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A NEW EFFECTIVE ASYMPTOTIC FORMULA FOR THE

STIELTJES CONSTANTS

LAZHAR FEKIH-AHMED

Abstract. We derive a new integral formula for the Stieltjes constants. The
new formula permits easy computations using an effective asymptotic formula.
Both the sign oscillations and the leading order of growth are provided. The
formula can also be easily extended to some generalized Euler constants.

1. Introduction

The Stieltjes constants γn are defined as the coefficients of Laurent series expan-
sion of the Riemann zeta function at s = 1 [2]:

(1.1) ζ(s) =
1

s− 1
+

∞
∑

n=0

(−1)n

n!
γn(s− 1)n,

where γ0 = 0.5772156649 is known as Euler’s constant.
Exact and asymptotic formulas as well as upper bounds for the Stieltjes constants

have been a subject of research for many decades [2, 3, 4, 8, 10, 11, 12, 13, 15].
The approach to estimate the Stieltjes constants is always deterministic except
the paper [1] where a probabilistic approach is undertaken. The main reason to
estimate the Stieltjes constants is that these constants and their generalization ,
known as Generalized Euler constants, have many applications in number theory.

This paper is a continuation of this line of research. We will give a new effective
asymptotic formula for the Stieltjes constants. With the formula we obtain the
sign oscillations and the leading order of growth of the Stieltjes constants. We will
show that our results match those of [10] which may be considered very accurate
compared to other results.

2. A New Formula for The Stieltjes Constants

Let φ(t) be the real function defined by

(2.1) φ(t) =
d

dt

−te−t

1− e−t
=

tet

(et − 1)2
− 1

et − 1
.

In a previous article we have obtained the following integral representation of
the Riemann zeta function:

Date: June 30, 2014.
2010 Mathematics Subject Classification. Primary 41A60, 30E15, 11M06, 11Y60.
Key words and phrases. Stieltjes constants; Riemann Zeta function; Laurent expansion; as-

ymptotic expansion.

1



2 L. FEKIH-AHMED

Theorem 2.1 ([7]). With φ(t) as above, and for all s such that Re(s) > −k, we
have

(2.2) (s− 1)ζ(s) =
(−1)k

Γ(s+ k)

∫ ∞

0

dkφ(t)

dtk
ts+k−1 dt.

If we chose k = 1 and we call

(2.3) µ(t) = −dφ
dt

=
d2

dt2
te−t

1− e−t
= − (2 + t)et

(et − 1)2
+

2te2t

(et − 1)3
,

then Theorem 2.1 provides the following formula valid for all s such that Re(s) >
−1

(2.4) s(s− 1)ζ(s)Γ(s) =

∫ ∞

0

µ(t)ts dt.

If we now replace s by 1−s in equation (2.4) with the assumption that Re(1−s) <
2, we get

(2.5) s(s− 1)ζ(1− s)Γ(1 − s) =

∫ ∞

0

µ(t)t1−s dt.

The functional equation for the Riemann zeta function states that

(2.6) ζ(s) = 2(2π)s−1 sin(
πs

2
)ζ(1 − s)Γ(1− s).

Multiplying both sides of the last equation by s(s−1) and using (2.5), we obtain

s(s− 1)ζ(s) = 2(2π)s−1 sin(
πs

2
)s(s− 1)ζ(1 − s)Γ(1− s)

= 2(2π)s−1 sin(
πs

2
)

∫ ∞

0

µ(t)t1−s dt.(2.7)

By observing that (2π)s−1 = e(s−1) log(2π), that t1−s = e−(s−1) log(t) and that

2 sin(πs2 ) = 2 cos(π (s−1)
2 ) = eiπ

(s−1)
2 + e−iπ

(s−1)
2 , we can rewrite (2.7) as

(2.8) s(s− 1)ζ(s) =

∫ ∞

0

µ(t)
[

e(s−1)(a−log(t)) + e(s−1)(ā−log(t))
]

dt,

where a is the fixed complex number a = log(2π) + iπ2 .
Finally, since the left hand side of (2.8) is analytic at s = 1 it has a Taylor series

expansion

(2.9) s(s− 1)ζ(s) =

∞
∑

n=0

µn(s− 1)n,

where the coefficients µn are given by
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µn =
1

n!
lim
s→1

dn

dsn

{

s(s− 1)ζ(s)
}

=
1

n!

