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A NEW EFFECTIVE ASYMPTOTIC FORMULA FOR THE
STIELTJES CONSTANTS

LAZHAR FEKIH-AHMED

ABSTRACT. We derive a new integral formula for the Stieltjes constants. The
new formula permits easy computations as well as an exact approximate as-
ymptotic formula. Both the sign oscillations and the leading order of growth
are provided. The formula can also be easily extended to generalized Euler
constants.

1. INTRODUCTION

The Stieltjes constants ~,, are defined as the coefficients of Laurent series expan-
sion of the Riemann zeta function at s =1 [2]:

n!

(1) ()= —=+3 56—

where 79 = 0.5772156649 is known as Euler’s constant.

Exact and asymptotic formulas as well as upper bounds for the Stieltjes constants
have been a subject of research for many decades [3, 2, 7, 9, 11, 10, 12, 14]. The
approach to estimate the Stieltjes constants is always deterministic except the paper
[1] where a probabilistic approach is undertaken. The main reason to estimate
the Stieltjes constants is that these constants and their generalization , known as
Generalized Euler constants, have many applications in number theory.

This paper is a continuation of this line of research. We will give a new effective
asymptotic formula for the Stieltjes constants. With the formula we obtain the
sign oscillations and the leading order of growth of the Stieltjes constants. We will
show that our results match those of [9] which may be considered very accurate
compared to other results.

2. AN INTEGRAL FORMULA FOR s(s — 1)((s)

Let ¢(t) be the real function defined by

d —te t tet 1

(2.1) ¢(t)zalfe*t o (etfl)Q_etfl'

In a previous article we have obtained the following integral representation of
the Riemann zeta function.
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—1)k oo gk
(22) o6 = o [T e
Theorem 2.1 ([6]). With ¢(t) as above, and for all s such that Re(s) > —k, we
have
—_1)F o gk
(23) (5= 160s) = s [ gl

If we chose &k = 1 and we call

dp  d*> te! (2 +t)et 2te?!

(2.4) u(t) = Tt di2l—e—t (ef —1)2 - (et —1)3”

then Theorem 2.1 provides the following formula valid for all s such that Re(s) >
-1

o0

(2.5) s(s —1)¢(s)I'(s) = ; w(t)t® dt.

If we now replace s by 1—s in equation (2.5) with the assumption that Re(1—s) <
2, we get

(2.6) s(s—1)¢(1—s)(1 —s) = / ()t —* dt.
0
The functional equation for the Riemann zeta function states that
(2.7) C(s) = 2(2m)* sm@)gu —S)D(1 — s).

Multiplying both sides of the last equation by s(s— 1) and using (2.6), we obtain

s(s—1)¢(s) = 2(2m) sin(%s(s —1)¢(1 = $)T(1 = 5)
(2.8) = 2(27r)571sm(§) /0 T uns dt.

By observing that (27)5~1 = e(s=1D1082m) " that ¢1—5 = ¢~ (s=D1oe®) and that

2sin(75) = QCOS(W%) e (551), we can rewrite (2.8) as

(2.9) s(s —1)¢(s) = / u(t) [e(s—l)(a—log(t)) + e(s—l)(ﬁ—bg(t))] dt,
0
where a is the fixed complex number a = log(2m) 4 i7%.

Finally, since the left hand side of (2.9) is analytic at s = 1 it has a Taylor series
expansion

(2.10) (s = 1)) = 3 ponls = 1",

where the coefficients ., are given by
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mn

Wy = 1imd—{s(sfl)§(s)}

s—1 dsm

/ " (t) tim L fele-Da-lon®) 4 ge-D(@-loa) ] gy
0

s—1 ds™

(2.11) = /OOO p(t){(a —log(t))" + (a — log(t))" } dt.

This gives our first main result:

Theorem 2.2. With u(t) and the constant a defined as above, the coefficients puy,
are given by

2 o0
(212) o = =

p(t)Re{(a —logt)" } dt.

Once we have the coefficients u,, of the power series for s(s —1){(s), the Stieltjes
coefficients «, can be calculated using power series multiplication:

(2.13) (s=1)¢(s) = D (=D (s = 1)" x > (s = 1)"
n=0 n=0
(2.14) é => (D) s—1)™
n=0

This immediately yields

(215) ()=t {Z(—m"m} (1) = 1"

n=1 k=0
therefore,
ntl o0 s (logt — a)*
(2.16) Yn = n! Z(—l)k,uk = n!/ 2u(t)Re{ Z T} dt.
k=0 0 k=0 '

The last formula can be simplified even further. Indeed, the sum inside the
integral is a truncated sum of the exponential series e!°8?~¢ = te~®. This yields,

INote that the coefficients pn, and the integral formula of s(s — 1)((s) are as important as
the Stieltjes constants and the function (s — 1)¢(s). In fact, like the Riemann £(s) = %s(s —
1)7—s/21 (%s) ¢(s) function, s(s — 1)¢(s) possess some symmetry and can play an important role

in the theory of the Riemann zeta function.
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0 0
= n'/ 2p(t)Ref{te™* + Z 10gti}dt
0 k=n-+2
(2.17) n'/ 2u(tRe{ > 1°gt }dt
0 k=n+2

since Re{e™*} = Re{72} = 0. Hence, the leading term of an asymptotic expan-
sion of 7, is equal to

1 o0
CESNCES)] /0 21(t)Re{(log t — )"} dt + higher order terms,

and we have our second main result:

(2.18) v, =

Theorem 2.3. With u(t) defined as above, the Stieltjes constants vy, can be ap-
proximated by

(2.19) 1n ey /000 2u(t)Re{(logt — a)" "} dt = nlpin4o.

