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Abstract

The space Ξd of degree d single-variable monic and centered complex polyno-
mial vector fields can be decomposed into loci in which the vector fields have
the same topological structure. This paper analyzes the geometric structure of
these loci and describes some bifurcations. In particular, it is proved that new
homoclinic separatrices can form under small perturbation. By an example, we
show that this decomposition of parameter space by combinatorial data is not
a cell decomposition.
The appendix to this article, joint work with Tan Lei, shows that landing separa-
trices are stable under small perturbation of the vector field if the multiplicities
of the equilibrium points are preserved.
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1. Introduction

The objects we consider are the vector fields in C that in a global chart take
the form P (z) d

dz , with P (z) = zd + ad−2z
d−2 + · · · + a0, with z and ai ∈ C.

We are interested in the global qualitative dynamics of the integral curves of
these vector fields, or equivalently, solutions to the real-time, first order ordinary
differential equations ż = P (z) (with P as above), where the dot is the derivative
with respect to time, t ∈ R. The space Ξd ≃ Cd−1 of these vector fields of
degree d can be decomposed into loci C in which the vector fields have the
same combinatorial data set (to be defined). We will prove that each of these
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∗Corresponding author
Email addresses: kealey.dias@gmail.com (Kealey Dias), tanlei@math.univ-angers.fr

(Tan Lei)
1Co-author on appendix only.

Preprint submitted to Elsevier June 20, 2014



��
��
��

��
��
��

γ0∞γ4

γ7

γ1

γ2

γ6

γ5

γ3

e1

e0

e6
e5

e4
e3 e2

e7

Figure 1.1: The point at ∞ is a pole of order d−2 for vector fields ξP ∈ Ξd. There are 2(d−1)
trajectories γℓ which meet at infinity with asymptotic angles 2πℓ

2(d−1)
, ℓ ∈ {0, 1, . . . , 2d − 3}.

There are 2d − 2 accesses to ∞ defined by the trajectories at infinity. An end eℓ is infinity
with access between γℓ−1 and γℓ. An odd end is an end ek labelled by an odd index k, and
an even end is an end ej labelled by an even index j.

combinatorial classes is a connected manifold with well-defined (real) dimension
q, which is the dimension of the combinatorial class as a subspace in Ξd.

We present now a summary of some necessary concepts and definitions. It
can be shown that∞ is a pole of order d−2 for vector fields ξP ∈ Ξd. There are
2(d − 1) trajectories γℓ which meet at infinity with asymptotic angles 2πℓ

2(d−1) ,

ℓ ∈ {0, 1, . . . , 2d − 3}. When the labelling index ℓ is even, the trajectories are
called incoming to ∞, and when the index ℓ odd, they are called outgoing from
∞ (see Figure 1.1).

There are 2d − 2 accesses to ∞ defined by the trajectories at infinity. An
end eℓ is infinity with access between γℓ−1 and γℓ (see Figure 1.1). An odd end
is an end ek labelled by an odd index k, and an even end is an end ej labelled
by an even index j.

Separatrices sℓ are the maximal trajectories of ξP incoming to and outgoing
from∞ (in finite time). They are labelled also by the 2(d−1) asymptotic angles.
A separatrix sℓ is called landing if s̄ℓ \ sℓ = ζ, where ζ is an equilibrium point
for ξP (equivalently, a zero of P ). A separatrix sℓ = sk,j is called homoclinic if
s̄k,j \ sk,j = ∅. See Figures 1.2, 1.3, and 1.4 for some examples of landing and
homoclinic separatrices. A separatrix for a polynomial vector field ξP ∈ Ξd can
only be either homoclinic or landing. A homoclinic separatrix sk,j is labelled
by the one odd index k and the one even index j corresponding to its two

asymptotic directions at infinity. The Separatrix graph: ΓP =
2d−3∪
ℓ=0

ŝℓ, that is,

the union of all separatrices and any equilibrium points at which they land, as
well as the point at infinity. completely determines the topological structure of
the trajectories of a vector field (see, for instance, [1], [2]).
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1.1. Zones

The connected components Z of C \ ΓP are called zones. There are three
types of zones for vector fields in Ξd, and the types of zones are determined by
the types of their boundaries:

• A center zone Z contains an equilibrium point, which is a center, in its
interior. Its boundary consists of one or several homoclinic separatrices
and the point at infinity. If a center zone is on the left of n homoclinic
separatrices sk1,j1 , . . . , skn,jn on the boundary ∂Z, then the center zone
has n odd ends ek1

, . . . , ekn
at infinity on ∂Z and the zone is called either

a counter-clockwise center zone or an odd center zone. If a center zone is
on the right of n homoclinic separatrices sk1,j1 , . . . , skn,jn on the boundary
∂Z, then the center zone has n even ends ej1 , . . . , ejn at infinity on ∂Z and
the zone is called either a clockwise center zone or an even center zone
(see Figure 1.2).

• A sepal zone Z has exactly one equilibrium point on the boundary, which
is both the α-limit point and ω-limit point for all trajectories in Z (i.e.
ζα = ζω). This equilibrium point is necessarily a multiple equilibrium
point. The boundary ∂Z contains exactly one incoming and one outgo-
ing landing separatrix, the point at infinity, and possibly one or several
homoclinic separatrices. If a sepal zone is to the left of n homoclinic sep-
aratrices sk1,j1 , . . . , skn,jn on its boundary, then it has n + 1 odd ends
on the boundary: ek1 , . . . , ekn and eji+1 for some corresponding ji, de-
pending on how one orders the separatrices. In this case, it is called an
odd sepal zone. Similarly, if a sepal zone is on the right of n homoclinic
separatrices sk1,j1 , . . . , skn,jn on its boundary, then it has n+1 even ends
on the boundary, ej1 , . . . , ejn and eki+1 for some corresponding ki, again
depending on the ordering of the separatrices. In this case, it is called an
even sepal zone (see Figure 1.3).

• An αω-zone Z has two equilibrium points on the boundary, ζα ̸= ζω, the
α-limit point and ω-limit point for all trajectories in Z. The boundary ∂Z
contains one or two incoming landing separatrices and one or two outgoing
landing separatrices, possibly one or several homoclinic separatrices, and
the point at infinity. If an αω-zone is both on the left of n1 homoclinic
separatrices sk1,j1 , . . . , skn1 ,jn1

and on the right of n2 homoclinic separa-
trices sk1,j1 , . . . , skn2 ,jn2

on the boundary, then the αω-zone has n1+1 odd
ends (ek1

, . . . , ekn1
and eji+1 for some corresponding ji) and n2 + 1 even

ends (ej1 , . . . , ejn2
and eki+1 for some corresponding ki) on the boundary

(see Figure 1.4).