∫ ∞

0

µ(t) lim
s→1

dn

dsn

{

e(s−1)(a−log(t)) + e(s−1)(ā−log(t))
}

dt

=
1

n!

∫ ∞

0

µ(t)
{

(a− log(t))n + (ā− log(t))n
}

dt.(2.10)

This gives our first main result1:

Theorem 2.2. With µ(t) and the constant a defined as above, the coefficients µn

are given by

(2.11) µn =
2

n!

∫ ∞

0

µ(t)Re
{

(a− log t)n
}

dt.

Once we have the coefficients µn of the power series for s(s−1)ζ(s), the Stieltjes
coefficients γn can be calculated using power series multiplication:

(2.12) (s− 1)ζ(s) =
∞
∑

n=0

(−1)n(s− 1)n ×
∞
∑

n=0

µn(s− 1)n

since

(2.13)
1

s
=

∞
∑

n=0

(−1)n(s− 1)n.

This immediately yields

(2.14) ζ(s) =
1

s− 1
+

∞
∑

n=1

{

n
∑

k=0

(−1)n−kµk

}

(s− 1)n−1;

therefore,

(2.15) γn = −n!
n+1
∑

k=0

(−1)kµk = −n!
∫ ∞

0

2µ(t)Re
{

n+1
∑

k=0

(log t− a)k

k!

}

dt.

The last formula can be simplified even further. Indeed, the sum inside the
integral is a truncated sum of the exponential series elog t−a = te−a. This yields,

1Note that the coefficients µn and the integral formula of s(s − 1)ζ(s) are as important as

the Stieltjes constants and the function (s − 1)ζ(s). In fact, like the Riemann ξ(s) = 1
2
s(s −

1)π−s/2Γ
(

1
2
s
)

ζ(s) function, s(s− 1)ζ(s) possess some symmetry and can play an important role

in the theory of the Riemann zeta function.
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γn = −n!
∫ ∞

0

2µ(t)Re
{

n+1
∑

k=0

(log t− a)k

k!

}

dt

= −n!
∫ ∞

0

2µ(t)Re
{

te−a −
∞
∑

k=n+2

(log t− a)k

k!

}

dt

= n!

∫ ∞

0

2µ(t)Re
{

∞
∑

k=n+2

(log t− a)k

k!

}

dt(2.16)

since Re{e−a} = Re{−i
2π} = 0. Hence, with

(2.17) I(n) =

∫ ∞

0

µ(t)(log t− a)n dt,

we can write

γn = n!

[

I(n+ 2)

(n+ 2)!
+
I(n+ 3)

(n+ 3)!
+ . . .

]

(2.18)

= n!
[

(−1)n+2µn+2 + (−1)n+3µn+3 + . . .
]

,(2.19)

and we have our second main result:

Theorem 2.3. With µ(t) and µn defined as above, the Stieltjes constants are given

by

(2.20) γn = n!(−1)n [µn+2 − µn+3 + µn+4 − . . .] .

We do not know yet that the leading term n!(−1)nµn+2 = n!
(n+2)!I(n+ 2) is the

dominant term for approximating γn. All we know for now is that the µn’s are the
Taylor coefficients of an entire function and that µn → 0 as n → ∞. In the next
section, we will show that |µn+2| ≫ |µn+3| ≫ . . . for large n so that {|µk|}∞n+2 form

an asymptotic sequence2. This implies that γn can be written as

(2.21) γn =
1

(n+ 1)(n+ 2)

∫ ∞

0

2µ(t)Re
{

(log t− a)n+2
}

dt+ higher order terms,

and that the leading term provides an asymptotic approximation of γn:

(2.22) γn ≈ 1

(n+ 1)(n+ 2)

∫ ∞

0

2µ(t)Re
{

(log t− a)n+2
}

dt = n!(−1)nµn+2.

