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A NEW EFFECTIVE ASYMPTOTIC FORMULA FOR THE

STIELTJES CONSTANTS

LAZHAR FEKIH-AHMED

Abstract. We derive a new integral formula for the Stieltjes constants. The
new formula permits easy computations as well as an exact approximate as-
ymptotic formula. Both the sign oscillations and the leading order of growth
are provided. The formula can also be easily extended to generalized Euler
constants.

1. Introduction

The Stieltjes constants γn are defined as the coefficients of Laurent series expan-
sion of the Riemann zeta function at s = 1 [2]:

(1.1) ζ(s) =
1

s− 1
+

∞
∑

n=0

(−1)n

n!
γn(s− 1)n,

where γ0 = 0.5772156649 is known as Euler’s constant.
Exact and asymptotic formulas as well as upper bounds for the Stieltjes constants

have been a subject of research for many decades [3, 2, 7, 9, 11, 10, 12, 14]. The
approach to estimate the Stieltjes constants is always deterministic except the paper
[1] where a probabilistic approach is undertaken. The main reason to estimate
the Stieltjes constants is that these constants and their generalization , known as
Generalized Euler constants, have many applications in number theory.

This paper is a continuation of this line of research. We will give a new effective
asymptotic formula for the Stieltjes constants. With the formula we obtain the
sign oscillations and the leading order of growth of the Stieltjes constants. We will
show that our results match those of [9] which may be considered very accurate
compared to other results.

2. An Integral Formula for s(s− 1)ζ(s)

Let φ(t) be the real function defined by

(2.1) φ(t) =
d

dt

−te−t

1− e−t
=

tet

(et − 1)2
− 1

et − 1
.

In a previous article we have obtained the following integral representation of
the Riemann zeta function.
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(2.2) ζ(s) =
(−1)k

Γ(s+ k)

∫

∞

0

dk

dtk
(φ(t)ts+k−1 dt.

Theorem 2.1 ([6]). With φ(t) as above, and for all s such that Re(s) > −k, we
have

(2.3) (s− 1)ζ(s) =
(−1)k

Γ(s+ k)

∫

∞

0

dk

dtk
(φ(t)ts+k−1 dt.

If we chose k = 1 and we call

(2.4) µ(t) = −dφ
dt

=
d2

dt2
te−t

1− e−t
=

(2 + t)et

(et − 1)2
− 2te2t

(et − 1)3
,

then Theorem 2.1 provides the following formula valid for all s such that Re(s) >
−1

(2.5) s(s− 1)ζ(s)Γ(s) =

∫

∞

0

µ(t)ts dt.

If we now replace s by 1−s in equation (2.5) with the assumption that Re(1−s) <
2, we get

(2.6) s(s− 1)ζ(1− s)Γ(1 − s) =

∫

∞

0

µ(t)t1−s dt.

The functional equation for the Riemann zeta function states that

(2.7) ζ(s) = 2(2π)s−1 sin(
πs

2
)ζ(1 − s)Γ(1− s).

Multiplying both sides of the last equation by s(s−1) and using (2.6), we obtain

s(s− 1)ζ(s) = 2(2π)s−1 sin(
πs

2
)s(s− 1)ζ(1 − s)Γ(1− s)

= 2(2π)s−1 sin(
πs

2
)

∫

∞

0

µ(t)t1−s dt.(2.8)

By observing that (2π)s−1 = e(s−1) log(2π), that t1−s = e−(s−1) log(t) and that

2 sin(πs2 ) = 2 cos(π (s−1)
2 ) = eiπ

(s−1)
2 + e−iπ

(s−1)
2 , we can rewrite (2.8) as

(2.9) s(s− 1)ζ(s) =

∫

∞

0

µ(t)
[

e(s−1)(a−log(t)) + e(s−1)(ā−log(t))
]

dt,

where a is the fixed complex number a = log(2π) + iπ2 .
Finally, since the left hand side of (2.9) is analytic at s = 1 it has a Taylor series

expansion

(2.10) s(s− 1)ζ(s) =

∞
∑

n=0

µn(s− 1)n,

where the coefficients µn are given by
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µn = lim
s→1

dn

dsn

{

s(s− 1)ζ(s)
}

=

∫

∞

0

µ(t) lim
s→1

dn

dsn

{

e(s−1)(a−log(t)) + e(s−1)(ā−log(t))
}

dt

=

∫

∞

0

µ(t)
{

(a− log(t))n + (ā− log(t))n
}

dt.(2.11)

This gives our first main result1:

Theorem 2.2. With µ(t) and the constant a defined as above, the coefficients µn

are given by

(2.12) µn =
2

n!