Remark 1. It will be important to note for an αω-zone, there are exactly one
odd end and one even end, neither of whose indices coincide with any index of
a homoclinic separatrix (in the notation above the odd and even ends are eji+1

and eki+1 respectively).
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1.2. Transversals

There are several ways to encode the combinatorial structure of a vector
field. The author’s preferred descriptions rely on objects called transversals. We
define in this section the important structures needed to understand definitions
of a combinatorial data set.

In any simply connected domain avoiding zeros of P , the differential dz
P (z)

has an antiderivative, unique up to addition by a constant

Φ(z) =

∫ z

z0

dw

P (w)
.

Note that

Φ∗ (ξP ) = Φ′ (z)P (z)
d

dz
=

d

dz
. (1.1)

The coordinates w = Φ(z) are, for this reason, called rectifying coordinates. We
will call the images of zones under rectifying coordinates rectified zones. The
rectified zones and corresponding boundaries are of the following types:

• The image of a center zone (minus a curve contained in the zone which
joins the center ζ and ∞) under Φ is a vertical half strip. It is an upper
vertical half strip for a counterclockwise center zone, and the odd ends
and homoclinic separatrices are mapped to the lower boundary. It is a
lower vertical half strip for a clockwise center zone, and the even ends and
homoclinic separatrices are mapped to the upper boundary of this half
strip (see Figure 1.2).

• The image of an odd sepal zone under Φ is an upper half plane, where
odd ends and homoclinic separatrices are mapped to the lower boundary
of this half plane. The image of an even sepal zone under Φ is a lower
half plane, where even ends and homoclinic separatrices are mapped to
the upper boundary of this half plane (see Figure 1.3).

• The image of an αω-zone under Φ is a horizontal strip (see Figure 1.4).
The lower boundary of the strip consists of two landing separatrices, odd
ends, and counterclockwise homoclinic separatrices on the boundary of the
zone. The upper boundary of the strip consists of two landing separatrices,
even ends, and clockwise homoclinic separatrices on the boundary of the
zone.

Via the rectifying coordinates, it is evident that there are a number of closed
geodesics through ∞ in Ĉ \ {equilibrium pts} in the metric with length ele-

ment |dz|
|P (z)| . Among these are the h homoclinic separatrices, and there are s

distinguished transversals (defined below).

Definition 1. The distinguished transversal Tk,j is the geodesic in the metric
|dz|

|P (z)| joining the ends ek and ej , avoiding the separatrices and equilibrium

points, where ej is the left-most end on the upper boundary and ek is the right-
most end on the lower boundary of the strip that is the image of the αω-zone
in which the transversal is contained (see Figure 1.5).
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Figure 1.2: Pictured are the trajectories of a vector field with four center zones: one odd
center zone (shaded) with homoclinic separatrices s5,0, s1,2, and s3,4 and ends e1, e3, and e5
on the boundary; and three even center zones, each with one homoclinic separatrix and one
end on the boundary. The image of a center zone (minus a curve contained in the zone which
joins the center ζ and ∞) under Φ is a vertical half strip. It is an upper vertical half strip for
a counterclockwise center zone, and a lower vertical half strip for a clockwise center zone. In
this figure, there is an odd center zone mapped to an upper vertical half strip.
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Figure 1.3: Pictured are the trajectories of a vector field with an even sepal zone (shaded).
On the boundary of the sepal zone is the double equilibrium point which is both the α and ω
limit point of the trajectories; one incoming landing separatrix s4 and one outgoing landing
separatrix s5; three homoclinic separatrices s1,0, s3,2, and s7,6; and four ends at infinity e0,
e2, e4, and e6. There is an odd sepal zone (not shaded) which shares the equilibrium point
and the landing separatrices with the shaded sepal zone, but it has no homoclinic separatrices
and only one odd end e5 on the boundary. The image of an odd sepal zone under Φ is an
upper half plane, and the image of an even sepal zone is a lower half plane. In this figure,
there is an even sepal zone mapped to a lower half plane.

5



d
dz

s0

s0

s3

s3

e0

e1 e3

e6 e4

s7,6

s1,2

s5,4
e1

s0

s5,4 e6

s7,6

e0

Φe1
P (z) d

dz

e4

s3

e3

s1,2

Figure 1.4: Pictured are the trajectories of a vector field with an αω-zone (shaded). On
the boundary of the zone are two equilibrium points: one which is the α-limit point of the
trajectories and the other is the ω-limit point of the trajectories. Also on the boundary are
one incoming landing separatrix s0 and one outgoing landing separatrix s3. The zone is to
the left of the homoclinic separatrix s1,2 and on the right of the two homoclinic separatrices
s5,4, and s7,6. Finally, the boundary contains two odd ends e1 and e3 and three even ends
e0, e4, and e6 at infinity. The image of an αω-zone under Φ is a horizontal strip.

Note that the way in which the distinguished transversal is chosen, the indices
of the ends it joins are exactly those ends whose indices will never coincide with
the indices of any homoclinic separatrices.

1.3. Combinatorial and Analytic Data

One way to describe the topological structure of a vector field is by the union
of homoclinic separatrices sk,j and distinguished transversals Tk,j . It was proved
in [3] that this description is equivalent to the one presented in the classification
(from [4]). Essentially, we want to use the numbers Z/(2d − 2) to stand for
indices of separatrices for homoclinics, and indices of ends for distinguished
transversals otherwise. The indices of transversals were chosen in a way to
never conflict with the indices of homoclinic separatrices. A combinatorial data
set can be described as a bracketing on the string 0 1 2 . . . 2d − 3, where the
elements paired by parentheses correspond to the labels of the separatrices or
distinguished transversals we want to pair. Round parentheses (· · · ) are used to
mark pairings corresponding to homoclinic separatrices, square parentheses [· · · ]
are used to mark pairings corresponding to a distinguished transversal in each
αω-zone, and elements that are not paired correspond to the ends in sepal-zones
(see Figure 1.6 for some examples).

The analytic invariants are an (s + h)-tuple in Hs × Rh
+ where to each

homoclinic separatrix is assigned a number τ =
∫
sk,j

dz
P (z) > 0, and to each

distinguished transversal is assigned a number α =
∫
T

dz
P (z) ∈ H.

6



s3

s0

s1,2

s7,6

s5,4

∫ z
e1

dζ
P (ζ)

T3,0

e3
s3

e6 e4
s3

d
dz

e1

e0
s0

s0
s1,2

s7,6 s5,4

Figure 1.5: Each αω-zone is isomorphic to a strip. There may be several transversals which
avoid the equilibrium points and separatrices (the dashed curves), but there is exactly one
distinguished transversal for each αω-zone (in this case, T3,0). We define the distinguished
transversal to be the geodesic in the metric |dz|/|P (z)| joining the ends ek and ej (in this
figure, e3 and e0) where ej is the left-most end on the upper boundary of the strip and ek is
the right-most end on the lower boundary of the strip. Since these indices are the same as
the indices for the two landing separatrices on the upper left and lower right boundary of the
strip, they can never coincide with the indices for a homoclinic separatrix.
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Figure 1.6: Disk models for three examples of vector fields of degree d = 4 having sepal zones
or/and homoclinic separatrices. The pairing of the ends is marked by the dashed curves. The
representation of the combinatorics in brackets is displayed below each figure.
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Figure 1.7: Example of possible metric graph defining a complex polynomial vector field. The
combinatorics can be described by the bracketing (0[1[2 3]4]5) and the analytic invariants are
the (2 + 1)-tuple (1 + i, 3i, 3) ∈ H2

+ × R1
+.

