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Abstract. The present work is devoted to the simulation of a strongly mag-
netized plasma considered as a mixture of an ion fluid and an electron fluid.
For the sake of simplicity, we assume that the model is isothermal and de-
scribed by Euler equations coupled with a term representing the Lorentz force.
Moreover we assume that both Euler systems are coupled through a quasi-
neutrality constraint of the form ni = ne. The numerical method which is
described in the present document is based on an Asymptotic-Preserving semi-
discretization in time of a variant of this two-fluid Euler-Lorentz model with
a small perturbation of the quasi-neutrality constraint. Firstly, we present the
two-fluid model and the motivations for introducing a small perturbation into
the quasi-neutrality equation, then we describe the time semi-discretization
of the perturbed model and a fully-discrete finite volume scheme based on it.
Finally, we present some numerical results which have been obtained with this
method.
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1. Introduction. This paper is devoted to the construction of a numerical scheme
for the simulation of a two-fluid Euler-Lorentz model: such a model represents the
evolution of a mixture of an ion gas and an electron gas which are submitted to
the Lorentz force. More precisely, we focus in this paper on a situation involving
a strong Lorentz force and a low Mach number regime for both ion and electron
fluids, i.e. we assume that pressure and Lorentz forces are of the same order as
τ−1 where τ > 0 is the square of the ion Mach number and also represents the
ratio between the ion gyro-period and the characteristic time scale of the experi-
ment. When τ converges to 0, we reach an asymptotic regime which is referred to
as the drift-fluid regime or gyro-fluid regime: in this limit regime, the pressure force
for the ions and for the electrons is balanced by the Lorentz force. In return, the
momentum equations within the two-fluid Euler system degenerate into a pair of
equations in which the parallel components of the ion and electron velocities can be
viewed as Lagrange multipliers of the zero total force equations in the direction of
the magnetic field (see [5, 16]).

Such a model describes plasma physics experiments involving strong external
magnetic fields, such as Magnetic Confinement Fusion (MCF) experiments in toka-
mak reactors. In such a case, the rescaled gyro-period of the confined particles,
which is denoted by τ , can be close to 0. The assumption that τ is very small leads
to a singularly perturbed Euler-Lorentz model. The limit τ → 0 is referred to as
the gyro-fluid limit (see [1, 21, 30]). It is also possible to consider a gyro-kinetic
approach when a kinetic model is considered from the onset, instead of fluid equa-
tions (see [3, 4, 20, 22, 26, 28, 29, 34, 37, 38, 41]). For generalities on asymptotic
regimes for fusion plasmas physics, we refer to [43].

In many experimental cases, the value of τ is not uniform and can vary a lot
between subdomains of the tokamak. Additionally, it may depend on the time vari-
able: in most of MCF experiments, τ is very small in the plasma core whereas it
can be of order 1 far from the plasma core. From a numerical point of view, the
usual approach for simulating both cases together consists in a domain decompo-
sition according to the local value of τ . More precisely, we choose to simulate the
initial τ -dependent model in the regions where τ = O(1), and we choose the limit
model in the regions where τ ≪ 1. Such an approach involves different numerical
methods for solving either the Euler-Lorentz model or its drift-fluid limit according
to the value of τ . Generally, the coupling of these methods is not straightforward
and presents several drawbacks such as the treatment of the interface position (or
cross-talk region): indeed, it can depend on the time variable and, in most cases,
costly algorithms are required to simulate the motion of the interface and to couple
it with the space mesh.

We choose a different method based on the resolution of the τ -dependent Euler-
Lorentz model and on the design of a scheme which is able to handle both the cases
τ = O(1) and τ ≪ 1. Then this so-called Asymptotic-Preserving (AP) method
provides consistent approximation of the Euler-Lorentz model when τ = O(1) and
of its limit regime when τ → 0, and does not require a τ -dependent stability condi-
tion. As a consequence, such a method can be used on the whole simulation domain
for both the τ = O(1) and τ ≪ 1 regimes. AP schemes have been introduced by
S. Jin [35] and were applied on tranport models and their diffusive limits. Other
applications can be found in plasma physics (see [2, 9, 10, 11, 14, 15, 17, 18] for
quasi-neutrality regimes and [5, 16] for strong magnetic fields regimes), low Mach
number fluid dynamics (see [19, 42]), or other types of transport problems (see
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[6, 7, 8, 12, 24, 25, 36, 39]) or diffusion problems (see [13]).

The present paper has two main goals: the first one is to propose a new equiv-
alent formulation of the two-fluid Euler-Lorentz model when τ > 0. In this new
formulation, the parallel velocity equation for τ = 0 explicitly appears as the limit
of the parallel velocity equation for τ > 0 by contrast to the original formulation.
This reformulation is the building block for the Asymptotic-Preserving scheme for
the two-fluid Euler-Lorentz model. For the scheme being simple, we choose an
isothermal pressure law for both ion and electron fluids. We also assume that the
fluids are coupled through a quasi-neutrality constraint which allows us to compute
the self-consistent electric field within the Lorentz term, the magnetic field being
external and given. This work is the last development of a program started in [5, 16]:
in [5] and [16], the one-fluid isentropic Euler-Lorentz model with given electric and
magnetic fields has been investigated (in [16], under a uniform magnetic field and in
[5], with any magnetic field and arbitrary coordinate system). Here, the specificity
of this work is to consider a two-fluid Euler-Lorentz model with self-consistent elec-
tric field, computed through the quasi-neutrality hypothesis. This leads to a system
of two coupled anisotropic diffusion equations, which brings some specific difficul-
ties. In particular, it involves some singularity which will be treated through a
regularization procedure. This work also bears relations with [13, 15] which are
concerned with more general anisotropic diffusion equations (but not in the context
of the Euler-Lorentz model). Again, [13] deals with a uniform anisotropy direction
and [15] with an arbitrary anisotropy direction and arbitrary coordinate systems
compared to the direction of the anisotropy.

The present paper is organized as follows. In section 2, we present the isothermal
two-fluid Euler-Lorentz model and the drift-fluid limit regime. The section 3 is
devoted to the reformulation of the τ -dependent Euler-Lorentz model leading to a
new equivalent formulation of these equations when τ > 0 which is equivalent to
the drift-fluid limit when τ = 0. In section 4, we present a time semi-discretization
of the Euler-Lorentz model which is also consistent with the new formulation of the
model. Since this time semi-discrete scheme involves an ill-posed diffusion problem
for the electric potential, we choose to recover the well-posedness of this problem by
introducing a regularization of the quasi-neutrality constraint. This is the subject
of the second part of section 4. In section 5, we present a fully-discrete finite
volume scheme based on the AP scheme for the Euler-Lorentz model coupled with
the perturbed quasi-neutrality constraint. Finally, in section 6, we present some
numerical results which have been obtained with this scheme.

2. The isothermal two-fluid Euler-Lorentz model.

2.1. Scaling. In this paragraph, we present the scaling of the Euler-Lorentz equa-
tions which leads to the following dimensionless model:



























∂tn
τ +∇x · qτ

α = 0 , (2.1a)

ǫα τ
[

∂tq
τ
α +∇x ·

(qτ
α ⊗ qτ

α

nτ

)]

+Tα ∇xn
τ

= qα

[

− nτ ∇xφ
τ + qτ

α ×B
]

,

(2.1b)

α ∈ {i, e} , (2.1c)



4 S. BRULL, P. DEGOND, F. DELUZET AND A. MOUTON

where τ is the ratio between the ion gyro-period and the characteristic time scale
but also the square value of the ion Mach number, Ti = 1 and Te = cst. are the
dimensionless ion and electron temperatures, and ǫα and qα are defined by

ǫα =

{

1 , if α = i,
ǫ , if α = e,

qα =

{

1 , if α = i,
−1 , if α = e,

(2.2)

where ǫ is the ratio between the unit electron mass and the unit ion mass. Finally,
nτ , qτ

i , q
τ
e , φ

τ and B correspond to the dimensionless ion and electron density, the
dimensionless ion momentum, the dimensionless electron momentum, the dimen-
sionless electric potential and the external magnetic field and are functions of the
position x ∈ R

3 and of the time t ≥ 0.

Our starting point is the two-fluid Euler-Lorentz model describing a mixture of
an ion gas and an electron gas. This model writes































∂tnα +∇x · qα = 0 ,

∂tqα +∇x ·
(qα ⊗ qα

nα

)

+
1

mα
∇xpα = qα

e

mα
(nα E+ qα ×B) ,

∂teα +∇x ·
(eα + pα

nα
qα

)

= qα eE · qα ,

α ∈ {i, e} ,

(2.3)

and the ion-electron coupling is ensured by the following quasi-neutrality constraint

ni = ne = n . (2.4)

In this two-fluid model, ni, qi, ei and pi (resp. ne, qe, ee and pe) are respectively
the density, the momentum, the total energy per mass unit and the pressure for the
ion (resp. electron) gas. The physical constants mi, me, and e stand for the unit
ion mass, the unit electron mass and the absolute value of unit electron charge. The
electric and magnetic fields are denoted with E and B and we assume that B is
given whereas E is generated by the ions and the electrons through the constraint
(2.4).

In the present context, we assume that both ion and electron gases are isothermal,
i.e. we assume that pi and pe are given by

pi = kB Ti ni , pe = kB Te ne , (2.5)

with constant temperatures Ti and Te, and we also assume that the electric field E

derives from a potential φ, i.e. E = −∇xφ.
Consequently, the model (2.3)-(2.4) is reduced to































∂tn+∇x · qα = 0 ,

∂tqα +∇x ·
(qα ⊗ qα

n

)

+
kB Tα

mα
∇xn

= qα

e

mα
(−n∇xφ+ qα ×B) ,

α ∈ {i, e} .

