a probabilistic model. Fig-
ure 1 illustrates an example of an HMM model.
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Figure 1: A five state left-right HMM

Mathematically, the complete specification of an
HMM consists of the following elements (Rabiner
1989)

• N, the number of states in the model

• M, the number of distinct observation symbols
per state, i.e., the discrete alphabet size

• A finite set of hidden states, i.e.,S =
{S1, S2, ..., SN}

• A state transition probability distribution, i.e.,
A = {aij}, whereaij = P (qt+1 = Sj | qt = Si)

• An observation symbol probability distribution,
i.e.,B = {bj (k)}
wherebj (k) = P (Yk | qt = Sj), 1 ≤ k ≤M

• An initial state probability distribution, i.e.,π =
{πi} whereπi = P {qt = Si}, 1 ≤ i ≤ N

For convenience, in this study, an HMM is repre-
sented by a compact notationλ = (A,B,π).

2.2 HMM topology selection

In order to apply the HMM model for the deteri-
oration modeling framework, one question is natu-
rally raised: Given the observations, how one can
choose/select a proper topology of the model. For in-
stance, how can we choose the type of the model,
how many states should be used or which observation
probability distribution is suitable? These questions
will be answered in this sub-section.

2.2.1 HMM type selection
There are several types of HMMs existing in the lit-
erature, such as the ergodic HMM or the left-right
(Bakis) model (Rabiner 1989). Since the deterioration
processes are often irreversible in reality, components
cannot come back from a bad health state to a better
one as time progresses. For this reason, the left-right
HMM model is chosen to be investigated. More pre-
cisely, the used left-right model in this study has the
characteristic that the state index can either stay the
same or increase by one. In other words, the compo-
nents can only stay in the current health state or move
to the next one. In this case, the coefficients of the
transition matrix of the model satisfy the following
properties:

aij = 0, j < i
aji = 0, j > i+ 1

aNN = 1,
aNi = 0, i < N

The stateSN is considered as the final (failure)
state.

2.2.2 Observation model selection
The observations are usually considered as discrete
symbols, hence discrete probability densities are used
to model the observation probabilities. However, in
the framework of machine condition monitoring, the
observations obtained are typically continuous signals
(Tobon-Mejia et al. 2012). In this case, the continu-
ous HMM possessing a continuous probability den-
sity function (pdf) to model the emission probabilities
could give a better accuracy in diagnostics, compared
to the discrete HMM (Wang and Wang 2012). How-
ever, to ensure that the parameters of the HMM can
be estimated in a convenient way, the observation pdf
should be elliptically symmetric densities or mixtures
of elliptically symmetric pdf (Rabiner et al. 1985). For
this reason, the Gaussian pdf is used in this study as
the observation model:

bj (O) = N (O,µj,Σj) , 1 ≤ j ≤ N

whereµj andΣj are the mean vector and covari-
ance matrix in stateSj.



2.2.3 Number of states selection
Selecting the number of states in an HMM model is
always an interesting but difficult question. It exists
several methods as well as criteria for this selection
purpose, such as Akaike information criterion (AIC),
Bayes information criterion (BIC), Cross-validation,
etc. (Knoblauch 2004). In this study, we investigate
the use of BIC for selecting the number of stateN .

The Bayes information criterion (BIC) is defined as
follow

BIC = −2L+ klogN (1)

whereL is the log-likelihood function;k is the
number of free parameters to be estimated andN is
the number of data points in observation sequences
O. The chosen model will be the one having the min-
imum BIC value.

3 EXTENSION TO MULTI-BRANCH HIDDEN
MARKOV MODEL

3.1 General principles

The idea of the multi-branch HMM have been ap-
peared in the literature and have mainly been applied
for the applications of handwriting recognition (Lee,
Kim, & Kim 2001, Wang, Brakensiek, Kosmala, &
Rigoll 2001). In this section, we will present the gen-
eral principle of MB-HMM for modeling degradation
processes under different modes. An example of a
two-branch HMM is presented in the figure 2.

Branch 1

Observation 

densities

Initial state

Branch 2

Figure 2: Example of a two-branch HMM

Such a multi-branch model is suitable to model the
equipment deterioration process which could follow
different modes due to different changes of the op-
erating condition. Considering the propagation of the
crack appearing in a bearing. In a normal condition,
the bearing operates normally. However, when more
stress is applied on it, the crack could initiate and
then propagate with different rates. The more stress
applied, the more quickly the crack propagates. In the
MB-HMM model, each constituent branch is dedi-
cated to model a different deterioration mode. It is
worth noting that the observations emitted from the
corresponding states in different constituent branches
could be similar (e.g. having the same probability
distributions). The only thing that distinguishes the

branches is the rate of deterioration which is repre-
sented by the transition probabilities.

