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Uniform Hausdorff measure of the level sets
of the Brownian tree.

Xan DUHALDE*
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Abstract

Let (T, d) be the random real tree with root p coded by a Brownian excursion. So (7, d)
is (up to normalisation) Aldous CRT [1] (see Le Gall [10]). The a-level set of T is the set 7 (a)
of all points in T that are at distance a from the root. We know from Duquesne and Le Gall
[7] that for any fixed a € (0,00), the measure ¢* that is induced on T (a) by the local time
at a of the Brownian excursion, is equal, up to a multiplicative constant, to the Hausdorff
measure in 7 with gauge function g(r) = rloglog1/r, restricted to T (a). As suggested by
a result due to Perkins [14, 15] for super-Brownian motion, we prove in this paper a more
precise statement that holds almost surely uniformly in a, and we specify the multiplicative
constant. Namely, we prove that almost surely for any a € (0,00), £4(-) = £.5¢,(- N T (a)),
where 7, stands for the g-Hausdorff measure.

AMS 2000 subject classifications: Primary 60G57, 60J80 Secondary 28A78.
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1 Introduction.

The Continuum Random Tree was introduced by Aldous [1] as a random compact metric space
(T1,d,m;), endowed with a mass measure m; such that almost surely m;(7;) = 1. It appears
as the scaling limit of a large class of discrete models of random trees, and can be alternatively
encoded by a normalised Brownian excursion (see Le Gall [10]). This encoding procedure will be
the viewpoint of the present paper, but for the sake of simplicity, we will not ask the total mass
to be equal to one. Instead, we work on the tree encoded by a Brownian excursion (e, t > 0),
under its excursion measure N. Let us mention that our result remains true for the CRT.

The Brownian tree has a distinguished vertex p called the root, so it makes sense to define,
for all @ € (0,00) the a-level set T(a) = {oc € T :d(p,0) = a}. Moreover, one can define the
collection of measures (¢*(do),0 € T,a € (0,00)), as the image of the local times on the levels of
the excursion. Those measures are called local time measures. Indeed, N-a.e. for all a € (0, c0),
the topological support of ¢ is included in 7 (a). Duquesne and Le Gall |7] showed that for a
fixed level a, one has

N-a.e. (%) =cHy(- NT(a)), (1)
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where 7 stands for the Hausdorff measure associated with the gauge function g(r) = rloglog1/r
and ¢ € (0,00) is a multiplicative constant. In this paper, we prove that ¢ = % and that the
result holds N-a.e. simultaneously for all levels a. Let us mention that the value % depends on the
normalisation chosen for the excursion measure N. A similar result has been obtained by Perkins
[14, 15| for Super Brownian Motion. Briefly, let (Z,,a > 0) a version of this measure-valued
process on R?, defined on (9, F,P). Perkins proves that if the dimension d of the space is such
that d > 3 (which corresponds to the supercritical dimension case), there exists two constants
¢q,Cq in (0,00), only depending on d such that the following holds

P-as. Va € (0,00) c¢q9 (-NSupp(Z,)) < Zo (+) < Cy (- N Supp(Z,)) , (2)

where Supp(Z,) is the topological support of the measure Z, and .7, is the Hausdorff measure
associated to the gauge function g(r) = r?loglog1/r. In this paper, we use the ideas and tech-
niques of [14, 15] to get a result similar to (2), an equality being accessible in the setting of trees.

Before stating formally our result, let us recall precisely basic facts. A metric space (T',d) is
a real tree if and only if the following two properties hold for any 01,09 in T :

(i) There is a unique isometric map fy, 4, from [0,d(o1,02)] into T such that fs, 5,(0) = o1
and fy, 0,(d(01,02)) = 2. We set [o1,02] = fo,.05 ([0,d(01,02)]) that is the geodesic path
joining o1 and oo.

(i) If ¢ is a continuous injective map from [0, 1] into T, such that ¢(0) = o1 and ¢(1) = o9, we
have

Q([O, 1]) - f01702([07 d(ah 02)])'

If o1 € [p,02], we will say that oy is an ancestor of o9 (09 is a descendant of oy).

Real trees can be derived from continuous functions that represent their contour functions.
Namely, let us consider a (deterministic) excursion e, that is to say a continuous function for
which there exists ¢ € (0,00) such that : V¢ > (,e(0) = e(t) = 0, and V¢ € (0,(), e(t) > 0. A real
tree T' can be associated with e in the following way. For s,t € [0, (], we set

d(s,t) =e(s)+e(t)—2 inf e(r).
re[sAt,sVi]
It is easy to see that d is a pseudo-distance on [0, (]. Defining the equivalence relation s ~ ¢ iff
d(s,t) =0, one can set

T =10,¢]/ ~. (3)

The function d induces a distance on the quotient set 1. For a fixed excursion e, let

be the canonical projection. Clearly p is continuous, which implies that (7', d) is a compact metric
space. Moreover, it can be shown (see [6] for a proof) that (7', d) is a real tree

We take p = p(0) as the root of T'. For all a € (0,00), the a-level set T'(a) = {oc € T : d(p,0) = a}
is the image by p of the set {t € [0,(] : e(t) = a}. The total height of the tree is defined by

W(T) = sup {d(p,0);o € T} (5)



We define the Brownian tree as the metric space (7,d) coded by the Brownian excursion.
More precisely, let (2, F,P) a probability space, large enough to carry all the random variables
we need. We consider on that space a process (Xy,t € [0,00)) such that (%Xt,t € 10,00)) is a

standard real-valued Brownian motion (the choice of the normalizing constant /2 is explained
below). Let us set X, = inf,cgy Xs. Then, the reflected process X — X is a strong Markov
process, and the state 0 is instantaneous in (0, c0) and recurrent (see [2|, chapter VI). We denote
by N the excursion measure associated with the local time —X; N is a sigma-finite measure
on the space of continuous functions on [0,00), denoted C° in this work. More precisely, let
UjerGsrj) ={t>0: X, — X; > O} be the excursion intervals of the reflected process, and for
all j € J, we set ¢;(s) = X, 15na;, — Xy,5 8 € [0,00). Then,

M(dt,de) =) d(-x, e
Jjeg

is a Poisson point measure on [0,00) x C? of intensity d¢tN(de). Let us recall that the two pro-
cesses (| X¢|,2L¢);5q and (X; — Xy, —X,;),>( have the same law under P by a celebrated result of
Lévy (see Blumenthal [4], Th. II 2.2) where the process (L, t > 0) is defined by the approxima-
tion L; = hm(26 fo 14 x,|<c}ds that holds uniformly in ¢ on compact subsets of [0, c0).

We shall denote by (e, > 0) the canonical process on C°. Under N, it is a strong Markov
process, with transition kernel of the original process X killed when it hits 0 (see [4] III 3(f)).
The following properties hold for the process N-a.e. : there exists a unique real ¢ € (0, 00) such
that V¢t € (0,(),e(t) > 0, and Vt € [(,00),e(t) = e(0) = 0. Moreover, with our normalization,
one has (see [4] IV 1.1)

73/2
N
One can show that N (- | { € [l —&,1 +¢]) converges when ¢ goes to 0, towards a probability
measure that is denoted by N(- | ¢ = 1). It can be seen as the law of the excursion of X — X
conditioned to have length one. The tree encoded by e under N(- | ( = 1) is the CRT defined in
[1]. The choice of the normalising constant /2 is explained by the following. Let 7, be uniformly
distributed as the set of rooted planar trees with n vertices. We view it as a real tree, the edges
of 7, being intervals of length one, and we denote by (7,,d,,) the resulting metric space. Denote

by (Ct(n),t € [0,2(n—1)]) its contour function that is (informally) defined as follows. We let a
particle explore the planar tree at speed one, from the left to the right, beginning at the root.

YA€ [0,00),N(1—e )=V and N(Cedr)=

(6)

We set C't(n) as the distance from the root of the particle at time ¢. It can be shown (see [12]

Th. 1.17) that (Ct(n),t € [0,2(n—1)]) has the law of a simple random walk conditioned to be
positive on [1,2(n—1) — 1] and null at 2(n—1). Using Donsker invariance principle, the rescaled

contour function (n 1/202(?,1 1)t

N(- | ¢ =1). In terms of trees, (1,,,n'/2d,) converges towards the CRT, that is the tree (77, d)
coded by e under N(- | ¢ = 1). The latter convergence can be stated using the distance of
Gromov-Hausdorff (see Evans, Pitman, Winter [9]).

Recalling definition (5), we get from [4] IV 1.1 that with our normalization,

t € [0,1]) converges in law towards the law of (e, t € [0,1]) under

Va € (0,00) N<t2}épdet>a> :N<h(T)>a) :%. (7)



In the paper, for a € (0,00) we shall use the probability measure,
No =N (- [ (T) > a) = aN (-1gn7)>a}) - (8)
Recall that the a-level set of the Brownian tree is defined by
T(a)={oc €T :d(p,o)=a}. 9)

As a consequence of Trotter’s theorem on the regularity of Brownian local time ([4] sec VI.3)
there exists a [0, oo)-valued process (L¢)q tc[0,00) Such that N-a.e. the following holds true:

o (a,t) — L¢ is continuous,
e for all a € [0,00), t — L{ is non-decreasing,

e for all a € [0,00), for all ¢ € [0,00) and for all b € (0, c0),

. 1 [° u
lim N<1{Supe>b} sup ‘— /01{a€<e(u)<a}du—Ls ) =0. (10)

e—=0 0<s<INC 1€

We refer to [5], Proposition 1.3.3. for details in a more general setting.