Putting the combinatorial and analytic data together, one can uniquely de-
scribe a vector field in Ξd by a metric graph with a single vertex (corresponding
to the pole at infinity), h solid loops (corresponding to homoclinic separatrices),
and s dashed loops (corresponding to distinguished transversals). Each of the
solid loops is assigned a positive real number and each dashed loop is assigned a
complex number, corresponding to the analytic invariants (see Figure 1.7). Such
a metric graph is a complete set of realizeable invariants for the classification of
these vector fields ([4]). Another interesting fact about this presentation is that
each connected component of the plane minus this transversal flower contains
exactly one equilibrium point.

We decompose parameter space into classes C of vector fields that have the
same separatrix graph with the labeling.

Our goal is to understand bifurcations of the global trajectory structure,
which means we need to understand changes in separatrix structure under small
perturbation. In this paper, we will partially answer this question. That is, we
will pick and arbitrary ξP0 ∈ Ξd, and try to answer which classes C intersect
every arbitrarily small neighborhood of ξP0 .

2. Topological and Analytic Structure of the Loci

The classification in [4] gives a bijection between a combinatorial class C and
Hs × Rh

+. The following theorem proves the type of bijection.

Theorem 2.1. There exists a real analytic isomorphism GC : Hs × Rh
+ →

C, which is C-analytic in the first s coordinates and R-analytic in the last h
coordinates. It is the restriction of a holomorphic mapping in (s + h) complex
variables: G̃C : Hs × V h

R+
(ϵ)→ C̃, where C̃ ⊃ C.

In particular, each C is naturally foliated by C-analytic leaves of complex
dimension s.

Proof. We prove, that GC is a restriction of a holomorphic function in s + h
variables. Let

VR+(ϵ) = {z | ℜ(z) > 0, |ℑ(z)| < ϵ}, (2.1)
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for ϵ sufficiently small. We prove the existence of a holomorphic function

G : Hs × V h
R+

(ϵ)→ Ξd

α 7→ ξα, (2.2)

α = (α1, . . . , αs, τ1, . . . , τh) ∈ Hs × V h
R+

(ϵ).
By Hartog’s Theorem, it is enough to show that G is holomorphic in each α

and τ in the single-variable sense (we drop the indices on the α and τ to simplify
notation) in order to conclude G is holomorphic in the (s + h)-variable sense.
We will construct families of surfaces M̄α, M̄τ and maps Gα, Gτ such that

Gα : M̄α → C̄, (Gα)∗

(
d

dz

)
= ξα, ξα ∈ Ξd, (2.3)

Gτ : M̄τ → C̄, (Gτ )∗

(
d

dz

)
= ξτ , ξτ ∈ Ξd, (2.4)

and we will prove that each family is holomorphic in the one complex variable
α or τ by utilizing holomorphic dependence of parameters in the Measurable
Riemann Mapping Theorem ([5]).

We first define the rectified surface M0(C) associated to the vector field
ξ0 ∈ C and with analytic invariant the (s+h)-tuple α0 = (α0

1, . . . , α
0
s, τ

0
1 , . . . , τ

0
h).

Without loss of generality, we can take α0 = (i, . . . , i, 1, . . . , 1) to simplify pre-
sentation. This combinatorial class has a number of rectified zones Z with ana-
lytic invariants α0 (see the left side of Figure 2.1). Each separatrix has exactly
two representations on the boundary of the rectified zones: one on the upper
boundary of a rectified zone and one representation on the lower boundary of a
(possibly the same) rectified zone. There are also several representations of ∞
on the boundaries of the rectified zones, called the ends. Let

M∗
0(C) :=

(⊔
Z
)
/ ∼, (2.5)

where ∼ is the appropriate identification of the two representations of each
separatrix and the identification of all ends. We let M0(C) ≃ C̄ be the com-
pactification (for details, see [4]).

We now define distorted rectified surfaces Mα(C) and Mτ (C) respectively
by the following. We consider first the case where we allow one α0 = i to vary.
Choose the strip Z0 associated to α0. Choose a complex number α ∈ H. We
define a piecewise affine mapping Aα, α ∈ H, on the rectified zones Z as follows.
Let Aα be the piecewise affine mapping which is the identity on all rectified
zones Z ̸= Z0, and on Z0, it is defined by i 7→ α and 1 7→ 1. Then on Z0

Aα(z) =
1

2
(1− iα)z +

1

2
(1 + iα)z̄, (2.6)

The mapping Aα maps Z0 onto the distorted rectified zone Z ′
0 := Aα(Z0). As

before, we defineMα(C) as the compactification of

M∗
α(C) :=

Z ′
0 ⊔

⊔
Z ̸=Z0

Z

 / ∼ . (2.7)
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0

α + 3

Zk,j
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Figure 2.1: Some examples of canonical rectified zones (left) and their images under Aα or
Aτ , the distorted rectified zones (right).

The argument is similar but slightly more complicated for Mτ (C), where we
allow exactly one τ0 ∈ R+ to vary. A homoclinic separatrix sk,j is on the
boundary of exactly two zones, so we have two rectified zones Z1 and Z2 with
the rectified homoclinic separatrix sk,j with length τ0 = 1 on their boundaries
that will be distorted when we allow τ0 to vary holomorphically (see the right-
hand side of Figure 2.1). These two zones can be a combination of strips,
half-planes, and vertical half-strips (cylinders). For an sk,j on the boundary
of either an upper (respectively lower) half-plane or vertical half-strip, let Zk,j

be the vertical half-strip of width τ0 = 1, such that sk,j is on the boundary.
We let Aτ , τ ∈ VR+(ϵ), be the piecewise affine map that is the identity on all
rectified zones Z ̸= Z1 or Z2 and the identity (perhaps with some translation)
on Z1 \Zk,j or Z2 \Zk,j , and on Zk,j , it is defined by 1 7→ τ ∈ VR+ and ±i 7→ ±i.
This affine map takes the form

Aτ (z) =
1

2
(τ + 1)z +

1

2
(τ − 1)z̄. (2.8)