There are some important assumptions that must
be made in constructing the model. Firstly, once the
equipment has degraded following one mode, it will
follow that mode until it reaches the end of its life.
There is hence no connection between the branches.
The second assumption is that, the normal condition
can last very long with no special characteristics in
the measurement. We are interested in the deteriora-
tion process, with the purpose of assessing the deteri-
oration level of equipment as well as predict its resid-
ual lifetime when it has suffered a problem. For this
reason, the initial state can be assumed as a dummy
state with no emission of observation. Each branch
can therefore be seen as a single model and is assigned
an a priori probability πk as shown in the figure 2.
Thesea priori probabilities satisfy:

πk = P (λk) = Kk/K,

M
∑

k=1

πk = 1 (2)

whereλk denotes the constituent HMM for branch
k, Kk is the number of training data sequences corre-
sponding to modek, K is the total number of training
data sequences andM is the total number of branches
of the MB-HMM.

3.2 MB-HMM for diagnostics and prognostics

The application of MB-HMM for diagnostics and
prognostics can be implemented in two phases, as
shown in figure 3.

In the off-line phase, the training data is classified
into M different groups and then, each constituent
HMM model is trained individually with the data in
the corresponding group. At this step, the well-known
Baum-Welch algorithm can be used without any mod-
ifications. In the next step, the number of data in each
group is used to assign thea priori probabilities for
each model (c.f equation (2)). Finally, a trained MB-
HMM model is obtained.

In the online phase, the diagnostics involves two
sessions. In the first session, the mode that the equip-
ment is following must to be identified . This goal
can be achieved by using the decision theory. For in-
stance, the model that has the maximuma posterior
probability, given the data, can be chosen in order
to minimize the misclassification rate, (Bishop et al.
2006). That is:

k̂ = argmax
k

P (λk | O) (3)

Note that, using Bayes’ theorem, thesea posteriori
probabilities can be calculated as follows:

P (λk | O) =
P (O | λk)P (λk)

∑M

k=1P (O | λk)P (λk)
(4)
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Figure 3: Proposed MB-HMM framework for diagnostics and prognostics

whereP (O | λk) is the likelihood of the modelλi

given the dataO and can be calculated thanks to the
popular forward-backward algorithm.P (λk) is calcu-
lated from equation (2).

After having identified the deterioration mode, the
next stage of the diagnostics is to recognize the ac-
tual health state of the equipment. This is carried out
in two steps consisting of finding the single state se-
quence (path) which is the most probable one rep-
resenting the given test data, and considering the fi-
nal state as the actual health state. The first step is
done thanks to the well-known Viterbi algorithm. Let
qt denote the equipment state at timet and Q =
(q1, q2, . . . , qt) denote a path till the current time.
Given the estimated mode, the most probable path is
the one that gives the maximum joint probability of
the path and the observation:

Q∗ = argmax
Q

k̂

P (O,Qk̂ | λk̂) (5)

where Qi represents a possible path within the
modei. The actual health state of the equipment is
the final one of the pathQ∗.

3.2.1 RUL calculation
Given the deterioration mode and the current health
state estimated from the diagnostic stage, the RUL
estimation can be conducted the same as in a sin-
gle HMM case and is straightforward. In the MB-
HMM framework, this estimation, however, strongly
depends on the mode detection. Indeed, a wrong de-
terioration mode detection may result in a large bias
in the RUL estimation. For example, if a crack prop-
agates with a high rate, the detection of a low rate
mode may lead to an extremely larger value of the
RUL than the actual one. This phenomenon often oc-
curs at the beginning of a defect propagation since
the observations are insufficient to show an obvious

deterioration trend. In this study, the Bayesian Model
Averaging (BMA) technique (Hoeting et al. 1999) is
implemented to tackle this problem. The RUL distri-
bution is calculated as an average of the posterior dis-
tributions under each constituent model, weighted by
their posterior model probability:

P (RUL | O) =

M
∑

k=1

P (RUL | λk,O)P (λk | O) (6)

whereP (λk | O) is calculated from the equation
(4).

The RUL estimation now turns to the estimation
of the individual RULs under each constituent HMM,
which is straightforward and can be computed in a re-
cursive way as follows. Given the test data, the health
state of equipment is identified thanks to the Viterbi
algorithm. The RUL can be defined as the necessary
time steps to reach for the first time the final stateSN

from the current stateSi (i < N):

RUL =min{n ≥ 0 : qt+n = SN | qt = Si} (7)

whereqt denote the health state at the timet. By this
definition, the RUL can be seen as a discrete variable
and its probability mass function is given by

P (RUL = n | qt = Si) = P (qt+n = SN ,

qt+n−1 6= SN , . . . , qt+1 6= SN | qt = Si) (8)