The image by the projection p : [0,{] — T of those local times defines the collection of local
time measures on the tree, (¢*(do),o € T,a € (0,00)). More precisely,

meas C
N-a.e. forall f: 7 —="[0,00) Va € (0,00) [rf(a)ﬂa(da) = /0 f(p(t))dLy. (11)

See [6], Th. 4.2 for an intrinsic definition of the measure ¢* (for fixed a). Let G, the o-field
generated by the excursion below level a (formal definitions and details on what follows are given
in section 3.1). The approximation (10) entails that for fixed a, £*(7) = L{ is G, measurable.
Moreover, the Ray-Knight theorem ([4] VI 2.10) entails that under N,(-) conditionally on G,, the

process (6“*‘“(7’), a > O) is a Feller diffusion started at £*(7). In particular, one has

A
14 a)’

Va, A € (0,00) N [1 - e‘wm] - (12)
which implies that under N, ¢%(7) is exponentially distributed with mean a. The regularity of
a — 0%(T) is extended by Duquesne and Le Gall [6] : they prove that N-a.e. the process a +— %
is continuous for the weak topology of measures. In the same work, the topological support of
the level set measures is precised as follows. A vertex o € T is called an extinction point if there
exists € € (0, 00) such that d(p, o) = sup{d(p,7), 7 € B(0,¢)}, where B(c,¢) is the open ball in T
with center o and radius . For s € [0, (], the vertex p(s) € T is an extinction time iff s € [0, (] is
a local maximum of e. As a consequence, the set of all extinction points, denoted &, is countable.
Let us denote Supp(u) for the topological support of the measure u. The result states that

N-a.e. Vae€ (0,00)\ &,Supp({*) = T(a), and Va € &,Supp({*) =T (a)\{o.}, (13)

where o, is the (unique) extinction point at level a (see Perkins [16] for previous results on Super-
Brownian motion).



Let us briefly introduce the construction of the Hausdorff measure. We set the gauge function
g as
g(r) =rloglog1/r, r€(0,e?). (14)

In all the paper it will be assumed implicitly that g(r) is considered only for r € (0,¢™). On that
interval, g is an increasing continuous function. For any subset A of 7, one can define

Hy(A) = ;1_1)% inf {Zg (diam(E;)) ;A C U E;,diam(E;) < 6} . (15)

i€eN 1€EN

Standard results on Hausdorff measures (see e.g. [17]) ensure that J¢, defines a Borel-regular
outer measure on 7 called the g-Hausdorff measure on 7. The main result of the paper is the
following.

Theorem 1 Let T be the Brownian tree, that is the tree encoded by the excursion e under N. Let
(¢*(do),o € T,a € (0,00)) the collection of local time measures and F; the g-Hausdorff measure
on T, where g(r) = rloglog1/r. Then, the following holds :

N-a.ce. Vae (0,00) £()= %% (-NT(a)). (16)

Comment 1.1 Thanks to the scaling properties of the Brownian excursion, one can derive from
Theorem 1 a similar statement for the tree coded by e under N(- | ¢ = 1), that is Aldous CRT.

Comment 1.2 Our result seems close to a theorem of Perkins [13]| on linear Brownian motion.
Let (L¢,t > 0,a € R) be the bi-continuous version of the local times for the process (X;,t > 0)
defined above. Those local times are given by an approximation of the type of (10). Perkins
proves that almost surely, uniformly in @, one has L} = J,({s € [0,t] : X; = x}), where J7
stands for the Hausdorff measure on the line associated with the gauge g(r) = /7 loglog 1/r (the
result for fixed a had been obtain by Taylor and Wendel in [19]). The Brownian tree being coded
by the Brownian excursion, everything happens as if the projection mapping p : [0,{] — T is
1/2-HAPIder and induces a strong "doubling", such that the entire gauge function is squared.
Nevertheless, we don’t see how to derive our result from [13].

The paper is organised as follows. In section 2, we state some deterministic facts on the
geometry of the level sets for a real tree. In particular, we provide two comparison lemmas with
respect to Hausdorff measure on real trees. The second one, that is specific to our setting, seems
new to us. In section 3, we recall basic facts on the Brownian tree and we establish some technical
estimates. Section 4 is devoted to the proof of Theorem 1. As a first step, we prove Theorem
2, which gives an upper bound for the local time measures. To that end, we need to control the
total mass of the balls that are "too large". The second step is the proof of Theorem 3, which
requires a control of the number of balls that are "too small". Let us mention again that our
strategy and many ideas in this work were borrowed from [14, 15].

Acknowledgments. I would like to thank my advisor Thomas Duquesne for introducing this
problem, as well as for his help and the many improvements he suggested.



2 Geometric properties of the level sets of real trees.

2.1 The balls of the level sets of real trees.

Let (7,d,p) be a compact rooted real tree as defined in the introduction. Recall that for any
0,0/ € T, [o,0'] stands for the unique geodesic path joining o to o’. We shall view T as a family
tree whose ancestor is the root p and we then denote by o A ¢’ the most recent common ancestor
of o and o’ that is formally defined by

[o,o N =1p. o] Np. o]

Observe that
Vo,0' €T, d(o,0')=d(p,o)+d(p,c") —2d(p,o Nd') . (17)

Let a € [0,00). Recall that the a-level set of T' is given by
T(a)={oc €T :d(p,o) =a}.

Subtrees above level b. Let b € [0,00) and denote by (Tf’b)je 7, the connected components
of the open set {o € T': d(p,o) > b}:

7b .
U 17" ={oeT:d(p,o)>b}.
JET
Then for any j € Jp, there exists a unique point o; € T'(b) such that TJI»’ = T;»)’b U {o;} is the
closure of Tf’b in T'. Note that (T]b, d,oj) is a compact rooted real tree and that

Vie T, Vo e T]b, gj € [p,o] .

Open balls in T'(a). Recall that B(co,r) stands for the open ball in 7" with center o and radius
r. We shall also denote by I'(o,7) the open ball with center o and radius r in the level set of o,

namely
I'(o,r) = B(o,r)NT(a), where a=d(p,0). (18)

If 0 € T(a), then we call I'(o, r) a T'(a)-ball with radius r; we denote by %, , the set of all the
T'(a)-balls with radius r:
Boy ={T(o,r);0 €T(a)} . (19)

The following proposition provides the geometric properties of T'(a)-balls that we shall use.

Proposition 1 Let (T,d, p) be a compact rooted real tree. Let a,r € (0,00) be such that a > r/2.
Then, the number of T'(a)-balls with radius r is finite. We set

Zaw = #Boy and {1y, 1<i<Zy,} = Bay- (20)
Then , the following holds true.

(i) Set b=a—4r. Then, there are Z,, distinct subtrees above b denoted by (T;’i,d, 05.), Ji € T,
1 <1< Zy, such that

Ii=T(a)NT. = {c’ €T} : d(oj,,0') =1/2} .

Thus, the T'(a)-balls with radius r are pairwise disjoint.



(ii) For all o €T (a), one has diam(T'(o, 7)) <r. If furthermore r € (0,2a), then diam(T'(o, 7)) <r
and

vr' € (diam(I(o,7)),7) T(o,7')=T(o,7) . (21)
Therefore, the set of all T'(a)-balls is countable.

(11i) Two T (a)-balls are either contained one in the other or disjoint. Namely, for all ¥ < r and
all o,0" € T(a), either T'(o’,r") C T(o,7) or T(c’,7")NT(o,7) = 0.

Proof. Let us prove (i). Let 0,0’ € T'(a) and set b=a—4%r. By (17), d(0,0") = 2a—2d(p,0 No’).
Thus, d(o,0’) < riff d(p,oc ANo’) > b. Let j € Jp be such that o € T;’; namely, T;’ is the unique
subtree above b containing o and o; is the unique point v € [p, o] such that d(p,y) = b. Now
observe that for all o’ € T'(a),

d(p,o No') >b < o N’ €]oj,0] <~ UIGT;’.

This proves that
I'(o,r) =T(a)N ij . (22)

Conversely, let j € Jp, be such that h(T;’) := max {d(0},7);7 € T;’} >r/2. Let 0 € T(a) N T;’;
then the previous arguments imply (22). Since T is compact, the set {j € Jj : h(T;’) >r/2} is
finite, which completes the proof of (7).

Let us prove (i7): let o € T'(a), let r € (0,2a) and set 6 = diam(I'(o,7)). Then (22) implies
that I'(o,7) is compact and there are 01,09 € I'(o,r) such that d(o1,02) = §. Observe that it
implies

I(o,r)={0d" €T(a): 01 Noz € [p,0']} .

Thus, I'(o,7) = I'(c,0), that is the closure of I'(c, §), and it implies (21). The set of all T'(a)-balls
is therefore | 4€QN[0,00) Pa,q> Which is a countable set.

Let us prove (iii): 7' < r and 0,0’ € T(a) and suppose that I'(o’,r") N T'(c,r) # (. Then (i)
and (i7) implies that T'(o,r) = I'(¢’, ), which implies that I'(¢’,r") C T'(o, 7). [ |

2.2 Comparison lemmas for Hausdorff measures on real trees.

Let (T,d,p) be a compact real tree. We briefly recall the definition of Hausdorff measures on
T and we state two comparison lemmas that are used in the proofs. Let rg € (0,00) and let
g : [0,r79) — [0,00) be a function that is assumed to be increasing, continuous and such that
g(0) =0. For all € € (0,r9) and all A C T, we set

,%”g(e) (A) = inf {Zg(diam(En)) ; AC U E,, diam(E,) < 8}

neN neN

and

— L (e)
Ho(A) = lim t #,0(4)

Under our assumptions, J7; is a Borel-regular outer measure : this is the g-Hausdorff measure
on T (see Rogers [17]). The following comparison lemma was first stated for Euclidean spaces by
Rogers and Taylor [18]. The proof can be easily adapted to general metric spaces (see Edgar [8]).
We include a brief proof of it in order to make the paper self-contained.



