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Abstract 

Pesticides biorecalcitrance can be related to the presence of complex aromatic chain or the 

presence of specific bonds, such as halogenated bonds, which are the most widespread. In 

order to treat this pollution at source, namely in the case of highly concentrated solutions, 

selective processes, such as electrochemical processes, can appear especially relevant to avoid 

possible generation of toxic degradation products and to improve biodegradability in view of 

a subsequent biological mineralization. 2,4-D was found to be electroactive in oxidation but 

not in reduction and the absence of hydroxyl radicals formation during the electrochemical 

step was demonstrated showing that the pretreatment can be considered as a „direct‟ 

electrochemical process instead of an advanced electrochemical oxidation process. The 

presence of several degradation products in the oxidized effluent showed that the pretreatment 

was not as selective as expected. However, the relevance of the proposed combined process 

was confirmed since the overall mineralization yield was close to 93%. 

 

Keywords: 2,4-D; Combined process; Electrochemical process; Biological treatment; Carbon 

felt electrode. 

 

1. Introduction 

The large accumulation of endocrine disruptors, in continental and marine natural waters are 

the consequence of the worldwide general application of intensive agricultural methods, the 

large-scale development of the agrochemical and food industry and the high levels found in 

some specific effluents (textile, pharmaceutical, hospital waste…). For instance, in the 

Brittany region (France), the Regional Direction of the Environment (DIREN) observes a 

contamination of the Brittany Rivers by phytosanitary products, including pesticides, which 

can interfere with hormone systems of living beings (endocrine disruptors) [1]. Partly 
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responsible for this pollution, low volumes containing high concentrations of persistent 

organic pollutants, in the range of concentrations found in some specific industrial and 

agricultural effluents (unused treatment solution, spray, machine and container washing….) 

[2], can result in large polluted volumes which are difficult to treat owing to their low 

concentrations. One solution would be therefore to treat pollution at source, as intended in this 

study. 

Pesticides impact on the environment is complex and varied according to various factors, such 

as toxicity and ecotoxicity of the parent molecule or by-product metabolites, synergistic 

effects with other pollutants, length of the half-life, exposure time and dose, etc. Various 

acute or chronic poisoning effects on human health have been described [3-6]. There is 

therefore an urgent need for efficient processes for their removal and owing to the possible 

toxicity of the by-product metabolites, total mineralization is mainly targeted. 

For this purpose, biological processes, the most cost-effective for wastewater treatment, 

which are destructive and have been extensively studied [7-11] do not always appear relevant 

for the removal of recalcitrant compounds, owing to their low biodegradability. 

Contrarily, physico-chemical techniques have proved their efficiency for their removal. 

Among them, Advanced Oxidation Processes constitute the most important and widely 

documented group [2,12,13], owing to the high reactivity of the free OH radicals produced. 

However and due to the lack of selectivity of the free radicals, possible toxic by-products can 

be generated, which in some cases can appear more toxic than the parent compounds [14,15]. 

Consequently, the mineralization time is of major importance; too low process time can result 

in toxic by-products, while long process time to ensure total mineralization can induce high 

energy costs. 

It is noteworthy that pesticides biorecalcitrance can be related to the presence of complex 

aromatic chain or to the presence of specific bonds, such as nitro- or halogenated bonds. For 
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instance, among the most used pesticides, a three-quarter of them contains halogenated bonds; 

and the presence of chlorine atoms on phenyl ring is a factor that favors the toxicity of aryl 

compounds [16]. From this, the development of processes targeting a selective attack of 

specific functional groups to improve the biodegradability of a given effluent can constitute 

another approach to treat effluents containing pesticides. 

Indeed, if agricultural effluents are for instance considered, pesticides levels can reach 500 mg 

L-1 [2], as it is the case in farm bottom tanks. Hence, a selective attack of specific functional 

groups, can constitute a relevant solution to relieve AOPs drawbacks. The generation of 

possible toxic by-products could thus be avoided owing to the expected control of the 

resulting by-products as well as the high energy costs since total mineralization is not the 

objective owing to the expected improvement of biodegradability. 