Denoteh(n)
i = P (RUL = n | qt = Si). Since the

model is strictly one-order left-right topology HMM,
the RUL can be calculated by the following backward
recursive equations:

At stateSN−1:

h
(1)
N−1 = a(N−1)N (9)



h
(n)
N−1 = a(N−1)(N−1)h

(n−1)
N−1 (10)

At stateSN−2:

h
(1)
N−2 = a(N−2)N (11)

h
(n)
N−2 = a(N−2)(N−2)h

(n−1)
N−2 + a(N−2)(N−1)h

(n−1)
N−1 (12)

· · · · · ·
At stateSi

h
(1)
i = aiN (13)

h
(n)
i = aiih

(n−1)
i + ai(i+1)h

(n−1)
i+1 (14)

whereaij is the transition probability from stateSi to
stateSj and is obtained from the transition matrixA.

After calculating all the individual components, the
RUL estimation under the MB-HMM can be accom-
plished by the equation (6).

4 NUMERICAL EXAMPLES

4.1 Fatigue Crack Growth model for data
generation

To evaluate the proposed MB-HMM-based diagnostic
and prognostic framework performance, it is neces-
sary to have the data which represent several different
deterioration modes. In this section, the Fatigue Crack
Growth (FCG) model is used to model the crack ap-
pearing and propagating within a bearing and to gen-
erate both the training as well as the testing data. The
FCG is chosen since it has been widely used to de-
scribe the crack propagation in the literature (Huynh
et al. 2012, Myotyri et al. 2006). The bearing is sup-
posed to operate under different operation conditions
so that the crack will propagate with different rates
which represent different deterioration modes for our
purpose.

4.1.1 Fatigue Crack Model
The FCG model is constructed based on the popular
Paris-Erdogan equation to express the crack growth
rate:

dx

dt
= C (∆K)n (15)

wherex is the crack depth,t is the time,∆K is the
stress intensity amplitude andC andn are constant
depending on the material property. It is shown that
∆K is roughly proportional to square root of crack
depthx by a factorβ: ∆K = β

√
x (Myotyri et al.

2006).
To take into account the stochastic aspect of the

crack propagation, equation (15) could be discretized
and then randomized by adding a multiplicative factor
following a log-normal distribution as follows:

xti = xti−1
+ ewtiC

(

βe
√
xti−1

)n
∆t (16)

where wti are independent and identically dis-
tributed according to a Normal distributionN (0, σ2

w),
0< xti−1

< xti <∞. This discretized and randomized
model allows us to determine recursively the crack
depthxti at timeti given the previous depthxti−1

and
the model parameters. By this way, the deterioration
data can be generated.

For modeling different deterioration modes, the
factor β is considered to be a functionβ(e) of the
operating environment statee as below (Huynh et al.
2012):

β (e) = βb · eγe (17)

whereβb is the base stress level of system, the val-
uesγe ≥ 0, e = 1,2, . . . ,M determine the level of ex-
tra stress linking with the statee of the environment.
Obviously, from the equations (16) and (17), the prop-
agation rate is directly proportional to the parameters
γe: the greater the value ofγe is, the more quickly the
crack propagates.

4.1.2 Observation model
The actual crack depth is difficult to be directly and
accurately measured because of several different rea-
sons (Huynh et al. 2012). Hence, we need an observa-
tion model to represent the relationship between these
actual values and the measure ones. In this study, the
measurement is assumed to be the sum of the actual
crack depth and a zero-mean Gaussian noise. LetX
denote the crack depth andY denote the correspond-
ing measurement, the observation model is:

Y =X + ξ (18)

whereξ ∼ N
(

0, σ2
ξ

)

is the measurement error.

4.2 Application of MB-HMM for FCG data

In this section, the bearing is supposed to operate
under two different environments and therefore the
crack propagates in two different rates. A two-branch
HMM is chosen to represent these two deterioration
modes. The following parameters of the FCG model
are chosen:C = 0.005, n = 1.3, βb = 1, σw = 1.7,
∆t = 1, γe = [0 0.75]T , σ2

ξ = [5 10]T where the
subscriptT denotes the transpose of a vector. The dif-
ferent variance values ofσ2

ξ mean that the measure-
ment error may depend slightly on the operating con-
dition.

The bearing is supposed to be failed once the crack
depth reaches a critical leveld = 100. 100 data curves
have been generated by using the FCG model with the
above parameters and used as the training data. Figure
4 illustrates this training data set.

In this study, the number of deterioration modes
is assumed to be known beforehand. Therefore,
”kmeans” tool is used to classify the failure times into
2 ”clusters”. Based on this, the training data can be
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Figure 4: Two-mode training data

separated into two groups, which is then used to train
different branches of the MB-HMM.

In order to train each constituent model, it is neces-
sary to determine the number of states of each model.
This task is done by using the BIC criterion. Figure
5 illustrates the BIC values with respect to different
state numbers for a branch of the MB-HMM.