If sk,j is on the lower boundary of a strip, then we distort the strip by a (three-
piece) piecewise mapping by the construction below. Details are included for
completeness, but the idea is much easier to understand by consulting Figures
2.2 and 2.3. Let ∆j be the triangle in the strip with vertices i, −j, and −j +1
on the boundary of the strip. One edge of ∆j is on the lower boundary of the
strip. Let ∇j be the triangle in the strip with vertices 0, i + (j − 1), and i + j.
One edge of ∇j is on the upper boundary of the strip. In either case, let Uℓ be

10



i i+ 1 i+ 2

i+ 3

i+ 4

0-1-2-3

Uℓ Ur∆2

i i+ 1 i+ 2

0-1
−1− τ

i+ 3

Figure 2.2: The triangle ∆2 has vertices i, −2, and −1 on the boundary of the strip. Let Uℓ

be the part of the strip to the left of ∆2 and Ur to the right. If we distort some τ0 = 1 on the
lower edge of ∆2, then on Uℓ, the affine map Aτ is defined by −1 7→ −1 and 2+ i 7→ τ +1+ i.
On ∆2, the affine map is defined by −1 7→ −τ and 1 + i 7→ 1 + i. On Ur, Aτ is the identity.

i i+ 1 i+ 2 i+ 4

0-1-2-3

Uℓ Ur

∇3

i i+ 1 i+ 2

0

i+ 2 + τ

i+ 3

-3

-3 -2 -1

Figure 2.3: The triangle ∇3 has vertices 0, i + 2, and i + 3 on the boundary of the strip. Let
Uℓ be the part of the strip to the left of ∇3 and Ur to the right. If we distort some τ0 = 1 on
the upper edge of ∇3, then on Uℓ, the affine map Aτ is the identity. On ∇3, the affine map is
defined by 1 7→ τ and −2− i 7→ −2− i. On Ur, Aτ is defined by 1 7→ 1 and −3− i 7→ −τ−2− i.
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the part of the strip to the left of either ∆j or ∇j , and Ur to the right. If we
distort some τ0 = 1 on the lower edge of some ∆j , then on Uℓ, the affine map
Aτ is defined by −1 7→ −1 and j + i 7→ τ + j − 1 + i. This corresponds to the
affine map

Aτ (z) =
1

2
(2 + i− iτ)z +

1

2
(−i + iτ)z̄. (2.9)

On ∆j , the affine map is defined by −1 7→ −τ and j − 1 + i 7→ j − 1 + i. This
corresponds to the affine map

Aτ (z) =
1

2
(τ + 1 + i(j − 1)[τ − 1])z +

1

2
(τ − 1− i(j − 1)[τ − 1])z̄. (2.10)

On Ur, Aτ is the identity. The construction is similar for ∇j .
The mapping Aτ sends Z1 and Z2 to the distorted rectified zones Z ′

1 :=
Aτ (Z1) and Z ′

2 := Aτ (Z2). As before, we defineMτ (C) as the compactification
of

M∗
τ (C) :=

(Z ′
1 ⊔ Z ′

2) ⊔
⊔

Z ̸=Z1,Z2

Z

 / ∼ . (2.11)

The exact expressions defining Aα and Aτ are not so important. What is im-
portant is that the associated Beltrami coefficients µα and µτ are holomorphic
in α and τ respectively and satisfy ∥µα∥∞ < 1, ∥µτ∥∞ < 1.

We endowMα with the standard complex structure σ0 and the vector field
d
dz . We pullback by Aα, giving us a new complex structure σα in M0 that
depends holomorphically on α. The rectifying coordinates extend to a mapping

ϕ : C→
(⊔

Z

Z̄

)
/ ∼. Under pullback, we induce a new almost complex structure

σ̃α in C, analytic in α, and a vector field (ϕ ◦Aα)
∗ ( d

dz

)
in C.

Let ζ0i be the equilibrium points of (ϕ ◦ Aα)
∗ ( d

dz

)
. By the Measurable

Riemann Mapping Theorem (MRMT), there exists a family of quasiconformal
maps fα : C→ C, normalized such that

fα(∞) =∞, (2.12)∑
i

fα(ζ
0
i ) = 0, and (2.13)

fα(s0) is asymptotic to R+, (2.14)

such that (fα)
∗σ0 = σ̃α. The mapping Gα = (fα ◦ϕ−1 ◦A−1

α ) is holomorphic in
z, and by MRMT, fα is holomorphic in α. Then (Gα)∗

(
d
dz

)
= Pα(z)

d
dz , where

Pα is holomorphic in C. The above is summarized in the diagram(
Mα, σ0,

d
dz

) Aα←−−−−
(
M0, σα, A

∗
α(

d
dz )
)yGα

xϕ

(C, σ0, Pα
d
dz )

fα←−−−− (C, σ̃α, (ϕ ◦Aα)
∗( d

dz )).
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The index of the vector field at infinity is −(d − 2) (look about the ends in
rectifying coordinates), so infinity must be the only pole of order d − 2 for the
vector field. We can conclude that P is a degree d polynomial, which by the
above normalizations is monic and centered. So for fixed α, Pα takes the form

Pα(z) =
d∏

i=1

(z − ζi), ζi = fα(ζ
0
i ). We need to show that Pα is holomorphic in

α, and it is enough to show that the ζi are analytic functions of α. We can
conclude that the roots ζi are analytic functions of α since fα is holomorphic in
α for fixed z.

Therefore, G is holomorphic in each α, τ and is hence holomorphic in (s+h)
complex variables. Therefore, G is an open mapping. The restriction GC : Hs×
Rh

+ → C is an open mapping and is furthermore bijective by the classification in
[4]. Hence GC is an isomorphism which is C-analytic in the first s coordinates,
and R-analytic in the last h coordinates.

Corollary 2.2 (Corollary of Theorem 2.1). Each C is connected. The (real)
dimension of each C is dimR(C) = 2s+ h, and the codimension (with respect to
Ξd) is codimR(C) = 2(d− 1)− (2s+ h) = 2m∗ + h.

Remark 2. By Corollary 2.2 and the enumeration of combinatorial classes in
[3], we know exactly how many loci there are altogether and how many loci
there are of a particular dimension.

2.1. Cone Structure of Loci

Each combinatorial class C ∼= Hs×Rh
+ is an R+ cone with zd d

dz ∈ Ξd as base
point. We need the following proposition stated in Pilgrim [6].

Proposition 2.3. Let P (z) =
d∏

j=1

(z− ζj) and C ∋ ξP . For every c > 0, ξP̃ ∈ C

for P̃ (z) =
d∏

j=1

(z − cζj).

Proof. If γ(t) is a real trajectory of the vector field given by P (z), i.e. γ′(t) =
P (γ(t)), then for every c > 0, η(t) = cγ(cd−1t) is a real trajectory of the vector
field given by P̃ (z). Indeed, η′(t) = cdγ′(cd−1t) = cdP (cd−1t) = P̃ (cγ(cd−1t)) =
P̃ (η(t)). Since c > 0, the trajectories η(t) are reparameterizations by time of
the γ(t), preserving orientation.