For this purpose and in the case of an electroactive target compound, its electrochemical 

oxidation or reduction can be carried out for its degradation. Total mineralization can be 

subsequently completed during biological treatment, since the potential advantages of the 

strategy of combining physico-chemical and biological processes to treat contaminants in 

wastewater were previously underlined [17-20]. However, the literature dealing with the use 

of direct electrochemical oxidation/reduction for effluent pre-treatment remains scarce. Doan 

et al. [21] and Ghafari et al. [22] coupled an electrochemical process and a biological 

treatment for the removal of heavy metals and nitrate, respectively; while regarding organic 

pollutants, up to now our work seem to be the only available dealing with the combination of 

a direct electrochemical process and a biological treatment. It was investigated for the 

removal of phosmet, an organophosphorous insecticide [23], some antibiotics, tetracycline 

[24] and sulfamethazine [25], and a chlorinated phenoxy herbicide 2,4-dichlorophenoxyacetic 

acid [26,27]. 
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The promising results obtained regarding 2,4-D should be underlined [28,29], since 

halogenated pesticides are the most widespread pesticides. Indeed, it was shown that mild 

oxidation of the target compound can be sufficient to improve biodegradability [28] allowing 

subsequent biological treatment [29]. However in view of the targeted selectivity, the nature 

of the electrochemical process should be clearly elucidated, namely the involvement or not of 

free hydroxyl radials in pesticide‟s oxidation; it is discussed in this study. 

However, the production of this highly reactive species is closely linked to the electrode 

material used and to some operating parameters such as oxygen overvoltage. If some 

electrodes (boron-doped diamond electrodes for instance) are well-known as powerful 

candidates for ●OH generation, it is not at all obvious for some other materials, such as 

graphite felt, the material used in the laboratory [23,25-27]. Indeed, the use of a graphite felt 

working electrode with a high specific area in a flow electrochemical cell [30] allows the 

electrochemical reaction of the electroactive species at macroscale level with low electrolysis 

times. Even if mechanisms involving ●OH have been previously suggested for studies based 

on the use of graphite felt [31], to our knowledge such production at the surface of such 

electrode material has never been demonstrated up to now. However, this question appears to 

be of major importance to understand the electrochemical oxidation phenomena occurring 

during the use of such material and to confirm the specificity and selectivity of the considered 

processes, namely a direct reaction at the electrode surface. For this purpose, three points have 

to be considered, the nature of the working electrode, the experimental conditions and the 

indirect determination of the hydroxyl radicals; these points are investigated in this study. 

In addition and to complete mechanism knowledge, the electrochemical reaction of 2,4-D at 

the electrode was also examined. 

Biological treatment involving activated sludge was then considered to examine the efficiency 

of the electrochemical pretreatment. 
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2. Materials and Methods 

2.1. Chemicals 

2,4-dichlorophenoxyacetic acid (2,4-D) (98%) was purchased from Alfa Aesar (Schiltigheim, 

France). Chlorohydroquinone (85%) was purchased from Sigma-Aldrich (Saint-Quentin 

Fallavier, France). Acetonitrile (ACN) and formic acid were LC/MS grade from JT Baker 

(Deventer, Netherlands). All standards were prepared with ultra pure water (PurelabOptions-

Q7/15, Elga, 18.2 MΩ cm). 

 

2.2. Electrochemical pre-treatment 

The electrochemical pre-treatment was based on a home-made flow cell [28]. Graphite felt 

used as working electrode was supplied by Mersen (RVG 4000 – Mersen, Paris La Défense, 

France) [27]. The dimensions of the graphite felt were 48 mm diameter and 12 mm width. 

Two interconnected stainless steel plates were used as counter-electrodes and 

compartments were separated by cationic exchange membranes (Ionac 3470 – Lanxess SAS, 

Courbevoie, France). The reference electrode (Saturated Calomel Electrode – SCE) was 

positioned in the middle of the graphite felt. To ensure a good homogeneity of the potential 

distribution in the three dimensional working electrode, the felt was located between the two 

counter-electrodes [30]. The electrolyte solution percolated the porous electrode and the flow 

rate was monitored by a Gilson minipuls 2 peristaltic pump (Middleton, WI, USA). A 

VersaSTAT 3 potentiostat (Ametek/Princeton Applied, Elancourt, France) was used to control 

the potential.  

 

2.3. Biological process 

After only one pass through the electrochemical flow-cell, the effluent was collected for the 

subsequent biological treatment, which was carried out in aerobic conditions, using activated 
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sludge purchased from the local wastewater treatment plant (Station de Beaurade, Rennes, 

France). Before use and to avoid any residual carbon or mineral nutrient, it was treated as 

previously detailed [26]. 