Lemma 2 Let (T,d,p) be a compact rooted real tree. Let p be a Borel measure on T. Let A be
a Borel subset of T and let ¢ € (0,00). Assume that

B
Voe A limsupui <c.
r—0 g(T)
Then, p(A) < ctG(A).
Proof. For any €€ (0,rg), set

A, = {JEA: sup M

<cyp .
i

Observe that for all ¢/ <e, A. C A C A and A= Uae(O,m) A.. Let (Ep)nen be a e-covering of
A.: namely A, C |, ey En and diam(E,) < e, for alln € N. Set I = {n € N: E, N A # 0} and
for all n € I, fix 0, € E,, N Ac. Since g is continuous, for all n € I there exists r, € (diam(E,),¢)
such that

E, C B(on,m) and g(rp) < 27" e + g(diam(FE,)) .

Observe that p(B(oy, 7)) <cg(rp) and that A, CJ,c; B(on,rn). Thus,

w(A:) < ,u< U B(Jnﬂ"n)) < ZN(B(Un’Tn))

nel nel
< ch(rn) < ce+ Z cg(diam(E,)) .
nel neN

Taking the infimum over all the possible e-coverings of A, yields
u(Ag) <ce+ c%(e)(AE) < ce + e (AL) < ce + A (A)

which implies the desired result since p(A) = lim. o T p(Az). [

In the next comparison lemma, that seems new to us, we restrict our attention to the level sets
of real trees. A more general variant of this result involves a multiplicative constant depending
on the gauge function. It has been first stated in Euclidian spaces by Rogers and Taylor [18] (see
also Perkins [14]) and in general metric spaces (see Edgar [8]).

Lemma 3 Let (T,d,p) be a compact rooted real tree. Let a € (0,00) be such that the a-level set
T(a) is not empty. Let p be a finite Borel measure on T such that u(T\T(a)) = 0. Let A C T'(a)
be a Borel subset and let ¢ € (0,00). Assume that

Vo e A limsupw >c.
r—0 g(T)
Then, u(A) > cty(A).

Proof. Let € € (0, (2a) Arp). Let U be an open set of T" such that A C U. For all o € A, there
exists r, € (0,¢) such that

w(I(o,rs)) = p(B(o,rs)) > cg(ry) and I'(o,7r,) CU .



Thus, A C U,eaT'(0,75) C U. Then, Proposition 1 (i) asserts that the set of all T'(a)-balls
is countable and Proposition 1 (iii) asserts that two T'(a)-balls are either contained one in the
other or disjoint. Therefore, there exists I C N and o, € A, n € I, such that the I'(oy, 7, ),
n € I, are pairwise disjoint and A C |J,.;I'(on,7s,) C U. Moreover, by Proposition 1 (i),
diam(I'(oy,, 7y, )) < rs,. Thus, we get

a%” 6) ch dlam Un,v“gn))) < ZCQ(V"(M)

nel

nel nel
Z/’L O-naro'n lu< U P(O}”TO—")) g /’[/(U) *
nel nel

As e — 0, it entails ¢ 75 (A) < p(U), for all open set U containing A. Since p is a finite Borel
measure, it is outer-regular for the open subsets, which implies the desired result. |

3 Preliminary results on the Brownian tree.

3.1 Basic facts on the Brownian excursion.

We work under the excursion measure N defined in the introduction and e denote the canonical
excursion whose duration is denoted by ¢ (see (6)). We shall denote by (7,d,p) the compact
rooted real tree coded by e.

The branching property. Fix b € (0,00). We discuss here a decomposition of e in terms of
its excursions above level b; this yields a decomposition of the Brownian tree called the branching
property. To that end we first introduce the following time change: for all ¢ € [0, 00), we set

Tp(t) = inf {s € 10,00) : /Osl{eugb}du > t} and ey(t) = e(mp(t)). (23)

Note that (€p(t))ic[0,00) codes the tree below b namely {o € T : d(p,0) < b} that is the closed
ball with center p and radius b. We denote by Gy, the sigma-field generated by (€,(t)):e[0,00) and
completed with the N-negligible sets. The approximation (10) implies that Lg is Gp-measurable.
Then denote by (o, 35), 7 € Jb, the connected components of the time-set {s € [0,00) : e(s) > b}.
Namely,

U (e,8;) = {s € [0,00) : e(s) > b},

JET
and we call (o, B;) the excursion intervals of e above level b. For all j € 73, we next set

B=1b . and V¥s€[0,00), €l(s) = e, ans —b-

Then, the (e )]e 7, are the excursions of e above level b. Recall from (7) and (8) the notation
N, = N(-| supe > b), that is a probability measure. The branching property asserts the following:
under N and conditionally on Gy, the measure

p(dl,de) = > S o (24)
JETD 7<)

is a Poisson point measure on |0, Lg] x C* with intensity 1[07L2](l)dl N(de).



The following decomposition of e is interpreted in terms of the Brownian tree 7 as follows.
Recall that p : [0,(] — T stands for the canonical projection. Then for all j € 7, we set

oj=plag) =p(B;), T"=p((ej.3;)) and T =p(lay,B)]) -

Then, we easily check that the 7}O’b, j € Jp, are the connected components of the open subset

{c €T :d(p,0) >b} and that 7;0’b = 7;1’\{0]-}. Namely, the (7;,d,0;), j € Jp are the subtrees
above level b of T as introduced in Section 2.1. Moreover note that for all j € Jp, the rooted
compact real tree (7;,d, 0;) is isometric to the tree coded by the excursion e?. We next use this
and Proposition 1 to discuss the balls in a fixed level of 7.

To that end, we fix a,r € (0,00) such that a > /2 and we conveniently set b=a—r/2. Recall
that 7(a) ={c €T :d(p,o0)=a} and that for all o € T (a), we have set I'(c,r) =T (a) N B(o,r)
that is the ball in 7 (a) with center o and radius r. We also recall that %, , = {I'(o,7);0€T (a)}
stands for the set of all 7 (a)-balls with radius . By Proposition 1, %, is a finite set and that

Baw ={T()NT}; jET : W(TP) = 1/2}
where the trees (7;-b, d,oj), j €Ty, are the subtrees of T above level b as previously defined; here

h(7}b) = sup,cqb d(oj,0) stands for the total height of 7}1’. Note that h(7}b) = sup el]’- that is
J

maximum of the excursion corresponding to 7}b, as explained above.
Then, we set Z,, = #%,,, that is the number of 7 (a)-ball with radius r. Assume that
Zar = 1. We then define the indices ji,...,7z7,, € Jp by

{d1,-Jza, ) = {jejb : h(’7}b) > r/2} and «j <...< X, -
and we set
Vie{l,...,Zas}, Ti:=T()NT]}. (25)

Namely %, , = {Fi ;1<i< Za,r} is the set of the 7 (a)-balls with radius r listed in their order
of visit by the excursion e coding 7.

Lemma 4 Leta,r € (0,00) such that a > 1/2. Let {T';; 1 < i< Z,, } is the set of the T (a)-balls
with radius r listed in their order of visit as explained above. Then the following holds true.

(1) Under No, = N(-| supe > a), Z,, has a geometric law with parameter 2a/r. Namely,

Vk>1, Nu[Ze,=k=(1-5)""2.
(i1) For all k > 1, under Ny(-|Za, =k), the r.v. (¢*(T;))1<i<k are independent and exponen-
tially distributed with mean r/2.

Proof. Let a € (0,00) and denote b = a—7r/2. Let k > 1 and Fy,...Fy : C° — [0,00) be
measurable functionals. Recall from (7) that N(supe > r/2) = 2/r. Then, the definition of the
ji combined with the branching property and basic results on Poisson point measures entail

b (%Lg)k _27b

Ny [1{Za,,n:k} 11 F() gb} == ¢ [T N2 [F(e)] . (26)

1<i<k 1<i<k

10



Then recall (12) that implies that le under N, is exponentially distributed with mean b.
Thus,
1

al Gt - oo

(1+ 2p)ktt 20
because b = a—r/2 and (14 2b)~! =r/(2a). It implies

No|Lza,mty [T ()] = 5 (1= 52)" T Neja[Fice)

1<i<k 1<i<k

Next observe that Nj-a.s. 1igupesa) = 1{z,,>1)- Thus, we get

N, [l{zw:k} 11 Fz‘(eg,-)} = 7N, [1{Za,r:k} 11 Fi(el}i)]

1<i<k 1<i<k
k: 1
- 1 ~ 24 H NT’/2 (27)
1<i<k
because a/b=(1—3=) . Recall that (12) implies that under N, 5, r2(T) :LE/Q is exponentially
distributed with mean /2. By taking F;j(e) = f;(L T/2) in (27) we then get

Na[1{ZG7T:k}Hfi(ea(ri))] -] /fl 2oy,

1<i<k 1<i<k

with entails the desired result. [ |

Ray-Knight theorem under N. We first recall the definition of Feller diffusion, namely a
Continuous States space Branching Process (CSBP) with branching mechanism (\) = A%, Let

€ [0,00) and let (Y,)qse(0,00) b€ @ [0, 00)-valued continuous process defined on the probability
space (9, F,P). It is a Feller diffusion with branching mechanism (\) = A\? and initial value
Yy = x if it is a Markov process such that

YZEA
J=ew ()
Recall notation N, = N({ supe > a) and G, for the sigma-field generated by the excursion €,
defined in (23). Recall that ¢4(7) = L¢, the total mass of the local-time measure at level a, is

G,-measurable.
We shall use the following statement of Ray-Knight theorem. Let a € (0, 00).

