
HAL Id: hal-01027462
https://hal.science/hal-01027462

Submitted on 22 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Methods and Algorithms for the Minimization of the
Energy Consumed by an Electrical Vehicle

Riadh Omheni

To cite this version:
Riadh Omheni. Methods and Algorithms for the Minimization of the Energy Consumed by an Elec-
trical Vehicle. 2011. �hal-01027462�

https://hal.science/hal-01027462
https://hal.archives-ouvertes.fr

Faculty of Sciences and Technology, University of Limoges

ENSEEIHT-IRIT, Toulouse

Department of Mathematics and Computer Science

M2 Research ACSYON

Supervisor: Frédéric MESSINE

Methods and Algorithms for the

Minimization of the Energy Consumed by an

Electrical Vehicle

Riadh OMHENI
<riadh.omheni@gmail.com>

Limoges, July 7, 2011

Acknowledgements

I would like to thank my supervisor, Professor Frédéric Messine, for his continual sup-

port, guidance, assistance, and encouragement throughout the internship and the writing

of this report.

I would also like to thank Abdelkader Merakeb for his assistance at the beginning of

this internship. Thank you to all APO team members who welcomed me in the IRIT-

ENSEEIHT.

I will be always grateful to all the teaching staff of the Faculty of Sciences and Technol-

ogy of Limoges involved in the formation of Master ACSYON for delivering a high quality

program for us. In particular, I would like to thank Professors Samir Adly and Ihsen

Yengui for providing me the opportunity to pursue my studies by this master.

Last, but not at all least, I would like to thank all my family. I am grateful to my

parents for their support throughout my study.

1

Contents

Introduction 9

1 A Branch and Bound method for minimizing the energy consumption of

an electrical vehicle 11

1.1 Introduction . 11

1.2 Model of electrical vehicle . 12

1.3 Approximation of Problem (1.2) . 13

1.4 A Branch and Bound based method . 15

1.4.1 Bounding techniques . 15

1.4.2 Alternative heuristics for computation of bounds 16

1.4.3 Branch and Bound Algorithm . 17

1.5 Conclusion . 19

2 Implementation in Fortran 90 21

2.1 Introduction . 21

2.2 Implementation of the fourth-order Runge-Kutta method 22

2.3 Software architecture . 23

2.4 Numerical results . 25

2.5 Conclusion . 28

3 Extension of the method dedicated to long travels and travels with slopes 29

3.1 Introduction . 29

3.2 Heuristics H5 and H6 . 29

3.3 Case of long travels . 33

3.3.1 Case without constraint on velocity 34

3.3.2 Case with null final velocity . 35

3.3.3 Case with constraints on the velocity state variable and on the final

velocity . 37

3

3.3.4 Conclusion . 38

3.4 Management of slopes . 39

3.4.1 Algorithm . 39

3.4.2 Numerical results . 40

3.4.3 Conclusion . 44

3.5 Conclusion . 45

Conclusion 47

Bibliography 49

A Interpolation 51

B Errors due to stalls 53

B.1 Introduction . 53

B.2 Presentation of the problem . 53

B.3 Numerical results . 54

B.4 Conclusion . 56

C More numerical results 57

List of Figures

2.1 Software architecture of our code in Fortran 90. 24

2.2 Case : P = 10; s = 1; posf = 100m. 27

3.1 Behavior of the position matrix. 30

3.2 Behavior of the energy matrix. 31

3.3 Behavior of the velocity matrix. 31

3.4 CPU-time, case: P = 5; s = 10. 33

3.5 Case : P = 15; s = 1; posf = 1000m. 35

3.6 Case : P = 15; s = 1; posf = 1000m; V f = 0 km/h. 36

3.7 Case : P = 15; s = 1; posf = 800m; V (t) ≤ 50 km/h; V f = 50 km/h. . . 38

3.8 Free final velocity case with a slope of +3◦. 42

3.9 Null final velocity case with a slope of −3◦. 43

3.10 Non-zero final velocity and a limit on the speed with a slope of −3◦. 44

B.1 Relative error on the energy matrix . 54

B.2 Numerical simulation results of element (70.9km/h, 60A) over a sample of

length 2s using “classical” method. 55

B.3 Numerical simulation results of element (70.9km/h, 60A) over a sample of

length 2s using formulas (B.1), (B.2) and (B.3). 55

B.4 Numerical simulation results of element (20 km/h, 20A) over a sample of

length 2s using the two methods. 56

C.1 Case : P = 10; s = 1; posf = 100m; V f = 0km/h 58

C.2 Case : P = 10; s = 1; posf = 100m; V (t) ≤ 50km/h; V f = 50km/h. . . . 59

C.3 Case : P = 10; s = 1; posf = 90m; V (t) ≤ 50km/h; V f = 0km/h. 60

5

List of Tables

2.1 The influence of the chosen precision on the performance of results. 22

2.2 Table of refined solutions: free final velocity. 26

3.1 Percentage of success of different heuristics with respect to the studied in-

stance. 32

3.2 Performance of heuristics H5 and H6 in CPU-time. 33

3.3 Refined solutions: free final velocity. 34

3.4 Refined solutions with null final velocity. 36

3.5 Refined solutions: constraints on the velocity state and final velocity (V f =

50km/h). 37

3.6 Influence of the choice of β on the quality of solutions. 41

3.7 Solutions for a displacement of 100m including a slope +3◦. 41

3.8 Solutions for a displacement of 100m including a slope −3◦. 43

C.1 Null final velocity case. 57

C.2 Constraints on the velocity state (V (t) ≤ 50km/h) and the final velocity

(V f = 50km/h). 58

C.3 Constraints on the velocity state (V (t) ≤ 50km/h) and the final velocity

(V f = 0km/h). 59

7

8

Introduction

I have done my internship in the APO team (Parallel Algorithm and Optimization) of IRIT

(Institut of Research in Informatic of Toulouse) under the supervision of Frédéric Messine,

Associate Professor in INPT-ENSEEIHT.

Increasing concerns about environmental issues, such as global warming and greenhouse

gas emissions, as well as the predicted scarcity of oil supplies (and geopolitical issues related

to oil suppliers) have made energy efficiency and reduced emissions a primary selling point

for automobiles, and a concern for many governments. Because of this, electrical vehicles

become extremely popular (even though not very widespread) and represent an icon of

“good” technology. Indeed, electric motors are more efficient than internal combustion

engines in converting stored energy into driving a vehicle, and electric drive vehicles do

not consume energy while at rest or coasting, and some of the energy lost when braking is

captured and reused through regenerative braking, which captures as much as one fifth of

the energy normally lost during braking. Typically, conventional gasoline engines effectively

use only 15% of the fuel energy content to move the vehicle or to power accessories, and

diesel engines can reach on-board efficiencies of 20%, while electric drive vehicles have

on-board efficiency of around 80%.

In recent years, the electrical vehicle energy management has been an important subject

and a lot of research has been carried out in this field. However, satisfactory solutions or

evident answers for this kind of research do not exist up to now. Indeed, this problem

is modeled by a Bang-Bang optimal control problem. The presence of a constraint on a

state variable and the Bang-Bang structure of the control make this problem very hard

to solve; i.e., the classical optimal control techniques including indirect methods based on

Pontryaguine’s maximum principle and direct methods based on discretization cannot lead

to satisfactory results.

In order to solve efficiently this problem, an original methodology was developed by

Abdelkader Merakeb and Frédéric Messine [3,4]. They try to reformulate the initial problem

9

10

following the construction of a current regulator technique to obtain a global optimization

problem which is first discretized and then solved using a Branch and Bound algorithm.

In this internship, we focus on the problem of minimization of the energy consumption

of an electrical vehicle achievable on a given driving cycle. Our work is divided into 3

chapters. Chapter 1 presents a detailed description of the method developed in [3,4] to

solve the electrical energy management problem. Chapter 2 is devoted to describe the

software architecture of our Fortran 90 code. The benefits of this approach are discussed

on some examples. In Chapter 3, we extend the original method to study some extensions.

We begin with proposing new heuristics to approach the exact bounds used in the Branch

and Bound algorithm. This is followed by studying problems of long travels and of slopes

management.

Chapter 1

A Branch and Bound method for

minimizing the energy consumption of

an electrical vehicle

1.1 Introduction

An electrical vehicle uses an electrical energy source for its displacement. This energy

source can be reversible, in the sense that it can be recovered. The problem of energy

management of electrical vehicles can be expressed as an optimal control problem which is

hard to solve. The main classical approaches have been studied but they did not provide

satisfactory solutions. In fact, despite its accuracy and precision, the implementation

of indirect methods using shooting methods may deal with some difficulties. Indeed, it

transforms the initial problem by solving a nonlinear system. In this case, the numerical

solution will be extremely sensitive to the choice of the initial point. Note that the presence

of a constraint on a state variable increases the complexity of its use. On the other

hand, the use of direct methods based on partial or total discretizations lead to a large

scale optimization problem. It should be noted also that these methods are less suitable

for certain special cases, including problems with a Bang-Bang structure yielding a large

number of switches (as in our case).