(2.6)

We introduce the characteristic length x, time t, momentum q, ion temperature T ,
electric potential φ, and magnetic field B such that

x = xx′ , t = t t′ , Ti = T , Te = T T ′
e , (2.7)
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n(xx′, t t′) = nn′(x′, t′) , φ(xx′, t t′) = φφ′(x′, t′) ,

qα(xx
′, t t′) = q q′

α(x
′, t′) , B(xx′, t t′) = BB′(x′, t′) .

(2.8)

We consider the natural ratio

q =
xn

t
, (2.9)

and we also assume that the electric and magnetic forces are of the same order,
which means in terms of characteristic scales that

qB =
nφ

x
. (2.10)

We define the characteristic sound speed c for the ions, the characteristic Mach
number for the ions M and the characteristic cyclotron frequency ω for the ions by

c =

√

kBT

mi
, M =

q

n c
, ω =

eB

mi
. (2.11)

Considering a low Mach number regime, we introduce

M =
√
τ , (2.12)

with τ ≥ 0 small and assuming that the applied magnetic field is strong allows us
to take

t ω =
1

τ
. (2.13)

Finally, we denote the ratio me/mi by ǫ and we assume that it is a dimensionless
fixed constant. Then, removing the primed notations and adding the index τ , we
finally obtain the rescaled isothermal two-fluid Euler-Lorentz model (2.1).

2.2. The limit model. We denote by n0, q0
i , q

0
e and φ0 the limit of (nτ )τ > 0,

(qτ
i )τ > 0, (q

τ
e )τ > 0 and (φτ )τ > 0 respectively when τ → 0. Then, taking the limit

regime of (2.1) when τ → 0 indicates that n0, q0
i , q

0
e and φ0 satisfy the following

model










∂tn
0 +∇x · q0

α = 0 , (2.14a)

Tα ∇xn
0 = qα

[

− n0 ∇xφ
0 + q0

α ×B
]

, (2.14b)

α ∈ {i, e} , (2.14c)

in which the parallel part of q0
i and q0

e are implicit. Indeed, if we separate the
parallel and perpendicular parts of (2.14b) for any α, the model (2.14) writes



























∂tn
0 +∇x · q0

α = 0 , (2.15a)

Tα b · ∇xn
0 = −qα n0 b · ∇xφ

0 , (2.15b)

(q0
α)⊥ =

1

‖B‖b× (qα Tα ∇xn
0 + n0∇xφ

0) , (2.15c)

α ∈ {i, e} , (2.15d)

where q⊥ = b× (q × b), b =
B

‖B‖ and ‖B‖2 = B2
x +B2

y +B2
z . We observe in this

reformulated limit model that (q0
i )⊥ and (q0

e)⊥ can be algebraically computed from
n0 and φ0, but we do not get any explicit constraint for (q0

i )|| and (q0
e)||. One way
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to answer to this difficulty is to couple the limit model (2.15) with the following
equations:























∂t
(

(q0
α)||

)

−
(

∂t(b⊗ b)
)

q0
α + (b⊗ b)∇x ·

(q0
α ⊗ q0

α

n0

)

+ lim
τ → 0

[ 1

ǫατ
(b⊗ b)

(

Tα∇xn
τ + qα nτ ∇xφ

τ
)

]

= 0 ,

α ∈ {i, e} .

(2.16)

These equations are not more than the parallel part of (2.1b) for any α ∈ {i, e},
with τ → 0. However, such a coupling is permitted if

1

ǫα τ
(b⊗ b)

(

Tα ∇xn
τ + qα nτ ∇xφ

τ
)

= O(1) , ∀α ∈ {i, e} , (2.17)

when τ is close to 0. Indeed, this property implies that the limit term within equa-
tions (2.16) exists in R and allows to compute (q0

α)||.
From a numerical point of view, the resolution of (2.15)-(2.16) requires the com-

putation of the limit terms

lim
τ → 0

[ 1

ǫατ
(b⊗ b)

(

Tα ∇xn
τ + qα nτ ∇xφ

τ
)

]

, α ∈ {i, e} . (2.18)

Even if the existence of these limits is admitted, their numerical approximation is
not straightforward since nτ and φτ have to be known for any τ close to 0 and have
to satisfy (2.17). As a consequence, a numerical scheme based on a direct resolution
of (2.15)-(2.16) requires a numerical resolution of (2.1) for very small values of τ .

For these reasons, we choose a numerical approach for computing some approx-
imations of n0, q0

i , q
0
e and φ0 which differs from a direct resolution of the model

(2.15)-(2.16). More precisely, this new approach uses the same tools as in [5, 16]:
we apply a well-chosen time semi-discretization on the initial model (2.1), we re-
formulate the obtained semi-discrete scheme such that it is a time semi-discrete
equivalent to a certain model which is itself equivalent to (2.1). This is what we do
in the following sections.

3. Reformulation of the τ-dependent model and of the limit model. In this
section, we present a reformulation of the model (2.1) in which the (ǫα τ)−1-order
singularities have been regularized. This equivalent model is the following:



































































































∂2
t n

τ −
1

ǫατ
∇x ·

(

(b⊗ b)
(

Tα ∇xn
τ + qα nτ ∇xφ

τ
))

= ∇x ·
(

(

∂t(b⊗ b)
)

qτ
α − (b⊗ b)∇x ·

(qτ
α ⊗ qτ

α

nτ

)

− ∂t((q
τ
α)⊥)

)

,

(3.1a)

∂t
(

(qτ
α)||

)

−
(

∂t(b⊗ b)
)

qτ
α + (b⊗ b)∇x ·

(qτ
α ⊗ qτ

α

nτ

)

+
1

ǫατ
(b⊗ b)

(

Tα ∇xn
τ + qα nτ ∇xφ

τ
)

= 0 ,

(3.1b)

(qτ
α)⊥ =

1

‖B‖b×
(

qα Tα∇xn
τ + nτ ∇xφ

τ
)

+
qα ǫα τ

‖B‖ b×
[

∂tq
τ
α +∇x ·

(qτ
α ⊗ qτ

α

nτ

)]

,

(3.1c)

α ∈ {i, e} , (3.1d)
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These equations are obtained for (2.1) by a differentiation in time and position
procedure and projections in the direction of b and perpendicularly to b. More
details about these computations can be found in Appendix A.

When τ → 0, we obtain























































∇x ·
(

(b⊗ b)
(

Tα∇xn
0 + qα n0 ∇xφ

0
))

= 0 , (3.2a)

∂t
(

(q0
α)||

)

−
(

∂t(b⊗ b)
)

q0
α + (b⊗ b)∇x ·

(q0
α ⊗ q0

α

n0

)

+ lim
τ → 0

[ 1

ǫα τ
(b⊗ b)

(

Tα ∇xn
τ + qα nτ ∇xφ

τ
)

]

= 0 ,

(3.2b)

(q0
α)⊥ =

1

‖B‖b×
(

qα Tα∇xn
0 + n0 ∇xφ

0
)

, (3.2c)

α ∈ {i, e} , (3.2d)

which is equivalent to (2.15)-(2.16). Indeed, (3.2a) can be obtained directly from
(2.15b) by applying the differential operator ∇x · (b ·).

4. Semi-discrete AP schemes. In this section, we propose a semi-discretization
of (2.1) in time which, up to some space differentiations and combinations, is also
a semi-discrete equivalent to the reformulated model (3.1): proceeding in such a
way ensures us that the constructed numerical method will be a time semi-discrete
equivalent to (3.2) when τ converges to 0 and then a time semi-discrete equivalent
to the drift-fluid model (2.14). Another motivation of this methodology is that
we want the numerical method to be conservative like finite volume schemes: this
kind of property may be not ensured if we build our numerical method on a direct
resolution of the reformulated model (3.1).

In practical terms, the semi-discretization we describe in the next lines is based
on semi-implicit mass fluxes and fully implicit pressure and Lorentz forces. This
strategy is motivated by the fact that we want to preserve the balance between the
pressure gradient and the Lorentz term, i.e. to ensure that, at every time step tm,

Tα ∇xn
τ,m + qα

[

nτ,m∇xφ
τ,m − qτ,m

α ×Bm
]

= O(ǫα τ) , ∀α ∈ {i, e} , (4.1)

where the notation θm stands for an approximation of the function θ = θ(x, t) at
the time step t = tm. This methodology differs from the AP semi-discretizations
which were described in [5] and [16]: indeed, in these papers, the authors considered
a fully explicit mass flux, a fully implicit Lorentz term and a semi-implicit pressure
gradient, and this leads to a non-conservative discretization of the velocity equation.

Firstly, we describe the semi-discretization of (2.1) and we reformulate the semi-
discrete model by following the same approach as in Section 3. Then we discuss the
difficulties which are brought by this reformulation and we introduce a regularization
of the mass conservation equations (2.1a) which allows us to bypass these difficulties.