(i) Nalexp(=M*(T))] = 15a5-

E[exp(—A\Y) )

a,a’,\ € [0,00) .

(79) Under N, and conditionally given G,, the process (f‘”“/(T))a/e[O,oo) is a Feller diffusion
with branching mechanism (\) = A\? and initial value £%(T).

This is an immediate consequence of the Ray-Knight theorem for standard Brownian motion and
of the Markov property under N : see [4] IIT 3 and VI 2.10.

11



Combined with the branching property, the above Ray-Knight theorem, has the following
consequence. Let us recall that we enumerate the 7 (a)-balls of %, , as {I';,1 < i < Z,,} (see
(25)). Let I" such a T (a)-ball. For a’ > 0, we define

1" ={seT(a+ad) 3o’ €T :0 €[p,o]}, (28)

the set of vertices at level a + a’ that have an ancestor in ' (notice that I'* =T"). The following
lemma is a straightforward consequence of Ray-Knight theorem.

Lemma 5 Let a € (0,00), 7 € [0,2a]. Let {I';,1 < @ < Zg,} the set of T (a)-balls of radius r.
Under N, conditionally on G,, the processes (6“*“, (F‘i”“/), a > O) 1 <@ < Zyr, are independent
Feller diffusions started at (¢*(I';)),1 <1i < Zg,.

Proof. Recalling for b = a—r/2 the decomposition (25), we see that
Vie{l,....Zas}, T :=T(a+d)NT}. (29)

Hence, one can use (26), and the Ray-Knight theorem (see (ii) above) to get the desired result. B

Spinal decomposition. We recall another decomposition of the Brownian tree called spinal
decomposition. This is a consequence of Bismut’s decomposition of the Brownian excursion that
we recall here.

Let X be a real valued process defined on (2, F,P) such that (%Xt)te[opo) is distributed

as a standard Brownian motion with initial value 0. Let X’ be an independent copy of X on
(Q,F,P). We fix a € (0,00) and we set
T, =inf{t € [0,00) : Xy = —a} and T, =inf{t €[0,00): X, = —a} .

We next set for any s € [0, 00),

€ = €(4—s), and el =erys .
Then the Bismut’s identity (see [3] or [11]) states that for any non-negative measurable functional
F on (CY)?,
¢
N[/dL?F(ét; ét)} :E[F(a—i-X.ATa;a%—X,//\Té)] . (30)
0

We derive from (30) an identity involving the excursions above the infimum of é' and é&'. To
that end, we introduce the following. Let A : [0,00) — [0,00) with compact support. We define
a point measure point N'(h) as follows: set h(t) = inf4h and denote by (g;,d;), i € Z(h)
the excursion intervals of h — h away from 0 that are the connected component of the open set

{t >0:h(t) — h(t) >0}. For any i € Z(h), set h*(s) = ((h — h)((g: +s) Ad;), s = 0). We then
define A'(h) as the point measure on [0,00) x C? given by

N(h) =" Snigini) -

i€Z(h)

Then, for any ¢,a € (0,0),
No= NE) N E) =3 0t et (31)

JET:
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and
Ni=Nla+Xnn)+N(a+ X)) =) O(h evd) - (32)
jeds
We deduce from (30) that for all any a and for all nonnegative measurable function F' on the set
of positive measures on [0,00) x C%, one has

N [as P)] = BP0 (33)

and as consequence of Itd’s decomposition of Brownian motion above its infimum, N is a Poisson
point measure on [0,00) x C° with intensity 21y ,(h)dh N(de).

Let us interpret this decomposition in terms of the Brownian tree. Choose t € (0,() such
that e, = a and set 0 = p(t) € T (namely o € T (a)). Then, the geodesic [p, o] is interpreted
as the ancestral line of o. Let us denote by 7;-0, j € J, the connected components of the open
set T\[p, o] and denote by T; the closure of 77. Then, there exists a point o; € [p, o] such that
T; = {0} UT/. Recall notation (hf, etl), j € J; from (31). The specific coding of T by e entails
that for any j € J there exists a unique j' € J; such that d(p,0;) = h?, and such that the rooted
compact real tree (7;,d,0;) is isometric to the tree coded by et

Recall that p(t) = 0. We fix r,r" € [0,2a) such that ' < r. We now compute the mass of the
ring B(o,r) \ B(o,7’) in terms of N;. First, observe that for any s € [0, (] such that e; = a, we
have

r<d(s,t) <r<=a—("/2)> inf e, >a—(r/2).
uE[sAt,sVi]

We then get
t
¢*(B(o,7)\B(o,1")) Zl : ht) ct j(t,j), (34)
JETt “
—ht .
where La 7(t,7) stands for the local time at level a — ht- of the excursion .
J

Then, for any a € (0,00) and any r,r" € (0,2a) such that v’ < r, we also set

Bt a h.
- Z 1(a—f a—% ) ¢ ’ (35)

JETF

*

—h A
where, L(Zf 7 stands for the local time at level a — h} of the excursion e/ defined in (32). Then,

J
(33) implies that for any a € (0,00) and for all non-negative measurable F' function
N[/ea(da) F(£*(B(o,7)\B(o,1")) ; O<T/<r§2a)} E[F(A},; 0<r'<r<2a)]  (36)
-

On the right-hand-side, the dependency with respect to the level a is a bit artificial. Indeed, for
€ (0,00), the Poisson point measure NV (dhde) has its law invariant under the transformation

(h,e) — (a — h,e). Thus, let us consider on (2, F,P) a new Poisson point measure M* =
> 5(h* ) with intensity 2dhIN(de) (we abuse notations and keep the notation (h},e}) for the
JET*
atoms). We set
21% 5 (h) Lci, (37)
Jerr
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b
where L stands for the local time at height A} for the excursion €}. One can now rewrite (36)
as !
N { /E“(da) F(¢*(B(o,r)\B(o,r")); 0<r' <r<2a )}
T

=E[F(A},; 0<r'<r<2a)] . (38)

riro

The law of the AY, | is quite explicit as shown by the following lemma.
Lemma 6 Let 0<r, <rp_1<...<r1 < 2a. Then,

AF A A

T™n,"'n—1" Tn—1,"'n—2" 72,71
are independent. Moreover, for any 0<r' <r<2a,

\2 /
Yy e (0,00) P(AS, >y) = (1 - 7"_> Zy e/ 4 <1 — <T_)2> e~/

r)or r
and P(A}, = 0) = (' /r)2.

Proof. The intervals [ryy1/2,r/2) being pairwise disjoint, the independence of the increments is
a straightforward consequence of the properties the Poisson point measure M*. Using Campbell
formula and (12), we compute, for all A > 0,

e [e—AAZT/,zr] — exp <_ //r 2dhN {1 _ eAZWT)])

T

" A 1+72\?
_ 9 = .
eXp( / dh1+h>\> <1+m>

(law)

Thus, A3, ,. =" X1 + X, where Xy and X5 are i.i.d random variables where
r’ r! 1
Ble] =7 (1o0)
¢ r * r)1l4+r
Thus, X; = 0 with probability 7//r and conditionally on being non-zero, it is exponentially

distributed with mean r. Thus, for y > 0,
P (Ao, >y) =2P(X1=0; Xo>y)+P (X1 >0; Xp>0; X1+ Xy >y)
7! r 2
where Z has law Gamma(2,1/r). The result proceeds now from elementary computations. W

3.2 Estimates.

The following elementary computation is needed twice in our proofs.
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Lemma 7 Let (X,)n>1 a sequence of i.i.d real valued random variables on (2, F,P), with mean
0 and a moment of order 4. Let Z be a random wvariable taking its values in N, independent of
the sequence (Xy,). Then

E [(X1 + Xgp 4 Xz)ﬂ <SE[X}E [22].

Moreover, the following holds : E [(Xl — E[Xl])ﬂ < 2E[X{].
Proof. One has

E[(Xi+ X+ +X)' 2] = > BIXXu X Xi].

1< ,i2,i3,i4<Z

When (i1, 2,13,74) contains an index that is distinct of the three others, then the contribution of
the corresponding term will be null. Thus the latter mean equals ZE[X{] + 3Z(Z—-1)E[X}]? <
3Z2E[X{] (using Jensen’s inequality). The second statement follows from

E [(Xl - E[Xl])4] = E [(Xl - E[x1])* 1{X1>E[X1]}] +E [(Xl — E[X1])* 1x, <mix
< E[X{]+E[X]Y
and using Jensen’s inequality. |

We explained in Section 3.1 the link between the process (¢*(7),a € (0,00)) and the Feller
diffusion, for which we provide here some basic estimates.