Corollary 2.4. The minimal stratum 0 ∈ Cd−1 corresponding to the vector
field zd d

dz is adjacent to all other loci.

Proof. We use Lemma 2.3, note that P̃ is continuous in c, and let c→ 0.

This cone structure is also reflected in the analytic invariants for a class. We
note what happens to the analytic invariants when roots of the polynomial are
multiplied by the constant c.

13



Proposition 2.5. The analytic invariants for P̃ are equal to 1/cd−1 times the
analytic invariants for P .

Proof. The Res(1/P, ζ) are conformal invariants (Brickman and Thomas [7]), so
the analytic invariants are too. Therefore, P̃ d

dz has the same analytic invariants

as cd−1P d
dz , and

α̃ =

∫
γ

dz

cd−1P (z)
=

1

cd−1
α, (2.15)

where α̃ and α are the corresponding analytic invariants for P̃ d
dz and P d

dz
respectively.

3. Structural Stability and Bifurcations

It is natural to consider the possible bifurcations for these vector fields.
More specifically, we want to understand: given an arbitrary ξ0 ∈ Ξd, which
combinatorial classes intersect every arbitrarily small neighborhood of ξ0. So
we need to consider changes in the separatrix structure for small perturbations
of ξ0.

3.1. Structurally Stable Vector Fields

Proposition 3.1. The structurally stable vector fields in Ξd are the vector fields
with neither multiple equilibrium points nor homoclinic separatrices.

Proof. The vector fields without homoclinic separatrices or multiple equilib-
rium points are structurally stable, which follows immediately from Theorem
A.1. By Theorem 2.1, the vector fields with either a homoclinic separatrix or
multiple equilibrium point form loci of dimension strictly less than the maximal
dimension and must therefore belong to the bifurcation locus.

Corollary 3.2. The structurally stable vector fields are dense in Ξd.

In general, bifurcations can be complicated when we allow multiple equilib-
rium points to split (see Section 4 for an example). We therefore consider first
the possible bifurcations when the multiplicities of the equilibrium points are
preserved under small perturbation. Theorem A.1 in the appendix of this paper
proves that a landing separatrix cannot be lost under small perturbation when
preserving multiplicity, so the non-splitting bifurcations must be those involving
only breakings of one or more homoclinic separatrices.

3.2. Some Non-splitting Bifurcations

The construction in the proof of Theorem 2.1 in fact tells us more than is
stated in the theorem. Since the only non-splitting bifurcations can involve
breakings of homoclinic separatrices, all non-splitting bifurcations can be un-
derstood by analyzing the combinatorics of the deformed zones. We describe in
the following certain non-splitting bifurcations, and an exhaustive analysis of
these is to be considered in a future paper.
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We start by explaining what can happen if exactly one analytic invariant
associated to a homoclinic separatrix is allowed to take values in ±H, instead of
being restricted to R+, while the rest of the analytic invariants are preserved.
That is, we consider the possible bifurcations when exactly one homoclinic sep-
aratrix sk,j breaks. A homoclinic separatrix sk,j is on the boundary of exactly
two zones. We consider the distorted zones as the proof of Theorem 2.1, where
we allow τ0(sk,j) 7→ τ ∈ VR+(ϵ)\R+. We know that the distorted zones endowed

with the vector field d
dz correspond to some monic and centered polynomial vec-

tor fields in a neighborhood of the given combinatorial class. When we allow a
single τ0(sk,j) to vary holomorphically, then this causes the separatrices sk and
sj to land. If τ ∈ +H, then instead of coming back into infinity (resp. outgoing
from) infinity, the separatrix sk (resp. sj) now lands at the equilibrium point on
the boundary of the zone having sk,j as part of its upper (resp. lower) boundary
in rectifying coordinates. If τ ∈ −H, then instead of coming back into (resp.
outgoing from) infinity, the separatrix sk (resp. sj) now lands at the equilib-
rium point on the boundary of the zone having sk,j as part of its lower (resp.
upper) boundary in rectifying coordinates. The equilibrium point at which sk
(resp. sj) lands is either a sink (resp. source) or multiple equilibrium point,
depending on whether the lower or upper (resp. upper or lower) rectified zone
having sk,j on the boundary was a vertical half-strip or strip in the first case,
or in the latter case, a half plane. Notice that if sk,j is on the boundary of a
vertical half-strip, then the associated center becomes either a sink or source.
See Figure 3.1 for some examples.

If we allow more than one analytic invariant associated to a homoclinic
separatrix to vary at the same time, more complicated things can happen. In
particular, new homoclinic separatrices can form. In order to understand this
situation, we need to define H-chains. These H-chains turn out to be the
structures we need to understand exactly which homoclinic separatrices can
form under small perturbation, so we define them here

Definition 2. AnH-chain of length n is a sequence of n consecutive homoclinic
separatrices {ski,ji}, i = 1, . . . , n, i.e. homoclinic separatrices ski,ji such that
for each i, either ki+1 = ji +1 (upper) or ki+1 = ji− 1 (lower). In particular, a
sequence ski,ji such that ki+1 = ji+1 for all i is called a clockwise H-chain, and
a sequence ski,ji such that ki+1 = ji − 1 for all i is called a counter-clockwise
H-chain.

Remark 3. Note that any counter-clockwise H-chain is necessarily contained
in the lower boundary of a single zone, and a clockwise H-chain is contained in
the upper boundary of a single zone.

Definition 3. A closed H-chain of length n is an H-chain in which ski+n,ji+n =
ski,ji , for all i = 1, . . . , n. An open H-chain is one that is not closed.

Remark 4. The separatrices in an open H-chain have a natural ordering, ac-
cording to the ordering from left to right in the rectifying coordinates (direction
of the flow). The separatrices in a closed H-chain do not have a well-defined
ordering.
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−1− τ−2− τ

sk

sk

sj
0

i 1 + i 2 + i

−1

Figure 3.1: Some examples of distorted zones endowed with the vector field d
dz

. The separa-
trices are the trajectories going out of and coming into the ends, so these may not necessarily
be on the boundary of the distorted zones. Each of the two separatrices which were a ho-
moclinic separatrix for the non-distorted zones enter opposite zones on which the homoclinic
separatrix was part of the boundary. In the top picture, sj lands at either the source or mul-
tiple equilibrium point to which the strip is associated. In the middle picture, sk,j belonged
to the lower boundary of an upper half-strip, and after perturbation, sk now lands at the
equilibrium point which was on the boundary of the half-strip, making the center a sink (one
should see the points marked by the crosses and circles in the figure as being identified). In
the bottom picture, sk now lands at the multiple equilibrium point which had sk,j on the
uppper boundary of one of its associated half-planes.
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sk1,j1

sk2,j2
sk4,j4

sk1,j4

sj1−1

sj3
sk3,j3

Figure 3.2: An example of a distorted strip whose corresponding perturbed vector field has
a homoclinic separatrix sk1,j4 which was not there before perturbation. The separatrices
sj3 and sj1−1 land at the equilibrium points in the other zones which had the homoclinic
separatrices sk4,j4 and sk2,j2 on the upper or lower boundary before perturbation. From the
figure, it seems we are distorting the τ(ski,ji ) by a non-trivial amount, but they should all be
seen as having imaginary part distorted by some small ϵi.