An innovative way to solve this problem was developed by Abdelkader Merakeb, in his

thesis under the supervising of Frédéric Messine [3,4]. This new methodology is based on

a discretization technique associated with a Branch and Bound algorithm.

In this chapter, we recall this new methodology of resolution. We begin with a simple

presentation of the studied problem and its modeling. This is followed by giving the

11

12 Chapter 1

method to approximate the optimal control problem as a global optimization problem by

considering a system of current regulator. Finally, we present the method developed in [3,4]

to solve, using a Branch and Bound algorithm, the electrical vehicle energy management

problem during an imposed time and displacement.

1.2 Model of electrical vehicle

The total electrical energy consummated during the displacement on the cycle of time

[0, tf] (where tf denotes the final time) is given by the following formula:

E(tf , im, u) =

∫ tf

0

(u(t)im(t)Valim +Rbatu
2(t)i2m(t))dt (1.1)

The quadratic term reflects the losses due to the internal resistance of the battery.

The electrical vehicle energy management can be reformulated as an optimal control prob-

lem with a Bang–Bang structure:

minim(t),Ω(t),pos(t),u(t) E(tf , im, u)

s.t.

i̇m(t) =
u(t)Valim−Rmim(t)−KmΩ(t)

Lm

Ω̇(t) = 1
J

(

Kmim(t)−
r
Kr

(

MgKf +
1
2
ρSCx

(

Ω(t)r
Kr

)2))

˙pos(t) = Ω(t)×r

Kr

|im(t)| ≤ 150

u(t) ∈ {−1,+1}

(im(0),Ω(0), pos(0)) = (i0m,Ω
0, pos0) ∈ R

3

(im(tf),Ω(tf), pos(tf)) ∈ Γ ⊆ R
3

(1.2)

The differential equations describing the constraints come from mechanical and electrome-

chanical laws. The state variables are:

– im the current inside the motor,

– Ω the angular velocity,

– pos the position of the vehicle.

1.3 Approximation of Problem (1.2) 13

The control u is in {-1,1} (Bang-Bang type). In this problem, we have a constraint on a

state variable: |im(t)| ≤ 150A in order to restrict the current in the motor to discard the

possibility to destroy it.

The other terms are fixed parameters and represent some physical things: Kr = 10,

the coefficient of reduction; ρ = 1.293kg/m3, the air density; Cx = 0.4, the aerodynamic

coefficient; S = 2m2, the area in the front of the vehicle; r = 0.33m, the radius of the wheel;

Kf = 0.03, the constant representing the friction of the wheels on the road; Km = 0.27, the

coefficient of the motor torque; Rm = 0.03 Ohms, the inductor resistance; Lm = 0.05H,

the inductance of the rotor; M = 250kg, the mass; g = 9.81m.s−2, the gravity constant;

J = M × r2/K2
r ; V alim = 150V , the battery voltage; Rbat = 0.05 Ohms, the resistance of

the battery.

This problem is subject to boundary conditions. The initial conditions are given with

the initial point (i0m,Ω
0, pos0) at the starting time t0 = 0 which is always fixed to (0,0,0)

in this study, but the target set Γ is free and depends on the instances of the problem (see

next chapters).

1.3 Approximation of Problem (1.2)

On the basis of its properties, Problem (1.2) can be approximated as an optimization

problem. In fact, the formula (1.1) of the energy is only a function of the current im and

the control u. That is why it is just required to search the trajectory of the current in the

motor that minimize the energy consumption. If we discretize the interval of time [0, tf] by

fixing the value of the control u, it is necessary to have very small steps (≤ 10−3) in order

to be able to control the current in the motor because the current changes too roughly

(about 3 amps per 10−3 seconds). This will generate a very huge mixed integer global

optimization problem which is difficult to solve with direct methods of optimal control.

In order to ovoid these problems, the idea is to impose during some short time the

value of the current in the electrical motor of the vehicle which is possible using the control

parameter u(t) and a reference current.

u(t) := −1 if im(t) > iref + ∆
2
,

u(t) := +1 if im(t) < iref − ∆
2
,

else u(t) takes its previous value.

The control u switches between two values when the current im in the motor exceeds the

14 Chapter 1

value of iref with respect to a tolerance ∆. This technique is a way to build a current

regulator which is a first step before building a velocity control for an electrical car. Thus,

in this way, the system of differential equations to be solved is the following:

V St0,iref (t) :=

Ė(t) = u(t)im(t)Valim +Rbatu
2(t)i2m(t)

i̇m(t) =
u(t)Valim−Rmim(t)−KmΩ(t)

Lm

Ω̇(t) = 1
J

(

Kmim(t)−
r
Kr

(

MgKf +
1
2
ρSCx

(

Ω(t)r
Kr

)2
))

˙pos(t) = Ω(t)×r

Kr

u(t) :=

−1 if im(t) > iref + ∆
2

+1 if im(t) < iref − ∆
2

u(t) else.

(E(t0), im(t0),Ω(t0), pos(t0)) = (Et0 , it0m,Ω
t0 , post0) ∈ R

4

u(t0) = 1;

(1.3)

where t0 is the initial time which is not necessary equal to 0.

This system of differential equations can be efficiently solved using classical numerical

integrator such as Euler, RK2, RK4 with a step of time less than 10−3 (else too many

numerical errors to control im are generated). In our work, we use a step which is equal to

10−4. The function V St0,iref (t) will compute all values of E(t), im(t), Ω(t), pos(t), for all

t ∈ [t0, tf] but, in practice only discretized times ti ∈ [t0, tf] will be taken.

Here, we are only interested by final values of state variables, consequently, we define

the function:

V SF (iref, t0, tf) := (E(tf), im(tf),Ω(tf), pos(tf)) ∈ R
4.

The computations are performed using the function V St0,iref (t) which solves the system of

differential equations (1.3) under the initial conditions (Et0 , it0m,Ω
t0 , post0).

The approximation of Problem (1.2) using the system (1.3) is generated by subdividing

the cycle of time [0, tf] to P sub-intervals. In each sample of time [tk−1, tk] with k ∈

{1, . . . , P} (tk = k ×
tf
P
), we apply a reference current irefk, which takes its values in

[−150, 150] to satisfy directly the constraint on the state variable im in Problem (1.2).

1.4 A Branch and Bound based method 15

Hence, we focus on the resolution of the following global optimization problem:

miniref∈[−150,150]P
∑P

k=1 Ek

s.t.

(Ek, ik,Ωk, posk) := V SF (irefk, tk−1, tk)

(E0, i0,Ω0, pos0) := (E0, i0m,Ω
0, pos0)

(ip,Ωp, posp) ∈ Γ ⊆ R
3

(1.4)

Problem (1.4) is a good approximation of Problem (1.2).

1.4 A Branch and Bound based method

For the moment, we are not able to solve exactly the global optimization problem (1.4).

Thus, we need also to discretize the possible values of the reference current: iref ∈

{−150,−150 + s,−150 + 2 × s, . . . , 150}P ; we will take values for s that divide exactly

the interval [−150, 150]. Therefore, the set of solutions becomes finite and could be enu-

merated. However, in order to have a good approximation for the resolution of Problem

(1.4), we need to discretize into small sample of time. In this case, the set of possible

solutions becomes rapidly very huge (about (300
s

+ 1)P). The idea will be to use a Branch

and Bound algorithm.

1.4.1 Bounding techniques

To be able to use a Branch and Bound algorithm, we need to elaborate a technique that

allows us to compute bounds of the 4 parameters: Ek, ik, Ωk, posk over all the discrete

box IREF ⊆ {−150,−150 + s,−150 + 2× s, . . . , 150}P . In order to be more efficient, we

compute 4 matrices ME, Mim , MΩ, Mpos where the columns correspond to values where

iref is fixed with it0m = iref and the rows provide values when a velocity Ωt0 is given (we

discretize also the possible values of the velocity).

iref = −150 + (j − 1)s

.

.

.

Ωtk−1 = (i− 1)st_V . . . mΘ(i, j)

st_V is the discretization step of the velocity values and Θ represents one of the symbols

E, Ω, im or pos.

16 Chapter 1

eE = (1, 0, 0, 0), eim = (0, 1, 0, 0), eΩ = (0, 0, 1, 0) and epos = (0, 0, 0, 1) are the vectors

of the canonical basis of R
4 which serve in computing the element mΘ(i, j) using the

following formula:

mΘ(i, j) =< V SF (iref, tk−1, tk), eΘ >,

where < ., . > denotes the scalar product.

mΘ(i, j) is obtained using the function V Stk−1,iref (t) over a sample of time [tk−1, tk] under

the following initial conditions:

(Etk−1 , itk−1

m ,Ωtk−1 , postk−1) = (0, iref,Ωtk−1 , 0).

For example, mE(i, j) represents the value of the energy which is consummated in the

interval [tk−1, tk], where iref corresponds to the j-th components of the set {−150,−150+

s,−150 + 2× s, . . . , 150} with it0m = iref and the i−th line corresponds to the discretized

value of the velocity , the other initial values are taken equal to zero: Etk−1 = postk−1 = 0.

