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We derive a new integral formula for the Stieltjes constants. The new formula permits easy computations using an effective asymptotic formula. Both the sign oscillations and the leading order of growth are provided. The formula can also be easily extended to some generalized Euler constants.

Introduction

The Stieltjes constants γ n are defined as the coefficients of Laurent series expansion of the Riemann zeta function at s = 1 [START_REF] Briggs | Some constants associated with the Riemann zeta-function[END_REF]:

(1.1) ζ(s) = 1 s -1 + ∞ n=0 (-1) n n! γ n (s -1) n ,
where γ 0 = 0.5772156649 is known as Euler's constant. Exact and asymptotic formulas as well as upper bounds for the Stieltjes constants have been a subject of research for many decades [START_REF] Briggs | Some constants associated with the Riemann zeta-function[END_REF][START_REF] Briggs | The power series coefficients of ζ(s)[END_REF][START_REF] Coffey | New results on the Stieltjes constants: Asymptotic and exact evaluation[END_REF][START_REF] Johansson | Rigorous high-precision computation of the Hurwitz zeta function and its derivatives[END_REF][START_REF] Knessl | An effective asymptotic formula for the Stieltjes constants[END_REF][START_REF] Kreminski | Newton-Cotes Integration for Approximating Stieltjes (Generalized Euler) Constants[END_REF][START_REF] Matsuoka | On the power series coefficients of the Riemann zeta function[END_REF][START_REF] Mitrović | The signs of some constants associated with the Riemann zeta function[END_REF]15]. The approach to estimate the Stieltjes constants is always deterministic except the paper [START_REF] Adell | Asymptotic estimates for Stieltjes constants. A probabilistic approach[END_REF] where a probabilistic approach is undertaken. The main reason to estimate the Stieltjes constants is that these constants and their generalization , known as Generalized Euler constants, have many applications in number theory.

This paper is a continuation of this line of research. We will give a new effective asymptotic formula for the Stieltjes constants. With the formula we obtain the sign oscillations and the leading order of growth of the Stieltjes constants. We will show that our results match those of [START_REF] Knessl | An effective asymptotic formula for the Stieltjes constants[END_REF] which may be considered very accurate compared to other results.

A New Formula for The Stieltjes Constants

Let φ(t) be the real function defined by (2.1)

φ(t) = d dt -te -t 1 -e -t =
te t (e t -1) 2 -

1 e t -1
.

In a previous article we have obtained the following integral representation of the Riemann zeta function: Theorem 2.1 ( [START_REF] Fekih-Ahmed | On the Hurwitz Zeta Function[END_REF]). With φ(t) as above, and for all s such that Re(s) > -k, we have

(2.2) (s -1)ζ(s) = (-1) k Γ(s + k) ∞ 0 d k φ(t) dt k t s+k-1 dt.
If we chose k = 1 and we call

(2.3) µ(t) = - dφ dt = d 2 dt 2 te -t 1 -e -t = - (2 + t)e t (e t -1) 2 + 2te 2t (e t -1) 3 ,
then Theorem 2.1 provides the following formula valid for all s such that Re(s) > -1

(2.4) s(s -1)ζ(s)Γ(s) = ∞ 0 µ(t)t s dt.
If we now replace s by 1-s in equation (2.4) with the assumption that Re(1-s) < 2, we get

(2.5) s(s -1)ζ(1 -s)Γ(1 -s) = ∞ 0 µ(t)t 1-s dt.
The functional equation for the Riemann zeta function states that

(2.6) ζ(s) = 2(2π) s-1 sin( πs 2 )ζ(1 -s)Γ(1 -s).
Multiplying both sides of the last equation by s(s -1) and using (2.5), we obtain

s(s -1)ζ(s) = 2(2π) s-1 sin( πs 2 )s(s -1)ζ(1 -s)Γ(1 -s) = 2(2π) s-1 sin( πs 2 ) ∞ 0 µ(t)t 1-s dt. (2.7)
By observing that (2π) s-1 = e (s-1) log(2π) , that t 1-s = e -(s-1) log(t) and that 2 sin( πs 2 ) = 2 cos(π (s-1) 2 ) = e iπ (s-1)

2 + e -iπ (s-1)