We first explain the situation where sk,j0 and sk0,j have a clockwise H-chain
in common. We number the H-chain with these separatrices at the edges:
sk,j0 = sk1,j1 , sk2,j2 , . . . , skn,jn = sk0,j . The separatrix sk,j forms under small

perturbation if and only if all partial sums satisfy Tm :=
m∑
i=1

ℑ(τi) > 0, for all

m = 1, . . . n− 1 and Tn = 0 (see Figure 3.2).
It is also possible for a homoclinic separatrix to form under small perturba-

tion if the two initial homoclinics are on the boundary of different zones.

Proposition 3.3. The separatrix sk,j can form under small perturbation if and
only if sk,j0 and sk0,j have an H-chain in common (belong to some H-chain),
and for an open H-chain, sk is to the left of sj.

Proof. Either sk,j0 and sk0,j belong to a closed H-chain, in which case we can
define an H-chain such that sk,j0 is to the left of sk0,j ; if they do not belong to
some closed H-chain, then we assume for an open H-chain that sk,j0 is to the
left of sk0,j . This gives a natural ordering of an H-chain with sk,j0 and sk0,j at
it’s ends: sk,j0 = sk1,j1 , sk2,j2 , . . . , skn,jn = sk0,j . For i = 2, . . . , n, there is a
sequence Ii of length n − 1 with elements in {+,−} corresponding to whether
ki+1 = ji ± 1, i = 1, . . . , n − 1. We consider I1 not defined. If there are q sign
changes in this itinerary, then the H-chain can be decomposed into a sequence
of q + 1 clockwise and counterclockwise H-chains, which overlap on the ends
(see Figure 3.3). We can then allow sk,j to form by the following conditions
on perturbations of the associated τi, i = 1, . . . , n. For i = 1, . . . , n − 1, if

Ii+1 = +, then
i∑

j=1

ℑ(τi) < 0; if Ii+1 = −, then
i∑

j=1

ℑ(τi) > 0; and
n∑

j=1

ℑ(τi) = 0

(see Figure 3.4). If sk,j0 and sk0,j do not have an H-chain in common, then
there is no overlapping sequence of zones through which sk can have access to
sj .

In general, several homoclinic separatrices can form simultaneously under
small perturbation. An exhaustive analysis of the non-splitting bifurcations is
an aim of future work.
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sk1,j1

+ + + +
− −sk2,j2 sk3,j3

sk5,j5

sk4,j4

sk6,j6

sk7,j7

Figure 3.3: There a natural ordering of an H-chain with sk,j0 and sk0,j at its ends: sk,j0 =
sk1,j1 , sk2,j2 , . . . , sk7,j7 = sk0,j . In this example, the sequence Ii for i = 2, . . . , n is I =
+,+,+,−,−,+. We consider I1 not defined. There are 2 sign changes in this itinerary, so
there are three zones corresponding to the three counterclockwise and clockwise H-chains,
which overlap on the ends.

sk,j

Figure 3.4: For the H-chain as in Figure 3.3, sk,j can form if the appropriate conditions on
partial sums of perturbations of the associated τi, i = 1, . . . , 7 are satisfied.
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4. No Cell-decomposition

It turns out that stratifying parameter space by combinatorial invariants
does not lead to a cell-decomposition of parameter space. In general, C0 ∩ ∂C ̸=
∅ ; C0 ⊂ ∂C. We show this by showing that two loci of the same dimension
can be adjacent, as demonstrated by the following example.

Consider the slice of the combinatorial class C0 ∈ Ξ4 having combinatorial
invariant [0 1]2[3 4]5 (see Figure 4.1). Note that dim(C0) = 2s0+h0 = 2(2)+0 =
4.

e0

e1

e2

e3

e4

e5

s0s3

s5

s2

ζ[0]ζ[3]

T1,0

T3,4

s4

s1

Figure 4.1: A class C0 with combinatorics [0 1]2[3 4]5 having a double equilibrium point
and two simple equilibrium points ζ[0] and ζ[3]. There are two αω-zones and no homoclinic
separatrices, so dim(C0) = 2s0 + h0 = 2(2) + 0 = 4.

This combinatorial class is adjacent to the combinatorial class C having
combinatorial invariant [0(1 2)3](4 5), and dim(C) = 2s + h = 2(1) + 2 = 4
(see Figure 4.2). If in C ∼= H × R2

+, set τ1 = τ2 = x and let ℜ(α) = −x,
let x → ∞. Then we go to the boundary of the class C while the residues
Res(1/P, ζ[0]) = τ1 +α and Res(1/P, ζ[3]) = −τ2−α stay fixed and the residues
Res(1/P, ζ[2]) and Res(1/P, ζ[5]) for the centers having s1,2 and s5,4 respectively
on the boundaries of their basins go to infinity. By Lemma 4.1 below, at least
two points must collide, but these include neither ζ[0] nor ζ[3]. This shows that
C0 ∩ ∂C ̸= ∅. Since these two loci have the same dimension, C0 ̸⊂ ∂C.

Lemma 4.1. If we stay in a bounded subset of any combinatorial class C, i.e.
the roots of P stay bounded, then Res(1/P, ζ) → ∞ if and only if |ζ − ζi| → 0
for at least one other root ζi.

Proof. Each residue Res(1/P, ζ) is a rational function of the (ζ − ζi), whose
denominator has strictly larger degree than the numerator and takes the form(

d−m∏
i=1

(ζ − ζi)

)2(m−1)

, (4.1)

where some of the ζi might be identical and m is the multiplicity of ζ. Since
by assumption the |ζ − ζi| < ∞, then Res(1/P, ζ) → ∞ if and only if the
denominator → 0, i.e. at least one of the (ζ − ζi)→ 0.

19



The example above furthermore shows that possible bifurcations depend not
only on the combinatorial data, but also on the on the analytic data.

e0

e1

e2

e3

e4

e5

s0s3

s5,4

s1,2

T3,0

ζ[0]ζ[3]

ζ[2]

ζ[5]

Figure 4.2: A class C with combinatorics [0(1 2)3](4 5) having one sink ζ[3], one source ζ[0],
and two centers ζ[2] and ζ[5]. There is one αω-zone and two homoclinic separatrices, so
dim(C) = 2s+ h = 2(1) + 2 = 4.