When a discrete box IREF is considered, we compute the bounds of E, im, Ω and pos

using the following method. Firstly, we compute the set of indices I = {i1, i2, . . . , in}

and J = {j1, j2, . . . , jm} corresponding respectively to the possible values of the speed at

the previous sample and the possible values of iref . Then, we compute bounds corre-

sponding to the maximal and minimal values of mE(i, j),mim(i, j),mΩ(i, j),mpos(i, j) with

(i, j) ∈ I×J . To obtain the final value of E and pos, we sum all the lower and upper bounds.

The rest of the Branch and Bound algorithm use the following principle:

(i) subdivision of the box IREF in two distinct parts,

(ii) the upper bound is updating by taking the middle of IREF if the constraints are

satisfied and if its value is better than the previous one (we begin with +∞),

(iii) we branch following the heuristic of lowest lower bound of the energy.

1.4.2 Alternative heuristics for computation of bounds

Our Branch and Bound code uses the data corresponding to the computations of the

matrices MΘ. The exact method EM for computing bounds, is expensive in CPU-time,

then we were interested by the following 4 heuristics H1, H2, H3 and H4:

• For H1, the values of each sub-matrices at the first row and first column mE(i1, j1),

mΩ(i1, j1), mpos(i1, j1) are taken as lower bounds and we take for upper bounds,

1.4 A Branch and Bound based method 17

the values corresponding to the last rows and last columns mE(in, jm), mΩ(in, jm),

mpos(in, jm).

• For H2, we keep the same bounds as heuristic H1 for position. However, considering

the energy and the velocity, we compute the minimum value on the first row for lower

bounds and as upper bounds, the maximum value on the last row:

– Lower bounds: min
j∈J

mE(i1, j), min
j∈J

mΩ(i1, j), mpos(i1, j1).

– Upper bounds: max
j∈J

mE(in, j), max
j∈J

mΩ(in, j), mpos(in, jm).

• For H3, we keep the same bounds as heuristic H1 for position and velocity. However,

for the energy, the value of the sub-matrix at the last row and the first column

mE(in, j1) is taken as lower bound and respectively mE(i1, jm) as upper bound.

• For H4, we keep the same bounds as the heuristic H2 for position and velocity.

Nevertheless, for the energy, as lower bound, we compute the minimum value on the

last row and as upper bound, the maximum value on the first row:

– Lower bounds: min
j∈J

mE(in, j), min
j∈J

mΩ(i1, j), mpos(i1, j1).

– Upper bounds: max
j∈J

mE(i1, j), max
j∈J

mΩ(in, j), mpos(in, jm)

1.4.3 Branch and Bound Algorithm

1. Initialization: Let L := the initial domain in which the minimum is searched, Emin :=

∞ the upper bound of the minimum (L is a list), st_Iref := s discretization step of

reference current, posmin := 0 the initial position, solmin := 0 the initial solution,

st_V := the discretization step of the velocity (in km/h), st_tf := P
tf

denotes the

length of the sample time.

2. Compute matrices: Posf, Ef, V f .

3. While L 6= ∅ do

4. Extract an element X of L.

5. for i = 1 to 2 do

6. Bisect X into two discrete sub-boxes X(1) and X(2) following the largest edge

of the convex hull of X.

7. Compute lower bounds lbE, lbpos, lbV and upper bounds ubpos, ubV of X(i)

using H1, H2, H3, H4 or EM.

18 Chapter 1

8. if (ubpos ≥ posf) and (lbpos ≤ posf) and (lbE < Emin) then

9. midi := midpoint of the subbox X(i)

10. sol := [midi/st_Iref] ∗ st_Iref

11. Compute bounds Esol, possol, V sol

12. if (possol ≥ posf) and (Esol < Emin) then

13. Emin = Esol, posmin = possol, solmin = sol

14. end if

15. if X(i) is not reduced to a point then

16. Insert X(i) in L

17. end if

18. end if

19. end for

20. end While

21. Results: Emin, posmin, V sol.

where [.] returns the closest integer value of a real number.

The general structure of this algorithm can be explained schematically in four stages: (i)

extraction, (ii) division, (iii) analysis and (iv) insertion. The list L can have a LIFO or FIFO

management, for example. In this work, we used FIFO which is much more efficient. For

example, using Matlab and the LIFO management and taking the case of a displacement

of 100 meters, a cycle time tf = 10 seconds and a free final velocity, we obtain the refined

solution iref = (150, 139, 97, 85, 30, 30,−16,−31,−101,−131) corresponding to the energy

22718J after 4792s of time computation. However, using the FIFO management, we need

only 323s to have the solution iref = (150, 147, 104, 63, 21, 20, 0,−21,−80,−136) which

corresponds to the energy 22648J . This example is a good illustration of the efficiency

of using FIFO management in terms of time and solution quality. Indeed, comparing to

LIFO and using FIFO, the CPU time is divided by 14 with a gain of 0.31% on the quality

of the global optimum.

In step 6 of the algorithm, the technique to bisect X into two discret sub-boxes proceeds

by a selection of the component with the largest width of the convex hull of X and by

bisecting it by the middle of this component. The loop for in line 5 is the main part of the

Branch and Bound algorithm. Lines 7-8 concern the verification of constraint by computing

bounds. This is the stage of analysis that uses one of the bounding techniques H1, H2,

H3, H4 or EM . If the condition of line 8 holds, then the global minimum may occur in

1.5 Conclusion 19

the discrete subbox X(i) which justifies its insertion into the list (line 16), otherwise this

subbox is directly discarded.

Finding a good feasible solution consists in evaluating the objective function at the

midpoint of X. If this solution satisfies the constraints, we compare it to the best current

solution of the problem Emin. This one is updated if it improves the current solution

(line 13). The stopping criterion condition of the algorithm occurs when the whole list L

is empty (line 3). This algorithm has an exponential complexity in time and in memory

(as all discrete Branch and Bound algorithms).

Remark 1. It should be noted that this algorithm can take into account constraints on the

velocity state variable and the final velocity.

i)- Null final velocity case:

In this case, the final velocity is equal to 0 km/h. The boundary conditions are written

(im(0),Ω(0), pos(0)) = (0, 0, 0); (im(tf),Ω(tf), pos(tf)) ∈ Γ = R× {0} × {100}.

Our algorithm is modified in line 8 and 12. Line 8 becomes (ubpos ≥ posf) and

(lbpos ≤ posf) and (lbE < Emin) and (lbV (ns+1) ≤ V f) and (ubV (ns+1) ≥ V f).

However, Line 12 becomes (possol ≥ posf) and (Esol < Emin) and (V sol(ns+1) ≤

V f). V f refers to the final velocity and ns refers to the length of the list L.

ii)- Case with constraints on the velocity state variable and on the final veloc-

ity:

To take into account the constraint on the velocity parameter, we add the constraint

Ω(t) ≤ Kr

3.6×r
× 50 which indicates that a velocity limit is given to perform the dis-

placement. The final velocity is fixed but in this case it has to be equal to 50 km/h.

The boundary conditions for this case are written (im(0),Ω(0), pos(0)) = (0, 0, 0);

(im(tf),Ω(tf), pos(tf)) ∈ Γ = R× { Kr

3.6×r
× 50} × {100}.

Line 8 becomes (ubpos ≥ posf) and (lbpos ≤ posf) and (lbE < Emin) and (all(lbV (1 :

ns) ≤ V (t))) and (lbV (ns + 1) ≤ V f) and (ubV (ns + 1) ≥ V f). Line 12 (possol ≥

posf) and (Esol < Emin) and (all(V sol(1 : ns) ≤ V (t))) and (V sol(ns+1) ≥ V (t)).

V (t) refers to the velocity state variable.

1.5 Conclusion

The presence of a constraint on a state variable and the Bang-Bang structure of the control

make the energy management problem very difficult to solve. The new way described

in this chapter based on discretization and a Branch and Bound method to solve the

20 Chapter 1

approximation of the optimal control problem presents a good approach to solve these

difficulties.

Chapter 2

Implementation in Fortran 90

2.1 Introduction

The electrical vehicle energy management can be expressed as a Bang-Bang optimal con-

trol problem which is difficult to solve by conventional methods including direct methods

(based on discretization) and indirect ones (based on Pontryagin’s maximum principle).

This problem has been studied by Abdelkader Merakeb in his thesis under the supervising

of Frédéric Messine [3,4] and an original way to solve this problem was developed. This

new method is based on a discretization technique associated with a Branch and Bound al-

gorithm. This first study was performed using the high-level array programming language

MATLAB which is widely used for prototyping algorithms and applications of scientific

computations. However, its dynamically-typed nature, which means that MATLAB pro-

grams are usually executed via an interpreter, leads to poor performance in CPU time. An

alternative approach would be the use of compiled programming language such as C++

or Fortran 90. In fact, we need in our algorithm, to manage lists where its length and

complexity was not a priori known. That is why we emphasize on the use of C++ or

Fortran 90 which are characterized by their simplicity in the manipulation of these data

structures.