Therefore, Theorem 2.3 permits an asymptotic expansion of the constants γn.
It is the subject of the next section.

2We write f(n) ≫ g(n), or f is “much greater than” g, if g = o(f) as n → ∞.
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3. Asymptotic Estimates of The Stieltjes Constants

This section is dedicated to approximating the complex-valued integral

(3.1) I(n) =

∫ ∞

0

µ(t)(log t− a)n dt.

There are mainly two methods used for the asymptotic evaluation of complex
integrals of the form (3.1) when n is large: the steepest descent method or Debye’s
method and the saddle-point method [5]. By rewriting In in a suitable form, we
find that the saddle-point method provides the solution to our asymptotic analysis.

Let

(3.2) g(t) = µ(t)et,

then by the change of variables t = nz, our integral becomes

I(n) = n

∫ ∞

0

g(nz)e−nz
{

log
(nz

2π

)

− i
π

2

}n

dz

= n

∫ ∞

0

g(nz)en{−z+log[log(nz

2π )−iπ2 ]} dz.(3.3)

If we define

(3.4) f(z) = −z + log
[

log
(nz

2π

)

− i
π

2

]

,

then the saddle-point method consists in deforming the path of integration into
a path which goes through a saddle-point at which the derivative f ′(z), vanishes.
If z0 is the saddle-point at which the real part of f(z) takes the greatest value,
the neighborhood of z0 provides the dominant part of the integral as n → ∞ [5,
p. 91-93]. This dominant part provides an approximation of the integral and it is
given by the formula

I(n) ≈ ng(nz0)e
nf(z0)

( −2π

nf ′′(z0)

)
1
2

.(3.5)

In our case, we have

f ′(z) = −1 +
1

z
[

log
(

nz
2π

)

− iπ2

] , and(3.6)

f ′′(z) =
−1

z2
[

log
(

nz
2π

)

− iπ2

] − 1

z2
[

log
(

nz
2π

)

− iπ2

]2 .(3.7)

The saddle-point z0 should verify the equation

z0

[

log
(nz0

2π

)

− i
π

2

]

= 1

⇔ nz0

2π

[

log
(nz0

2π

)

− i
π

2

]

=
n

2π

⇔ nz0

2π
log

(nz0

2π
e−iπ2

)

=
n

2π

⇔ nz0

2π
e−iπ2 log

(nz0

2π
e−iπ2

)

=
n

2π
e−iπ2 .(3.8)
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The last equation is of the form v log v = b whose solution can be explicitly
written using the principal branch3 of the Lambert W -function [6]:

v = eW (b).(3.9)

After some algebra, the saddle-point solution to our equation (3.8) is thus given
by

z0 =
2π

ni
eW( ni

2π ),(3.10)

and at the saddle-point, we have the values

f(z0) = −z0 − log z0(3.11)

f ′′(z0) = −1− 1

z0
.(3.12)

The saddle-point approximation of our integral (3.1) is given by the formula:

I(n) = n

√

2π

n
g(nz0)e

−nz0−n log(z0)
1

√

1 + 1
z0

= n

√

2π

n
µ(nz0)

z
1
2−n

0√
1 + z0

.(3.13)

It turns out that g(t) can be very well approximated by

(3.14) g(t) =

{

1
6e

− 1
10 t

2

if 0 ≤ t ≤ 1

−2 + t if t≫ 1.

Moreover, when n is large, g(nz0) can also be very well approximated4 by

(3.15) g(nz0) ≈ nz0 − 1,

so that we obtain the final approximation

I(n) ≈ n

√

2π

n
(nz0 − 1)

z
1
2−n

0

enz0
√
1 + z0

.(3.16)

To obtain an approximation of the coefficient µn = 2
n!Re {I(n)}, we use Stirling

approximation of n! and we further simplify I(n) by resorting to the following
asymptotic development of the principal branch of W (z) [6]:

(3.17) W (z) = log(z)− log (log z) + · · ·
For n≫ 1, we can rewrite (3.10) as

3The principal branch of the Lambert W -function is denoted by W0(z) = W (z). See [6] for a
thorough explanation of the definition of all the branches.