(n+ 1)

Theorem 2.3 permits an exact asymptotic evaluation of the constants u, and
~Yn. It is the subject of the next section.

3. ASYMPTOTIC ESTIMATES OF THE STIELTJES CONSTANTS

This section is dedicated to approximating the complex-valued integral

(3.1) I(n) = /OOO p(t)(logt — a)™ dt.

There are mainly two methods used for the asymptotic evaluation of complex
integrals of the form (3.1) when n is large: the steepest descent method or Debye’s
method and the saddle-point method [4]. By rewriting I,, in a suitable form, we
find that the saddle-point method provides the solution to our asymptotic analysis.

Let

(3.2) g(t) = n(t)e’,

then by the change of variables t = nz, our integral becomes

I(n) = n/ooo g(nz)e” {1og (n;) — zg}n dz
(3.3) = ”/Oo 9(nz)e"{7z+l°g[1°g(%)ﬂ'%]} dz.
0

If we define

™

(3.4) f(z)=—z+1og [1og (%) - 15} ,

then the saddle-point method consists in deforming the path of integration into
a path which goes through a saddle-point at which the derivative f’(z), vanishes.
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If zp is the saddle-point at which the real part of f(z) takes the greatest value,
the neighborhood of zy provides the dominant part of the integral as n — oo [4,

p. 91-93]. This dominant part provides an approximation of the integral and it is
given by the formula

(3.5) I(n) ~ ng(na)e™ o) (i) .

In our case, we have

(3.6) Flz) =1+

) PO ) -3 2o () -3

The saddle-point zg should verify the equation

a for(2) 17 -

27 2
nz nz Kis n
@ o llos(5) —i5) = 5
nz nz s n
¢ 5 1°g(27r06712) ~or
nz s nz s n _.=
(38) < 2—7;)6715 log (2—7:6712) = %6 v2,

The last equation is of the form vlogv = b whose solution can be explicitly
written using the principal branch? of the Lambert W-function [5]:

(3.9) v=eVO,
After some algebra, the saddle-point solution to our equation (3.8) is thus given

by

2 ni
(3.10) 20 = ZeW(3)

. )
nt

and at the saddle-point, we have the values

(3.11) f(z0) = —20 — log 29
(3.12) " (20) =-1- zio'

The saddle-point approximation of our integral (3.1) is given by the formula:

2The principal branch of the Lambert W-function is denoted by Wq(z) = W (z). See [5] for a
thorough explanation of the definition of all the branches.
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2 1
I(n) =ny/ —Wg(nzo)e_”zo_"log(z")i
n /1+L

20
2w z%_n

3.13 =ny/— L

( ) n nﬂ(nzo)m

It turns out that g(t) can be very well approximated by

(3.14) g(t) =

lemm® if0<t<1
24t ift>1.

Moreover, when n is large, g(nzo) can also be very well approximated® by

(3.15) g(nzo) ~nzg — 1,

so that we obtain the final approximation

27 22 "
3.16 I(n) ~ ny) = (nzo — 1)—0 .
(3.16) N N Ea

If we recall the formulas

2
(3.17) pin = —Re{I(n)},and
n!
(318) Yn = n!,u/n-i-Qa
then by Theorem 2.3, we deduce an approximation of the Stieltjes constants ,:
Theorem 3.1. Let zy = 2—“6W((n2+ﬂ2)i), where W is the Lambert W -function.

(n+2)3
An approzimate formula for the Stieltjes constants for large n is

(3.19) 2 2T_Red ((n+2)z0 - 1) 5
. W ————— [ ——— n 20— 1) ————+——— 3.
& m+1)Vn+2 0 e(nt+2)z0, /T 2,

We can also find an asymptotic formula of ,, as a function of n only by resorting
to the following asymptotic development of the principal branch of W(z) [5]:

(3'20) W(Z) = 10g(z) — log (log Z) N

For n > 1 we can write

1 7iarctan(+) 1 Y S S
(3.21) zo ~ 7716 2log(n+2) /) ~v 7716 210g(n+2),
log (%5£2) log (%5£2)
1
n+2\""F .
3.22 ~ 1 2)3Tog(nt2)
(3.22) = g (%) e ,

3The approximations of g(t) and g(nzg) are of course not necessary. We can keep the original
functions g(nzgp) or p(nzo) for the final asymptotic formula.
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and
__ (n+2) e’izlogzrn,+2) __(n+2)
) 3
(3.23) o220 oo ) )

and after some easy algebraic manipulations, we obtain the oscillations and the
leading order of growth of the Stieltjes constants:

(3.24)
V21 (n+3) log(log(n+2)~log(2m) — 2
o~ 2 2T . og(log og log(%E2) cos [ (n+ 1)# '
vn+2 27 2log(n + 2)

Both the oscillations and the leading order of growth match the results of [9].