Experiments were carried out in 250 mL erlenmeyer flasks containing 100 mL of 

medium, stirred at 250 rpm, kept at 30°C and triplicated to ensure the reproducibility of the 

results. The electrolyzed solution (initially 500 mg L-1 2,4-D) was diluted (five times dilution) 

to allow a direct comparison to non-treated 2,4-D (100 mg L-1 – [26]). Minerals were spiked 

in the medium as highly concentrated solutions to reach the following initial composition (mg 

L-1): Na2HPO4, 334; K2HPO4, 208; KH2PO4, 85; CaCl2, 27.4; MgSO4.7H2O, 22.6; NH4Cl, 75; 

FeCl3.6H2O, 0.26; and the initial pH was adjusted to 7.0 ± 0.2. Activated sludge was added in 

order to have initial concentration of 0.5 g L-1 of dry matter. Samples (5 mL) were taken 

regularly and filtered through 0.45 ȝm-syringe filters for measurements. 

 

2.4. Analysis 

Measurements of the residual 2,4-D and chlorohydroquinone concentration were performed 

by HPLC (High Pressure Liquid Chromatography) (Milford, USA) system involving a pump 

Waters 600, fitted with a Phenomenex Kinetex® C18 2.6 µm column (4.6 mm × 100 mm), 

along with a Waters 996 Photodiode array detector, a Waters 717 ph Autosampler and 

controlled through an Empower® 2 program. The mobile phase consisted of acetonitrile and 

trifluoroacetic acid (TFA) 0.1% in ultra-pure water with a ratio of 30/70 at 1 mL min-1. 

 

2.3.1. Dissolved Organic Carbon (DOC) measurements 

Solutions were filtered on Satorius Stedim Minisart 0.45 µm GF prefilters (Goettingen, 

Germany). DOC was measured by means of a TOC-VCPH/CPN Total Organic Analyzer 
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Schimadzu. Reproducible DOC values were always obtained using the standard NPOC (Non 

Purgeable Organic Carbon) method. 

 

2.3.2. Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD5) 

Chemical Oxygen Demand (COD) was measured by means of a Test Nanocolor® CSB 160 

from Macherey-Nagel (Düren, Germany).  

BOD5 measurements were carried out in Oxitop IS6 (WTW, Alès, France). Activated sludge 

provided by a local wastewater treatment plant (Rennes Beaurade, Bretagne, France) was 

used to inoculate duplicate flasks and the initial microbial concentration was set to 0.5 g L-1. 

More details regarding the experimental procedure can be found in previous papers [26,27]. 

 

3. Results and Discussion 

3.1. Electrochemical behavior of 2,4-D 

Electrochemical behavior of 2,4-D in acidic medium (pH  pKa = 2.8, naturally obtained 

when 2,4-D was dissolved in water) showed an electroactivity in reduction and in oxidation 

[27]. 2,4-D electrolysis in reduction showed a disappearance of the first reduction signal, 

which was however not confirmed by HPLC analysis, which indicated no 2,4-D degradation. 

The disappearance of the reductive signal was found to be closely related to its anionic or 

molecular form, and thus to the pH of the medium, since the reductive signal disappeared at 

alkaline final electrolysis pH (11), while it was recovered after medium acidification to the 

initial pH value (2.8) (Fig.1). 

This electrochemical behavior closely related to the pH and coupled to the analytical results 

obtained by liquid chromatography led to exclude the initial assumption of a C-Cl bond 

cleavage and to consider instead a reduction of the carboxylic acid function of 2,4-D. Indeed, 

the carboxylic acid can undergo a one-electron reaction to yield the corresponding 
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carboxylate anion, which is accompanied by hydrogen release (Reaction 1 – Fig.2); and the 

reduction of the formed carboxylate appears difficult in the considered solvent, water. The 

carboxylic acid can also undergo 2-, 4- or 6- electron reductions to give the corresponding 

aldehyde, alcohol or alcane, respectively (Reactions 2 to 4 – Fig.2); these reactions can 

however occur in acidic conditions avoiding the carboxylate reduction [32]. 

The lack of reduction wave was expected at alkaline pH, since its anionic form largely 

predominated owing to the 2,4-D pKa (2.8); this characteristic wave can only be observed in 

the presence of the protonated form of the compound, namely for pH values below 4. 