In this chapter, we will argue our choice to use Fortran 90 on the basis of some nu-

merical tests performed on the fourth-order Runge-Kutta method comparing Fortran 90

versus C++. Then, we present the software architecture of our implementation: a detailed

description of the implemented modules will be given. The final section is devoted to

numerical tests performed for a displacement of 100 meters and a cycle of time tf = 10

seconds. These results will be compared to those obtained using Matlab in [3,4].

21

22 Chapter 2

2.2 Implementation of the fourth-order Runge-Kutta method

The optimal control problem describing the electrical vehicle energy management is com-

posed of three elements:

• a cost function that depends on state variables,

• a set of differential equations describing the paths of the control and state variables

that minimize the cost function,

• conditions that specify the initial and final values of the state variables.

The system of differential equations representing the constraints, can be efficiently

solved using a classical differential integrator such as RK4 with a step of time less than

10−3. First, we implemented this method in Fortran 90 and C++. The preliminary

numerical tests show a strong sensitivity to the floating point variables which are used. In

fact, to just use the simple precision floating point number in Fortran or C++ can lead

to inaccurate results. Indeed, sometimes the single floating point data type provides less

precision than required and therefore provided rounding errors. Whereas in MATLAB, this

problem does not arise because all variables are treated in double floating point precision

and there is no distinction between integer and real variables, nor between real and complex

variables.

The loss of precision and significance due to the way where numbers are represented and

the way where mathematical operations are performed, can at the end lead to totally inac-

curate results (for example final current If) as shown in Table 2.1. In Table 2.1, we present

the results by testing the RK4 method with the solution irefT = (150, 90, 30,−30,−110).

F90 / C++ Matlab / F90 / C ++
(single precision) (double precision)

Ef (J) 23313 23228
Posf (m) 99.3595 99.3696
Vf (km/h) 11.13 11.16
If (amps) -94.19 -110.26

Table 2.1: The influence of the chosen precision on the performance of results.

Using Fortran 90 and C++ with single floating point representation and comparing to

MATLAB, we generate an error of 0.36% for the energy (Ef), 0.01% for the position (Posf),

2.3 Software architecture 23

14.57% for the current (If) and 0.03 km/h for the velocity (Vf). However, with double

precision, Fortran and C++ succeed to determine the solution obtained using Matlab in

a very short time. In fact, they converge to the solution after 0.04s of computations. It

should be noticed that these computations use the pre-processing for computing matrices

which needs 348s.

Finally, we conclude that the chosen precision is important and the single precision

floating point representation is in general not good enough in scientific computing. That

is why, we will always recommend to employ double precision floating point representation

in all computations with real numbers.

Why we use Fortran 90 ?

The choice to work with Fortran 90 (FORmula TRANslation) and not C++ is motivated

by various reasons. Firstly, its syntax similar to that of mathematical language makes it a

language particularly suitable for the treatment of scientific problems.

Besides, Fortran 90 is characterized by its simplicity. In fact, the objective during its

design was to create a programming language that would be: simple to learn, suitable for a

wide variety of applications, machine independent, and would allow complex mathematical

expressions to be stated similarly to regular algebraic notation.

Next, the superiority of Fortran manifests itself mainly in the area of numerical, sci-

entific and technical application which is the case of our Branch and Bound algorithm.

2.3 Software architecture

Our Fortran program is presented in the form of a structured set of modules written one

after the others (see Figure 2.1). The advantage of using modules is that the main program

can be kept relatively simple and easy to follow, while nitty-gritty calculations and complex

procedures are shuffled off to various subroutines, each performing a specific task.

In order to be faster and more efficient, we try to compute four matrices (energy,

position, velocity, current). Each element of these matrices corresponds to the solution of

differential system (1.3) on a sample of time [tk−1, tk] using the numerical integrator RK4.

These matrices are stored in memory and used via the module compute_bounds. These

24 Chapter 2

module global_variables

module compute_matrices
use global_variables

module type_interval

module compute_bounds
use compute_matrices

module list_management
use type_interval

module Branch&Bound
use global_variables
use list_management
use compute_bounds
use compute_matrices

use type_interval

main program
use global_variables
use list_management
use compute_bounds
use compute_matrices

use type_interval
use Branch&Bound

Figure 2.1: Software architecture of our code in Fortran 90.

2.4 Numerical results 25

computations use the module global_variables which contains the physical parameters

of the problem and the simulation parameters.

As for modern programming languages (C and C++), Fortran 90 provides programmers

the possibility to create and manipulate new data type like the intrinsic data types (integer,

real, and logical). These are called derived data type in Fortran and structures in C and

C++. This is the purpose of the module type_interval which allows us to create a new

type which is essential for making our method more readable and easier to manipulate.

In our algorithm, we need to manage lists, collection of structures ordered by logical

links where the complexity and the length are not a priori known. It is the role of the

module list_management including the various possible operations on a list of elements

(creation, insertion, extraction, deletion, display. . .). It should be noted that we used in

implementing this module, some parts of the code IBBA which is dedicated to solve global

optimization problems. It has been developed by Messine since the beginning of his thesis

in 1997 [5] and he never ceased improving it [6,7].

The module compute_bound consists of two sub-programs:

1. When a block IREF is considered, the first subroutine computes the bounds cor-

responding to the minimum and the maximum values of the energy, position, speed

and current.

2. When a solution is considered, the second subroutine computes the final values of

the state and control variables of the problem.

Using the various modules already mentioned, the module Branch&Bound imple-

ments our algorithm described in the previous chapter.

The main program is the compilation unit.

2.4 Numerical results

The algorithm developed to solve our global optimization problem is based on a Branch

and Bound method whose complexity in the worst case is about (300
s

+ 1)P . In order to

be faster and more efficient, four heuristics have been developed and after a series of tests,

the heuristic H4 has been validated in the case where the final position is fixed to 100m

and the final velocity is kept free [4].

When we evaluate our algorithm for parameters P = 10 and s = 1 using H4, we obtain

the solution after 3 hours and 45 minutes of computations: iref = (150, 140, 110, 70, 30, 20,

−10,−40,−70,−140), which corresponds to 2 130 045 196 iterations of the Branch and

26 Chapter 2

Bound algorithm; the corresponding minimum energy Emin∗(10) is equal to 22772 J and

position pos∗(10) is equal 100.08 m (it should be noted that we are not able to have a

satisfactory result for this instance using the Matlab code).

Nevertheless, one can reasonably expect that a notable reduction of the total comput-

ing time will be obtained through appropriate strategies for decreasing the time spent in

exploring all the list of currrent. That is why, the idea is to run the Branch and Bound

code iteratively by defining more specific areas around the exact solutions obtained in a

previous step, by increasing the parameter P and decreasing parameter s. Using the solu-

tion iref = (145, 86, 34,−16,−112) over a sampling intervals of 2s, (P = 5, s = 10), we

construct iref = (145, 145, 86, 86, 34, 34,−16, −16,−112, −112) over the sampling inter-

vals of 1s, (P = 10, s = 10). Spreading it on a maximum range of 40 Amps, we generate

the following box:

IREF = [125, 150]× [125, 150]× [66, 106]× [66, 106]× [14, 54]× [14, 54]×

[−36, 4]× [−36, 4]× [−132,−92]× [−132,−92]

where the solution will be searched. The complexity in the worst case of our algorithm is

reduced: (40
s
+ 1)P .

We can iterate this process to refine the solutions progressively using the solutions

obtained in the previous steps. In Table 2.2, we give the refined solutions obtained after 3

iterative runs of the Branch and Bound algorithm where P is increased and s is decreased

by using previous solution to define a smallest domain of research.

Instance iref Emin range CPU (s) Iter.
(amps) (J) (amps) Fortran Matlab Fortran Matlab

P = 5 (150, 90, 30, -30, -110) 23274 300 4×10−2 2.65 23 074 23 069
s = 10
P = 10 (150,140,110,70,30, 22813 40 0.79 11.48 264 374 264 406
s = 10 20,-10,-30,-90,-130)
P = 10 (150,145,105,65,20, 22698 20 2.12 12.94 702 154 702 222
s = 5 20,0,-20,-80,-135)
P = 10 (150,147,104,63,21, 22648 4 4.70 12.73 1 405 661 1 410 307
s = 1 20,0,-21,-80,-136)

Table 2.2: Table of refined solutions: free final velocity.

In Table 2.2, we remark a significant gain in time using Fortran 90 compared to Matlab.

2.4 Numerical results 27

Indeed, the CPU time is divided by 2 in the worst case and 66 in the best case, although

the number of iterations is of the same order.

The last refined solution (last row in Table 2.2) which is represented on Figure 2.2

allows us to obtain a gain of 2.69% on the quality of the global optimum for 7.65 seconds

of additional CPU-time. By validating this solution directly using RK4 (without using

matrices), this provides an energy Emin = 22876J . The calculation error is about 0.99%

for the energy.

Figure 2.2: Case : P = 10; s = 1; posf = 100m.

On Figure 2.2, the scheme of the current takes its maximum value early in the cycle,

decreases as far as reaching negatives values which corresponds to the phase of recovery.