4.1. Time semi-discretization.
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4.1.1. Asymptotic-Preserving property. The considered time semi-discretization of
(2.1) is the following:























































nτ,m+1 − nτ,m

∆t
+∇x ·

(

(bm+1 ⊗ bm+1)qτ,m+1
α

)

+∇x ·
(

(I− bm+1 ⊗ bm+1)qτ,m
α

)

= 0 ,

(4.2a)

qτ,m+1
α − qτ,m

α

∆t
+∇x ·

(qτ,m
α ⊗ qτ,m

α

nτ,m

)

+
Tα

ǫα τ
∇xn

τ,m+1

=
qα

ǫα τ

[

− nτ,m+1∇xφ
τ,m+1 + qτ,m+1

α ×Bm+1
]

,

(4.2b)

α ∈ {i, e} . (4.2c)

As it has been announced above, we chose to implicit the whole pressure and Lorentz
terms in order to have (4.1) at every time step. The choice of the implicitation of the
parallel part of the mass fluxes is motivated by the fact that we have to reformulate
the model (4.2) by injecting the parallel part of (4.2b) in (4.2a). Such a proce-

dure leads to the separate computation of (qτ,m+1
i )m+1

|| , (qτ,m+1
i )m+1

⊥ , (qτ,m+1
e )m+1

||

and (qτ,m+1
e )m+1

⊥ by applying projection operators in the parallel and orthogonal
directions to bm+1. This leads to































































































(qτ,m+1
α )m+1

⊥ −
qα ǫα τ

∆t ‖Bm+1‖b
m+1 × (qτ,m+1

α )m+1
⊥

=
1

‖Bm+1‖b
m+1 ×

[

qα Tα∇xn
τ,m+1 + nτ,m+1 ∇xφ

τ,m+1
]

+
qα ǫα τ

‖Bm+1‖b
m+1 ×

[

− qτ,m
α

∆t
+∇x ·

(qτ,m
α ⊗ qτ,m

α

nτ,m

)]

,

(4.3a)

(qτ,m+1
α )m+1

||

= (bm+1 ⊗ bm+1)qτ,m
α −∆t (bm+1 ⊗ bm+1)∇x ·

(qτ,m
α ⊗ qτ,m

α

nτ,m

)

− ∆t

ǫα τ
(bm+1 ⊗ bm+1)

[

Tα∇xn
τ,m+1 + qα nτ,m+1∇xφ

τ,m+1
]

,

(4.3b)

α ∈ {i, e} , (4.3c)

on one hand, and to a couple of anisotropic diffusion equations for nτ,m+1 and
φτ,m+1 on the other hand with an anisotropy carried by bm+1 (see the computations
of Appendix B with Ci = Ce = 0). These diffusion equations are of the form

−∇x ·
(

(bm+1 ⊗ bm+1)∇xn
τ,m+1

)

+ λ τ nτ,m+1 = τ Rτ,m+1 , (4.4)

−∇x ·
(

nτ,m+1 (bm+1 ⊗ bm+1)∇xφ
τ,m+1

)

= τ Sτ,m+1 , (4.5)

where λ only depends on ǫ, ∆t and Te, and where

Rτ,m+1 = R
(

∆t, Te, ǫ, n
τ,m,qτ,m

i ,qτ,m
e ,bm+1

)

, (4.6)

Sτ,m+1 = S
(

∆t, Te, ǫ, n
τ,m+1, nτ,m,qτ,m

i ,qτ,m
e ,bm+1

)

. (4.7)

Remark that the algebraic equations (4.3a) can be solved for any value of τ .
Then the scheme (4.2) is equivalent to (4.3)-(4.7) and is Asymptotic-Preserving if
and only if

bm+1 · (Tα ∇xn
τ,m+1 + qα nτ,m+1 ∇xφ

τ,m+1) = O(ǫα τ) , ∀α ∈ {i, e} . (4.8)
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These hypotheses are validated if we take into account the following boundary
conditions

{

(bm+1 · ∇xn
τ,m+1) (bm+1 · ν) = 0 , on ∂Ω, (4.9a)

(bm+1 · ∇xφ
τ,m+1) (bm+1 · ν) = 0 , on ∂Ω, (4.9b)

alongwith the diffusion equations (4.4) and (4.5). Indeed, the solutions of the prob-
lems (4.4)-(4.9a) and (4.5)-(4.9b) satisfy

bm+1 · ∇xn
τ,m+1 = O(τ) , bm+1 · ∇xφ

τ,m+1 = O(τ) , (4.10)

which correspond to (4.8) up to some linear combinations.

4.1.2. Anisotropic diffusion problems. As it has been mentioned in the previous
paragraph, the Asymptotic-Preserving property of the method presented in (4.2)
relies on the resolution of the diffusion equations (4.4)-(4.9a) and (4.5)-(4.9b). In-
deed, any solution (nτ,m+1, φτ,m+1) of this couple of diffusion equations satisfies
the property (4.8) so it can be used infor computing (qτ,m+1

α )m+1
|| and (qτ,m+1

α )m+1
⊥

according to (4.3). However the resolution of (4.4)-(4.9a) and (4.5)-(4.9b) is a full-
fledged problem. Indeed, if we focus on the resolution of the problem in nτ,m+1,
we remark that the diffusion equation (4.4) coupled with the Neumann boundary
condition (4.9a) is well posed for any τ > 0. To be more precise, the limit of
(4.4)-(4.9a) writes

{

−∇x ·
(

(bm+1 ⊗ bm+1)∇xñ
0,m+1

)

= 0 , on Ω,
(bm+1 · ∇xñ

0,m+1) (bm+1 · ν) = 0 , on ∂Ω,
(4.11)

and a solution ñ0,m+1 of (4.11) is defined up to a function c : Ω → R satisfying
bm+1 · ∇xc = 0. Since we want to compute the particular solution n0,m+1 of (4.11)
which is exactly the limit of (nτ,m+1)τ > 0 when τ → 0, we follow the same approach
as in [5] and we use the following theorem:

Theorem 4.1 (Brull, Degond, Deluzet [5]). Let us consider the subspace K ⊂
L2(Ω) defined by

K =
{

u ∈ L2(Ω) : bm+1 · ∇xu = 0
}

, (4.12)

and the functional space W0 defined by

W0 =
{

u ∈ L2(Ω) : ∇x · (bm+1 u) ∈ L2(Ω) , (bm+1 · ν)u = 0 on ∂Ω
}

, (4.13)

provided with the norm ‖u‖W0
=

∥

∥∇x · (bm+1 u)
∥

∥

L2(Ω)
. Then we have the following

properties:

1. K is a closed subset in L2(Ω),
2. W0 is a Hilbert space and ∇x · (bm+1 W0) is a closed subset of L2(Ω),
3. L2(Ω) = K ⊕K⊥ with K⊥ = ∇x · (bm+1 W0).

Having these results in hand and assuming that nτ,m+1 is in L2(Ω), we write

nτ,m+1 = πτ,m+1 + qτ,m+1 , (4.14)

with πτ,m+1 ∈ K and qτ,m+1 ∈ K⊥. Since the solution nτ,m+1 of (4.4)-(4.9a)
is unique when τ > 0, the functions πτ,m+1 and qτ,m+1 are also unique as the
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projection of nτ,m+1 on K and K⊥ respectively. Then the diffusion problem (4.4)-
(4.9a) writes











−∇x ·
(

(bm+1⊗bm+1)∇xq
τ,m+1

)

+ λ τ (πτ,m+1 + qτ,m+1) = τ Rτ,m+1 ,
on Ω,

(bm+1 · ∇xq
τ,m+1) (bm+1 · ν) = 0 , on ∂Ω.

(4.15)

If we consider the variational formulation of (4.15) over K, we find that (λπτ,m+1−
Rτ,m+1) ∈ K⊥, i.e. there exists hτ,m+1 such that

{

λπτ,m+1 −Rτ,m+1 = ∇x · (bm+1 hτ,m+1) , on Ω,
(bm+1 · ν)hτ,m+1 = 0 , on ∂Ω.

(4.16)

By applying the operator bm+1 · ∇x on this equation, we find that hτ,m+1 is the
unique solution of

{

−bm+1 · ∇x

(

∇x · (bm+1 hτ,m+1)
)

= bm+1 · ∇xR
τ,m+1 , on Ω,

(bm+1 · ν)hτ,m+1 = 0 , on ∂Ω,
(4.17)

which is a well-posed problem for any τ ≥ 0.
Since qτ,m+1 ∈ K⊥, we claim that there exists lτ,m+1 ∈ L2(Ω) such that

{

qτ,m+1 = ∇x · (bm+1 lτ,m+1) , on Ω,
(bm+1 · ν) lτ,m+1 = 0 , on ∂Ω.

(4.18)

If we consider now the variational formulation of (4.15) overK⊥, we find that lτ,m+1

is the solution of a fourth-order problem which can be written as two successive
second-order problems of the form











−bm+1 · ∇x

(

∇x · (bm+1 Lτ,m+1)
)

+ τ λLτ,m+1

= −τ bm+1 · ∇xR
τ,m+1 ,

on Ω,

(bm+1 · ν)Lτ,m+1 = 0 , on ∂Ω,

(4.19)

{

−bm+1 · ∇x

(

∇x · (bm+1 lτ,m+1)
)

= Lτ,m+1 , on Ω,
(bm+1 · ν) lτ,m+1 = 0 , on ∂Ω.

(4.20)

Remark that these problems remain well-posed for any value of τ ≥ 0. Then, in-
stead of solving the problem (4.4)-(4.9a) which becomes ill-posed when τ = 0, we
solve the problems (4.17), (4.19) and (4.20) for computing h0,m+1 and l0,m+1, then
we compute π0,m+1 and q0,m+1 by using (4.16) and (4.18) respectively, and we fi-
nally get n0,m+1 as the sum of π0,m+1 and q0,m+1.

Concerning the problem (4.5)-(4.9b) for the electric potential φτ,m+1, we remark
that it is ill-posed for any value of τ ≥ 0. Indeed, assuming that this diffusion
problem admits at least one solution φ̃τ,m+1, we can prove that this solution is not
unique: for this purpose, we consider a function c : Ω → R satisfying

bm+1 · ∇xc = 0 , on Ω. (4.21)

Then, it is straightforward to see that φ̃τ,m+1 + c is also a solution of the problem
(4.5)-(4.9b). Since this argument works for the problem (4.5)-(4.9b) for any value
of τ ≥ 0, the decomposition of its solution does not provide unique projections on
K and K⊥ just as it is done for nτ,m+1. Then, we have to find a way to restore the
uniqueness of the solution of the diffusion problem for the electric potential. This
is what we do in the next paragraph.