2

, we can rewrite (2.7) as

(2.8) s(s -1)ζ(s) = ∞ 0 µ(t) e (s-1)(a-log(t)) + e (s-1)(ā-log(t)) dt,
where a is the fixed complex number a = log(2π) + i π 2 . Finally, since the left hand side of (2.8) is analytic at s = 1 it has a Taylor series expansion (2.9)

s(s -1)ζ(s) = ∞ n=0 µ n (s -1) n ,
where the coefficients µ n are given by

µ n = 1 n! lim s→1 d n ds n s(s -1)ζ(s) = 1 n! ∞ 0 µ(t) lim s→1 d n
ds n e (s-1)(a-log(t)) + e (s-1)(ā-log(t)) dt

= 1 n! ∞ 0 µ(t) (a -log(t)) n + (ā -log(t)) n dt. (2.10)
This gives our first main result 1 : Theorem 2.2. With µ(t) and the constant a defined as above, the coefficients µ n are given by

(2.11) µ n = 2 n! ∞ 0 µ(t)Re (a -log t) n dt.
Once we have the coefficients µ n of the power series for s(s -1)ζ(s), the Stieltjes coefficients γ n can be calculated using power series multiplication:

(2.12) (s -1)ζ(s) = ∞ n=0 (-1) n (s -1) n × ∞ n=0 µ n (s -1) n since (2.13) 1 s = ∞ n=0 (-1) n (s -1) n .
This immediately yields

(2.14) ζ(s) = 1 s -1 + ∞ n=1 n k=0 (-1) n-k µ k (s -1) n-1 ; therefore, (2.15) γ n = -n! n+1 k=0 (-1) k µ k = -n! ∞ 0 2µ(t)Re n+1 k=0 (log t -a) k k! dt.
The last formula can be simplified even further. Indeed, the sum inside the integral is a truncated sum of the exponential series e log t-a = te -a . This yields, 1 Note that the coefficients µn and the integral formula of s(s -1)ζ(s) are as important as the Stieltjes constants and the function (s -1)ζ(s). In fact, like the Riemann ξ(s) = 1 2 s(s -1)π -s/2 Γ 1 2 s ζ(s) function, s(s -1)ζ(s) possess some symmetry and can play an important role in the theory of the Riemann zeta function.

γ n = -n! ∞ 0 2µ(t)Re n+1 k=0 (log t -a) k k! dt = -n! ∞ 0 2µ(t)Re te -a - ∞ k=n+2 (log t -a) k k! dt = n! ∞ 0 2µ(t)Re ∞ k=n+2 (log t -a) k k! dt (2.16) since Re{e -a } = Re{ -i 2π } = 0. Hence, with
(2.17)

I(n) = ∞ 0 µ(t)(log t -a) n dt,
we can write

γ n = n! I(n + 2) (n + 2)! + I(n + 3) (n + 3)! + . . . (2.18) = n! (-1) n+2 µ n+2 + (-1) n+3 µ n+3 + . . . , (2.19) 
and we have our second main result: Theorem 2.3. With µ(t) and µ n defined as above, the Stieltjes constants are given by (2.20)

γ n = n!(-1) n [µ n+2 -µ n+3 + µ n+4 -. . .] .
We do not know yet that the leading term n!(-1) n µ n+2 = n! (n+2)! I(n + 2) is the dominant term for approximating γ n . All we know for now is that the µ n 's are the Taylor coefficients of an entire function and that µ n → 0 as n → ∞. In the next section, we will show that |µ n+2 | ≫ |µ n+3 | ≫ . . . for large n so that {|µ k |} ∞ n+2 form an asymptotic sequence2 . This implies that γ n can be written as

(2.21) γ n = 1 (n + 1)(n + 2) ∞ 0 2µ(t)
Re (log ta) n+2 dt + higher order terms, and that the leading term provides an asymptotic approximation of γ n :

(2.22) γ n ≈ 1 (n + 1)(n + 2) ∞ 0 2µ(t)Re (log t -a) n+2 dt = n!(-1) n µ n+2 .
Therefore, Theorem 2.3 permits an asymptotic expansion of the constants γ n . It is the subject of the next section.

Asymptotic Estimates of The Stieltjes Constants

This section is dedicated to approximating the complex-valued integral (3.1)

I(n) = ∞ 0 µ(t)(log t -a) n dt.
There are mainly two methods used for the asymptotic evaluation of complex integrals of the form (3.1) when n is large: the steepest descent method or Debye's method and the saddle-point method [START_REF] Copson | Asymptotic Expansions[END_REF]. By rewriting I n in a suitable form, we find that the saddle-point method provides the solution to our asymptotic analysis. Let

(3.2) g(t) = µ(t)e t ,
then by the change of variables t = nz, our integral becomes