Lemma 8 Let (Y.F)a>0 be a Feller diffusion starting at x > 0, defined on (2, F,P). For all
x,y € [0,00), for all a € (0,00), the following inequalities hold :

b€[0,a]

(ii) If y > x, then P ( sup V¥ > y) <exp (3 (VU —vE)?).

be(0,a]

Proof. Let us prove (i). Recall that for all z,b,A € [0,00), E [e™*Y'] = exp (—%) Thus, for
fixed a € (0,00), and for A € [0, 1), we set

. AY?
Vb e [0,a], MM =exp (‘1_%A>' (39)

We stress that for b € [0,al, one has 1 —bA > 1 — aX > 0, and one can compute

Az A bA e
E[Mé )]:exp<—1_b)\x/<l+1_b)\>> = e

Combined with the Markov property, this entails that (Mé)"x), b € [0,a]) is a martingale. More-

. . AYF . AYF . . .
over, on { inf Y;* <y}, onehas inf =ty < inf =ty < % Hence, the maximal inequality
bel0,a] be(0,a] bel0,a]
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for sub-martingales entails

()\,:B) _ﬁ
( inf Y,* ) < P sup M, > e T-ax
b€(0,a] be[0,a]

The reader can check using elementary computations that the function A — )‘—)\ — Az has a neg-

ative minimum on (0,1/a) at the value A = = <1 - \/;), and this minimum is —1(vz — \/7)%,
which completes the proof.

In order to prove (ii), one could extend the definition of (Mé)"x), b€ [0,a]) for A € (—1/a,0).
In what follows, we use a simpler argument. Let us begin with the following remark: let b € (0, 00),
let £ be a r.v. on (2, F,P) that is exponentially distributed with mean b, then for all A > 0,
E[e ] = ﬁ, and this Laplace transform remains finite for A € (—=1/b,0). Moreover, one can

plainly check that for x,b € (0,00), ¥;* has the same law as Z &;, where the &; are independent

copies of £ and N is an independent Poisson r.v. with mean z / b. Thus, one has

Vi€ (0,1/b), E[e"] =exp (1 ﬁﬂim) : (40)

The Feller diffusion (Y;*,b > 0) is a martingale, so by convexity (e#¥s,b > 0) is a submartingale.
Thus, for all p € (0,1/a), and y > = > 0, one has

Pl sup V' >y < P sup ety > et
be[0,a] be(0,a]

< e ME [e“Yf] = exp <1 ﬁxa,u — ,uy) ,

and the result follows by optimizing the same function as before. |
The next result is a corollary of Lemma 8 (i1).

Lemma 9 Let m € (0,1/2). For all y € (0,00),
N( sup  £%(T) > y) < (2/m)exp (—my/2).
be[m,m1]

Proof. Let m € (0,1/2) and recall from (23) the definition of G,,. As recalled in Section 3.1,
under N, conditionally on G,,, the process (¢°(T),b > m) is a Feller diffusion started at £™(T).
Hence, conditioning with respect to G,, and using Lemma 8 (ii), we get

N, ( sup  OO(T) > y> <Ny, [exp <—m ([ - \/zm(—fr))Q)] .

be[m,m=1]
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Expanding (1/u/2 — v/20v)2, one shows that for all u,v > 0, (v —2)> > u/2 —v. Thus,

N, sup  £™(T) > y) < exp (—mY) Ny, [emzm(ﬂ]. Recalling from (12) that under N,,,

be[m,m1]
¢™(T) is exponentially distributed with mean m, we get N, [emgm(T)] = (1-m?)"! < 2, because
m < 1/2. This entails the desired result, recalling that Ny,(-) = mN (-1g,(7)>m}) and that the
events {h(7T) > m} and {{"™(T) > 0} are equal, up to a N negligible set. [ ]

Estimates for small balls. We consider here a level a € (0,00) and recall that 7 (a) is the
a-level set of the Brownian tree 7. If r € [0, 2a], we recall from (18) the notation I'(c,r) for the
T (a)-ball of radius r and center o € T (a), the set of T (a)-balls of radius r being denoted %, .
Let T be a T (a)-ball of radius 7', where 7’ € [0,2a]. From Proposition 1 (iii), we know that if
r € [r',2a], there exists a unique 7T (a)-ball of radius r that contains I', and we shall denote this
"enlarged" ball by

Llr]:=" where T € #,, andI' C T. (41)

We consider positive real numbers 71 > ro > ... > 7, >0, and g1 > ... > g,4 > 0, where
n € N*. Wesetr = {ry,...,r,} and € = {e1,...,6,1}. We shall say that I, a 7 (a)-ball of
radius r,, is (r,€)-small if and only if for all 1 < k < n—1, the enlarged ball of radius k£ has a
local time smaller than €, namely

vk € {1,...,71—1} £ (F[?“k]) < €k (42)
We denote by S, v the total number of such (r,e)-small balls at level a:
Sa,r,s = Z 1{F is (r,e)—small}- (43)
Feﬂa,rn

To control that number, we introduce

IU,(I',E) =N [Sr1/2,r,€] . (44)

Let us stress that its definition does not depend on a.

Lemma 10 Let a € (0,00), r= {r1,...,m}, and e = {e1,...,ep1}, where ry > ... > 1y, > 0,
and ey > ... > e,1 > 0. There exists a constant co € (0,10%] such that if a/r1 > 1 and r1 /1y > 2,

2
r
N [(Sune = () (T)'] < coa 25
Proof. Let a,r,e as above. From Proposition 1 (iii), we know that the 7 (a)-balls of radius
ry are disjoint and that for all ¥ € %, ,,,, there exists a unique 7 (a)-ball I' € Z,,, such that

T CI'. Let us enumerate %, ,, as {I';,1 < i< Z,,, }, and set
Vie{l...Zgr }, %afn—{Te%arn TcIy}
and  S{he=# {1 €2l

a,rn

: Y is (r,s)—small}.

One has
Za 1 Za 1

Sare — u(r,e) (T (S8he = lr,e)e(ry)) = ZX (45)

=1
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Let us denote b = a — r1/2 and recall from (23) the definition of the sigma-field G,. Adapt-

ing the proof of Lemma 4, it is not difficult to see that under N, conditionally on G, and
conditionally on {Z,,, = k}, the r.v. Xj,... X} are independent and have the same law as

Sy /2,0 — 1T, €)¢"/2(T) under N,, 2. Recalling from (12) that N [er/2(T)] = (2/r1)N,, /2 [er1/2(T)] =
1, we see that

N | Go] = Ny [Sp e — nlr.£)072(T)] =0,

which explains the definition (44). We thus apply Lemma 7 to get from (45):
N | (Sare — p(r, ) (T))* | gb} <3N, 2 [Xﬂ N, [Zin | Gb) - (46)

The second assertion in Lemma 7 entails N, /Q[Xf] < 2N, 2 [54

r1/2,r,e
that S, /2y ¢ is smaller than Z,. /5(ry), the total number of 7/(rq/2)-balls of radius r, which has
under N, /o a geometric distribution with success probability r,,/r; < 1/2. Thus,

}. Moreover, we can use

48 r\* r\*

4 4 4 1 1

Nr1/2 [Xl] < 2Nr1/2 |:ST1/27I‘,6:| < 2N7"1/2 |:Zr1/2('rn)) :| < 1_ Tn/T_l <E> < 96 (a) . (47)
In addition, according to the branching property, under Nj, conditionally on Gy, Z,,, is a

Poisson variable with mean N (h(7) > 71/2) °(T) = (2/r1)¢*(T). Thus,

N, [22,,] = (2/rON, [(T)] + (2/r1 N, [¢4(T)?]. (48)

Recalling that b = r1/2, we get (2/r1)Ny, [(°(T)] = 1 and (2/r1)*N, [(°(T)?] = 8a*/r}. We
assumed that a/rq > 1, thus Ny, [Z2,,] < 9a?/r}. Combined with (46) and (47) it entails

a,ri

a 4 2T%
N, [(sa,r,a — p(r, e (T)) ] < coa?lL,

4
n

with ¢y a positive constant smaller than (1/2)10*. This implies the desired result, using that
N (h(T) >b) =1/b< 2/a. [

We state now the main technical Lemma of the paper. Let us recall from (44) the definition
of p(r,e). The proof of the lemma makes use of the spinal decomposition described in Section
3.1. In particular, a geometric argument allows to rely the problem to the variables introduced
in (37).

Lemma 11 Let v = {ry,...,rn}, where r;1 > ... > r, > 0, and € = {e1,...,6n1}, where
€1 > ...>¢enq > 0. The following inequality holds :

5 n—1
p(re) <2\ TTP (Ar < =2)- (49)
k=1

Proof. Letr = {ry,...,r,} and {e1, ..., } as above. In that proof, we denote, for convenience,
b = r1/2; hence, a dependency with respect to b is actually a dependency with respect to r. Let
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us consider I" a T (b)-ball of radius r,, and recall the notation (41). The ball T' is (r, &)-small iff
((42)) holds. But, for all o € I', k € [1,n—1],

Clri] =T(o, k) D T(o,rk) \ T(0, res1)-
Thus, if I is (r, €)-small, then all the vertices in I" belong to the set

S(r,e) = {a eTM):Vke{l...n=1} £ (T(o,r) \ (0, 7541)) < ak} . (50)

The last set is easy to handle using the spinal decomposition. Indeed, according to (38) and the
independence stated in Lemma 6, one has

n—1
l/(I‘,E) =N |:/ Eb(da)l{oey(r,a)}] = H (A:k+177"k < €k> (51)
k=1

To rely pu(r,e) and v(r,€), one can write

(r)
l{p is (r,e)—small} < l{Zb(F)érn\/m} + ml{F is (r,e)—small}- (52)
Moreover, (50) entails that Eb(F)l{p is (r,€)—small} < fl‘ (do)1ise.7(re)}- Recall now from Propo-
sition 1 (i) that the balls of the set %, are pairwise disjoint. Summing in (52) over this set
entails

[ (o)1 o 7 v}
Sb,r, < 1 + =, (53)
€ Fe;b’rn {gb([‘)grn\/y(r,a)} Tn l/(I‘, E)

Now, recalling Lemma 4, we compute

o I E C )

< Loy/ulre),
Tn

so the N-measure of the first term in (53) is smaller than %wy(r, ). Recalling that b = r1/2,
we get that the latter equals %\/y(r, €). Moreover, by the mere definition (51), the N-measure
of the second term in (53) equals in v(r,€), so the first inequality is checked. |

T

4 Proof of Theorem 1.

The proof of Theorem 1 will combine the following two theorems.