The transformation of the carboxylic acid into its ester form should allow to avoid its 

carboxylate reduction, which would be helpful to validate the above assumption. Thus, the 

diethyl ester of 2.4-D was prepared by the reaction of 2.4-D with oxalyl chloride to form the 

acyl chloride derivative and then with ethanol. However, it was not possible to analyze the 

synthesized ester in water owing to its low solubility, leading to perform cyclic voltammetry 

analyses in acetonitrile. As shown in Fig.3, the synthesized ester was reduced at a lower 

potential (-1.75 V/ECS) than the initial compound (-1.5 V/ECS). Consequently, the wave 

observed during 2,4-D reduction was linked to the reduction of the acid to acetate instead of 

the aromatic ring dechlorination. 

 

The electrochemical behavior of 2,4-D was then examined in oxidation, and hence a similar 

approach was considered, namely cyclic voltammetry analysis prior to electrolysis to confirm 

pretreatment feasibility. An oxidation wave was observed at 1.6 V/ECS (Fig.4).  

To confirm 2,4-D electroactivity in oxidation, the absence of pH impact on its electrochemical 

behavior was checked and confirmed, since the oxidation wave was observed at both acidic 

and alkaline pH (Fig.4). 
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3.2. Nature of the electrochemical process 

Since no 2,4-D degradation was detected during cathodic reduction experiments in aqueous 

medium, electrolyses were therefore performed in oxidation. However, one major question 

remained, which was the nature of the electrochemical process involved in 2,4-D oxidation: 

are free radicals involved in 2,4-D degradation? 

 

Electrodes can be classified as „actives‟ and „non-actives‟ according to their reactivity vis-a-

vis the reaction of oxygen formation [33]. In a first step, plane graphite electrode was used to 

allow a fine observation of oxygen formation on the material (graphite). The obtained results 

were then compared to well-known electrode materials, such as platinum or vitreous carbon. 

At pH 2.7, namely close to the experimental conditions in the presence of 2,4-D, it can be 

observed an oxygen release from about 1.5-1.6 V/SCE on graphite and platinum and from 1.6 

et 1.7 V/SCE for vitreous carbon (it should be remembered that on a BDD it is usually 

observed near 2.5 V/SCE) [34]. The shape of the curve recorded on graphite suggested a 

resistive character of the material before oxygen release, which may be related to the nature of 

the electrode. This phenomenon was systematically observed, irrespective of meticulous 

electrode polishing, long degassing time or an electrochemical surface cleaning, namely a 

chronoamperometry at 0 V/SCE before cyclic voltammetry analyses. This relatively early 

oxygen release on graphite suggested an „active‟ electrode nature, which was not in favor of 

●OH production in the considered experimental conditions. 

 

3.2.1. The nature of the working electrode 

Current densities can vary according to the considered surface as highlighted in Fig.5. A 

cylindrical graphite felt of 10 mm diameter and 12 mm height was considered. The total 

geometric surface of the cylinder was 5.34 cm2. From BET analysis and the felt density (given 
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by the manufacturer), 0.7 m² g-1 and 0.088 g cm-3, respectively, the BET surface was 580 cm2 

(the cylinder volume was 0.942 cm3), namely a ratio close to 109 between both surfaces. 

However, it can be observed that the surface given by the BET is most likely overestimated, 

since deduced from the adsorbed nitrogen amount; while and owing to its low size, nitrogen 

can penetrate pores which are not accessible to water. Another and probably more realistic 

approach is to use cyclic voltammetry and especially the oxidation (or reduction) current of 

potassium ferricyanide (K3[Fe(CN)6], 4.9 mM) to estimate the electrochemical electrode 

surface. Indeed, the ferricyanide peak current is linked to the electrode surface through the 

following relation [35]: 

 

With ip the peak current intensity, n the number of exchanged electrons (1), A the electrode 

surface (cm2), D0 the ferricyanide diffusion coefficient (0.76 10-5 cm2 s-1 in KCl 0.1 M), C0 

the ferricyanide concentration (mol cm-3) and ν0 the sweep rate (0.1 V s-1). 

0.5 M phosphate buffer at pH 2.7 was used and an approximate diffusion coefficient value of 

0.76 × 10-5 cm2/s was considered for ferricyanide (in KCl 0.1 M at 25°C) (273, 274). From 

this, the electrochemical surface was 55.05 cm2, namely between the geometric surface and 

that deduced from the BET measure. 