∫

∞

0

µ(t)Re
{

(a− log t)n
}

dt.

Once we have the coefficients µn of the power series for s(s−1)ζ(s), the Stieltjes
coefficients γn can be calculated using power series multiplication:

(2.13) (s− 1)ζ(s) =
∞
∑

n=0

(−1)n(s− 1)n ×
∞
∑

n=0

µn(s− 1)n

since

(2.14)
1

s
=

∞
∑

n=0

(−1)n(s− 1)n.

This immediately yields

(2.15) ζ(s) =
1

s− 1
+

∞
∑

n=1

{

n
∑

k=0

(−1)n−kµk

}

(−1)n(s− 1)n−1;

therefore,

(2.16) γn = n!

n+1
∑

k=0

(−1)kµk = n!

∫

∞

0

2µ(t)Re
{

n+1
∑

k=0

(log t− a)k

k!

}

dt.

The last formula can be simplified even further. Indeed, the sum inside the
integral is a truncated sum of the exponential series elog t−a = te−a. This yields,

1Note that the coefficients µn and the integral formula of s(s − 1)ζ(s) are as important as

the Stieltjes constants and the function (s − 1)ζ(s). In fact, like the Riemann ξ(s) = 1
2
s(s −

1)π−s/2Γ
(

1
2
s
)

ζ(s) function, s(s− 1)ζ(s) possess some symmetry and can play an important role

in the theory of the Riemann zeta function.
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γn = n!

∫

∞

0

2µ(t)Re
{

n
∑

k=0

(log t− a)k

k!

}

dt

= n!

∫

∞

0

2µ(t)Re
{

te−a +

∞
∑

k=n+2

(log t− a)k

k!

}

dt

= n!

∫

∞

0

2µ(t)Re
{

∞
∑

k=n+2

(log t− a)k

k!

}

dt(2.17)

since Re{e−a} = Re{−i
2π } = 0. Hence, the leading term of an asymptotic expan-

sion of γn is equal to

(2.18) γn =
1

(n+ 1)(n+ 2)

∫

∞

0

2µ(t)Re
{

(log t− a)n+2
}

dt+ higher order terms,

and we have our second main result:

Theorem 2.3. With µ(t) defined as above, the Stieltjes constants γn can be ap-

proximated by

(2.19)
1

(n+ 1)(n+ 2)

∫

∞

0

2µ(t)Re
{

(log t− a)n+2
}

dt = n!µn+2.

Theorem 2.3 permits an exact asymptotic evaluation of the constants µn and
γn. It is the subject of the next section.

3. Asymptotic Estimates of The Stieltjes Constants

This section is dedicated to approximating the complex-valued integral

(3.1) I(n) =

∫

∞

0

µ(t)(log t− a)n dt.

There are mainly two methods used for the asymptotic evaluation of complex
integrals of the form (3.1) when n is large: the steepest descent method or Debye’s
method and the saddle-point method [4]. By rewriting In in a suitable form, we
find that the saddle-point method provides the solution to our asymptotic analysis.

Let

(3.2) g(t) = µ(t)et,

then by the change of variables t = nz, our integral becomes

I(n) = n

∫

∞

0

g(nz)e−nz
{

log
(nz

2π

)

− i
π

2

}n

dz

= n

∫

∞

0

g(nz)en{−z+log[log(nz

2π )−iπ2 ]} dz.(3.3)

If we define

(3.4) f(z) = −z + log
[

log
(nz

2π

)

− i
π

2

]

,

then the saddle-point method consists in deforming the path of integration into
a path which goes through a saddle-point at which the derivative f ′(z), vanishes.
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If z0 is the saddle-point at which the real part of f(z) takes the greatest value,
the neighborhood of z0 provides the dominant part of the integral as n → ∞ [4,
p. 91-93]. This dominant part provides an approximation of the integral and it is
given by the formula

I(n) ≈ ng(nz0)e
nf(z0)

( −2π

nf ′′(z0)

)
1
2

.(3.5)

In our case, we have

f ′(z) = −1 +
1

z
[

log
(

nz
2π

)

− iπ2

] , and(3.6)

f ′′(z) =
−1

z2
[

log
(

nz
2π

)