A. Appendix - Landing Separatrices are Stable (with Tan Lei)

The main result in this appendix shows that the combinatorial structure
given by landing separatrices is stable in some sense. Specifically, an equilibrium
point which receives a landing separatrix cannot lose this separatrix under small
perturbation, unless it is a multiple equilibrium point which splits.

Definition 4. The non-splitting set Bζ0(P̃0) for ξP̃0
with respect to the equi-

librium point ζ0 is the subset of the sufficiently small neighborhood of ξP̃0
∈ Ξd

such that for the equilibrium point ζ0 of P̃0, there is exactly one equilibrium
point ζ for ξP̃ with |ζ0− ζ| < δ (that is, mult(ζ0) = mult(ζ)). The non-splitting

set B(P̃0) for ξP̃0
is the intersection of Bζ0(P̃0) for all ζ

0.

The main theorem we aim to prove is the following:

Theorem A.1. Given ξP̃0
∈ Ξd, if s

0
ℓ for ξP̃0

lands at ζ0, P̃0(ζ
0) = 0, then for

every ξP̃ in the non-splitting set Bζ0(P̃0) such that P̃ is ”close enough” (to be

defined) to P̃0, then sℓ for ξP̃ lands at ζ, P (ζ) = 0, where lim
P̃→P̃0

ζ = ζ0.

We will also need the following definition for inverses of rectifying coordinates:

Definition 5. For a (polynomial, ∞-germ) pair (P, γ), define ΨP,γ to be the
inverse branch of ΦP in a sector neighborhood of 0 as follows:

• for γ+ an outgoing ∞-germ, ΨP,γ+ is defined on D(ϵ) \R− and coincides
with γ+ on ]0, ϵ[;

• for γ− an incoming ∞-germ, ΨP,γ− is defined on D(ϵ) \R+ and coincides
with γ− on ]− ϵ, 0[.
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A.1. Preparation of Forms

It is enough to consider P0 and P of the form

P0(z) = zkQ0(z), Q0(0) ̸= 0

P (z) = zkQ(z), Q(0) ̸= 0. (A.1)

First of all, any arbitrary ξP̃0
with an equilibrium point ζ0 of multiplicity k is

conformally conjugate to a unique ξP0 with P0(z) = zkQ0(z), Q0(0) ̸= 0, by
the translation Tζ0 : z 7→ z − ζ0, and any ξP̃ in the non-splitting set Bζ0(P̃0)
has an equilibrium point ζ of multiplicity k such that |ζ0 − ζ| < δ, so each
P̃ in the non-splitting set can be uniquely conformally conjugated to ξP with
P (z) = zkQ(z), Q(0) ̸= 0, by the translation Tζ : z 7→ z − ζ. Conjugating by
translations does not change the asymptotic directions and hence labeling of the
separatrices as compared to the original vector fields ξP̃0

and ξP̃ .
We will write P (z) = (1 + s(z))P0(z) and when we say that P is close

enough to P0, we mean that we have a uniform bound on s: ∥s∥∞,U ≤ ϵ′′, where
U is a restriction of Ψ0(S(α)) such that we avoid a neighborhood of the roots
of P and P0 (except for 0). It is possible to demand such a uniform bound
if P and P0 are close in terms of coefficients or roots by the following. Since

s(z) = P (z)
P0(z)

− 1 and U avoids the roots of P0, there is a uniform bound on s

on any compact subset of U bounded away from 0 and ∞. Notice that near ∞,
both P ∼ zd and P0 ∼ zd, so s ≈ 0 near z = ∞. Near z = 0, the dominating
terms are the constant terms, so s(z) ≈ a0/a

0
0 − 1 ≈ 0 since we demand P0 and

P are close in terms of coefficients.
Theorem A.1 hinges on the idea of α-stability, as described in [8]. The notion

of alpha-stability as presented in [8] is included here for completeness, and it
should be compared to the notion of tolerant angle in [9]. For α ∈]0, π

2 [, let us
define a sector neighborhood of R± by

S+(α) = {w ∈ C∗ | | arg(w)| < α} (A.2)

and
S−(α) = {w ∈ C∗ | |π − arg(w)| < α}. (A.3)

Definition 6 (α-stability as in [8]). Given a polynomial P and an ∞-germ
γ, we say that P is (α, γ)-stable, for α ∈]0, π

2 [, if ΨP,γ extends holomorphically to
the entire sector S+(α) (if γ is an outgoing germ), or S−(α) (if γ is an incoming
germ). We will denote by ΨP,γ : S±(α)→ C this extension.

Remark 5. We will only prove the theorem for outgoing landing separatrices
since the proof is completely analogous for incoming separatrices. Therefore, we
will only be looking at positive sectors S+(α), and will use the simpler notation
S(α) for such a sector.
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A.2. Landing Separatrices are Stable

The idea of the main theorem is to show that if s0ℓ lands for ξP0 , then there
exists a protective sector from infinity to 0 on the Riemann sphere where all
trajectories that enter that sector converge to 0 (the equilibrium point). Small
enough perturbations of P0 guarantee that the corresponding sℓ is also trapped
in this sector, and hence must converge to 0 as well.

We first show the existence of the protective sector S(α) in rectifying coordi-
nates. Assume that the separatrix s0ℓ is landing at the multiplicity k equilibrium
point ζ = 0 for ξP0

. We will show that any sequence approaching infinity in
S(α) must approach ζ0 = 0.

Proposition A.2. If a separatrix s0ℓ is landing, then there exists an α such
that ξP0 is (α, γ0

ℓ )-stable.

Proof. There are only three situations for landing separatrices (see Figure A.1):

1. The separatrix s0ℓ is on the boundary of two sepal zones (half planes). In
this case, it is obvious that there exists such an α.

2. The separatrix s0ℓ is on the boundary of one sepal zone (half plane) and
one αω-zone (strip). There might be several strips between this strip and
the next half plane. Such an α exists if we take the argument of the
minimum of the partial sums of the analytic invariants in these strips
(easier understood by referring to the figure).

3. The separatrix s0ℓ is on the boundary of two αω-zones (strips). The basin
of the sink or source at which s0ℓ lands is a union of n strips with an
identification (cylinder), which we can unfold in the plane as a repeating
sequence of strips. Let Ai be the partial sums of the associated

∫
T

dz
P (z) ∈

H, where T is a transversal joining the rightmost odd and even ends in
a strip (for a sink). Let α = min

i=1,...,n
arg(Ai). Let Aj be the partial sum

associated to α. No singularities fall inside the sector S(α). Indeed, the
”worst” singularities are those at c · An + Aj , c ∈ N. Since arg(An) ≥ α,

then arg(cȦn + Aj) ≥ α. The same must be done for the reverse partial
sums. Take α to be the smallest from the forward and reverse minimum
angles.