4The approximations of g(t) and g(nz0) are of course not necessary. We can keep the original
functions g(nz0) or µ(nz0) for the final asymptotic formula.
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z0 ∼ 1

log
(

n
2π

)e−i arctan( π

2 log n ) ∼ 1

log
(

n
2π

)e−i π

2 log n(3.18)

so that

1

z
n− 1

2
0

∼ log
( n

2π

)n− 1
2

e−i(n− 1
2 )

π

2 log n ,(3.19)

and

e−nz0 ∼ e
− n

log( n

2π )
e
−i

π

2 log n

∼ e
− n

log( n

2π ) .(3.20)

Using Stirling formula

n! ∼
√
2πn

nn

en
,(3.21)

we obtain for large n

|µn| ∼
n logn

en logn
.(3.22)

The last equation proves that limn→∞
|µn+3|
|µn+2|

= 0, or equivalently that |µn+2| ≫
|µn+3| ≫ . . . for large n. Hence, Theorem 2.3 also provides an asymptotic expansion
of γn, and we deduce the following one-term asymptotic approximation of γn ≈
n!(−1)nµn+2:

Theorem 3.1. Let z∗0 = 2π
(n+2)ie

W( (n+2)i
2π ), where W is the Lambert W -function.

An approximate formula for the Stieltjes constants for large n is

(3.23) γn ≈ 2

(n+ 1)

√

2π

n+ 2
Re

{

((n+ 2)z∗0 − 1)
z∗0

1
2−n−2

e(n+2)z∗

0

√

1 + z∗0

}

.

We can also find an asymptotic formula of γn as a function of n only by using
approximations similar to equations (3.17-3.19). For n≫ 1 we can write

z∗0 ∼ 1

log
(

n+2
2π

)e
−i π

2 log(n+2) ,(3.24)

1

z∗0
n+ 1

2

∼ log

(

n+ 2

2π

)n+ 1
2

e
−i(n+ 1

2 )
π

2 log(n+2) ,(3.25)

and

e−(n+2)z∗

0 ∼ e
− (n+2)

log(n+2
2π ) ,(3.26)

and after some easy algebraic manipulations, we obtain the oscillations and the
leading order of growth of the Stieltjes constants:
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γn ∼ 2

√
2π√
n+ 2

e
(n+ 1

2 ) log(log(n+2)−log(2π))− (n+2)

log(n+2
2π ) cos

(

(n+
1

2
)

π

2 log(n+ 2)

)

.

(3.27)

Both the oscillations and the leading order of growth match the results of [10].
We also note that several terms of (2.20) can also be added to the one-term

approximation given by Theorem 3.1. This leads to the following multi-term ap-
proximation of γn:

Theorem 3.2. Let z∗0 = 2π
(n+2)ie

W( (n+2)i
2π ), where W is the Lambert W -function.

An M-term approximate formula for the Stieltjes constants for large n is

(3.28)

γn ≈
M−1
∑

k=0

2n!

(n+ 1 + k)!

√

2π

n+ 2 + k
Re

{

((n+ 2 + k)z∗0 − 1)
z∗0

1
2−n−2−k

e(n+2+k)z∗

0

√

1 + z∗0

}

.

When M = 1, Theorem 3.2 reduces to Theorem 3.1. We will see in the next
section that a three-term (M = 3) approximation provide satisfactory results for
large and small values of n.