I(n) = n ∞ 0 g(nz)e -nz log nz 2π -i π 2 n dz = n ∞ 0 g(nz)e n{-z+log[log( nz 2π )-i π 2 ]} dz. (3.3) If we define (3.4) f (z) = -z + log log nz 2π -i π 2 ,
then the saddle-point method consists in deforming the path of integration into a path which goes through a saddle-point at which the derivative f ′ (z), vanishes. If z 0 is the saddle-point at which the real part of f (z) takes the greatest value, the neighborhood of z 0 the dominant part of the integral as n → ∞ [5, p. 91-93]. This dominant part provides an approximation of the integral and it is given by the formula

I(n) ≈ ng(nz 0 )e nf (z0) -2π nf ′′ (z 0 ) 1 2 . (3.5)
In our case, we have

f ′ (z) = -1 + 1 z log nz 2π -i π 2
, and (3.6)

f ′′ (z) = -1 z 2 log nz 2π -i π 2 - 1 z 2 log nz 2π -i π 2 2 . (3.7)
The saddle-point z 0 should verify the equation

z 0 log nz 0 2π -i π 2 = 1 ⇔ nz 0 2π log nz 0 2π -i π 2 = n 2π ⇔ nz 0 2π log nz 0 2π e -i π 2 = n 2π ⇔ nz 0 2π e -i π 2 log nz 0 2π e -i π 2 = n 2π e -i π 2 . (3.8)
The last equation is of the form v log v = b whose solution can be explicitly written using the principal branch 3 of the Lambert W -function [START_REF] Corles | On the Lambert W Function[END_REF]:

v = e W (b) . (3.9)
After some algebra, the saddle-point solution to our equation (3.8) is thus given by

z 0 = 2π ni e W ( ni 2π ) , (3.10)
and at the saddle-point, we have the values

f (z 0 ) = -z 0 -log z 0 (3.11) f ′′ (z 0 ) = -1 - 1 z 0 . (3.12)
The saddle-point approximation of our integral (3.1) is given by the formula:

I(n) = n 2π n g(nz 0 )e -nz0-n log(z0) 1 1 + 1 z0 = n 2π n µ(nz 0 ) z 1 2 -n 0 √ 1 + z 0 . (3.13)
It turns out that g(t) can be very well approximated by

(3.14) g(t) = 1 6 e -1 10 t 2 if 0 ≤ t ≤ 1 -2 + t if t ≫ 1.
Moreover, when n is large, g(nz 0 ) can also be very well approximated 4 by (3.15) g(nz 0 ) ≈ nz 0 -1, so that we obtain the final approximation

I(n) ≈ n 2π n (nz 0 -1) z 1 2 -n 0 e nz0 √ 1 + z 0 . (3.16)
To obtain an approximation of the coefficient µ n = 2 n! Re {I(n)}, we use Stirling approximation of n! and we further simplify I(n) by resorting to the following asymptotic development of the principal branch of W (z) [START_REF] Corles | On the Lambert W Function[END_REF]:

(3.17) W (z) = log(z) -log (log z) + • • •
For n ≫ 1, we can rewrite (3.10) as 3 The principal branch of the Lambert W -function is denoted by W 0 (z) = W (z). See [START_REF] Corles | On the Lambert W Function[END_REF] for a thorough explanation of the definition of all the branches. 4 The approximations of g(t) and g(nz 0 ) are of course not necessary. We can keep the original functions g(nz 0 ) or µ(nz 0 ) for the final asymptotic formula. ) , where W is the Lambert W -function.

z 0 ∼ 1 log n 2π e -i arctan( π 2 log n ) ∼ 1 log n 2π e -i π 2 log n (3.18) so that 1 z n-1 2 0 ∼ log n 2π n-1 2 e -i(n-1 2 ) π
An approximate formula for the Stieltjes constants for large n is

(3.23) γ n ≈ 2 (n + 1) 2π n + 2 Re ((n + 2)z * 0 -1) z * 0 1 2 -n-2 e (n+2)z * 0 1 + z * 0 .
We can also find an asymptotic formula of γ n as a function of n only by using approximations similar to equations (3.17-3.19). For n ≫ 1 we can write

z * 0 ∼ 1 log n+2 2π e -i π 2 log(n+2) , (3.24) 1 z * 0 n+ 1 2 ∼ log n + 2 2π n+ 1 2 e -i(n+ 1 2 ) π 2 log(n+2) , (3.25) and e -(n+2)z * 0 ∼ e -(n+2) log ( n+2 2π ) , (3.26)
and after some easy algebraic manipulations, we obtain the oscillations and the leading order of growth of the Stieltjes constants:

γ n ∼ 2 √ 2π √ n + 2 e (n+ 1 2 ) log(log(n+2)-log(2π))-(n+2) log ( n+2 2π ) cos (n + 1 2 ) π 2 log(n + 2)
.