AP SCHEME FOR A TWO-FLUID EULER-LORENTZ MODEL 11

4.2. Regularized two-fluid Euler-Lorentz model. As it is explained in the
previous paragraph, the Asymptotic-Preserving scheme for the model (2.1) we have
contructed leads to a diffusion problem for computing the electric potential at time
step tm+1 which admits more than one solution. In order to bypass the difficulty
and to restore the well-posedness of the problem in φτ,m+1, we choose to include
a small regularization in the mass conservation equations (2.1a). That is why we
introduce the terms Ci ∂tφ and Ce ∂tφ in such a way that this new model writes























∂tn
τ + Cα ∂tφ

τ +∇x · qτ
α = 0 ,

ǫα τ
[

∂tq
τ
α +∇x ·

(qτ
α ⊗ qτ

α

nτ

)]

+ Tα ∇xn
τ

= qα

[

− nτ ∇xφ
τ + qτ

α ×B
]

,

α ∈ {i, e} .

(4.22)

Here Ci, Ce > 0 are two fixed small parameters which will be chosen later. Then
we consider the same semi-discretization method as previously, i.e.



































































nτ,m+1 − nτ,m

∆t
+ Cα

φτ,m+1 − φτ,m

∆t

+∇x ·
(

(bm+1 ⊗ bm+1)qτ,m+1
α

)

+∇x ·
(

(I− bm+1 ⊗ bm+1)qτ,m
α

)

= 0 ,

(4.23a)

qτ,m+1
α − qτ,m

α

∆t
+∇x ·

(qτ,m
α ⊗ qτ,m

α

nτ,m

)

+
Tα

ǫα τ
∇xn

τ,m+1

=
qα

ǫα τ

[

− nτ,m+1∇xφ
τ,m+1 + qτ,m+1

α ×Bm+1
]

,

(4.23b)

α ∈ {i, e} . (4.23c)

By splitting parallel and perpendicular parts of (4.23b) for α = i and α = e, we
get that (qτ,m+1

α )m+1
⊥ and (qτ,m+1

α )m+1
|| satisfy (4.3). Following the same procedure

as in the previous paragraph (see Appendix B), we inject (4.3b) with α = i (resp.
α = e) in (4.23a) with α = i (resp. α = e). Under the hypotheses

Ci + ǫ Ce = 0 and Ci −
ǫ

Te
Ce = C , (4.24)

with C > 0 being given, we find that nτ,m+1 and φτ,m+1 satisfy the following
diffusion equations:

−∇x ·
(

(bm+1 ⊗ bm+1)∇xn
τ,m+1

)

+ τ λ1 n
τ,m+1 = τ Rτ,m+1 , (4.25)

−∇x ·
(

nτ,m+1 (bm+1 ⊗ bm+1)∇xφ
τ,m+1

)

+ τ λ2 φ
τ,m+1 = τ Sτ,m+1 , (4.26)

where λ1, λ2 only depend on ǫ, ∆t, Te and C, and where

Rτ,m+1 = R
(

∆t, Te, ǫ, n
τ,m,qτ,m

i ,qτ,m
e ,bm+1

)

, (4.27)

Sτ,m+1 = S
(

∆t, Te, ǫ, C, n
τ,m+1, nτ,m, φτ,m,qτ,m

i ,qτ,m
e ,bm+1

)

. (4.28)

Remark that the constraints (4.24) are equivalent to

Ci =
TeC

1 + Te
, Ce = − TeC

ǫ (1 + Te)
. (4.29)

As a consequence, it is necessary to take C > 0 small enough to ensure that Ci

and Ce are close to 0. For that, we can take C = O(ǫ) provided that the ratio
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ǫ = me/mi is small.

We couple (4.25) with the boundary condition given in (4.9a). This diffusion
problem is well-posed for any τ > 0 and becomes ill-posed if τ = 0 because of a
lack of uniqueness of the solution (see page 9). As a consequence, we can apply
Theorem 4.1 and write nτ,m+1 under the following form:

nτ,m+1 = πτ,m+1 + qτ,m+1 , (4.30)

with πτ,m+1 ∈ K, qτ,m+1 ∈ K⊥ defined by

πτ,m+1 =
1

λ1

[

Rτ,m+1 +∇x · (bm+1 hτ,m+1)
]

,

qτ,m+1 = ∇x · (bm+1 lτ,m+1) ,

(4.31)

where hτ,m+1 and lτ,m+1 are the solutions of
{

−bm+1 · ∇x

(

∇x · (bm+1 hτ,m+1)
)

= bm+1 · ∇xR
τ,m+1 , on Ω,

(bm+1 · ν)hτ,m+1 = 0 , on ∂Ω,
(4.32)

and










−bm+1 · ∇x

(

∇x · (bm+1 Lτ,m+1)
)

+ τ λ1 L
τ,m+1

= −τ bm+1 · ∇xR
τ,m+1 ,

on Ω,

(bm+1 · ν)Lτ,m+1 = 0 , on ∂Ω,

(4.33)

{

−bm+1 · ∇x

(

∇x · (bm+1 lτ,m+1)
)

= Lτ,m+1 , on Ω,
(bm+1 · ν) lτ,m+1 = 0 , on ∂Ω.

(4.34)

Now, we couple (4.26) with the boundary condition given in (4.9b). This diffusion
problem has the same properties as (4.25)-(4.9a) which has been discussed above.
Then, we can write φτ,m+1 under the following form:

φτ,m+1 = π̃τ,m+1 + q̃τ,m+1 , (4.35)

with π̃τ,m+1 ∈ K and q̃τ,m+1 ∈ K⊥ defined by

π̃τ,m+1 =
1

λ2

[

Sτ,m+1 +∇x · (bm+1 h̃τ,m+1)
]

,

q̃τ,m+1 = ∇x · (bm+1 l̃τ,m+1) ,

(4.36)

where h̃τ,m+1 and l̃τ,m+1 are the solutions of
{

−bm+1 · ∇x

(

∇x · (bm+1 h̃τ,m+1)
)

= bm+1 · ∇xS
τ,m+1 , on Ω,

(bm+1 · ν) h̃τ,m+1 = 0 , on ∂Ω,
(4.37)

and










−bm+1 · ∇x

(

∇x · (bm+1 L̃τ,m+1)
)

+ τ λ2 L̃
τ,m+1

= −τ bm+1 · ∇xS
τ,m+1 ,

on Ω,

(bm+1 · ν) L̃τ,m+1 = 0 , on ∂Ω,

(4.38)

{

−bm+1 · ∇x

(

∇x · (bm+1 l̃τ,m+1)
)

= L̃τ,m+1 , on Ω,

(bm+1 · ν) l̃τ,m+1 = 0 , on ∂Ω.
(4.39)
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5. Fully-discrete scheme. In this section, we present the fully-discrete version
of the Asymptotic-Preserving method for (4.22) we have presented in the previous
paragraph. Before going further, we introduce some notations which will be used
throughout this section.
First, we consider a uniform mesh (xi, yj, zk) = (i∆x, j∆y, k∆z) on Ω and we
define the following subsets of Z3:

I =
{

(i, j, k) ∈ Z
3 : (xi, yj , zk) ∈ Ω

}

,

I = {(i+ α, j + β, k + γ) : (i, j, k) ∈ I, (α, β, γ) ∈ {−1, 0, 1}3
}

.
(5.1)

Then, we define the meshed domain Ωh by

Ωh =
⋃

(i,j,k)∈ I

[xi−1/2, xi+1/2]× [yj−1/2, yj+1/2]× [zk−1/2, zk+1/2] . (5.2)

We also define the subsets I∗ and I∗ of Z3 as follows:

I∗ =
{

(i, j, k) ∈ Z
3 : (xi+1/2, yj+1/2, zk+1/2) ∈ Ωh

}

,

I∗ =
{

(i, j, k) ∈ I∗ : (xi+1/2, yj+1/2, zk+1/2) /∈ ∂Ωh

}

.
(5.3)

Finally, we assume that, for any K = (Kx,Ky,Kz) ∈ Z
3 and xK = (xKx , yKy , zKz),

the notation ”f|K” stands for an approximation of f(xK) and that the notation
”f|K∗

” stands for an approximation of f(xK∗). From now, we also denote the point
xK = (xKx , yKy , zKz) by a cell center and the point xK∗ = (xKx+1/2, yKy+1/2, zKz+1/2)
by a node.

At this point, the choice of the methodology between ”discretize first, then refor-
mulate the discretized model” and ”reformulate first, then discretize the reformu-
lated model” is critical. Indeed, choosing the second approach induces that we can
perform any usual numerical scheme for solving the diffusion equations (4.25)-(4.9a)
and (4.26)-(4.9b) through the decomposition method suggested in paragraph 4.1.2
and 4.2, this method will typically give us

nτ,m+1(xK) = nτ,m+1
i,j,k +O(hs) ,

φτ,m+1(xK) = φτ,m+1
i,j,k +O(hs) ,

(5.4)

with some s > 0 and where h = max(∆x,∆y,∆z). Having these results in hands,
we inject them into a fully-discrete version of (4.3), we observe that

∆t

ǫα τ
(bm+1(xK)⊗ bm+1(xK))

(

Tα ∇xn
τ,m+1(xK)

+ qα nτ,m+1(xK)∇xφ
τ,m+1(xK)

)

=
∆t

ǫα τ
(bm+1 ⊗ bm+1)

(

Tα ∇hn
τ,m+1 + qα nτ,m+1 ∇hφ

τ,m+1
)

|K

+O(
∆t hs′

ǫα τ
) ,

(5.5)

with s′ > 0, and that we have to strongly refine the space mesh if a very small
value of τ is considered. This is not the Asymptotic-Preserving property we expect
for. As a consequence, we focus on the second approach, i.e. discretize first then
reformulate the discretized model.
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The next lines are structured as follows: firstly, we present the finite volume
scheme based on the semi-discretization (4.23). Then, we reformulate the obtained
fully-discrete scheme by following the same approach as in section 4 and we suggest
a numerical method for solving the fully-discrete diffusion equations for nτ,m+1 and
φτ,m+1.