Theorem 2 Let k € (3,00) andm € (0,3). Then, there ezists a Borel subset V.=V (x,m) C C°
such that N (C%\ V) = 0 and such that

on V, for all Borel subset A C T, Va&[m,m '], (*(A) <k (ANT(a)).
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For all a,« € (0,00), let us set

A = {O‘ €T(a): linrljgp% < a} . (54)

Theorem 3 Let a € (0,1) and m € (0,1/2). Then, there ezists a Borel subset V' = V'(a, m) C
C? such that N (C"\ V') =0 and such that

on V', Vae[mml], (A% =0.

The proofs of Theorem 2 and 3 share a common strategy, taken from Perkins [14, 15]. We
need to control the mass, or the number of "bad" 7 (a)-balls where "bad" means too large or too
small. And we want to do it uniformly for all levels a. This problem will be linked with a discrete
one using a finite grid, and the measure or the number of bad 7 (a)-balls will be compared with
a convenient multiple of £*(7), the total mass at level a.

4.1 Proof of Theorem 2.
4.1.1 Large balls.

Let us fix a level a € (0,00), and recall from section 3.1 the definition of the sigma-field G,
generated by the excursion below level a. We also recall the definition of 7 (a)-balls (18). We fix
a threshold y € (0,00) and we consider the following set of "large" points on 7T (a) :

Lary={0€T(a): £4(T(o,7)) > y}. (55)

According to Lemma 4, the "total large mass" (% (Lory) = Y oreg, , (4(T)1gpam)syy 18 Ga-
measurable.

Lemma 12 For all a,l,y,r,6 € (0,00), for all ¢ € (1,00),

a ) b 1 _ 2 1 1/2\2
N<€ (Ea,,n,y/c) <l be[s;g)-i—é}é (ﬁb,r,y) > 4l) < aexp( /o) + " exp< (1—=c#) y/6> .

Proof. For all a € (0,00), and all ¢ € (1,00), we define Ay, a Borel subset of C°, as the event

Ao =0 (Loryre) <13 sup L0 (Lypy) >4l p. (56)
b€[a,a+4)

We recall from Proposition 1 that for r € (0,00), %o, = {I'i,1 < i < Z,,} is the collection of
T (a)-balls of radius r at level a. For T' a T(a)-ball and b € [a, 00), we defined T® = {o € T(b) :
Jdo’ €T, 0’ € [p, o]} as the set of vertices at level b having an ancestor in I" (see (29) for details).
Next we define A; a Borel subset of C° as the event

Ayi=R3ie 1, Zoy}, 4Ty <yfe and sup & (TD) >y, (57)
be[a,a+d]

and set
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Ll = J 1 cTo) (58)

G/7T‘7y/c :_
ie{l,..., Za,r}
(T)zy/

which is the set of all vertices at level b having an "large" ancestor at level a. We prove the

following :
on CO\ Ay, Vb€ la,a+9d] Ly, L (59)

a,ry/c

Proof of (59). Let b > a > r/2 > 0 and let 0 € Ly,,. Thus, the ball I' := I'(o,7) € %,
is such that £°(T') > y. Let o, the unique ancestor of ¢ at level a, namely d(p,0,) = a and
04 € [p,o]. We set Y := I'(04,7) € By, and we first claim that I' C T°. Indeed, let o/ € T
(so d(o,0") < r) and let o) the unique ancestor of o’ at level a. Recalling that o A ¢’ stands for
the most recent common ancestor of o and o', one get d(p,o A o’) = 1 (2b — d(o,0")). Then two
cases may occur. First, if d(o,0’) < 2(b — a), then d(p,o A ¢') > a, thus o, = ¢/, and o’ € Y.
If d(o,0") € (2(b — a),r). Then, one has d(p,0 A o’) < a. We deduce from that inequality that
o4 # o), and that o, A o), = 0 A o’. Hence,

d(0q,0,) =2a —2d (p,0, A\ o))
=2b—2d (p,0 No') +2a — 2b
=d(o,0’) —2(b—a) <.

Thus o/, € Y and ¢’ € Y% which ends the proof of the inclusion I' C Y°. We then get
(%) > () > y. On C°\ Ay, one cannot have both ¢*(T) < y/c and £(Y?) > y, which
entails that here, £%(T) > y/c.

To sum up, on C%\ Ay, a vertex o, taken in Ly ry, has an ancestor in a ball T, such that
0%(T) = y/c. Thus, this ancestor belongs to £ and o € Egr’y/c.
End of the proof of (59).

G/7T‘7y/c

Let us finish the proof of the lemma. From (59), we see that

N(4g) < N(41) + N(4N(C°\ A1) < N(41) + N(4z), (60)
where As is defined by
Ag = (Lypyse) <1i sup (L0, ) =dlp. (61)
{ ( v/ ) bela,a+d] < v/ )

We control N(A;) and N(As) thanks to Lemma 8 (ii). Indeed, Lemma 5 states that under
N,, conditionally on G,, the processes (f‘”“/ (Tete),a’ > 0),1 <@ < Z,, are independent Feller

diffusions started at ¢¢(T;),1<i< Z,,. Since £° (mey/c) = ZiZ:“’l’" 1{€a(r‘i)>y/c}£b(r?)7 it implies

a
that (E“‘F“,(EZ;Z/C), a’ > 0) is a Feller diffusion started at ¢ (Eamy/c). Thus, on the one hand,
sub-additivity and Lemma 8 (ii) entails

Z(l ”
1 ’ _ 2
N(Al) < aNa Z l{ga(l"i)gy/c} exp <_5 1 (\/@ — N/Ea(l“i)> >
i=1
1 _ 2 _
< S exp (—(1—0 1/2)25_1y> Nu[Zyr) = — exp <—(1—c 1/2)25_1y> . (62)
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On the other hand,

1 - - ?
N (A2) < ENG ll{za(ﬁa,r,y/6)<l} eXp <_5 <2\/Z o E (Ea’r’y/c)> )]
1
< Lexp(-1/9). (63)
a
Hence, the desired result follows from (60), (62), and (63). [

Recall that g(r) = rloglog(1/r). We fix k € (%, o0), and we shall apply the previous lemma
with y = kg(r). The next lemma allows to control ¢* (Eam,ig(r)) uniformly for all levels a. Its
proof involves a discrete grid : for m < 1/2 and r € (0, 00), we set

G(r,m) = {m + ké,, k € N*} A [m, m™1, (64)
where ¢, is the mesh of the grid, defined by
6, =132, (65)
Note that G(r,m) contains less than (md,)™" points.

Lemma 13 Let m € (0,1/2). Let k € (3,00) and 3 € (1,00) such that 2k — 3 > 0. There exists
a constant 1 € (0,00) only depending on k, 3, m, such that

m,m~1]

Vre(0,r), N ( sup (Lo rg(r)) > 4log(1/r)_5> < log(1/7) 72, (66)
be|

Proof. In what follows, we denote Tj the left-hand-side of (66). Let us consider ¢ € (1,00)
such that 2k/c — 8 > 0. Recall that G(r, m) stands for the grid defined by (64). Then we have
To <11 + 15, where :

T, =N ( sup £¢ (Ea,r,ng(r)/c) < log(l/r)*ﬁ . sup (Ebm,ig(r)) > 410g(1/7“)5> )

a€G(r,m) be[m,m~1]

S ( sup % (Lag(r)/c) > log(1/ r)/}) '

a€G(r,m)

Using sub-additivity and Lemma 12, one get

Tl = N( U {ga (‘ca,r,ng(r)/c) < log(l/?“)_ﬁ ; Sup Eb('cb,r,mg(r)) > 410g(1/r)_6}>

a€G(r,m) b€[a,atr]
< (mér)_1 sup N<€“ (£a7r7,ig(r)/c) < log(l/r)_ﬁ : sup Eb(ﬁbwﬁg(r)) > 4log(1/r)_5>
a€G(r,m) b€[a,a+0r]

< (md,) ! <m1 exp (_5;1 IOg(l/T)iﬁ) + %exp (—(1—071/2)255;19(7“)) >

One has 6, log(1/r)? > r~' and 6. 'g(r) > r—1/2 for all r sufficiently small. Thus, for example,
Ty < exp(—r1/%) < (1/2)log(1/r)~2 for all r sufficiently small.
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Let us bound T5. To that end, we set

)\(7“, Iﬁ:,C) = (2/7“)E [51{5>ng(r)/c}] s (67)

where £ is a r.v. on (2, F,P) exponentially distributed with mean r/2. For fixed k£ and ¢,
elementary computations entail

Ar, K, c) = (2/r)P (€ > kg(r)/c) E[kg(r)/c + &]
= (2/r)exp (—2(k/c)loglog1/r) ((rk/c)rloglog1/r +1/2)
~, (2r/c)log(1/r)~2%/¢loglog 1/r. (68)