(3.27)

Both the oscillations and the leading order of growth match the results of [START_REF] Knessl | An effective asymptotic formula for the Stieltjes constants[END_REF]. We also note that several terms of (2.20) can also be added to the one-term approximation given by Theorem 3.1. This leads to the following multi-term approximation of γ n :

Theorem 3.2. Let z * 0 = 2π (n+2)i e W ( (n+2)i 2π
) , where W is the Lambert W -function.

An M-term approximate formula for the Stieltjes constants for large n is (3.28)

γ n ≈ M-1 k=0 2n! (n + 1 + k)! 2π n + 2 + k Re ((n + 2 + k)z * 0 -1) z * 0 1 2 -n-2-k e (n+2+k)z * 0 1 + z * 0 .
When M = 1, Theorem 3.2 reduces to Theorem 3.1. We will see in the next section that a three-term (M = 3) approximation provide satisfactory results for large and small values of n.

Numerical Results

We implemented the formula of Theorem 3. The approximations (3.23) and (3.28) with M = 3 were examined and compared to the exact values for n from 2 to 100000 given in [START_REF] Johansson | Rigorous high-precision computation of the Hurwitz zeta function and its derivatives[END_REF][START_REF] Johansson | The Stieltjes constants γ 0[END_REF] and the values of the asymptotic formula of Knessl and Coffey [START_REF] Knessl | An effective asymptotic formula for the Stieltjes constants[END_REF].

Table 1 below displays the approximate value of γ n using Theorem 3.1 and Theorem 3.2 and M = 3, the approximation using the formula of [START_REF] Knessl | An effective asymptotic formula for the Stieltjes constants[END_REF] and the exact known values for n from 2 to 20. Eq. (3.28), M = 3 Eq. (3.23) Formula [10] 2 -0.009690363192 -0.008382380783 -0.008909030193 -3 0.002053834420 0.001621242634 0.001073584137 0.00190188 4 0.002325370065 0.002185636219 0.002025456323 0.00231644 5 0.000793323817 0.0007895679944 0.000825888315 0.000812965 6 -0.000238769345 -0.0002241100338 -0.000149933239 -0.000242081 7 -0.000527289567 -0.0005200052551 -0.000475920788 -0.000541476 8 -0.000352123353 -0.0003506762586 -0.000346534072 -0.00036176 9 -0.000034394774 -0.0000349578308 -0.000055274760 -0.000035070 10 0.000205332814 0.0002044473764 0.000179950900 0.000210539 11 0.000270184439 0.0002693789419 0.000255402785 0.00027624 12 0.000167272912 0.0001666692377 0.000168701645 0.000170507 13 -0.000027463806 -0.0000277087054 -0.000012840713 -0.000028263 14 -0.000209209262 -0.0002089871741 -0.000190127572 -0.000213064 15 -0.000283468655 -0.0002828583838 -0.000270364310 -0.000288108 16 -0.000199696858 -0.0001989876591 -0.000200475577 -0.000202633 17 0.000026277037 0.0000266966357 0.00000969746 0.0000267683 18 0.000307368408 0.0003071961365 0.000280749078 0.000311543 19 0.000503605453 0.0005027990007 0.000479486029 0.000509981 20 0.000466343561 0.0004652039644 0.000460162247 0.000471981 Table 1. First 20 Stieltjes constants γ n and their approximate values given by Theorem 3.2, Theorem 3.1, and by the formula of Knessl-Coffey.

We can see that both asymptotic formulas given by Theorem 3.2 with M = 3 or by Theorem 3.1 provide good approximations of the exact Stieltjes constants except at n = 137 where the approximation of Theorem 3.1 fails to give the correct sign of γ 137 . Curiously, the asymptotic formula of Knessl-Coffey also fails to give the correct sign of γ 137 . It seems that the two asymptotic formulas are unrelated to each other 5 . Thus, the point n = 137 is inherently a badly conditioned point for both asymptotic formulas. For instance, with a small perturbation of n = 137, formula (3.23) gives the value 0.001041695409.10 29 for n = 137.017, and the value -0.1059515438.10 29 for n = 137.018. This shows that the point n = 137 is numerically ill-conditioned. This ill-conditioning can be explained by the fact that the saddle-point equation of [10, eq. (2.4)] and the saddle-point equation (3.2) both involve the evaluation of W ( ni 2π ). We also observe that except for the the specific values of n = 2 and n = 137, the approximation error of γ n using the formula of Knessl-Coffey is less than that of the single-term formula given by Theorem 3.1. However, at the expense of adding two extra terms to the approximation, the formula of Theorem 3.2 outperforms both 5 The approximation formula of [START_REF] Knessl | An effective asymptotic formula for the Stieltjes constants[END_REF] is given by γn ≈ -∞ 0 sin(πe t ) π