5.1. Finite volume scheme. First, we introduce some notations for the explicit
and implicit fluxes for the hydrodynamic part of (4.23):

fexp,τ,mα,a =









ea ·
(

(I− bm+1 ⊗ bm+1)qτ,m
α

)

qτ,mα,a qτ,m
α

nτ,m









, (5.6)

f imp,τ,m+1
α,a =









ea ·
(

(bm+1 ⊗ bm+1)qτ,m+1
α

)

ea
Tα nτ,m+1

ǫα τ









, (5.7)

where α ∈ {i, e}, a ∈ {x, y, z}, ea is a vector of the canonical basis of R3, qτ,m
α =

(qτ,mα,x , q
τ,m
α,y , q

τ,m
α,z ) and where I is the 3 × 3 identity matrix. Then, we consider

different notations for divergence and gradient operator depending on whether they
are applied on some component of the implicit or the explicit fluxes. More precisely,
we define the operators ∇FV

h ·, ∇h· and ∇h by linking them to the fluxes by the
following relations:





∇FV
h ·

(

(I− bm+1 ⊗ bm+1)qτ,m
α

)

∇FV
h ·

(qτ,m
α ⊗ qτ,m

α

nτ,m

)



 =
∑

a∈{x,y,z}

∂af
exp,τ,m
α,a , (5.8)





∇h ·
(

(bm+1 ⊗ bm+1)qτ,m+1
α

)

Tα

ǫα τ
∇hn

τ,m+1



 =
∑

a∈{x,y,z}

∂af
imp,τ,m+1
α,a , (5.9)

where α ∈ {i, e}. At this point, the divergence operators ∇h· and ∇FV
h · are differ-

ent: ∇FV
h · is obtained from an finite volume scheme applied on the explicit fluxes

whereas ∇h· is a divergence operator on the implicit fluxes and will be defined dif-
ferently alongwith the gradient operator ∇h.

First, we explicit the divergence operator ∇FV
h ·. The fully-discrete model ob-

tained from (4.23) is written as follows:














































































nτ,m+1
|K − nτ,m

|K

∆t
+
(

∇h ·
(

(bm+1 ⊗ bm+1)qτ,m+1
α

))

|K

+
(

∇FV
h ·

(

(I− bm+1 ⊗ bm+1)qτ,m
α

)

)

|K

= −Cα

φτ,m+1
|K − φτ,m

|K

∆t
,

(5.10a)

qτ,m+1
α |K

− qτ,m
α |K

∆t
+
(

∇FV
h ·

(qτ,m
α ⊗ qτ,m

α

nτ,m

)

)

|K

= − 1

ǫα τ

[

Tα ∇hn
τ,m+1 + qα (nτ,m+1∇hφ

τ,m+1 − qτ,m+1
α ×Bm+1)

]

|K
,

(5.10b)

α ∈ {i, e} . (5.10c)
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In finite volume terms, we have

(∂af
exp,τ,m
α,a )|K =

1

∆a

(

Fτ,m
α,a |K+ea/2

−Fτ,m
α,a |K−ea/2

)

, (5.11)

with

Fτ,m
α,a |K+ea/2

=
1

2

(

fexp,τ,mα,a |K
+ fexp,τ,mα,a |K+ea

)

−
1

2
D

τ,m
α,a |K+ea/2

(

Wτ,m
α |K+ea

−Wτ,m
α |K

)

.

(5.12)

where α ∈ {i, e} and a ∈ {x, y, z}. In these formulae, Wτ,m
α |K

is

Wτ,m
α |K

=

(

nτ,m
|K

qτ,m
α |K

)

, (5.13)

and D
τ,m
α,a is the numerical viscosity matrix linked with the flux fexp,τ,mα,a for any α ∈

{i, e}. For the sake of simplicity, we choose to compute the viscosity matrices with
Rusanov’s method (see [46] and [40]). For this purpose, we denote the eigenvalues
of the jacobian matrices JacWα(f

exp,τ,m
α,a ) by λτ,m

α,k,a (k = 1, 2, 3, 4). Then, Dτ,m
α,a is

defined by

D
τ,m
α,a |K+ea/2

= I max
k=1,2,3,4

max
(

|λτ,m
α,k,a|K+ea

| , |λτ,m
α,k,a|K

|
)

. (5.14)

5.2. Reformulation of the fully-discrete scheme. Following the same approach
as in sections 3 and 4, we reformulate the discretized model (5.10) by computing sep-

arately the perpendicular part and the parallel part of qτ,m+1
i |K

and qτ,m+1
e |K

and

by solving two diffusion equations to find nτ,m+1
|K and φτ,m+1

|K . More precisely,

under the hypotheses (4.24) for Ci and Ce, we solve

−
(

∇h ·
(

(∇hn
τ,m+1)m+1

||

)

)

|K
+ λ1 τ n

τ,m+1
|K = τ Rτ,m+1

|K , (5.15)

for finding nτ,m+1
|K and

−
(

∇h ·
(

nτ,m+1 (∇hφ
τ,m+1)m+1

||

)

)

|K
+ λ2 τ φ

τ,m+1
|K = τ Sτ,m+1

|K , (5.16)

for finding φτ,m+1
|K . These discrete diffusion equations are obtained by injecting

the parallel part of (5.10b) according to bm+1
|K into (5.10a), then performing some

linear combinations of the obtained equations (see Appendix C).
Having nτ,m+1

|K and φτ,m+1
|K in hand, we can compute separately the parallel

part and the perpendicular part of qτ,m+1
i |K

and qτ,m+1
e |K

by using the following
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formulae:


































































































(

(qτ,m+1
α )m+1

||

)

|K

=
(

(qτ,m
α )m+1

||

)

|K
−∆t

[(

∇FV
h ·

(qτ,m
α ⊗ qτ,m

α

nτ,m

)

)m+1

||

]

|K

− ∆t

ǫα τ

(

(

Tα ∇hn
τ,m+1 + qα nτ,m+1∇hφ

τ,m+1
)m+1

||

)

|K
,

(5.17a)

(

(qτ,m+1
i )m+1

⊥

)

|K
− qα ǫα τ

∆t ‖Bm+1
|K‖b

m+1
|K ×

(

(qτ,m+1
i )m+1

⊥

)

|K

=
[ 1

‖Bm+1‖b
m+1 × (nτ,m+1 ∇hφ

τ,m+1 + qα Tα ∇hn
τ,m+1)

]

|K

+
qα ǫα τ

‖Bm+1
|K‖b

m+1
|K ×

[

−
qτ,m
α |K

∆t
+
(

∇FV
h ·

(qτ,m
α ⊗ qτ,m

α

nτ,m

)

)

|K

]

,

(5.17b)

α ∈ {i, e} . (5.17c)

5.3. Three-point scheme. In this paragraph, we focus on the resolution of (5.15)
and (5.16) provided with a discretization of the Neumann-like boundary conditions
(4.9). For solving these diffusion equations, we follow the approach of Degond &
Tang in [19]: we choose a three-point scheme by replacing the equations (5.15) and
(5.16) by











−(∂m+1
h,∗ ∂m+1

h nτ,m+1)|K + τ λ1 n
τ,m+1

|K

= τ Rτ,m+1
|K ,

∀K ∈ I ,

(∂m+1
h nτ,m+1)|K∗

= 0 , ∀K ∈ I∗\I∗ ,
(5.18)

and










−
(

∂m+1
h,∗ (nτ,m+1

∗ ∂m+1
h φτ,m+1)

)

|K
+τ λ2 φ

τ,m+1
|K

= τ Sτ,m+1
|K ,

∀K ∈ I ,

(∂m+1
h φτ,m+1)|K∗

= 0 , ∀K ∈ I∗\I∗ ,
(5.19)

respectively. In these equations, nτ,m+1
∗ |K∗

stands for the average of nτ,m+1 on the
node (xKx+1/2, yKy+1/2, zKz+1/2) defined by

nτ,m+1
∗ |K∗

=
1

8

∑

α,β,γ ∈ {0,1}

nτ,m+1
|K+αex+βey+γez

, (5.20)

and the operators ∂m+1
h and ∂m+1

h,∗ correspond to some approximations of bm+1 ·∇x

and ∇x · (bm+1·) respectively. These operators are defined by

(∂m+1
h p)|K∗

= bm+1
|K∗

·

























∑

β,γ ∈{0,1}

p|K+ex+βey+γez
− p|K+βey+γez

4∆x

∑

α,γ ∈{0,1}

p|K+αex+ey+γez
− p|K+αex+γez

4∆y

∑

α,β ∈{0,1}

p|K+αex+βey+ez
− p|K+αex+βey

4∆z

























, (5.21)
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(∂m+1
h,∗ p)|K =

∑

β,γ ∈{0,1}

(bm+1
x p)|K∗−βey−γez

− (bm+1
x p)|K∗−ex−βey−γez

4∆x

+
∑

α,γ∈{0,1}

(bm+1
y p)|K∗−αex−γez

− (bm+1
y p)|K∗−αex−ey−γez

4∆y

+
∑

α,β∈{0,1}

(bm+1
z p)|K∗−αex−βey

− (bm+1
z p)|K∗−αex−βey−ez

4∆z
.

(5.22)

Then, replacing bm+1 ·∇x and ∇x ·(bm+1·) by ∂m+1
h and ∂m+1

h,∗ in the decomposition

procedure (4.30)-(4.39), we compute nτ,m+1
|K and φτ,m+1

|K that satisfy

(Tα ∂m+1
h nτ,m+1 + qα nτ,m+1

∗ ∂m+1
h φτ,m+1)|K∗

= O(ǫα τ) , ∀α ∈ {i, e} . (5.23)

We remark that we have the good Asymptotic-Preserving property on the nodes.
However, we need it on the cell centers, i.e.