4. Numerical Results

We implemented the formula of Theorem 3.2 in Maple
TM

. For a given value of n,
the following procedure computes the value of the M -term approximation formula
of the nth Stieltjes constant γn:

gamman := proc (n, M)

#Input n: the desired nth Stieltjes constant

#Input M: the number of terms in asymptotic formula

#An example call: gamman(137,3)

local k, coef, w0, z0, f, fpp;

coef := 0;

for k from 0 to M-1 do

w0 := LambertW(((1/2)*I)*(n+2+k)/Pi):

z0 := -(2*I)*Pi*exp(w0)/(n+2+k):

f := -z0-ln(z0):

fpp := -1-1/z0:

coef := coef+Re(2*factorial(n)*((n+2+k).z0-1)

*sqrt(-2*Pi/((n+2+k)*fpp))*exp((n+2+k)*f)/factorial(n+1+k)):

end do:

evalf(coef);

end proc:

The approximations (3.23) and (3.28) with M = 3 were examined and compared
to the exact values for n from 2 to 100000 given in [8, 9] and the values of the
asymptotic formula of Knessl and Coffey [10].

Table 1 below displays the approximate value of γn using Theorem 3.1 and
Theorem 3.2 andM = 3, the approximation using the formula of [10] and the exact
known values for n from 2 to 20. Table 2 displays the approximate value of γn and
the exact known values for some higher values of n.

TM
Maple is a trademark of Waterloo Maple Inc.
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n Exact Theorem 3.2 Theorem 3.1 Knessl-Coffey
γn Eq. (3.28), M = 3 Eq. (3.23) Formula [10]

2 -0.009690363192 -0.008382380783 -0.008909030193 −
3 0.002053834420 0.001621242634 0.001073584137 0.00190188
4 0.002325370065 0.002185636219 0.002025456323 0.00231644
5 0.000793323817 0.0007895679944 0.000825888315 0.000812965
6 -0.000238769345 -0.0002241100338 -0.000149933239 -0.000242081
7 -0.000527289567 -0.0005200052551 -0.000475920788 -0.000541476
8 -0.000352123353 -0.0003506762586 -0.000346534072 -0.00036176
9 -0.000034394774 -0.0000349578308 -0.000055274760 -0.000035070
10 0.000205332814 0.0002044473764 0.000179950900 0.000210539
11 0.000270184439 0.0002693789419 0.000255402785 0.00027624
12 0.000167272912 0.0001666692377 0.000168701645 0.000170507
13 -0.000027463806 -0.0000277087054 -0.000012840713 -0.000028263
14 -0.000209209262 -0.0002089871741 -0.000190127572 -0.000213064
15 -0.000283468655 -0.0002828583838 -0.000270364310 -0.000288108
16 -0.000199696858 -0.0001989876591 -0.000200475577 -0.000202633
17 0.000026277037 0.0000266966357 0.00000969746 0.0000267683
18 0.000307368408 0.0003071961365 0.000280749078 0.000311543
19 0.000503605453 0.0005027990007 0.000479486029 0.000509981
20 0.000466343561 0.0004652039644 0.000460162247 0.000471981

Table 1. First 20 Stieltjes constants γn and their approximate
values given by Theorem 3.2, Theorem 3.1, and by the formula of
Knessl-Coffey.

We can see that both asymptotic formulas given by Theorem 3.2 with M = 3
or by Theorem 3.1 provide good approximations of the exact Stieltjes constants
except at n = 137 where the approximation of Theorem 3.1 fails to give the correct
sign of γ137. Curiously, the asymptotic formula of Knessl-Coffey also fails to give
the correct sign of γ137. It seems that the two asymptotic formulas are unrelated
to each other5. Thus, the point n = 137 is inherently a badly conditioned point
for both asymptotic formulas. For instance, with a small perturbation of n =
137, formula (3.23) gives the value 0.001041695409.1029 for n = 137.017, and the
value −0.1059515438.1029 for n = 137.018. This shows that the point n = 137 is
numerically ill-conditioned. This ill-conditioning can be explained by the fact that
the saddle-point equation of [10, eq. (2.4)] and the saddle-point equation (3.2) both
involve the evaluation of W ( ni