t n-1 e -t (nt) dt, whereas our approximation formula is γn ≈ - formulas: the sign error of the n = 137 disappears and the approximation error is greatly reduced. Table 3 displays the values of n (2 ≤ n ≤ 100000) for which the relative error of the Stieltjes constants γ n computed using Theorem 3.2 with M = 3 exceeds 5%. The relative errors rarely exceed 5%. In fact, for n ≥ 8816, the errors are all less than 1.6% with two exceptions at n = 71158 and n = 84589 where the errors are equal to -2.4% and 4.5% respectively. It appears that with this accuracy of the approximation, the three-term asymptotic formula will hopefully be robust and work for all values of n.

Conclusion and Extensions

It is possible 6 that the analysis of this paper can be generalized to find an effective asymptotic formulas for the generalized Euler constants γ n (a) defined as the coefficients of the Laurent series of the Hurwitz zeta function ζ(s, a) at the point s = 1 or at any other point of the complex plane. Instead of formula (2.2) of Theorem 2.1, we use the formula from [START_REF] Fekih-Ahmed | On the Hurwitz Zeta Function[END_REF]:

(5.1) (s -1)ζ(s, a) = 1 Γ(s) ∞ 0 ψ(t)e -(a-1)t t s-1 dt, which is valid for all s such that Re(s) > 0 and all 0 < a ≤ 1, and where the real function ψ(t) is defined by (5.2) ψ(t) = te t (e t -1) 2 -1 e t -1 + (a -1)t e t -1 .

It would be interesting to compare the formulas with the results and conjectures of Kreminski who has done extensive computations on the generalized Euler constants [START_REF] Kreminski | Newton-Cotes Integration for Approximating Stieltjes (Generalized Euler) Constants[END_REF].

Theorem 3 . 1 .

 31 large n |µ n | ∼ n log n e n log n . (3.22) The last equation proves that lim n→∞ |µn+3| |µn+2| = 0, or equivalently that |µ n+2 | ≫ |µ n+3 | ≫ . . . for large n. Hence, Theorem 2.3 also provides an asymptotic expansion of γ n , and we deduce the following one-term asymptotic approximation of γ n ≈ n!(-1) n µ n+2 : Let z * 0 = 2π (n+2)i e W ( (n+2)i 2π

  2 in Maple TM . For a given value of n, the following procedure computes the value of the M -term approximation formula of the n th Stieltjes constant γ n : gamman := proc (n, M) #Input n: the desired nth Stieltjes constant #Input M: the number of terms in asymptotic formula #An example call: gamman(137,3) local k, coef, w0, z0, f, fpp; coef := 0; for k from 0 to M-1 do w0 := LambertW(((1/2)*I)*(n+2+k)/Pi): z0 := -(2*I)*Pi*exp(w0)/(n+2+k): f := -z0-ln(z0): fpp := -1-1/z0: coef := coef+Re(2*factorial(n)*((n+2+k).z0-1) *sqrt(-2*Pi/((n+2+k)*fpp))*exp((n+2+k)*f)/factorial(n+1+k)): end do: evalf(coef); end proc:

  Table 2 displays the approximate value of γ n and the exact known values for some higher values of n. Maple is a trademark of Waterloo Maple Inc.

	n	Exact	Theorem 3.2	Theorem 3.1	Knessl-Coffey
		γ n			

TM

Table 2 .

 2 Stieltjes constants γ n and their approximate values given by Theorem 3.2, Theorem 3.1 and by Knessl-Coffey formula for different values of n.

	1 (n+1)(n+2)	∞ 0 2µ(t)Re (log t -a) n+2 dt. The author
	unsuccessfully tried to derive a relationship between the two formulas.

Table 3 .

 3 The values of n (2 ≤ n ≤ 100000) for which the relative error of the Stieltjes constants γ n computed using Theorem 3.2 with M = 3 exceeds 5%.

We write f (n) ≫ g(n), or f is "much greater than" g, if g = o(f ) as n → ∞.
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