(

bm+1 · (Tα ∇hn
τ,m+1 + qα nτ,m+1 ∇hφ

τ,m+1)
)

|K
= O(ǫα τ) , (5.24)

for any α ∈ {i, e}. To reach such a result, we introduce the discrete gradient ∇h,∗

defined by

(∇h,∗p)|K∗

=

























∑

β,γ ∈{0,1}

p|K+ex+βey+γez
− p|K+βey+γez

4∆x

∑

α,γ ∈{0,1}

p|K+αex+ey+γez
− p|K+αex+γez

4∆y

∑

α,β ∈{0,1}

p|K+αex+βey+ez
− p|K+αex+βey

4∆z

























, (5.25)

and we use it to couple the three-point scheme we have presented with the formu-
lae for

(

(qτ,m+1
i )m+1

⊥

)

|K
,
(

(qτ,m+1
e )m+1

⊥

)

|K
,
(

(qτ,m+1
i )m+1

||

)

|K
and

(

(qτ,m+1
e )m+1

||

)

|K
:

more precisely, we use the operator∇h,∗ for computing the following terms in (5.17):







































































































(

(

Tα ∇hn
τ,m+1 + qα nτ,m+1∇hφ

τ,m+1
)m+1

||

)

|K

=
1

8

∑

α,β,γ ∈{0,1}

(

(Tα ∇h,∗n
τ,m+1

+ qα nτ,m+1
∗ ∇h,∗φ

τ,m+1)m+1
||

)

|K∗−αex−βey−γez

,

(5.26a)

( 1

‖Bm+1‖b
m+1 × (qα nτ,m+1∇hφ

τ,m+1 + Tα∇hn
τ,m+1)

)

|K

=
1

8

∑

α,β,γ ∈ {0,1}

( 1

‖Bm+1‖b
m+1 ×

[

nτ,m+1
∗ ∇h,∗φ

τ,m+1

+∇h,∗n
τ,m+1

]

)

|K∗−αex−βey−γez

,

(5.26b)

α ∈ {i, e} . (5.26c)
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As a consequence, we obtain the properties (5.15) and (5.16) on cell centers and

we can compute the parallel part and the perpendicular part of qτ,m+1
i and qτ,m+1

e

by using separately the formulae (5.17).

6. Numerical results. In this last section, we present some 2D numerical results
which have been obtained with the AP scheme we have presented in sections 4.2
and 5 for the perturbed two-fluid Euler-Lorentz model (4.22).

6.1. Validation of the three-point scheme for the diffusion problems. Since
the AP scheme relies on the truthfulness of the properties (4.8), we first present
some numerical results from the three-point scheme used for the resolution of the
diffusion problems for nτ,m+1 and φτ,m+1 (see paragraph 5.3). More precisely, the
main goal of the first test sequence is to solve the diffusion problems (4.25)-(4.9a)
and (4.26)-(4.9b) for any value of τ ≥ 0 and to ensure that

∀K , nτ,m+1
|K → n0,m+1

|K , φτ,m+1
|K → φ0,m+1

|K , (6.1)

as τ → 0. To perform this validation, we apply our method to the following diffusion
problem:

{

−∇x ·
(

Hτ (b⊗ b)∇xp
τ ) + τ λ pτ = τ f τ , on Ω,

(

Hτ (b⊗ b) · ∇xp
τ
)

· ν = 0 , on ∂Ω,
(6.2)

where λ > 0, f τ : Ω → R, Hτ : Ω → R
∗
+ and b : Ω → R

3 are given.

Let us consider a function sequence (pτ )τ ≥ 0 defined by

pτ = p0 + τ pτ1 , (6.3)

with p0 and pτ1 satisfying
b · ∇xp0 = 0 , on Ω, (6.4)

and
(

Hτ (b⊗ b)∇xp
τ
1

)

· ν = 0 , on ∂Ω. (6.5)

We assume from now that

f τ = λ pτ −∇x ·
(

Hτ (b⊗ b)∇xp
τ
1

)

, (6.6)

which implies that pτ is the analytic solution of the problem (6.2).

In Figures 1 and 2, we plot the evolution of the error between pτ and its approxi-
mation (denoted with pτapp) as a function of the space step h. In these results which

are presented in decimal logarithmic scale, we have chosen τ = 10−2 and τ = 10−9.
The domain Ω is set to [1, 2]× [1, 2] ⊂ R

2, p0 and pτ1 to

p0(x, y) = 2 , p1(x, y) =
(

(x− 1)(2− x)(y − 1)(2− y)
)3

, (6.7)

and λ, Hτ , and b are chosen as
λ = 1 , (6.8)

Hτ (x, y) = 1 + sin2(x) sin2(y) , (6.9)

b = (sin θ,− cos θ) , with θ(x, y) = arctan(y/x). (6.10)

As we can remark in theses figures, the solver for the diffusion problem (6.2) based
on the micro-macro decomposition presented in Section 4.1 and on the discrete
differential operators ∂h and ∂h,∗ is second order accurate in h since we observe
that the error ‖pτ − pτapp‖Lp (p = 1, 2,∞) is linearly decreasing in log10 scale when
h → 0, with a slope which is equal to 2. This is due to the fact that, according to
the definitions (5.21) and (5.22), the operators ∂h and ∂h,∗ are themselves second
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Figure 1. L1, L2 and L∞ norms of the error between pτ and its
approximation pτapp as functions of h: case with τ = 10−2.
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Figure 2. L1, L2 and L∞ norms of the error between pτ and its
approximation pτapp as functions of h: case with τ = 10−9.

order accurate. Furthermore, we have this property for τ = 10−2 and τ = 10−9, so
we can conclude that the second order accuracy of the solver is not penalized by
the smallness of τ .

Together with this convergence results in h, we plot in Figure 3 the error between
pτapp provided by the solver and p0 = p0 as a function of τ with a 100× 100 uniform
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Figure 3. L1, L2 and L∞ norms of the error between pτ and
p0 = p0 as functions of τ : case with a 100× 100 uniform mesh.

mesh, and we take the same values of p0, p
τ
1 , λ, H

τ , and b as above. By definition
of the analytic solution of pτ and p0 (see (6.3)), we except this error to be of the
same order of τ . This is confirmed by Figure 3: indeed, the error ‖pτapp − p0‖Lp

(p = 1, 2,∞) is linearly decreasing in log10 scale when τ converges to 0 with a slope
which is equal to 1.

From these two results, we can claim that

lim
h→ 0

lim
τ → 0

pτapp = p0 , (6.11)

which is exactly to say that the numerical solver for the diffusion problem (6.2) is
Asymptotic-Preserving when τ → 0. Then, we can use it for solving the diffusion
problems (4.25)-(4.9a) and (4.26)-(4.9b) for nτ,m+1 and φτ,m+1.

6.2. Validation of the AP scheme for the two-fluid Euler-Lorentz model

near the drift-fluid limit. In order to validate the AP scheme we have developed
for the perturbed Euler-Lorentz problem (4.22), we compare the results which are
computed by the AP scheme to those which can be produced with a fully explicit
finite volume method. From now, we denote with classical method a finite volume
scheme which is based on the following time semi-discretization:























































nτ,m+1 − nτ,m

∆t
+ Cα

φτ,m+1 − φτ,m

∆t
+∇x · qτ,m

α = 0 ,

qτ,m+1
α − qτ,m

α

∆t
+∇x ·

(qτ,m
α ⊗ qτ,m

α

nτ,m

)

+
Tα

ǫα τ
∇xn

τ,m

= qα

[

− 1

ǫα τ
nτ,m ∇xφ

τ,m + qτ,m+1
α ×Bm+1

]

,

α ∈ {i, e} .

(6.12)
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We easily remark that the stability condition of such a method strongly depends on
τ : as in a low Mach number numerical experiment, the smaller τ is, the smaller the
time step ∆t must be in order to ensure that a method based on (6.12) is stable.
As a example, if we solve the hydrodynamic part of (6.12) with Rusanov’ scheme,
we must have ∆t = O(h τ1/2) at least, where h = min(∆x,∆y,∆z).

In the next lines, we distinguish two opposite situations:

• The resolved case: The time step is small enough in order to ensure that both
classical and AP methods capture the fast time variations within the solution,

• The under-resolved case: The time step does not allow the capture of fast
time variations but ensures at least the stability of the AP scheme.

The test case we present here is based on the perturbation of the following
stationary case:

• The magnetic field is uniform and reads B = (sinα,− cosα, 0) with α ∈ R

fixed,
• nτ,0(x, y) = n0, φ

τ,0(x, y) = φ0, q
τ,0
i = qτ,0

e = B with some constants n0 and
φ0,

• The whole system (4.22) does not depend on the variable z.

qτi,x (AP scheme) qτi,x (classical scheme)

qτi,y (AP scheme) qτi,y (classical scheme)

Figure 4. Resolved case at time t = 6×10−6: x and y components
of the ion momentum qτ

i as functions of (x, y) computed with the
AP scheme (left) and the classical scheme (right).
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Remarking that both classical and AP schemes compute the exact solution pro-
vided with these initial datas, we choose to introduce a small perturbation at the
initial time step. More precisely, we choose to replace nτ,0(x, y) = n0 by

nτ,0(x, y) = n0 + τ max
(

0, 1− η (x− x0)
2 − η (y − y0)

2
)

, (6.13)

with η ≥ 0 and (x0, y0) ∈ Ω.

qτe,x (AP scheme) qτe,x (classical scheme)

qτe,y (AP scheme) qτe,y (classical scheme)

Figure 5. Resolved case at time t = 6×10−6: x and y components
of the electron momentum qτ

e as functions of (x, y) computed with
the AP scheme (left) and the classical scheme (right).

We also assume that the physical domain Ω is [1, 2] × [1, 2] and is meshed by
a 100 × 100 uniform mesh. We also precise the initial datas by taking τ = 10−8,
ǫ = 1, Te = 3, C = 10−2, α = 2π

3 , η = 80, (x0, y0) = (32 ,
3
2 ), n0 = 1 and φ0 = 0.