4. NUMERICAL RESULTS

We implemented the formula of Theorem 3.1 in MAPLE. For a given value of n,
the following MAPLE code computes the value of the n*® Stieltjes constant v,:

w0 := LambertW(I*(n+2)/(2*Pi)):

z0:=2%Pi*exp(w0) /(I*(n+2)):

f:=-2z0-1n(z0): fpp := -1-1/z0:

Re (2% ((n+2) *z0-1) *sqrt ((-2xP1)*(1/ ((n+2) *fpp) ) ) *exp ((n+2) *£) / (n+1)) ;

The approximation (3.19) was examined and compared to the exact values for
n from 1 to 1000 given in [7, 8]. For small values of n (n < 150), we have also used
the following MAPLE code to verify the n*® Stieltjes coefficient:

coef:=n!.(-1)"n.evalf (coeftayl((s-1)*Zeta(s), s = 1,n+1));

Table 1 below displays the approximate value of ,, and the exact known values
for n from 2 to 20. Table 2 displays the approximate value of 7, and the exact
known values for higher values of n.

We can see that the asymptotic formula is a good approximation of the exact
Stieltjes constants except at n = 137 where the approximation fails to give the
correct sign of v137. Curiously, the asymptotic formula of Knessl et al [9] fails also
to give the correct sign of v137. It seems that the two asymptotic formulas are
unrelated to each other®. Thus, the point n = 137 is inherently a badly conditioned
point for both asymptotic formulas. For instance, with a small perturbation of
n = 137, the formula above gives the value 0.001041695409.10%° for n = 137.017,
and the value —0.1059515438.10%° for n = 137.018. This shows that the point
n = 137 is numerically ill-conditioned. This ill-conditioning can be explained by
the fact that the saddle-point equation of [9, eq. (2.4)] and the saddle-point equation
(3.2) both involve the evaluation of W (%).

. t
4The approximation formula of [9] is given by vn ~ — 15 Sm(ﬂiﬂe)tn_le_t(n — t) dt, whereas
our approximation formula is v, = —WM I3 2u(t)Re{(logt — a)*+2} dt. The author

unsuccessfully tried to derive a relationship between the two formulas.
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In

Approximate ,,

n
2
3
4
)
6
7
8

Ne)

10
11
12
13
14
15
16
17
18
19
20

-0.009690363192
0.002053834420
0.002325370065
0.000793323817

-0.000238769345

-0.000527289567

-0.000352123353

-0.000034394774
0.000205332814
0.000270184439
0.000167272912

-0.000027463806

-0.000209209262

-0.000283468655

-0.000199696858
0.000026277037
0.000307368408
0.000503605453
0.000466343561

-0.008909030193
0.001073584137
0.002025456323
0.000825888315

-0.000149933239

-0.000475920788

-0.000346534072

-0.000055274760
0.000179950900
0.000255402785
0.000168701645

-0.000012840713

-0.000190127572

-0.000270364310

-0.000200475577
0.000009697462
0.000280749078
0.000479486029
0.000460162247

TABLE 1. First 20 Stieltjes constants -, and their approximate

values given by Theorem 3.1.

n Yn Approximate ,,
30 0.0035577288 0.0037901372
35 -0.020373043 -0.022336513
40 0.2487215593 0.2658897332
45 -5.072344589 -5.211491845
50 126.82360265 127.1212577
100 —4.253401571.10'7 —4.141706755.10'7
136 4.2267012858.10%0  4.226982515.102°
137 —0.0007995.10%° 1.790999409.10%°
138  —2.52313010.103!  —2.442017698.103!
150  8.028853731.103% 8.124224157.103°
250  3.059212855.107 3.038525930.107°
300 —5.55672822.10'02  —5.47283964.10102
800 4.9135405617.10369  4.899488755.10369

1400 —4.097287334.107%® —4.10081098.107%8

TABLE 2. Stieltjes constants ~, and their approximate values
given by Theorem 3.1 for different values of n.

5. CONCLUSION AND EXTENSIONS

The analysis of this paper can be generalized to find effective asymptotic formulas
for the generalized Euler constants 7, (a) defined as the coefficients of the Laurent
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series of the Hurwitz zeta function (s, a) at the point s = 1 or at any other point
of the complex plane. Instead of formula (2.3) of Theorem 2.1, we use the formula
from [6]:

(5.1) (s —1)¢(s, a) / Y(t)e” @V gt

which is valid for all s such that Re( > 0 and all 0 < @ <1, and where the real
function ¢(t) is defined by

e 1 (a—1)t
(5.2) P(t) = (et —1)2 Tt 1 et —1 °

It would be interesting to compare the formulas with the results and conjec-
tures of Kreminski who has done extensive computations on the generalized Euler
constants [10].
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