We set T < T3 + T}y, where

1
T3 =N < sup ‘Ea (‘Ca,r,ng(r)/c) - A(T, K,C)EG(T” > 5 10g(1/7‘)6> )

a€G(r,m)

T,=N < sup  A(r,k,c)0(T) > %10g(1/r)5> .

a€G(r,m)

By sub-additivity and a Markov inequality involving a moment of order 4, we get

T3 < (m(sr)il sup N (‘ga (ﬁa,r,ng(r)/c) - )‘(Ta R, C)KG(TH > %log(l/r)ﬁ>
)

aeG(r,m

< (mé,) 124 log(1/7r)* sup ¢ 'N, [(6“ (Larngryye) — A, n,c)ﬁ“(T))ﬂ . (69)
a€G(r,m)

Recall notation %, = {I'; ,1<i< Z,,} for the set of T (a)-balls with radius r. Then, consider

the decomposition
Za,r

A (‘Ca,r,ng(r)/c) — )\(’I“, R, C)fa (T) = Z Xl'a
i=1

where X; := (%(T;) (l{ga(Fi)>Hg(r)/c} — A(r, K, c)) Using Lemma 4, we see that under N, con-
ditionally on Z,, the random variables £*(I'y),...£%(I'z, ) are independent and exponentially
distributed with mean r/2. Thus, the definition (67) of A(r, k,c) entails that under N, condi-
tionally on Z,, the r.v. Xj,... Xz, = areiid., with mean 0 and a moment of order 4. Then, by
Lemma 7, A

No [ DX || <3N (XN, [22,]. (70)

From (68), we know that A(r,k,c) =9 0, so for all sufficiently small r, A\(r,k,¢c) < 1/2 and
| X < €4(Ty), which implies No[X1] < No[¢%(T'1)*] = 3r* for all sufficiently small r. Moreover,
Zq,y is under N, a geometric r.v. with "success" probability p = r/2a (see Lemma 4), thus
N, [ZZ,] = (2—p)/p* < 8a?/r?. Combining (69) and (70), we get, for all sufficiently small r,

3r! 8a*
T3 < 3.2%.(md,) L log(1/r)*®  sup a_lL% < 103m 2 log(1/r)*Br1/?, (71)
a€G(r,m) 2 r
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recalling that 6, = r3/2. Observe now that the right hand side is smaller than (1/4)log(1/r)~>
for all sufficiently small 7.

For the term Ty, Lemma 9 entails

T, <N ( sup 2 (T) > %)\(7“7 K,c)7 10g(1/7°)ﬁ>

be[m,m1]
< (2/m) exp <—(m/4))\(7", K,c) log(l/r)_ﬁ> . (72)

By (68),
_ _ c o _
A, &, ) log(1/r)~# ~ %log(l/r)z/ Bloglog(1/r)~"

Recall that 2k/c > 0 and take € € (0,2x/c—f3). Thus, for all sufficiently small r,
Ty < (2/m)exp (—log(1/r)°),

which is smaller than (1/4)log(1/r)~2 for all sufficiently small r. [

4.1.2 Proof of Theorem 2.
Let k € (1/2,00), and let m € (0,1/2). Let 8 € (1,00) such that 2k — 8 > 0. For all a € (0, 0),
y € (1,00) recall from (54) the definition :

AV = {a €7T(a): hI:ljélp % < yﬂ} . (73)

For any p € N, set r, := y~P. By Lemma 13, for all sufficiently large p,

N ( sup £¢ (£a7rp7,ig(rp)) > 410g(1/7“p)5> < log(l/rp)*2 = log(y)*2p*27 (74)
a€[m,m=1]
whose sum over p is finite. By Borel Cantelli lemma,
N-a.e., for all sufficiently large p, sup (* (Ea,rp,mg(rp)) < 4log(1/rp)_5. (75)
a€[m,m~1]

Moreover, log(1/r,)™ = log(y)’p#, and recall that 8 > 1. Thus, (75) entails that there exists
a Borel subset V,, C CY such that N(C°\ V,) =0, and on V,:

Ya € [m,mfl], Zﬁa (£a7rp7,ig(rp)) = Zﬁa ({o : *(B(o,1p)) >Kg(rp)}) <00.
p=1 p=1

We can apply again the Borel-Cantelli Lemma, to the finite measures ¢* to get that,
ea (B(U7 V“p))

onV, Vae [m,m~ Y, (%do)-a.e. 3poa,o), Yp=po(a,o), o)
P

< k. (76)
£Bow) o LBlorp) B0 Combined with (76), this entails
g(u) 9(rp+1) g(rp)

that on V, for all a in [m,m~], for (2-almost every o in T (a), limsup, o (*(B(c,7))/g9(r) < yk.
This can be rewritten in

If u € (1p41,7p), one has
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onV,, Vac[mm?'], ¢ (T(a)\A%¥)=0. (77)

Now set V.= ({Vy,;y > 1;y € Q}. Clearly, N(C°\ V) = 0 and by monotonicity, for all
K € (k,00), T(a)\AF ¢ U {T(a)\ AL} It follows easily from (77) that
y>1y€Q

onV, Vac[mm?], Vi€ (ko0) £ <T(a) \ A’j) = 0. (78)
Thus, using Lemma 2, we get :

on V. VA Borel subset of 7 Va € [m,m '] V&' € (k,00)
o (A) = <A N A’;“) < KK, (A N A’;“) < KA (ANT(a) .

This ends the proof of Theorem 2 letting &’ \ &.

4.2 Proof of Theorem 3.
4.2.1 Small balls.

For given level a € (0,00) and r € (0, 00) we recall the notation %, , for the set of 7 (a)-balls of
radius 7. We recall from (41) that for » > 7' > 0, a ball T’ € %, ,+ is contained in a unique ball
in A, y, denoted I'[r]. Let r = {r; > ... >r,} and € = {1 > ... > g,1}. Recall from (42) that
I, a T (a)-ball of radius 7, is (r,€)-small iff

Vk e [Ln—1] € (T[rx]) < ex.

The total number of (r,e)-small balls at level a is denoted by S,y (see (43)). For u € (0,00),
we write ur for the set {ur; > ... > ur,}. We recall from (28) the following notation : if " is a
T (a)-ball, then, for all b > a, T'® is the subset of all the vertices in 7 (b) having an ancestor in T.
Namely, I'* = {o € T(b),30’ €T : o' € [p,0]}.

Lemma 14 Let a,6 € (0,00), andn > 2. Let r={ry > ... >r,} ande = {e1 > ... > ep1}
and ¢ € (1,00). Let o € (0,1/2) and & € (o, 1/2). If § < Stry, then
2n — 2
N sup  Shrae > Socirae | < — €xp —(\/E—\/a) En1/0 | .
b€[a,a+4) Tn

Proof. Let us denote By = {Supbe[a,a+5] Spr.ae > Sacirae - Next, we define the event By by

By ={3ke{l....n—1}, Trex, () > aey, and  inf °(T%) <aei}.  (79)

refe b€[a,a+4)
We will prove that By C Bj, that is to say
on CY\ By, sup  Sprae < S ctirae (80)
be[a,a+d]

Proof of (80). We work deterministically on C°\ By. The inequality (80) follows from the following
claim.
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For every b € [a,a + 4], for every T' a T (b)-ball of radius r,, which is (r,ae)-small,
there exists Y a T (a)-ball of radius r,,/c such that Y is (¢c*'r, ae)-small and Y* C T.

Assume that the latter is true. Then, to any (r, ae)-small ball at level b corresponds a (¢'r, ae)-

small ball at level a and the correspondence is injective. Summing over all 7 (b)-ball, we ob-
tain (80).
Now let b € [a,a + 6] and ' € Ay, such that I' is (r, ae)-small. Let o € I" and let o, its unique
ancestor at level a. Namely o, € T (a) and o, € [p,0]. We denote T = I'(04,7,/c) € %, /c the
T (a)-ball of radius r,/c that contains o,. We claim that Y is (¢'r, &e)-small and that Y? C T.
To prove this, we show

Vke{l,....n} (Y[ri/d)® C T[ry). (81)

Let k € {1...n} and let v € (Y[ry/d)’. Its unique ancestor at level a, denoted 4, is such
that 7, 6 Y[ri/c]. Two cases may occur. First, if d(o,7v) < 2(b — a), then we have 2(b — a) <
26 < 2y, < 1, < rg. The other case corresponds to d(o,v) > 2(b — a). Then d(p,0 A7) =
2(2b — d(a 7)) < a. Thus, 0 Ay = 0, Ay, and we have

d(0,7) = 26— 2d(p,0 A )
:2a—2d(p,0a/\%)+2b—2a

(Ua77a)+25
Tk C —

<— + Tn S Tk
C

where we used in the last line that o, € I' C I'[ri/c¢]. In both cases, d(o,7) < ri so vy €
I'(o,7) = Ilrg], the last equality being a consequence of Proposition 1 (i7), and the definition of
I' =T(o,ry). Thus, (81) is proved and it implies

Vke{l..n-1} ¢ <(T[rk/c])b) < 0 (T[r)) < aex,
which, on C°\ By, implies
VeEe{l...n—1} % (Y[rg/c]) < aeg.