0 5 10 15
0.5

1

1.5

2

2.5

3
x 10

5

number of states

B
IC

 v
al

ue

"knee" point
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Since the crack propagation herein is a continuous
process, the increase in the states numberN will ob-
viously reduce the BIC value. To avoid the overfitting
situation, it is sufficient to take the ”knee” point on
the BIC curve. The valueNstatesmode1 = 10 is hence
chosen for this example.

After having determined the number of states, each
model is trained thanks to the Baum-Welch algorithm.
The next step is to assign thea priori probability for
each branch (c.f. equation (2)) and the result are:π1 =
0.41 andπ2 = 0.59. An MB-HMM is obtained and the
offline phase is terminated.

We now move to the on-line phase. One data curve
representing the propagation of the crack depth from
the beginning to the end of bearing life is also gener-
ated by the FCG model. This curve serves as the test
data and is shown in the figure 6 (upper sub-figure).
Only the red part till the actual timetact = 100h are
assumed to be observable. The estimated RUL pdf is
illustrated in the lower sub-figure of the figure 6.

To simulate the on-line RUL estimation problem,
the actual timetact is gradually replaced by30h to-
wards the failure. After each replacement, more in-
formation about the deterioration is achieved and
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Figure 6: Observations and RUL estimation attact = 100h

the diagnostic and prognostic procedures are re-
implemented. Figure 7 represents the mean value of
the estimated RUL associated with the95% confi-
dence interval. It can be realized that, at the early
instances, the lack of information due to the limited
observations results in the bias and large variance in
the RUL estimation. However, the actual values al-
ways lie within the95% confidence interval. As the
time passes, the length of the confidence interval sig-
nificantly decreases and the estimated RUL converges
to the real value. This demonstrates demonstrates the
accuracy of the proposed RUL estimation method.
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Figure 7: RUL estimation at different time instances

4.2.1 MB-HMM vs average HMM
Investigating the advantage of the proposed approach
naturally raises a question: given the same data set,
which method between the one using the proposed
MB-HMM and the one using only an ”average”
HMM will give the better performance in RUL pre-
diction. To answer such question, a comparative study
is given in this section with100 test data curves. The
prognostic performance of each method is character-
ized by the root mean squared error (RMSE) metric.

For notation convenience, we denote the average
HMM by AVG-HMM. In the training phase, the train-
ing data set in the previous section is not grouped and
is used as a whole to train only one AVG-HMM. This
model is then used in the on-line phase to estimate
the RUL. Attact = 100h, we obtain RMSEAVG-HMM =
74.4. Compared to the corresponding result of the
MB-HMM: RMSEMB−HMM = 52.5, it can be con-
cluded that the MB-HMM give a better performance



in RUL estimation compared with the AVG-HMM for
this case.

Another interesting question raised in evaluating
the advantages of the proposed MB-HMM is: does the
above conclusion still hold in case that the two prop-
agation rates are not quite different, or in case that
there are two obvious trends in the training data? To
answer this question, it is necessary to define a ”dis-
tance” between two deterioration modes. In this study,
the ”mode distance” is defined by the gap between
the two propagation rates and can be changed through
the parameterγe of the FCG model. Indeed, as indi-
cated in the section 4.1.1, the propagation rate of a
crack is directly proportional toγe. The greater the
value ofγe is, the more quickly the crack propagates.
Therefore, by fixingγ1 and do varyingγ2, the mode
distance is changed. Figure 8 shows that, when the
distance between modes increases, the RMSE given
by MB-HMM approach decreases while with AVG-
HMM, the RUL prediction error increases. It can be
concluded that the larger the distance between deteri-
oration modes is, the better performance in RUL es-
timation it is given by the proposed MB-HMM ap-
proach, in comparison to an ”average” HMM.
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5 CONCLUSION

The present paper proposes a novel model called
multi-branch Hidden Markov Model (MB-HMM) to
deal with the deterioration modeling problem in case
that there are several competing modes existing in
deterioration mechanism of equipment. A diagnos-
tic and prognostic framework based on the proposed
model is also given. The actual health state recogni-
tion and the RUL estimation can be implemented in
the same way as the traditional HMM. However, by
using different HMM models for different modes, to-
gether with thea priori probabilities of each model,
the MB-HMM shows a very promising result in deal-
ing with the multi-mode deterioration mechanism.

Future research will be focused on the extension
of the MB-HMM to a multi-branch Hidden semi-
Markov Model (MB-HSMM) due to the fact that the
state sojourn time of an HMM follows an exponential
distribution, which may not be hold in practice. An-
other possible extension of the model is the ability of

transition between the states of the different branches.
The proposed model and the extension should also be
validated on the data of real systems.
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