2π ).
We also observe that except for the the specific values of n = 2 and n = 137, the

approximation error of γn using the formula of Knessl-Coffey is less than that of the
single-term formula given by Theorem 3.1. However, at the expense of adding two
extra terms to the approximation, the formula of Theorem 3.2 outperforms both

5The approximation formula of [10] is given by γn ≈ −
∫

∞

0
sin(πet)

π
tn−1e−t(n− t) dt, whereas

our approximation formula is γn ≈ −
1

(n+1)(n+2)

∫

∞

0 2µ(t)Re
{

(log t − a)n+2
}

dt. The author

unsuccessfully tried to derive a relationship between the two formulas.
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n Exact Theorem 3.2 Theorem 3.1 Knessl-Coffey
γn Eq. (3.28), M = 3 Eq. (3.23) Formula [10]

30 0.003557728 0.0035491 0.003790 0.00359535
35 -0.02037304 -0.0203320 -0.022336 -0.0205982
40 0.248721559 0.2484162 0.265889 0.251108
45 -5.07234458 -5.0686103 -5.211491 -5.10969
50 126.8236026 126.7545688 127.121 127.549
100 −4.253401.1017 −4.251316.1017 −4.14170.1017 −4.25941.1017

136 4.226701.1030 4.226998.1030 4.22698.1030 4.22698.1030

137 −0.00079.1029 −0.03484.1029
1.79099.1029

3.89874.1029

138 −2.523130.1031 −2.521344.1031 −2.4420176.1031 −2.52354.1031

150 8.028853.1035 8.031999.1035 8.1242241.1035 8.05143.1035

250 3.059212.1079 3.058889.1079 3.038525.1079 3.06165.1079

300 −5.55672.10102 −5.55436.10102 −5.47283.10102 −5.55679.10102

800 4.91354.10369 4.91329.10369 4.899488.10369 4.91452.10369

1400 −4.09728.10728 −4.09772.10728 −4.10081.10728 −4.09851.10728

Table 2. Stieltjes constants γn and their approximate values
given by Theorem 3.2, Theorem 3.1 and by Knessl-Coffey formula
for different values of n.

n Relative error
2 -13.5 %
3 -21.06 %
4 -6.01 %
6 -6.14 %

137 -56.41 %
821 7.95 %
1090 8.01 %
7259 9.12 %
8815 5.35 %

Table 3. The values of n (2 ≤ n ≤ 100000) for which the relative
error of the Stieltjes constants γn computed using Theorem 3.2
with M = 3 exceeds 5%.

formulas: the sign error of the n = 137 disappears and the approximation error is
greatly reduced.

Table 3 displays the values of n (2 ≤ n ≤ 100000) for which the relative error
of the Stieltjes constants γn computed using Theorem 3.2 with M = 3 exceeds
5%. The relative errors rarely exceed 5%. In fact, for n ≥ 8816, the errors are all
less than 1.6% with two exceptions at n = 71158 and n = 84589 where the errors
are equal to −2.4% and 4.5% respectively. It appears that with this accuracy of
the approximation, the three-term asymptotic formula will hopefully be robust and
work for all values of n.
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5. Conclusion and Extensions

It is possible6 that the analysis of this paper can be generalized to find an effec-
tive asymptotic formulas for the generalized Euler constants γn(a) defined as the
coefficients of the Laurent series of the Hurwitz zeta function ζ(s, a) at the point
s = 1 or at any other point of the complex plane. Instead of formula (2.2) of
Theorem 2.1, we use the formula from [7]:

(5.1) (s− 1)ζ(s, a) =
1

Γ(s)

∫ ∞

0

ψ(t)e−(a−1)tts−1 dt,

which is valid for all s such that Re(s) > 0 and all 0 < a ≤ 1, and where the real
function ψ(t) is defined by

(5.2) ψ(t) =
tet

(et − 1)2
− 1

et − 1
+

(a− 1)t

et − 1
.

It would be interesting to compare the formulas with the results and conjec-
tures of Kreminski who has done extensive computations on the generalized Euler
constants [11].
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