This entails that T is (¢ de) small. The inclusion T® C ' was proved at line (81) with k =n
because YT = Y[r,/c] C I'[ry,] =
End of the proof of (80)

As in the proof of Lemma 12, we can use the fact that under N, conditionally on G, if I is
a T (a)-ball, then the process {EH“, (rota’) o > 0} is a Feller diffusion started at ¢%(T"). Using
sub-additivity and Lemma 8 (i), we get

n—1 Za,rk
1 2
By) < g ENa § Lia(r;)>ae,} €XP <—5_1 <\/ 0o(Ty) — \/Oéé‘k) > (82)
k=1 =1

< Lo (-0 (Vau - vam) ) S E(Zu] (83)
k=1
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The proof is completed recalling that for all k € {1...n—1}, e < £,1, and that, by Lemma 4,
N, [Zaﬂ’k] =2 g2 u

TR S Th
Let us introduce ‘
VieN, r;=2"7 and ¢;=g(rj) (84)

and then
VpeN, jp=[4/3)"], @ ={r;j, <j<jpr1i—1} and ¥ ={e;; j,<j <jpp1—1}. (85)
Let m € (0,1/2), we also introduce the following discrete grid
G'(p,m) = {m_l + kép, k € N*} N [m, m Y, (86)
where d, is the mesh of the grid, given by
by = (1), (87)

Note that G’(p,m) contains less than (md,)~! points.

Lemma 15 Let a € (0,1/2), m € (0,1/2). For p € N, denote u, == g (r(jps1))”  p~2. Then
there exists po € N only depending on o, m such that for all p > po,

N < SUP ) ) pe® > up> <p 2 (88)
be[m,m1]

Proof. Let & € («,1/2) and ¢ in (1,00) such that 2c& € (0,1). In what follows, we denote Tj
the left-hand-side of (88). Observe that T{) < T] + T3, where we have set

/
Tl = N Sup Sa,c_lr(P),ds(P) < up ; Sup Sb,r(P),as(P) > up )
a€G'(p,m) be[m,m1]

/
I =N| sup 5,10 aew > Up |-
a€G’ (p,m)

Using sub-additivity and Lemma 14, we get

/
T1 g N U { Sup Sb,r(P)7a5(P) > Sa,c_lr(P)7d5(P)}
a€G'(p,m) b€(a,a+dp]

—1
<(mdp)~  sup N | sup Sy 10) ae@ > Soetr®)ae®
a€G' (p,m) be[a,a+0p]

< (ot 2L o ((VE- ) 3 a0 -2) ).

7(Jp+1)

One has 5;19(T(jp+1—2)) > 5glg(r(jp+1)) = 7(jpr1)/*loglog 1/r(jps1), which implies that T7 is
smaller than (1/2)p~2, for all p sufficiently large (it is obviously not a sharp bound).

Recalling the definitions (44), we set
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Wy = M(c_lr(p)’ ds(p)) =N <Sr(jp)/(2c)7c—lr(p)7&6(;7)) . (89)
We will prove that Ty < Ty + Ty, where

TZ; =N < Sup ’Sa,c*lr(f’),de(l)) =t (T) > Up/2> 7
a€G’ (p,m)

T, =N| sup ppl*(T)>uy/2|.
a€G’ (p,m)
By sub-additivity and a Markov inequality involving a moment of order 4, we get

Té < (mép)_1 sup N <\Sa7c_1r(p),aa(p) — ppl® (T)| > up/2>
a€G' (p,m)

4

< (mép)—124u;4 sup N |:<Sa’c—1r(p)’d€(p) — ppl® (T)) ] . (90)
a€G’ (p,m)

We want to apply Lemma 10 with r =,¢'r® and ¢ = ae®). Thus, recalling (84) and (85),

we check that for all sufficiently large p, m/r(j,) > 1 and r(jp)/7(jp+1 —1). Recalling that

co € (0,10 is the universal constant given by Lemma 10, we get from (90)

= r(jp)? i, o ()’
Th < (mé,) 2%t sup  cpa——2—— < 2tegm P —— B (91)
s P P occarpm)y  TUpr1—1)* Spupr(Jp+1)?
Recall that u, = g(r(jp+1))"'p 2, and by (84) and (85), we get loglog(1/r(j,)) ~ plog(4/3).
p—00

Hence, u, = p~3r(jp+1)~ " and (91) implies

T < 9o m—2p12 T(jp)QM
32 ¢com p - 5 . (92)
7 (Jpr1)® e

1/3

Now, one can plainly check that % is smaller than r(j,) Thus, T3 is smaller than
p

(1/4)p~2 for all p sufficiently large.

For the term T}, we use Lemma 9 to obtain

T; < (2/m)exp (—(m/4)up,u;1) . (93)
Recalling (89) and Lemma 11, we get that for all p,
1/2

Jp+1—2
5 " -
Hp < Gord) jl jl P( rie1 ey e < Grjlog log(l/rj)> (94)

We want to get an lower bound of upugl, so we compute an upper bound for u;lup. Recalling
that u, > p~37(jpr1) L, one has

1 Jp+1—2 Jp+1—2
Uy iy <5ptexp | o D log(L—gp) | <5pPexp | =5 > a4 (95)
j:jp j:jz)
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where ¢; = P(A > arjlog log(l/rj)). Recalling that r; = 277, it follows from Lemma 6

that
2 o~ - -
0 = (1_1> 2azloglog 1/r; exp <_2a%10g10g 1/rj> N <1_1> exp (_2a%loglog 1/rj>
2 /e /e 4 /e

~ % log log(l/rj)G_Z&CIOgIOg(l/rj)

Jj—00

ri+1/eri/e

2ac

-~ log(j)j =",
j—00

where ¢’ is a positive constant depending on «, &, c. We stress that the particular choice of ¢ was
made to ensure that y := 1 — 2ac is strictly positive, so that the following is true for all large p :

Jpt1—2 Jpt1—2 Gpr1—1 4\ PX
—2ac —2ac ~ -1 X _ - .
Z ¢ > Z S e TR (g
Thus, for all p sufficiently large, zgzﬂ ¢; > 2p which, combined with (95), entails that

u;l,up < 5pdexp (—p). Thus, up,u;l > 5 lp3eP. Finally, we see from (93) that 7} is smaller than
(1/4)p=2 for all p sufficiently large, which ends the proof. |

4.2.2 Proof of Theorem 3.

Let a € (0,1/2). For a level a € (0,00), we recall the definition (54) of AS. To show that the
g-Hausdorff measure of A% is null, we need an efficient covering of this set. Let us recall the
integer sequence j, = [(4/3)?| and the radii r; = Q*j For p € N, we recall the definition of the
finite subsets r®) = {rj,jp < j < jpy1—1}, and e = = {ej,Jp < J < jpt1—1} where g; = g(r;).
Recalling the definition (42) for small balls, we set

6, = U {T € ‘@ayr(jpﬂ) . Tis (r(p),ae(p))—small}.

p=n

Observe that if ¢ € A2, then the T (a)-ball T (¢,7(jp11)) is (r®, ae®))-small for all large p, thus
for all n € N, we have AY C 6,,. Let us recall the definition (15) of Hausdorff measures, and the
fact that the diameter of a 7 (a)-ball is smaller than its radius. We get

Va € [m,m™] Ay (AY) ZS“@) acw- 9 ((Gp+1)) (96)
because Ay C %,. Thus,

Va € [m,m™] (A7) < thUPZSa r®) ae®-9 (T(Jp+1)) - (97)

n—o0
p=n

Now, let m € (0,1/2). Applying Lemma 15, we easily get that

o
ZN < [Sup ) Sor® ae® > up> < 00,
S

_ a€[m,m™]

29



where we recall the notation u, = g (r(j,+1))” ' p~2. By Borel-Cantelli lemma there exists a

subset V' C C” such that N (C%\ V') = 0 and such that

on V', g(r(jp+1)) sup Sor® ack) S p~2, for all suff. large p.

a€lm,m1]

Combined with (96), we deduce on V', for a € [m, m™], one has
oo )
(6% 3 B
Hq (A7) < ,}ggog:np =0,
which is the desired result.

4.3 Proof of Theorem 1.

Let k € (3,00), a € (0,3), and m € (0,1/2). Theorem 2 entails that there exists a Borel subset
V = V(x,m) C C%such that N (C®\ V) =0 and

on V(xk,m), for all Borel subset A C T, Va €& [m,m '], (“(A)<r(ANT(a)). (98)

Now, let us rewrite the definition (54)
(B
AY = {0 € T(a) : limsup £ (B(o,r) < a} . (99)
r—0 g(?”)

According to Theorem 3, there exists a Borel subset V/ = V’(a, m) C Csuch that N (C"\ V) =
0 and

on V'(a,m) Va€[m,m™] (A =0. (100)
Let o < « and notice that 7T (a) \ Ay C < o : limsup % > o/}. Moreover, from (13), we
r—0

know that N-a.e. for all a € (0,00), £4(T \ T (a)) = 0. Thus, on V', for all Borel subset A C T,
and for all @ € [m, m™] and all & < a, Lemma 3 entails

04 (A) 2 7 (AN (T(a) \ A7) = o/ 5 (AN (T (a) \ A7) = o/ 5 (AN T (a)), (101)
where we used (100) for the last equality. Letting o/ — «, we get
on V'(a,m) for all Borel subset A C T, Va € [m,m™] %(A) > a#(ANT(a)). (102)

Now, let us set

V= N Vm) | N Viem)|. (103)
KE(1/2,00)NQ a€(0,1/2)NQ
me(0,1/2)NQ me(0,1/2)NQ

Clearly, V is a Borel subset of C° such that N <C0 \ \7) = 0. Moreover, combining (98) and

(102), we get that on V, for all Borel subset A C 7T, and for all level a € (0,00), one has
4 (A) = 3 (AN T (a)).
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