Indeed, the curve of the energy decreases at the end of the cycle because this corresponds

to the phase of recovery. We remark also that the current im remains trapped around iref

with respect to the tolerance ∆. The values of u switch many times between -1 and +1;

this is due to the fact that the current in the motor increases too quickly (about 3A every

10−3 seconds). The scheme representing the voltage Vm illustrates perfectly these switching

phases. Its values are taken between -150 and +150 (the figure has been enlarged for the

visualization).

28 Chapter 2

Remark 2.

It should be noted that our algorithm can take into account constraints on the velocity state

variable and on the final speed which is difficult for the indirect methods.

For more numerical results, see Appendix C.

2.5 Conclusion

Our primary goal in this chapter was to use Fortran 90 to speed up computations of our

algorithm based on a Branch and Bound method. We feel this goal has been accomplished.

Our secondary goal will to extend this Fortran code and this method to consider some other

managements of the electrical vehicle energy. This point will be the subject of the next

chapter.

Chapter 3

Extension of the method dedicated to

long travels and travels with slopes

3.1 Introduction

As we saw in Chapter 2, the use of Fortran 90 gives us a very important gain in CPU-time

compared to Matlab. This represents a real motivation to study more complex cases: long

travels and management of travels including slopes.

We begin this chapter with a detailed description of two new heuristics which are

developed after a study based on the structure of the used matrices (energy, position,

velocity). This will be followed by giving the first extension. Numerical tests and some

discussions for long travels (1km) will be given in Section 3.3. The last section will be

devoted to the management of slopes. We supply a detailed algorithm that is used for

studying this extension.

3.2 Heuristics H5 and H6

The evaluation of our method for a displacement of 100 meters with different conditions on

the final velocity and a cycle of time tf = 10 seconds, shows that the percentage of success

on the solution of the heuristics described in Chapter 1 (H1, H2, H3 and H4) depends

on the studied instance. In Table 3.1 (given later), we show this strong dependency. For

example (from Table 3.1), Heuristic H2 seems very efficient in the case where the final

position (Posf) is fixed to 100m, the final velocity (V f) is equal to 50 km/h and the state

velocity (V (t)) is less or equal than 50 km/h. However, considering the free final velocity

case, H2 is sometimes far from determining the exact solution and may generate an error

29

30 Chapter 3

about 1.5% (see Table 3.1).

Therefore, we propose new heuristics that will be able to approach the solutions inde-

pendently of the studied instance. These will be developed after a study on the behavior

of the energy, the speed and the position matrices.

Figure 3.1: Behavior of the position matrix.

The position matrix has a growing behavior (see Figure 3.1). That is why, we keep the

same bounds used in developing the heuristics of Chapter 1: the value of the sub-matrix

at the first row and first column mpos(i1, j1) is taken as lower bound and we take for upper

bound, the value corresponding to the last row and last column mpos(in, jm).

However, the energy matrix has two concavities, see Figure 3.2. Therefore, it is just

required to consider the minimum of the vertices of the rectangle where the energy is

studied as a lower bound.

One of the reasons of the failure of the heuristics already developed is its vagueness in

the computation of the velocity bounds, which is clear from the complicated behavior of the

velocity matrix shown in Figure 3.3. Indeed, this structure presents three parts: a linear

part and two others which have a complex behavior. Therefore, we need first to explore the

whole sub-matrix to find the exact bounds. But, using the preliminary numerical results,

we remark that we can look for bounds of the velocity only on some parts of the sub-matrix

3.2 Heuristics H5 and H6 31

(see H6).

Figure 3.2: Behavior of the energy matrix.

Figure 3.3: Behavior of the velocity matrix.

Based on the remarks mentioned above, we can describe the two new heuristics as

follows:

• For H5: for the position, we keep the same bounds as heuristic H1, described in

Chapter 1. As lower bound for the energy, we compute the minimum value of the

32 Chapter 3

4 elements located on the vertices of the induced sub-matrix. To compute the lower

(resp. upper) bound for the velocity, we consider the minimum (resp. the maximum)

over all the sub-matrix.

– Lower bounds: min(mE(i1, j1),mE(i1, jm),mE(in, j1),mE(in, jm)),

min
i∈I,j∈J

mΩ(i, j), mpos(i1, j1).

– Upper bounds: max
i∈I,j∈J

mΩ(i, j); mpos(in, jm).

• For H6: we keep the same bounds as heuristic H5 for the position and the energy.

Nevertheless, for the velocity, as lower bound, we compute the minimum value on

the first column and as upper bound, the value corresponding to the last row and

last column of the induced sub-matrix.

– Lower bounds: min(mE(i1, j1),mE(i1, jm),mE(in, j1),mE(in, jm)),

min
i∈I

mΩ(i, j1), mpos(i1, j1).

– Upper bounds: mΩ(in, jm), mpos(in, jm).

Remark 3. For the sets I and J , see Sub-section 1.4.1.

In order to test the effectiveness of these two new heuristics H5 and H6, we performed

101 tests in which the final position varies from 20m to 120m in increment of 1m. In

Table 3.1, we present the percentage of success of different heuristics. H5 and H6 are

completely reliables on these tests. Indeed, these heuristics are able to give the same

solution as using the exact method EM independently of the studied instance without

generating any error contrary to other heuristics.

profile H1 H2 H3 H4 H5 H6
V f free 0% 67% 97% 100% 100% 100%
V f = 0 33% 98% 94% 94% 100% 100%
V f = 50 76% 100% 77% 78% 100% 100%
V (t) ≤ 50

Table 3.1: Percentage of success of different heuristics with respect to the studied instance.

Moreover, to validate the use of Heuristics H5 and H6, we compare their performance

in CPU-time as presented in Table 3.2. This table is obtained by performing the same

tests used in Table 3.1.

3.3 Case of long travels 33

Profile H5 H6 EM
V f free 0.5s 0.13s 2.04s
V f = 0 0.22s 0.05s 1.03s
V f = 50 0.24s 0.05s 1.04s
V (t) ≤ 50

Table 3.2: Performance of heuristics H5 and H6 in CPU-time.

From Table 3.2, Heuristic H6 is faster than H5. In fact, considering for example the

zero final velocity case, comparing to EM and using H6, the average CPU-time is divided

by 20. However, it is only divided by 4 when using H5. This important gain in time for

H6 compared to EM is also clear from the scheme given in Figure 3.4 (which is obtained

using the last performed tests in the case of a free final velocity).

Figure 3.4: CPU-time, case: P = 5; s = 10.

For the case of 20m, we remark that the exact method EM is very slow comparing to

H5 and H6. This is due to the fact that the set of possible solutions is very large which is

not the case where the final distance is 120m.

3.3 Case of long travels

To have a good approximation of the global optimum of Problem (1.4), we have to discretize

the interval [0, tf] of time into small samples. Since the final time tf is large, the finite set

34 Chapter 3

of possible solutions becomes too huge. In order to avoid this problem, the idea is to use

variable steps of discretization instead of constant ones. Indeed, we can simply divide the

first and last ten seconds with steps of 2s and the remainder part with uniform steps of

10s.

Returning to the algorithm described in Chapter 1 and taking into account the above

remarks, we obtain the following numerical results.

3.3.1 Case without constraint on velocity

We evaluate our method for a displacement of 1000m and a cycle of time tf = 70s:

(im(0),Ω(0), pos(0)) = (0, 0, 0); (im(tf),Ω(tf), pos(tf)) ∈ Γ = R×R×{1000}. Testing our

algorithm over a sampling intervals of 10s, we obtain the exact solution iref = (140, 10, 30,

20, 30, 20,−20) which is equivalent to (140, 140, 140, 140, 140, 10, 30, 20, 30, 20,−20,−20,

−20,−20,−20) (see method above). Spreading it on a range of 20 amps, we generate a

new box where the solution will be searched. By repeating this process with a range of 4

amps to refine the solutions, we obtain the results presented in Table 3.3.

Instance iref Emin posf V f CPU range Iter.
(J) (m) km/h (s) (amps)

P = 7 (140, 10, 30, 20, 30, 206 945 1000.02 12.93 12 300 3 354 323
s = 10 20, -20)
P = 15 (140,130,130,130,150, 204 987 1000.17 13.63 4 20 683 753
s = 10 20,20,20,30,20,

-10,-10,-10,-30,-30)
P = 15 (141,128,128,128,149, 203 934 1000.01 14.86 3671 4 627 133 367
s = 1 18,21,21,28,22,

-10,-8,-8,-29,-32)

Table 3.3: Refined solutions: free final velocity.

With the improved solutions, we obtain a gain of 1.45% on the quality of the optimum

for 3687 seconds of additional CPU-time. The curves on Figure 3.5 are drawn using

the latest refined solution (last row in Table 3.3). The computation of this solution, by

simulation using RK4, provides an energy Emin = 207353 J and a position pos = 1006.6m.

The error is about 1.65% on the energy and 0.65% on the position.