In Figures 4-5, we present some results in the resolved situation for both classical
and AP schemes and ∆t = 5 × 10−9 is taken as time step. As we can see in these
figures, the results which are produced by the AP scheme are very close to the
classical method’s ones.

In Figures 6-7, we present some simulations which are obtained in the under-
resolved case, i.e. where the time step is taken much larger than the time step
which is required to ensure the stability of the classical scheme. In the present case,
we have chosen ∆t = 10−6, which is 200 times larger than the time step which
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has been used for the resolved case above. As we can see in these figures, the AP
scheme remains stable and produces the same results as in the resolved case. How-
ever, the classical scheme blows up after a small number of time iterations, which is
not surprising because the time step we have chosen is too large for satisfying the
stability condition of this scheme.

From this numerical experiment, we can conclude that the AP scheme we have
developed for the perturbed two-fluid Euler-Lorentz model (4.22) allows us to take
a time step which does not satisfy the stability condition required for capturing the
fast time variations of the solution. Furthermore, such a time step choice does not
penalize the quality of the results which are obtained with the AP scheme.

qτi,x (AP scheme) qτi,x (classical scheme)

qτi,y (AP scheme) qτi,y (classical scheme)

Figure 6. Under-resolved case at time t = 6×10−6: x and y com-
ponents of the ion momentum qτ

i as functions of (x, y) computed
with the AP scheme (left) and the classical scheme (right).
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qτe,x (AP scheme) qτe,x (classical scheme)

qτe,y (AP scheme) qτe,y (classical scheme)

Figure 7. Under-resolved case at time t = 6 × 10−6: x and y
components of the electron momentum qτ

e as functions of (x, y)
computed with the AP scheme (left) and the classical scheme
(right).

6.3. Impact of the perturbation parameter C. Since the AP scheme we have
built for the resolution of the perturbed Euler-Lorentz model (4.22) has been val-
idated in terms of quality of results, the impact of the value of C needs to be
investigated. Indeed, we recall that this parameter is linked with the constants Ci

and Ce by the relations

Ci =
TeC

1 + Te
, Ce = −

TeC

ǫ (1 + Te)
, (6.14)

and these constants are introduced to recover the uniqueness of the solution for the
diffusion problem (4.5)-(4.9b) (see Section 4). Since Ci and Ce are introduced in
(2.1) through a perturbation of the mass conservation equations, these constants
are assumed to be as close to 0 as possible. However, this is equivalent to assume
that C is close to 0, so the diffusion problem (4.26)-(4.9b) is ill-conditioned since

λ2 =
TeC

∆t2 (Te − 1)
(see Appendix B) and degenerates into the non-unique solution
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problem (4.5)-(4.9b) when C → 0. Thus it is necessary to investigate the conse-
quences of the choice of C on the stability of the AP scheme.

∆t = 10−6 ∆t = 10−7

∆t = 10−8

Figure 8. qτi,x at time t = 6× 10−6 with C = 10−2 and ∆t = 10−6, 10−7, 10−8.

In the last test sequence, we run the AP method with the initial datas which
have been used in the previous paragraph, i.e.

• We take a 100× 100 uniform mesh over Ω = [1, 2]× [1, 2],
• The magnetic field is uniform and is defined as B = (sinα,− cosα, 0) with
α = 2π

3 ,

• The initial electric potential is φτ,0 = φ0 with φ0 = 0,
• The initial ion momentum and the initial electron momentum are defined by
q
τ,0
i = qτ,0

e = B,
• The initial density is nτ,0 defined by

nτ,0(x, y) = n0 + τ max
(

0, 1− η (x− x0)
2 − η (y − y0)

2
)

, (6.15)

with n0 = 1 constant, η = 80 and (x0, y0) = (32 ,
3
2 ),

• We choose Te = 3, ǫ = 1 and τ = 10−8.

In Figure 8, we plot the x-component of the ion momentum qτ
i which is obtained

with the AP scheme (4.23) at time t = 6 × 10−6 with C = 10−2 and a time step
∆t which is equal to 10−6, 10−7 and 10−8. We can remark that the AP method is
stable for ∆t ≤ 10−6 since all the results are similar.

Now, we do again this numerical experiment with C = 10−3 instead of C = 10−2.
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As we can remark in Figure 9 where qτi,x is plotted at time t = 4 × 10−6, the AP

method is stable with ∆t = 10−7 and ∆t = 10−8. However, we observe some
important boundary effects in the ∆t = 10−6 case.

Finally, we perform this numerical experiment with C = 10−4. In Figure 10, we
plot qτi,x at time t = 2 × 10−6 with ∆t = 10−6, 10−7, 10−8. No numerical artifacts

are present in the ∆t = 10−8 case whereas we observe some boundary effects if
∆t = 10−6 and even the blowing up of the method when ∆t = 10−7 is considered.

∆t = 10−6 ∆t = 10−7

∆t = 10−8

Figure 9. qτi,x at time t = 4× 10−6 with C = 10−3 and ∆t = 10−6, 10−7, 10−8.

The results which are provided by the whole test sequence above indicate that
we have a stability condition for the AP scheme which clearly depends on C and
which would be of the form

∆t = O(C) . (6.16)

As a consequence, we can say that the AP scheme we have developed for the per-
turbed two-fluid Euler-Lorentz model (4.22) is Asymptotic-Preserving when C > 0
is fixed and when τ → 0. However, it is not Asymptotic-Preserving when C → 0
and τ > 0 is fixed.

7. Conclusions and perspectives. In this paper, we studied the isothermal two-
fluid Euler-Lorentz system coupled with a quasi-neutrality constraint in a low Mach
number regime and a strong magnetic field regime. After having presented the
model and its limit regime, we proposed a reformulation of this model which is
compatible with the construction of an Asymptotic-Preserving scheme. Then we
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∆t = 10−6 ∆t = 10−7

∆t = 10−8

Figure 10. qτi,x at time t = 2× 10−6 with C = 10−4 and ∆t = 10−6, 10−7, 10−8.

presented the time semi-discrete AP scheme itself and its reformulation leading to
the resolution of some anisotropic diffusion equations for nτ,m+1 and φτ,m+1. The
equation for φτ,m+1 being ill-posed, we restored the uniqueness of the solution of this
equation by introducing a small perturbation in the mass conservation equations.
Finally, we performed some numerical tests of this scheme by comparing the results
from the AP scheme to those from a fully explicit method and we tested the influence
of the perturbation parameter C on the behaviour of the AP scheme.

At this point, several work pathes can be investigated. The first one is to go
back to the time semi-discretization described in section 4.1 by invoking boundary
conditions for the computation of the electric potential which are different from
Neumann conditions. The second one is to generalize the present work to some
two-fluid Euler-Lorentz models involving other pressure laws for pi and pe.

Appendix A. Reformulation of the Euler-Lorentz model. In this paragraph,
we detail the reformulation procedure of the Euler-Lorentz model



























∂tn
τ +∇x · qτ

α = 0 , (A.1a)

ǫα τ
[

∂tq
τ
α +∇x ·

(qτ
α ⊗ qτ

α

nτ

)]

+Tα ∇xn
τ

= qα

[

− nτ ∇xφ
τ + qτ

α ×B
]

,

(A.1b)

α ∈ {i, e} , (A.1c)
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leading to the model (3.1). First, we separate the parallel and perpendicular parts
of (A.1b) for each value of α: we obtain











































































∂tn
τ +∇x · (qτ

α)|| +∇x · (qτ
α)⊥ = 0 , (A.2a)

∂t
(

(qτ
α)||

)

−
(

∂t(b⊗ b)
)

qτ
α + (b⊗ b)∇x ·

(qτ
α ⊗ qτ

α

nτ

)

+
1

ǫα τ
(b⊗ b)

(

Tα ∇xn
τ + qα nτ ∇xφ

τ
)

= 0 ,

(A.2b)

(qτ
α)⊥ =

1

‖B‖b×
(

qα Tα ∇xn
τ + nτ ∇xφ

τ
)

+
qα ǫα τ

‖B‖ b×
[

∂tq
τ
α +∇x ·

(qτ
α ⊗ qτ

α

nτ

)]

,

(A.2c)

α ∈ {i, e} . (A.2d)

In order to obtain (3.1a) for any α ∈ {i, e}, we compute the divergence in space of
(A.2b) on one hand and the derivative in time of (A.2a) on the other hand. We
obtain

∇x ·
(

∂t
(

(qτ
α)||

))

−∇x ·
(

(

∂t(b⊗ b)
)

qτ
α − (b⊗ b)∇x ·

(qτ
α ⊗ qτ

α

nτ

))

+
1

ǫα τ
∇x ·

(

(b⊗ b)
(

Tα∇xn
τ + qα nτ ∇xφ

τ
))

= 0 ,

(A.3)

and

∂2
t n

τ + ∂t∇x · (qτ
α)|| + ∂t∇x · (qτ

α)⊥ = 0 , (A.4)

for any α ∈ {i, e}. By doing some linear combinations of these equations, we obtain
a system of 2 equations for nτ and φτ of the form























∂2
t n

τ −
1

ǫα τ
∇x ·

(

(b⊗ b)
(

Tα∇xn
τ + qα nτ ∇xφ

τ
))

= ∇x ·
(

(

∂t(b⊗ b)
)

qτ
α − (b⊗ b)∇x ·

(qτ
α ⊗ qτ

α

nτ

)

− ∂t((q
τ
α)⊥)

)

,

α ∈ {i, e} ,

(A.5)

which are exactly the equations (3.1a). Then the Euler-Lorentz model (A.1) is
equivalent to the combination of (A.2b), (A.2c) and (A.5).