− iπ2

] − 1

z2
[

log
(

nz
2π

)

− iπ2

]2 .(3.7)

The saddle-point z0 should verify the equation

z0

[

log
(nz0

2π

)

− i
π

2

]

= 1

⇔ nz0

2π

[

log
(nz0

2π

)

− i
π

2

]

=
n

2π

⇔ nz0

2π
log

(nz0

2π
e−iπ2

)

=
n

2π

⇔ nz0

2π
e−iπ2 log

(nz0

2π
e−iπ2

)

=
n

2π
e−iπ2 .(3.8)

The last equation is of the form v log v = b whose solution can be explicitly
written using the principal branch2 of the Lambert W -function [5]:

v = eW (b).(3.9)

After some algebra, the saddle-point solution to our equation (3.8) is thus given
by

z0 =
2π

ni
eW( ni

2π ),(3.10)

and at the saddle-point, we have the values

f(z0) = −z0− log z0(3.11)

f ′′(z0) = −1− 1

z0
.(3.12)

The saddle-point approximation of our integral (3.1) is given by the formula:

2The principal branch of the Lambert W -function is denoted by W0(z) = W (z). See [5] for a
thorough explanation of the definition of all the branches.
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I(n) = n

√

2π

n
g(nz0)e

−nz0−n log(z0)
1

√

1 + 1
z0

= n

√

2π

n
µ(nz0)

z
1
2−n

0√
1 + z0

.(3.13)

It turns out that g(t) can be very well approximated by

(3.14) g(t) =

{

1
6e

−
1
10 t

2

if 0 ≤ t ≤ 1

−2 + t if t≫ 1.

Moreover, when n is large, g(nz0) can also be very well approximated3 by

(3.15) g(nz0) ≈ nz0 − 1,

so that we obtain the final approximation

I(n) ≈ n

√

2π

n
(nz0 − 1)

z
1
2−n

0

enz0
√
1 + z0

.(3.16)

If we recall the formulas

µn =
2

n!
Re {I(n)} , and(3.17)

γn = n!µn+2,(3.18)

then by Theorem 2.3, we deduce an approximation of the Stieltjes constants γn:

Theorem 3.1. Let z0 = 2π
(n+2)ie

W( (n+2)i
2π ), where W is the Lambert W -function.

An approximate formula for the Stieltjes constants for large n is

(3.19) γn ≈ 2

(n+ 1)

√

2π

n+ 2
Re

{

((n+ 2)z0 − 1)
z

1
2−n−2
0

e(n+2)z0
√
1 + z0

}

.

We can also find an asymptotic formula of γn as a function of n only by resorting
to the following asymptotic development of the principal branch of W (z) [5]:

(3.20) W (z) = log(z)− log (log z) + · · ·
For n≫ 1 we can write

z0 ∼ 1

log
(

n+2
2π

)e
−i arctan( π

2 log(n+2)) ∼ 1

log
(

n+2
2π

)e
−i π

2 log(n+2) ,(3.21)

1

z
n+ 1

2
0

∼ log

(

n+ 2

2π

)n+ 1
2

e
−i(n+ 1

2 )
π

2 log(n+2) ,(3.22)

3The approximations of g(t) and g(nz0) are of course not necessary. We can keep the original
functions g(nz0) or µ(nz0) for the final asymptotic formula.
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and

e−(n+2)z0 ∼ e
−

(n+2)

log(n+2
2π )

e
−i

π

2 log(n+2)

∼ e
−

(n+2)

log(n+2
2π ) ,(3.23)

and after some easy algebraic manipulations, we obtain the oscillations and the
leading order of growth of the Stieltjes constants:

γn ∼ 2

√
2π√
n+ 2

e
(n+ 1

2 ) log(log(n+2)−log(2π))− (n+2)

log(n+2
2π ) cos

(

(n+
1

2
)

π

2 log(n+ 2)

)

.

(3.24)

Both the oscillations and the leading order of growth match the results of [9].