The current im takes its maximum values in the first ten seconds to ensure the starting

phase, decreases as far as reaching a “steady” value around 21 amps and ends with negative

values which corresponds to the phase of recovery. In fact, the decreasing of the curve of

3.3 Case of long travels 35

the energy at the end of the cycle (last ten minutes) corresponds to this phase. The current

im remains trapped around iref with respect to the tolerance ∆. The values of the control

u switch many times between -1 and +1; this is due to the fact that the current varies

too quickly in the motor (about 3 amps every 10−3 seconds). The curve of the voltage Vm

illustrates these switching phases; it takes its values between -150 and +150. The curve of

the control represents the values of u synthesized to smooth signal by the PWM (Pulse-

Width Modulation) technique on a succession of discrete states (+1,-1) during a cycle of

two switches; the assigned value is the mean over all values.

Figure 3.5: Case : P = 15; s = 1; posf = 1000m.

3.3.2 Case with null final velocity

The final velocity on Figure 3.5 is not null. Nevertheless, our method with successive

refinement can take into account this parameter. To compare solutions, we simulate last

instances with a constraint on the final velocity; i.e., a displacement of 1000m and a

cycle of time tf = 70 seconds with a null final velocity: (im(0),Ω(0), pos(0)) = (0, 0, 0);

(im(tf),Ω(tf), pos(tf)) ∈ Γ = R × {0} × {1000}. The corresponding refined solutions are

presented in Table 3.4.

36 Chapter 3

Instance iref Emin posf V f CPU range Iter.
(J) (m) km/h (s) (amps)

P = 7 (130, 10, 70, 20, 20, 214761 1000.43 -0.69 5 300 1 337 855
s = 10 20, -30)
P = 15 (130,120,120,120,120, 212591 1000.22 -0.46 3.17 20 705 279
s = 10 20,60,10,20,30,

-20,-30,-40,-40,-40)
P = 15 (132,118,119,121,122, 211295 1000.03 -0.02 3622 4 615 528 064
s = 1 18,58,10,21,29,

-18,-28,-38,-41,-42)

Table 3.4: Refined solutions with null final velocity.

The last refined solution is obtained using a total CPU-time about 3630s. Using the

numerical integrator RK4, the calculation error is about 0.36% for the energy (Emin =

212052 J) and 0.008% for the position (pos = 999.95m).

Figure 3.6: Case : P = 15; s = 1; posf = 1000m; V f = 0 km/h.

Because the vehicle starts and ends with a velocity which is equal to zero, it necessarily

goes through a phase of deceleration corresponding to the recovery phase of electrical

energy. The current is to the bottom at the first moments and ends with its minimum

3.3 Case of long travels 37

value to be able to stop the vehicle (null final velocity). The curve of the control in

Figure 3.6 follows exactly the velocity one.

3.3.3 Case with constraints on the velocity state variable and on

the final velocity

If we test our algorithm with constraints on velocity state (V (t) ≤ 50km/h) and final

velocity (V f = 50km/h), our simulations show that it is not possible to perform the

displacement of 1km in a limited time equal to 70s. That is why, we limited the final

distance to 800m. The solutions obtained using successive runs and refinement of our

Branch and Bound code, are reported in Table 3.5 and drawn in Figure 3.7.

Instance iref Emin posf V f CPU range Iter.
(J) (m) km/h (s) (amps)

P = 7 (50, 20, 10, 20, 20, 167 522 803.22 63.59 0.06 300 13 697
s = 10 20, 40)
P = 15 (60,60,50,50,50, 150 391 800.67 51.04 0.17 20 31 314
s = 10 20,20,20,10,10,

40,30,30,30,40)
P = 15 (62, 62, 50, 48, 51, 148 242 800.03 50.05 2963 4 466 010 273
s = 1 18, 18, 22, 12, 10,

38, 29, 28, 28, 38)

Table 3.5: Refined solutions: constraints on the velocity state and final velocity (V f = 50km/h).

To validate the solution obtained in Table 3.5, we use directly RK4. This provides an

energy Emin = 148056J , a position pos = 799.10m and a final velocity V f = 50.3 km/h.

The error is about 0.1% for the energy, 0.1% for the position and ±0.25 km/h for the

velocity.

The curve of the current on Figure 3.7 is in its maximum value at the beginning of

the cycle of time, then decreases to maintain the velocity at its desired value and finally,

increases in order to make the vehicle able to finish with a velocity of 50km/h. In this

profile, there is no recovery of the electrical energy which can be seen on the energy curve.

38 Chapter 3

Figure 3.7: Case : P = 15; s = 1; posf = 800m; V (t) ≤ 50 km/h; V f = 50 km/h.

3.3.4 Conclusion

Based on the numerical tests already done, we can remark that:

i) Using successive runs and refinement of the Branch and Bound code, we obtain an

important gain on the quality of the global optimum which needs a very long CPU-

time.

ii) The refined solutions obtained with the different studied cases have an identical be-

havior at the beginning of the interval of time, i.e. im takes its maximum value early

in the cycle to ensure the starting phase. This is not the case at the end of the cycle.

Indeed, considering the free or null final velocity case, the curve of current im ends

with negative currents which corresponds to the recovery phase. However, considering

a non-zero final velocity and a limit on the speed (sub-section 3.3.3), im increases in

the last ten minutes to maintain the final velocity and in this case, there is no recovery

phase.

3.4 Management of slopes 39

3.4 Management of slopes

Until now, we just study cases where the travels are flat (no slope is considered). However,

the modeling of the problem can take it into account.

minim(t),Ω(t),pos(t),u(t) E(tf , im, u)

s.t.

i̇m(t) =
u(t)Valim−Rmim(t)−KmΩ(t)

Lm

Ω̇(t) = 1
J

(

Kmim(t)−
r
Kr

(

MgKf +
1
2
ρSCx

(

Ω(t)r
Kr

)2

+Mg sin(π
180

θ)

))

˙pos(t) = Ω(t)×r

Kr

|im(t)| ≤ 150

u(t) ∈ {−1, +1}

(im(0),Ω(0), pos(0)) = (i0m,Ω
0, pos(0)) ∈ R

3

(im(tf),Ω(tf), pos(tf)) ∈ Γ ⊂ R
3

(3.1)

where θ refers to the angle of the slope. This is the same model as (1.2) but − 1
J

r
Kr

Mg sin(π
180

θ)

is added to penalize the velocity if some slopes in degree have to be performed at time t∗.

3.4.1 Algorithm

The difficulty to solve Problem (3.1) using our algorithm comes essentially from the com-

putation of bounds. In fact, we are not able to determine exactly the optimal time t∗,

when the vehicle reaches the position of change of the slope. That is why, we just try to

determine the sample time in which that distance having a slope is reached (50m in our

case). Once found, we fall to the beginning of this sample which will be again subdivided

using a step of 0.5s in order to obtain a greater accuracy.

These computations require additional pre-processing for computing matrices over a

sample time of length 0.5s taking into account the different slopes encountered in our

travel. Different steps described above can be summarized in these five points:

1) search the sample time in which the vehicle reaches the position of the change of slope,

2) return to the beginning of this sample time,

3) reinitialize the state variables by taking their values in the previous sample,

4) subdivide it with a step of 0.5s,

40 Chapter 3

5) research the sample time of length 0.5m (included in the one found in step 1) in which

the vehicle reaches the position when the slope changes.

Using these steps and including them in our algorithm (in line 11 of the algorithm

presented in Chapter 1), we will be able to manage travels including slopes.

3.4.2 Numerical results

Testing our algorithm for a displacement of 100m including a slope of +3◦ using the

“classical” method for computing bounds, we notice that we may have some solutions

which present important stalls. For example, considering a free final velocity case, we

obtain the solution iref = (150, 150,−150, 100,−70) producing an energy of 24338J . In

order to avoid such situations, the idea will be to consider constraints on the acceleration.

To perform this, we proceed as follows:

the linear speed (in m/s) of the vehicle obtained from the motor speed is written:

V =
r

Kr

Ω

and consequently, the acceleration is

A = V̇ =
r

Kr

Ω̇

This acceleration is measured in m/s2. It can be converted to “g” (the gravity of Earth)

if we prefer to compare it to the acceleration of gravity which is 1g = 9, 81m/s2. Indeed,

1g means that an object of 1kg accelerates, in a crash for example, with 9, 81m/s per

second (we say 9, 81 m.s−2) or also, we add every second about 35, 3km/h to our initial

velocity, i.e., we reach the velocity of 105, 9km/h after the first three seconds, which can be

unbearable by the person inside the electrical vehicle. Thus, the objective of this conversion

is to be able to control and determine the acceleration that is supported by the vehicle and

the driver.

Based on the above remarks, we can add this new constraint:

|A| ≤ β g (3.2)

where β ∈]0, 1].

To take into account this constraint, we need to compute a new matrix which is that of

the acceleration. It should be noticed that the smallest is β, the smoothest is the solution,

3.4 Management of slopes 41

as presented in Table 3.6.

coefficient iref Emin posf V f CPU Iter.
(J) (m) km/h (s)

β = 1 (150,150,-150,100,-70) 24338 100.74 21.71 42.07 1 553 280
β = 0.5 (150,150,-120,70,-90) 25223 100.22 21.99 37.22 1 527 197
β = 0.4 (100,80,130,-50,-90) 25898 100.09 22.70 38.26 1 527 268
β = 0.3 (100,100,70,20,-90) 28954 100.18 29.24 39.14 1 528 126

Table 3.6: Influence of the choice of β on the quality of solutions.