If compared to plane graphite electrode, the more linear oxygen release observed on the 

working electrode highlighted a lower conductivity (Fig.6). The geometric surface seems to 

minimize the active surface area of the electrode owing to the high current density obtained 

(Fig.6). In addition to the external volume, the internal felt volume seems therefore involved 

in the electrochemical reaction. Contrarily, the BET surface seems to overestimate the active 

surface area owing to the negligible current density obtained. The electrochemical surface 
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appears consistent if the beginning of oxygen release, occurring at 1.5-1.6 V/SCE, namely 

close to that observed on a plane graphite felt, is considered. 

 

From this, the oxidation potential of water on graphite felt remains low (1.5-1.6 V/SCE), 

showing that it can be considered as an „active‟ electrode and hence the nature of the working 

electrode was also in favour of a direct 2,4-D oxidation rather than ●OH generation. 

 

3.2.2. The operating conditions 

The electrochemical oxidation of 2,4-D was performed at 1.6 V/SCE. Only few studies 

involving chronoamperometry are available in the literature. However, analytical studies 

show that the potentials corresponding to the currents applied to BDD electrodes in view of 

herbicides degradation can easily exceed 3.2 V/SCE [36], namely highly above the oxidation 

potential of water on a graphite electrode. 

The applied current densities varied widely according to the electrode materials used, the 

operating conditions (electrolyte and pollutant concentrations, temperature….), but usually 

remain in the range some tens to a hundred mA cm-2 [37-39]. The difficulty to determine the 

current density applied on the graphite felt has been previously discussed. Indeed, for the 

graphite felt implemented in the percolation flow-cell (48 mm × 12 mm), the geometric 

surface was 54.3 cm2 and those given by the BET and electrochemically were 13300 and 

1270 cm2. From this and for a usual current of 200 mA, the current density values were 3.7, 

0.015 and 0.157 mA cm-2 for the geometric, the BET and the electrochemical surfaces, 

respectively. Since the active surface should be considered with caution, the current densities 

appeared low if compared to those generally reported in the literature regarding AOPs, 

namely involving hydroxyl radicals formation (in the magnitude of some tens mA cm-2). 
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3.2.3. Hydroxyl radicals’ dosage 

The above arguments are based on analytical observations and assumptions; while the best 

proof of radicals formation remains their dosage. ●OH are known for their strong reactivity 

with benzene (kinetic rate constant k = 8.109 L mol-1 s-1), showing the relevance of this 

compound as a radical scavenger [40,41]. Since phenol is the sole product of benzene 

hydroxylation, the amount of ●OH produced can be deduced from the HPLC monitoring of 

benzene degradation (Ȝ=200 nm) linked to phenol production (Ȝ=270 nm). The absence of 

benzene oxidation at the electrode at 1.6 V/SCE was first confirmed. Electrolysis was then 

performed in the flow-cell with recycling of the electrolyzed solution. Neither noticeable 

benzene degradation nor phenol formation was observed, confirming the absence of ●OH 

formation in the considered experimental conditions, despite the recycling of the electrolysis 

solution through the cell to favor phenol accumulation. 

 

In the light of the above results, possible involvement of ●OH can be rejected in the 

mechanism of 2,4-D oxidation. Consequently, the proposed pretreatment can be considered as 

a „direct‟ electrochemical process instead of an advanced electrochemical oxidation process. 

 

3.3. Feasibility of the combined process 

The BOD5/COD ratio increased from 0.04 initially to 0.25 for the oxidized solution. Owing to 

this biodegradability improvement, and even if the limit of biodegradability (0.4 [19,42]) was 

not reached, a biological treatment of the pretreated solution was performed. 

Prior to the biological treatment step, possible biosorption on activated sludge of 2,4-D on 

the one hand and the major by-product, chlorohydroquinone [27], for the electrolyzed effluent 

on the other hand was assessed and was found to be negligible [26]. 
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Evolution of the mineralization, as well as 2,4-D and Chlorohydroquinone, during activated 

sludge culture are displayed in Figure 7; the low 2,4-D amount (Fig.7) should be related to its 

almost total removal at the end of the electrochemical pretreatment (96% removal), while 

mineralization level remained limited, 34% [26]. Contrarily to the behavior found for non-

pretreated 2,4-D solutions, for which an acclimation period of seven days was needed before 

noticeable 2,4-D degradation can be observed [26], no significant lag phase can be noticed in 

the case of the electrolyzed effluent. Indeed, a 66% decrease of the initial DOC amount in the 

pretreated effluent was measured after only two days of culture (Fig.7), without significant 

involvement of biosorption; illustrating a readily assimilation of some degradation products. 