Proposition A.3. The set Ψ0(S(α)) is completely contained in the basin of
attraction for ζ0 = 0.

Proof. The set Ψ0(S(α)) intersects the basin of ζ0 since it contains separatrix
s0ℓ . Furthermore, this set is connected, so if not entirely contained in the basin,
it must intersect the boundary of the basin somewhere, which is not possible by
Proposition A.4 below.

Proposition A.4 ([8]). Ψ0 (S(α)) intersects neither the zeros nor the incoming
∞-germs of P0.
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s0ℓ s0ℓ
s0ℓ = sk1

sk2

sk3
sk4
s0ℓ = sk1

sk4
sk3

sk2

sk3
sk4

α

An

An + Aj

Aj

Figure A.1: If s0ℓ is a landing separatrix, there exists an angle α such that ξP0 is (α, γ0
ℓ )-stable.

This can be seen in rectifying coordinates. There are only three situations, depicted by the
three figures above. The leftmost figure is the case where s0ℓ is on the boundary of two sepal
zones (half planes). The middle figure is the case where s0ℓ is on the boundary of one sepal
zone (half plane) and one αω-zone (strip). The rightmost figure is the case where s0ℓ is on the
boundary of two αω-zones (strips). In all cases, it is easy to see that there is an α such that
all singularities lie outside of the sector S(α).

Proof. The first part is due to that fact that it takes an infinite time to reach
a zero. For the second part, assume Ψ0(w0) ∈ γ− for some incoming ∞-germ
γ− and some w0 ∈ S(α′) for 0 < α′ < α Then, by definition of incoming
∞-germs, the trajectory with initial point Ψ0(w0) reaches ∞ at some positive
finite time t0. However, by uniqueness of solution, this trajectory coincides with
Ψ0(w0 + t0). The fact that Ψ0 is defined on a neighborhood of w0 + t0 implies
that Ψ0(w0 + t0) ̸=∞. This leads to a contradiction.

We now need to show that any sequence that tends to infinity in S(α) tends
to ζ0, not just those in the flow of ξP0 .

Let S(α)R = S(α) ∩ {w | Re(w) > R}.

Theorem A.5 (Adapted from [8]). There is a zero ζ0 of P0 such that

lim
R→+∞

Ψ0(S(α)R) = ζ0. (A.4)

Proof. For each R > 0, S(α)R is connected and hence it’s closure in C̄ is con-
nected. The intersection of nested continua

∩
R>0

S(α)R is itself a continuum.

It must be a single point by Cantor’s intersection theorem on complete met-
ric spaces (after a coordinate change), and it must be ζ0 since Ψ0 (S(α)) is
contained in the basin for ζ0, and points in the flow of ξ0 must tend to ζ0.

Summarizing the above in terms of what we need: If s0ℓ for P0 lands at 0, a
multiplicity k equilibrium point, then there exists a protective sector S(α) such
that all sequences going to infinity in S(α) also limit at ζ0 = 0 (in the z-plane).

We will compare P and P0 in S(α) for P0. Under the rectifying coordinates
Φ0, ż = P0(z) conjugates to the constant vector field ẇ = 1, and ż = P (z)
becomes ẇ = 1 + s ◦Ψ0(w).
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Since sℓ for P is defined in a neighborhood of infinity, we know that there
exists a solution γℓ in a neighborhood of zero in S(α) for ẇ = 1 + s ◦ Ψ0(w)
which corresponds to part of the separatrix sℓ. It enters the sector S(α) since
perturbation does not change the asymptotic direction. We finish the proof of
Theorem A.1 by proving the following proposition.

Proposition A.6. The trajectory γℓ for ξP mentioned above:

i. γℓ is defined for infinite forward time,

ii. γℓ does not leave S(α) for all time (γℓ(t) ∈ S(α) for all t > 0), and

iii. |γℓ(t)| → ∞ for t→∞

Proof. Item i. follows from the continuation of solutions theorem for ordinary

differential equations (see for instance ). Indeed s(z) := P (z)
P0(z)

− 1 and Ψ0

are holomorphic in S(α) (hence, so is 1 + s ◦ Ψ0(w)), and hence continuously
differentiable in R := S(α)× (−∞, ∞). So the solution γℓ(t) can be continued
to a time interval a ≤ t < b, where b = +∞ unless one of the following two
happen: (a) |γℓ(t)| → ∞ as t→ b− <∞ (blows up in finite time), or (b) (γℓ(t), t)
leaves R. Situation (a) cannot occur, since by ẇ ≈ 1 uniformly, neither the real
nor imaginary parts can blow up in finite time. Situation (b) cannot occur
by item i.. Therefore, γℓ(t) can be extended for infinite forward time, which
proves item i.. Item ii. follows immediately from the fact that we can control
s uniformly so that ẇ ≈ 1, since we can choose P close enough to P0 so that
arg(1 + s ◦ Ψ0(w)) < α. Item iii. follows from item i. and again from the fact
that we can control s uniformly so that ẇ ≈ 1.

Acknowledgements. This research was supported by a grant from Idella Fonden
and by the Marie Curie European Union Research Training Network Conformal
Structures and Dynamics (CODY). Support for this project was also provided
by a PSC-CUNY Award (TRADA-44-247, 66148-00 44), jointly funded by The
Professional Staff Congress and The City University of New York.
The above funding sources had no involvement in the design or conduct of this
research.

[1] D. Neumann, Classification of continuous flows on 2-manifolds, Proceedings
of the American Mathematical Society 48 (1) (1975) 73–81.

[2] A. A. Andronov, E. A. Leontovich, I. I. Gordon, A. G. Maier, Qualitative
theory of second-order dynamic systems, Wiley, New York, 1973, original:
Nakua, Moscow 1967.

[3] K. Dias, Enumerating combinatorial classes of complex polynomial vector
fields in C, Ergodic Theory and Dynamical Systems 33 (2013) 416–440.

[4] B. Branner, K. Dias, Classification of polynomial vector fields in one complex
variable, Journal of Difference Equations and Applications 16 (5) (2010)
463–517.

24



[5] L. Ahlfors, L. Bers, Riemann’s mapping theorem for variable metric, Annals
of Mathematics 72 (1960) 385–404.

[6] K. Pilgrim, Polynomial vector fields, dessins d’enfants, and circle packings,
in: R. L. Devaney, L. Keen (Eds.), Contemporary Mathematics, Vol. 396,
American Mathematical Society, 2006, pp. 129–138.

[7] L. Brickman, E. S. Thomas, Conformal equivalence of analytic flows, J.
Differential Equations 25 (1977) 310–324.

[8] X. Buff, Tan Lei, Dynamical convergence and polynomial vector fields, J.
Differential Geometry 77 (1) (2007) 1–41.

[9] A. Douady, F. Estrada, P. Sentenac, Champs de vecteurs polynomiaux sur
C, unpublished manuscript.

25