4. Numerical Results

We implemented the formula of Theorem 3.1 in MAPLE. For a given value of n,
the following MAPLE code computes the value of the nth Stieltjes constant γn:

w0 := LambertW(I*(n+2)/(2*Pi)):

z0:=2*Pi*exp(w0)/(I*(n+2)):

f:=-z0-ln(z0): fpp := -1-1/z0:

Re(2*((n+2)*z0-1)*sqrt((-2*Pi)*(1/((n+2)*fpp)))*exp((n+2)*f)/(n+1));

The approximation (3.19) was examined and compared to the exact values for
n from 1 to 1000 given in [7, 8]. For small values of n (n ≤ 150), we have also used
the following MAPLE code to verify the nth Stieltjes coefficient:

coef:=n!.(-1)^n.evalf(coeftayl((s-1)*Zeta(s), s = 1,n+1));

Table 1 below displays the approximate value of γn and the exact known values
for n from 2 to 20. Table 2 displays the approximate value of γn and the exact
known values for higher values of n.

We can see that the asymptotic formula is a good approximation of the exact
Stieltjes constants except at n = 137 where the approximation fails to give the
correct sign of γ137. Curiously, the asymptotic formula of Knessl et al [9] fails also
to give the correct sign of γ137. It seems that the two asymptotic formulas are
unrelated to each other4. Thus, the point n = 137 is inherently a badly conditioned
point for both asymptotic formulas. For instance, with a small perturbation of
n = 137, the formula above gives the value 0.001041695409.1029 for n = 137.017,
and the value −0.1059515438.1029 for n = 137.018. This shows that the point
n = 137 is numerically ill-conditioned. This ill-conditioning can be explained by
the fact that the saddle-point equation of [9, eq. (2.4)] and the saddle-point equation
(3.2) both involve the evaluation of W ( ni2π ).

4The approximation formula of [9] is given by γn ≈ −

∫

∞

0
sin(πet)

π
tn−1e−t(n − t) dt, whereas

our approximation formula is γn ≈ −
1

(n+1)(n+2)

∫

∞

0 2µ(t)Re
{

(log t − a)n+2
}

dt. The author

unsuccessfully tried to derive a relationship between the two formulas.
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n γn Approximate γn
2 -0.009690363192 -0.008909030193
3 0.002053834420 0.001073584137
4 0.002325370065 0.002025456323
5 0.000793323817 0.000825888315
6 -0.000238769345 -0.000149933239
7 -0.000527289567 -0.000475920788
8 -0.000352123353 -0.000346534072
9 -0.000034394774 -0.000055274760
10 0.000205332814 0.000179950900
11 0.000270184439 0.000255402785
12 0.000167272912 0.000168701645
13 -0.000027463806 -0.000012840713
14 -0.000209209262 -0.000190127572
15 -0.000283468655 -0.000270364310
16 -0.000199696858 -0.000200475577
17 0.000026277037 0.000009697462
18 0.000307368408 0.000280749078
19 0.000503605453 0.000479486029
20 0.000466343561 0.000460162247

Table 1. First 20 Stieltjes constants γn and their approximate
values given by Theorem 3.1.

n γn Approximate γn
30 0.0035577288 0.0037901372
35 -0.020373043 -0.022336513
40 0.2487215593 0.2658897332
45 -5.072344589 -5.211491845
50 126.82360265 127.1212577
100 −4.253401571.1017 −4.141706755.1017

136 4.2267012858.1030 4.226982515.1030

137 − 0.0007995.1029
1.790999409.1029

138 −2.52313010.1031 −2.442017698.1031

150 8.028853731.1035 8.124224157.1035

250 3.059212855.1079 3.038525930.1079

300 −5.55672822.10102 −5.47283964.10102

800 4.9135405617.10369 4.899488755.10369

1400 −4.097287334.10728 −4.10081098.10728

Table 2. Stieltjes constants γn and their approximate values
given by Theorem 3.1 for different values of n.

5. Conclusion and Extensions

The analysis of this paper can be generalized to find effective asymptotic formulas
for the generalized Euler constants γn(a) defined as the coefficients of the Laurent
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series of the Hurwitz zeta function ζ(s, a) at the point s = 1 or at any other point
of the complex plane. Instead of formula (2.3) of Theorem 2.1, we use the formula
from [6]:

(5.1) (s− 1)ζ(s, a) =
1

Γ(s)

∫

∞

0

ψ(t)e−(a−1)tts−1 dt,

which is valid for all s such that Re(s) > 0 and all 0 < a ≤ 1, and where the real
function ψ(t) is defined by

(5.2) ψ(t) =
tet

(et − 1)2
− 1

et − 1
+

(a− 1)t

et − 1
.

It would be interesting to compare the formulas with the results and conjec-
tures of Kreminski who has done extensive computations on the generalized Euler
constants [10].
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