Mineralization continued until day 5 of culture, since 77% mineralization yield was measured. 

Beyond this time, no really significant decrease of the initial dissolved organic carbon was 

measured since only less than 10% further mineralization was obtained after 21 days of 

culture, leading to a final mineralization yield during the biological treatment of 85%, namely 

93% overall mineralization yield by means of the combined process. It should be observed 

that a biological treatment carried out in similar conditions but lacking of any carbon source, 

especially 2,4-D, was used as a “blank” test; its DOC value, namely 17 mg L-1, was 

considered as the reference (100% mineralization) [26]. Residual 2,4-D and the main 

degradation product, chlorohydroquinone, were also monitored showing their total removal 

within the first two days of biological treatment for the former and after 14 days for the latter, 

in agreement with the total 2,4-D removal also observed after 14 days culture for the non-

pretreated effluent [26]. Owing to the presence of non-negligible residual DOC amount, the 

presence of refractory degradation products in the oxidized effluent can be assumed, which 

was not assimilated even after 21 days of activated sludge culture. Activated sludge 

acclimation to the by-products should be therefore subsequently considered to improve the 

biological mineralization of the electrolyzed solution. 
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4. Conclusion 

The feasibility of an electrochemical process for pesticide pretreatment was shown, since it 

improved significantly the mineralization rate and thus significantly shortened the length of 

the biological treatment if compared to non-pretreated 2,4-D solutions. The absence of 

hydroxyl radical formation was demonstrated showing that the pretreatment can be considered 

as a „direct‟ electrochemical process instead of an advanced electrochemical oxidation 

process. However, its selectivity was not as high as expected owing to the various degradation 

products identified [27] and to the biorefractory degradation products remaining at the end of 

activated sludge culture. Improving selectivity constitutes the main objective to continue this 

work. For this purpose and since most of the persistent organic pollutants being halogenated 

compounds, the specific removal of halogen groups from the substrate could be considered. 

Works are in progress in the laboratory regarding the electrocatalytic reduction of carbon-

halogen bonds of some halogenated target compounds, as well as the influence of the 

dehalogenation on the biodegradability of these compounds. 
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Figure legends 

 

Figure 1. Cyclic voltammetry of a 2,4-D solution (500 mg L-1) at pH 2.8 (dots), at pH 11 

(dashes) and at pH 2.8 after re-acidification (full line).Voltammograms recorded at 100 mV s-

1 in Na2SO4 0.1 mol L-1 on a glassy carbon electrode (7 mm²). 

 

 

Figure 2. Possible reactions for the reduction of the carboxylic function of 2,4-D. 
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Figure 3. Cyclic voltammetry of 2,4-D (20 mmol L-1 – dots) and its ester form (20 mmol L-1 

– full line) in acetonitrile (KPF6 0.1 mol L-1 – blank: dashes) on a glassy carbon electrode (7 

mm²). Voltammograms recorded at 100 mV s-1. 

 

 

Figure 4. Cyclic voltammetry of Na2SO4 0.1 mol L-1 as supporting electrolyte (dots), in the 

presence of 100 mg L-1 2,4-D at pH 3.6 (full line), at pH 11 (empty dashes) and at pH 2.8 

after re-acidification (full dahes).Voltammograms recorded at 100 mV s-1 on a glassy carbon 

electrode (7 mm²). 
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Figure 5. Oxygen evolution observed in phosphate buffer (pH 2.7) on various electrode 

materials: graphite (full line, 12.6 mm²), vitreous carbon (dashes, 7 mm²) and platinum (dots, 

4.5 mm²). The scan direction was indicated by the arrow. Voltammograms recorded at 100 

mV s-1. 

 

 

Figure 6. Oxygen evolution observed in phosphate buffer (pH 2.7) on plane graphite 

electrode (full line, 257 mm²) and on graphite felt for various current densities: considering 

the geometric surface (full dashes), the BET surface (empty dashes) and the electrochemical 

surface (dots). The scan direction was indicated by the arrow. Voltammogram recorded at 100 

mV s-1. 
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Figure 7. Time-courses of 2,4-D (circles), chlorohydroquinone (squares), and Dissolved 

Organic Carbon (triangles, right axis) concentrations during activated sludge culture on 

oxidized 2,4-D solutions (five times dilution of a 500 mg L-1
 2,4-D solution electrolyzed at 

1.6 V/SCE in 0.1 M Na2SO4). 