In Table 3.6, we present the solutions of Problem (3.1) by taking into account the new

constraint (3.2). These numerical results correspond to a distance of 100m including a

slope of +3◦ (at 50m) with a free final velocity.

Although the choice of β = 1 gives the minimum value for the energy consumed by

an electrical vehicle compared to other choices, we will not consider this solution for the

reasons already mentioned. It should be noticed that this solution is also the absolute one

when constraint (3.2) is removed. However, the maximum acceleration (resp. minimum)

corresponding to the choice of β = 0.3 is about 3m.s−2 (−3m.s−2) which is equivalent to

reach speed of 34.77 km/h in 3 seconds which can be accepted in a driving located at the

limit of "quiet" on dry ground.

Testing our algorithm for a displacement of 100m including a slope of +3◦ (at 50m)

with different constraints on the state velocity and the final speed, we find the results

presented in Table 3.7.

Instance iref Emin posf V f CPU Iter.
(J) (m) km/h (s)

Posf = 100 (100,100,70,20,-90) 28 954 100.18 29.24 39.14 1 528 126
V f free
Posf = 100 (150,120,20,-50,-130) 29 618 100.00 1.21 2.09 13 499
V f = 0
Posf = 100
V f = 50 (90,90,70,20,50) 48 944 100.07 52.01 9.81 234 807
V (t) ≤ 50

Table 3.7: Solutions for a displacement of 100m including a slope +3◦.

42 Chapter 3

Considering the free final velocity case, we note that the minimum energy consumption

is about 22% greater than in the case without including slope. The calculation of the

solution (first row), by simulating using RK4 directly, provides an energy Emin = 28341J

and a position pos = 100.99m. The error is about 2.16% for the energy and 0.8% for the

position.

Figure 3.8: Free final velocity case with a slope of +3◦.

Despite the presence of a positive slope, we remark that there is a recovery phase. In

fact, the curve of the energy decreases at the end of the cycle (the last two seconds).

Our algorithm can also take into account negative slope as presented in Table 3.8.

3.4 Management of slopes 43

Instance iref Emin posf V f CPU Iter.
(J) (m) km/h (s)

Posf = 100 (120,100,20,10,-70) 22 187 100.14 29.24 64.59 1 888 871
V f free
Posf = 100 (150,120,10,-60,-140) 24 277 100.03 0.21 23.6 568 987
V f = 0
Posf = 100
V f = 50 (90,90,70,20,20) 41 796 100.54 52.01 11.76 279 732
V (t) ≤ 50

Table 3.8: Solutions for a displacement of 100m including a slope −3◦.

Figure 3.9: Null final velocity case with a slope of −3◦.

Figure 3.9 represents the obtained solution in the null final velocity case with a slope

of −3◦. Using the solution iref = (150, 120, 10,−60,−140), the electrical vehicle reaches

the position 50m presenting the slope −3◦ in the third sample of time, i.e. between 4s

and 6s, which is clear from the curve of the velocity. Indeed, this sample corresponds to

the beginning of the phase of deceleration corresponding to the recovery phase of electrical

energy.

44 Chapter 3

We consider now the case of the non-zero velocity and a limit on the speed (last row in

Table 3.8). The minimum energy consumption for this case is about 17.1% smaller than

in the case with a slope of +3◦. By validating this solution using RK4, this provides an

energy of Emin = 41474J and a position pos = 99.09m. The error is about 0.77% for

the energy and 1.46% for the position. The current takes its maximum at the beginning

of the cycle and ends with constant value, 20 amps in the last four seconds. This allows

maintaining the velocity at its desired value. In this case, there is no recovery phase despite

the presence of negative slope. This is due to the fact that the final velocity must be equal

to 50km/h.

Figure 3.10: Non-zero final velocity and a limit on the speed with a slope of −3◦.

3.4.3 Conclusion

As we saw in this section, we can extend our original algorithm to solve the slope manage-

ment problem. The preliminary tests give too exaggerated solutions in terms of accelera-

tion. That is why, we add a new constraint on the acceleration. Taking into account this

condition, our code provides new solutions which are smoother than that given before and

more expensive in terms of consumed energy.

Remark 4. Studying this extension, we remark that, in some other cases (for example

3.5 Conclusion 45

combining negative and positive slope in the same travel), our method can generate large

errors which come essentially from the use of 4 matrices computed over a sample time of

length 0.5s to recover that of 2s (see Appendix B).

3.5 Conclusion

In this chapter, we proposed new heuristics which are more reliable than that already

developed in Chapter 1. This allows us to study some extensions of the electrical energy

management problem. We begun with the study of the extension to long travels and

we finished by giving a detailed description of different steps for dealing with the slopes

management problem.

46

Conclusion

The energy management problem of an electrical vehicle can be formulated as an optimal

problem with a Bang-Bang control which is actually difficult to solve using classical meth-

ods. An innovative methodology to solve this problem was developed in [3,4]. We started

by presenting this method which is the basis of our work.

The first goal of this internship is to provide a compiled code in Fortran 90 which was

for us the best target language. The numerical results show that this compiled program

performs better than their MATLAB executions and the speedups vary, ranging from 2

to 66 depending on the studied instance. We also observe that the heuristics already

developed are not reliable enough to approach the global optimum. That is why, we

constructed two new heuristics (H5 and H6) which are very powerful and able to determine

the exact solution independently of the studied profile. These significant gains in terms of

computation time without loss in quality solution encouraged us to study some extensions

of electrical vehicle energy management problems which are the study of long travels and

the management of slopes.

The methodology already developed is based on discretization of the possible values of

the current and velocity. Nevertheless, if we want to have a good approximation of the

global optimum of the initial optimal control problem, we have to discretize into small

samples which is very expensive in terms of memory. In order to be more efficient (by

discarding the use of large matrices), the idea will be to use interpolation functions for

position, velocity and energy. This new approach can help us to move from the study of

discrete case to the continuous one and then, to have a better approximation of the optimal

control problem. Furthermore, after the realization of a current regulator, we also want

to construct a velocity regulator of an electrical vehicle. These approaches could be the

subject of a futur work.

47

48

Bibliography

[1] E. Trélat, Contrôle optimal: théorie et applications, Vuibert, Collection: “Mathéma-

tiques Concrètes”, 2005.

[2] R. Vinter, Optimal Control, Systems and Control: Foundations and Applications

Birkhuser Boston, Inc, Boston, MA, 2000.

[3] A. Merakeb and F. Messine, On Minimizing the Energy Consumption of an Electrical

Vehicle, preprint in Optimization Online, N◦ 2997, 2011.

[4] A. Merakeb, Optimisation Multicritères en contrôle Optimal: Application au Véhicule

Électrique, Thèse de doctorat, Université Mouloud Mammeri, Tizi-Ouzou, Algerie,

2011.

[5] F. Messine, Méthode d’Optimisation Globale basée sur l’Analyse d’Intervalles pour la

Résolution de Problèmes avec Contraintes. Thèse de doctorat, Institut National Poly-

technique de Toulouse, 1997.

[6] F. Messine, L’Optimisation Globale par Intervalles: de l’Étude Théorique aux Ap-

plications, Habilitation à Diriger des Recherches, Institut National Polytechnique de

Toulouse, 2006.

[7] J. Ninin, Optimisation Globale basée sur l’Analyse d’Intervalles: Relaxation Affine

et Limitation de la Mémoire. Thèse de doctorat, Institut National Polytechnique de

Toulouse, 2010.

49

50

Appendix A

Interpolation

In order to use our Branch and Bound algorithm, we need a pre-processing to compute

matrices of energy, velocity and position. To have a good approximation of Problem (1.4),

these matrices should be of a large size to recover the maximum possible cases which is very

expensive in terms of memory especially when we study long travels, as we presented in

Chapter 3. In order to avoid such situations, our idea will be to use interpolation functions:

i.e, for each matrix of the three ones, we search a function that passes as close as possible

to some elements. As a first step, we will try it with polynomial interpolation.

To simplify the procedure, let us take the energy matrix as an example. We propose

to determine a polynomial P of 2 variables of degree deg having the following shape:

P (im, V) =

deg
∑

i,j=0
i+j≤deg

aijV
iijm

where im and V refer respectively to the possible value of the current and velocity.

The goal will be to find the coefficients (aij) of the polynomial P that minimize the

interpolation error. Thus, the interpolation problem can be formulated as follows:

min
aij∈R

∑

(i,j)∈I×J

(

mE(i, j)− P (i, j)
)2

where I = {−150,−150+p,−150+2×p, . . . , 150} with p = 30 and J = {−10,−10+ q,−10+

2 × q, . . . , 70} with q = 10. mE(i, j) refers to the element of the energy matrix when ap-

plying an initial velocity equal to i and a reference current equal to j. It should be noticed

also that the used matrices are computed over a sample of time of length 1s.