Appendix B. Reformulation of the semi-discrete problem. This paragraph
is devoted to the reformulation of the semi-discrete problems (4.2) and (4.22). Since
the model (4.2) is not more than (4.22) with Ci = Ce = 0, we present the refor-
mulation of the semi-discrete scheme for the perturbed Euler-Lorentz model. This
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scheme is recalled here:



































































nτ,m+1 − nτ,m

∆t
+ Cα

φτ,m+1 − φτ,m

∆t

+∇x ·
(

(bm+1 ⊗ bm+1)qτ,m+1
α

)

+∇x ·
(

(I− bm+1 ⊗ bm+1)qτ,m
α

)

= 0 ,

(B.1a)

qτ,m+1
α − qτ,m

α

∆t
+∇x ·

(qτ,m
α ⊗ qτ,m

α

nτ,m

)

+
Tα

ǫα τ
∇xn

τ,m+1

=
qα

ǫα τ

[

− nτ,m+1∇xφ
τ,m+1 + qτ,m+1

α ×Bm+1
]

,

(B.1b)

α ∈ {i, e} . (B.1c)

First, we separate the parallel and the perpendicular parts of (B.1b) according
to bm+1. More precisely, we obtain the equations (4.3a) by performing the vector
product of bm+1 by (B.1b). Concerning the equations (4.3b), we obtain them by
multiplying the tensor (bm+1 ⊗ bm+1) by (B.1b).

In order to obtain the diffusion equations (4.25) and (4.26), we put (4.3b) in
(B.1a). We obtain a system of two diffusion equations satisfied by (nτ,m+1, φτ,m+1):























































nτ,m+1 − nτ,m

∆t
+ Cα

φτ,m+1 − φτ,m

∆t
+∇x · qτ,m

α

−∆t∇x ·
(

(bm+1 ⊗ bm+1)∇x ·
(qτ,m

α ⊗ qτ,m
α

nτ,m

))

−
∆t

ǫα τ
∇x ·

(

(bm+1 ⊗ bm+1)
(

Tα∇xn
τ,m+1

+ qα nτ,m+1∇xφ
τ,m+1

)

)

= 0 ,

α ∈ {i, e} .

(B.2)

By doing some linear combinations, these diffusion equations write

−∇x ·
(

(bm+1 ⊗ bm+1)∇xn
τ,m+1

)

+ τ
1 + ǫ

∆t2 (1 + Te)
nτ,m+1 + τ

Ci + ǫ Ce

∆t2 (1 + Te)
φτ,m+1

=
τ

1 + Te

[

− 1

∆t
∇x · (qτ,m

i + ǫqτ,m
e ) +

1 + ǫ

∆t2
nτ,m +

Ci + ǫ Ce

∆t2
φτ,m

+∇x ·
(

(bm+1 ⊗ bm+1)
[

∇x · (q
τ,m
i ⊗ q

τ,m
i

nτ,m
)

+ ǫ∇x · (q
τ,m
e ⊗ qτ,m

e

nτ,m
)
]

)

]

,

(B.3)
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and

−∇x ·
(

nτ,m+1 (bm+1 ⊗ bm+1)∇xφ
τ,m+1

)

+ τ
TeCi − ǫ Ce

∆t2 (Te − 1)
φτ,m+1 + τ

Te − ǫ

∆t2 (Te − 1)
nτ,m+1

= τ × Te

Te − 1

[

− 1

∆t
∇x ·

(

q
τ,m
i − ǫ

Te
qτ,m
e

)

+
Te − ǫ

∆t2 Te
nτ,m

+
TǫCi − ǫ Ce

∆t2 Te
φτ,m +∇x ·

(

(bm+1 ⊗ bm+1)
[

∇x · (q
τ,m
i ⊗ q

τ,m
i

nτ,m
)

− ǫ

Te
∇x · (q

τ,m
e ⊗ qτ,m

e

nτ,m
)
]

)

]

.

(B.4)

If we consider the constraints (4.24) for Ci and Ce, we decouple the diffusion equa-
tions. Firstly, we compute nτ,m+1 by solving

−∇x ·
(

(bm+1 ⊗ bm+1)∇xn
τ,m+1

)

+ τ λ1 n
τ,m+1 = τ Rτ,m+1 , (B.5)

with

λ1 =
1 + ǫ

∆t2 (1 + Te)
,

Rτ,m+1 =
1

1 + Te

[

− 1

∆t
∇x · (qτ,m

i + ǫqτ,m
e ) +

1 + ǫ

∆t2
nτ,m

+∇x ·
(

(bm+1 ⊗ bm+1)
[

∇x · (q
τ,m
i ⊗ q

τ,m
i

nτ,m
)

+ ǫ∇x · (q
τ,m
e ⊗ qτ,m

e

nτ,m
)
]

)

]

,

(B.6)

then we use it to compute φτ,m+1 by solving

−∇x ·
(

nτ,m+1 (bm+1 ⊗ bm+1)∇xφ
τ,m+1

)

+ τ λ2 φ
τ,m+1 = τ Sτ,m+1 , (B.7)

with

λ2 =
TeC

∆t2 (Te − 1)
,

Sτ,m+1 =
Te

Te − 1

[

− 1

∆t
∇x ·

(

q
τ,m
i − ǫ

Te
qτ,m
e

)

+
ǫ− Te

∆t2 Te
(nτ,m+1 − nτ,m) +

C

∆t2
φτ,m

+∇x ·
(

(bm+1 ⊗ bm+1)
[

∇x · (
q
τ,m
i ⊗ q

τ,m
i

nτ,m
)

− ǫ

Te
∇x · (q

τ,m
e ⊗ qτ,m

e

nτ,m
)
]

)

]

.

(B.8)
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Appendix C. Reformulation of the fully-discrete problem. In this para-
graph, we develop the reformulation procedure for the finite volume scheme which
is detailed in Section 5. This scheme writes































































nτ,m+1
|K − nτ,m

|K

∆t
+
(

∇h ·
(

(bm+1 ⊗ bm+1)qτ,m+1
α

))

|K

+
(

∇FV
h ·

(

(I− bm+1 ⊗ bm+1)qτ,m
α

)

)

|K
= −Cα

φτ,m+1
|K − φτ,m

|K

∆t
,

(C.1a)

qτ,m+1
α |K

− qτ,m
α |K

∆t
+
(

∇FV
h ·

(qτ,m
α ⊗ qτ,m

α

nτ,m

)

)

|K

= −
1

ǫα τ

[

Tα ∇hn
τ,m+1 + qα (nτ,m+1∇hφ

τ,m+1 − q
τ,m+1
i ×Bm+1)

]

|K
,

(C.1b)

α ∈ {i, e} . (C.1c)

As in the previous appendices, we separate the parallel part and the perpendic-
ular part of (C.1b) according to bm+1

|K . By multiplying the tensor (bm+1
|K ⊗

bm+1
|K ) by (C.1b), we obtain (5.17a) for each α. Concerning

(

(qτ,m+1
α )m+1

⊥

)

|K
, we

compute the vector product of bm+1
|K and (C.1b) and we obtain (5.17b).

In order to obtain the discrete diffusion equations (5.15) and (5.16), we follow
the same procedure as in the semi-discrete case (see Appendix B): we replace

(qτ,m+1
i )m+1

|| (resp. (qτ,m+1
e )m+1

|| ) by its expression given by (5.17a) with α = i

(resp. α = e) and we obtain two diffusion equation of the form























































−
(

∇h ·
(

(Tα ∇hn
τ,m+1 + qα nτ,m+1 ∇hφ

τ,m+1)m+1
||

)

)

|K

+
ǫα τ

∆t2
(nτ,m+1 + Cα φτ,m+1)

= ǫα τ
[

∇h ·
(

(

− 1

∆t
qτ,m
α +∇FV

h · (q
τ,m
α ⊗ qτ,m

α

nτ,m
)
)m+1

||

)

+
1

∆t2
nτ,m +

Cα

∆t2
φτ,m − 1

∆t
∇FV

h ·
(

(qτ,m
α )m+1

⊥

)

]

|K
,

α ∈ {i, e} .

(C.2)

Finally, we consider the constraints (4.24) to make these 2 equations uncoupled
and, up to some linear combinations, they can be rewritten under the form

−
(

∇h ·
(

(∇hn
τ,m+1)m+1

||

)

)

|K
+ λ1 τ n

τ,m+1
|K = τ Rτ,m+1

|K , (C.3)

and

−
(

∇h ·
(

nτ,m+1 (∇hφ
τ,m+1)m+1

||

)

)

|K
+ λ2 τ φ

τ,m+1
|K = τ Sτ,m+1

|K , (C.4)
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with λ1, λ2, R
τ,m+1

|K and Sτ,m+1
|K defined by

λ1 =
1 + ǫ

∆t2 (1 + Te)
, λ2 =

TeC

∆t2 (Te − 1)
,

Rτ,m+1
|K =

1

1 + Te

[

1 + ǫ

∆t2
nτ,m +∇h ·

(

(

−
1

∆t
(qτ,m

i + ǫqτ,m
e )

+∇FV
h · (

q
τ,m
i ⊗ q

τ,m
i

nτ,m
) + ǫ∇FV

h · (
qτ,m
e ⊗ qτ,m

e

nτ,m
)
)m+1

||

)

− 1

∆t

(

∇FV
h ·

(

(qτ,m
i )m+1

⊥

)

+ ǫ∇FV
h ·

(

(qτ,m
e )m+1

⊥

)

)

]

|K

,

Sτ,m+1
|K =

Te

Te − 1

[

ǫ− Te

∆t2 Te
(nτ,m+1 − nτ,m) +

C

∆t2
φτ,m

+∇h ·
(

(

− 1

∆t
(qτ,m

i − ǫ

Te
qτ,m
e )

+∇FV
h · (

q
τ,m
i ⊗ q

τ,m
i

nτ,m
)−

ǫ

Te
∇FV

h · (
qτ,m
e ⊗ qτ,m

e

nτ,m
)
)m+1

||

)

−
1

∆t

(

∇FV
h ·

(

(qτ,m
i )m+1

⊥

)

−
ǫ

Te
∇FV

h ·
(

(qτ,m
e )m+1

⊥

)

)

]

|K

.

(C.5)
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