The preliminary results show that this approach is ca be used in the case of the matrix

51

52 Appendix A

of position. In fact, we succeed to interpolate it with two polynomials: the first is of degree

1 corresponding to the linear part and the second one is of degree 2 which corresponds to

the remaining part. The interpolation error is negligible.

P (im, V) =

0.0077 + 0.2707V + 0.0164im if (im, V) ∈ Σ

0.0048 + 0.2670V + 0.0243im − 0.0002imV if (im, V) ∈ (I × J)\Σ

where Σ = I ×{−10, 0, 10, 20, 30, 40}. When (im, V) ∈ Σ, the sum of the square of the

absolute error is equal to 1.0012 and in the other case, it is about 3.709.

However, up to now, we are not able to do the same with the energy and velocity

matrices which comes from their complicated behavior, see Figure 3.2 and 3.3.

Once this approach is accomplished even with other approximation functions, we will

be able to extend our study from the discrete case to the continuous one and consequently,

we will have better approximations of Problem (1.4).

Appendix B

Errors due to stalls

B.1 Introduction

In this appendix, we show that significant errors can occur when the matrices E, Pos and

V are computed over a sample time of length 2s using those computed over a sample of

length 1s: i.e., considering the sample of length 2s as the “sum” of two samples, each one

of length 1s can generate large errors.

B.2 Presentation of the problem

The approximation of the optimal control problem via the system of differential equations

(1.3) is generated by subdividing the cycle of time [0, tf] into P subintervals. In each

sample of ime [tk−1, tk], we apply a reference current iref which takes its values between

-150 and +150. If the final time tf is large, the subintervals may not have the same length

and hence, this will require the computation of new matrices for each subinterval which

is very expensive in terms of time and memory. In order to simplify the pre-processing

for computing these matrices of energy, velocity and position, we just compute 3 matrices

over a sample time of length 1s and reuse them to generate the other matrices over long

samples using the following formulas:

E2s(V e, Iref) = E1s(V e, Iref) + E1s(V1s(V e, Iref), Iref) (B.1)

Pos2s(V e, Iref) = Pos1s(V e, Iref) + Pos1s(V1s(V e, Iref), Iref) (B.2)

V2s(V e, Iref) = V1s(V1s(V e, Iref), Iref) (B.3)

53

54 Appendix B

E2s, Pos2s and V2s (resp. E1s, Pos1s and V1s) refer respectively to the matrices of energy,

position and velocity computed over a sample of length 2s (resp. 1s). Iref and V e vary

respectively from -150A to +150A and from −74km/h to 71km/h with fixed steps.

B.3 Numerical results

Generating our matrices using the two methods, taking the case of energy matrix and by

computing the relative error, we remark the presence of errors strongly dependent on the

initial velocity and the reference current. These errors seem very important when applying

high absolute values of the current and the velocity, see Figure B.1.

Figure B.1: Relative error on the energy matrix

To test the running of these methods, we take an element of each matrix corresponding

to the same coordinates and we simulate it by drawing the curves of im(t), Pos(t), V (t),

E(t) and u(t) over a sample of length 2s using these two methods. We begin by taking the

element of the matrix corresponding to a velocity of 70.9km/h and a current of 60A.

B.3 Numerical results 55

Figure B.2: Numerical simulation results of element (70.9km/h, 60A) over a sample of length
2s using “classical” method.

Figure B.3: Numerical simulation results of element (70.9km/h, 60A) over a sample of length
2s using formulas (B.1), (B.2) and (B.3).

On Figure B.3, the scheme representing the current im takes its maximum value at the

first moments and its minimum one at the end of the first second. A sudden increase in

the current im takes place at the beginning of the second second. This sudden change is

56 Appendix B

justified by the fact that im is not trapped around iref with a tolerance ∆ (∆ = 1 in our

case). In this case, using two time the sample of length 1s to obtain the matrices over a

sample of length 2s leads to large errors: the computational error is about 1731.4% for

E(2s), 2.43% for Pos(2s), 4.81% for V (2s) and 48.30% for im(2s).

Now, we take another element that belongs to the region where the error is small (see

Figure B.1); it is the element corresponding to velocity of 20km/h and a reference current

equal to 20A.

Figure B.4: Numerical simulation results of element (20 km/h, 20A) over a sample of length 2s
using the two methods.

In this case, the two methods lead to the same result. It is clear that the current

im remains trapped around the reference current iref . The values of control u switch

intensively between -1 and +1 to maintain this trap. In Figure B.4, curves of the current

and command u have been enlarged for visualization.

B.4 Conclusion

Our method consists in building a current regulator which allows to trap the current im

around a given reference current iref . Nevertheless, we remark that there is some extreme

cases where the current may not be controlled by our regulator. These extreme cases must

be treated differently.

Appendix C

More numerical results

In Section 2.4, we just gave the numerical results corresponding to a displacement of 100m

in a cycle of time tf = 10s with a free final velocity using only Heuristic H4. Indeed, this

case illustrates very well the gain in CPU-time using Fortran 90. In this appendix, using

the most reliable Heuristic H6, we provide the numerical results with the same previous

instances (Posf = 100m, tf = 10s) but with different constraints on the sate velocity

and the final speed. For each case, the refined solution corresponding to the last row is

simulated using the numerical integrator RK4 and then drawn.

Instance iref Emin posf V f CPU porte Iter.
(J) (m) km/h (s) (amps)

P = 5 (150, 110, 40, -70, -150) 26517 100.72 -1.17 10−2 300 3 076
s = 10
P = 10 (150,150,130,90,30, 25646 100.00 -0.89 0.4 40 95 722
s = 10 20,-50,-60,-150,-150)
P = 10 (150,145,130,90,35, 25199 100.00 -0.10 0.59 20 140 098
s = 5 20,-50,-65,-140,-150)
P = 10 (150,146,130,88,36, 25156 100.02 0.00 6.36 4 1 512 512
s = 1 20,-51,-65,-138,-150)

Table C.1: Null final velocity case.

57

58 Appendix C

Figure C.1: Case : P = 10; s = 1; posf = 100m; V f = 0km/h

Instance iref Emin posf V f CPU porte Iter.
(J) (m) km/h (s) (amps)

P = 5 (120, 60, 50, 30, 40) 43836 100.10 51.49 2×10−2 300 9 718
s = 10
P = 10 (120,100,80,70,50, 42496 100.03 50.24 1.86 40 483 577
s = 10 40,30,40,30,30)
P = 10 (120,95,85,65,55, 42469 100.03 50.05 3.65 20 910 202
s = 5 45,35,30,30,30)
P = 10 (121,96,83,63,54, 42096 100.00 50.03 11.90 4 2 739 102
s = 1 43,35,30,32,29)

Table C.2: Constraints on the velocity state (V (t) ≤ 50km/h) and the final velocity
(V f = 50km/h).

59

Figure C.2: Case : P = 10; s = 1; posf = 100m; V (t) ≤ 50km/h; V f = 50km/h.

Instance iref Emin posf V f CPU porte Iter.
(J) (m) km/h (s) (amps)

P = 5 (150, 80, 20, -30, -150) 21285 90.82 -1.65 10−2 300 2 915
s = 10
P = 10 (150,140,100,60,30, 20194 90.13 -0.10 0.4 40 97 912
s = 10 0,-20,-30,-130,-150)
P = 10 (150,140,95,65,25, 20044 90.15 0.00 1.43 20 369 436
s = 5 10,-20,-40,-125,-150)
P = 10 (150,138,95,63,27, 19950 90.01 0.00 4.97 4 1 719 702
s = 1 11,-19,-38,-127,-150)

Table C.3: Constraints on the velocity state (V (t) ≤ 50km/h) and the final velocity (V f =
0km/h).

In this case, the displacement is limited to 90m. In fact, our simulations show that it is

not possible to keep the same previous instances (described in Table C.2) with a null final

velocity.

60 Appendix C

Figure C.3: Case : P = 10; s = 1; posf = 90m; V (t) ≤ 50km/h; V f = 0km/h.

	Introduction
	A Branch and Bound method for minimizing the energy consumption of an electrical vehicle
	Introduction
	Model of electrical vehicle
	Approximation of Problem (1.2)
	A Branch and Bound based method
	Bounding techniques
	Alternative heuristics for computation of bounds
	Branch and Bound Algorithm

	Conclusion

	Implementation in Fortran 90
	Introduction
	Implementation of the fourth-order Runge-Kutta method
	Software architecture
	Numerical results
	Conclusion

	Extension of the method dedicated to long travels and travels with slopes
	Introduction
	Heuristics H5 and H6
	Case of long travels
	Case without constraint on velocity
	Case with null final velocity
	 Case with constraints on the velocity state variable and on the final velocity
	Conclusion

	Management of slopes
	Algorithm
	Numerical results
	Conclusion

	Conclusion

	Conclusion
	Bibliography
	Interpolation
	Errors due to stalls
	Introduction
	Presentation of the problem
	Numerical results
	Conclusion

	More numerical results

