




environment. We describe the stationary distribution of
quasiparticles as an equilibrium one characterized by a
temperature Tqp ≫ TEM, as it appears to be the case in
several experiments [20,21,23]. Following the standard
procedure and tracing out the quasiparticles and the EM
fluctuations the equation for the reduced density matrix ρ
for the degrees of freedom of the dot reads
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CασN ðtÞ ¼ hCασðtÞC†

ασð0ÞiCϕðtÞ and anomalous CασA ðtÞ ¼
hCασðtÞCασð0ÞiCϕðtÞ quasiparticle correlation functions.
The second term of the right-hand side of Eq. (2) affects
the evolution of only the even-parity states, since Ið2Þ has
nonvanishing matrix elements only in this subspace. By
contrast, the third and fourth terms, which are generated by
the ðℏ=eÞIð1Þ ~ϕ term, allow a change in the parity of the dot.
This is possible since Ið1Þ describes the transfer of one
electron from (to) the leads to (from) the dot by the photon
assisted destruction (creation) of a quasiparticle in the
leads. The correlation functions can be evaluated (see the
Supplemental Material [38]) and the master equation can
then be solved numerically for a given choice of ZðωÞ by a
projection on the Floquet basis [39]. In the following we
will discuss different regimes for which the analytical and
numerical results will be compared.
Nondriven case.—When the driving term is absent

(ϵ1 ¼ 0) the effective Hamiltonian can be easily diagonal-
ized. The four states split into a degenerate doublet of
odd parity at energy ϵ0 and a nondegenerate pair of
states generated by the hybridization of the even-parity
states j0i and j2i: j−i ¼ cosðβÞj0i þ sinðβÞj2i and jþi ¼
− sinðβÞj0i þ cosðβÞj2i. Their energy reads ϵ�¼ϵ0 þ
U=2�f½ℏΓcosðϕ=2Þ�2þðϵ0þU=2Þ2g1=2 with tan β ¼
ϵ =ℏΓ cosðϕ=2Þ. In this limit, and neglecting the environ-
ment, the transition from 0 to the π phase is particularly
simple. Depending on the value of U and ϵ0 the ground
state can be either the even-parity state j−i (for ϵ < ϵ0) or
the two degenerate odd-parity states jσi (for ϵ > ϵ0).
The current is simply obtained by the evaluation of
the current operator on the ground state and it vanishes
for the odd-parity states, while it equals I ¼
−eΓ sinð2βÞ sinðϕ=2Þð¼ −IþþÞ in the j−i state. To the
next order in Γ=Δ the current shows a small negative value
in the odd-parity state (see the Supplemental Material [38]
or Ref. [9]). In the following we will use the information on
the parity of the occupied state to distinguish between the 0
and the π phase. We can now discuss the effect of the
environment, as predicted by Eq. (2). In the absence of
driving one can show that the density matrix becomes

diagonal in the eigenstate basis of Heff
d and the effect of the

environment reduces to a description of incoherent tunnel-
ing between states. Neglecting the principal parts in Eq. (2)
we obtain an explicit expression for the rates [see Fig. 1(b)
and the Supplemental Material [38] for details]. We assume
kBTEM ≪ Δ and Re½ZðωÞ� ¼ γω2 for ω≲ Δ [40], and we
approximate JðωÞ ¼ γω. One obtains
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with a ¼ �, Γ þ ¼ 0, ΞðxÞ ¼ e 1=x πx=8
p

, and
u ¼ sin 2β cosðϕ=2Þ. (Note that β depends on ϕ and the
expressions for the rates are correctly 2π periodic in ϕ.)
According to our approximation the energy dependence of
the rate is very weak, since jϵa − ϵ0j ≪ Δ. This implies that
the energy ordering of the two states has very little effect
on the parity-breaking rates. The reason is clear: the
transition from one state to the other is possible thanks
to a quasiparticle of energyΔ, which has to be present in the
environment. An electron can then be added or removed
from the dot, and the excess energy is absorbed by a
photon. The relative energy of the initial and final states of
the dot multiplet is small with respect to Δ, and thus in the
end the energy ordering will not be important. In other
terms the coupling to the environment will not allow a
relaxation of the dot to its lowest energy state, but will
induce instead transitions from the 0 to the π states. The
average measured current becomes then simply I ρ : the
magnetic states do not carry current, and the state jþi
relaxes very rapidly to the state j−i, since this transition
does not need the participation of the rare quasiparticles.
The final result is that the 0-π transition can be completely
washed out in the average current. This is clearly visible
in Fig. 2, where the numerical and analytical solution of
Eq. (2) as a function of U for ϕ ¼ π=2 is compared to the
prediction of the system not coupled to the environment.
The former has a smooth behavior following the U
dependence of I , while the latter has a sharp jump. A
similar picture is obtained as a function of ϵ0=Γ.
Effect of driving.—An experimental way of testing the

state of the junction is to irradiate the gate with a microwave
field. The resulting modulation in time of ϵdðtÞ is a
perturbation that cannot change the parity of the junction.
Since the odd-parity states are degenerate, the ac field
can only induce resonant transitions between the even-
parity states for small values of the detuning δ ¼ ω − δþ .
Close to the resonance the dynamics can be described
by performing a rotating-wave approximation (RWA)
that gives for the density matrix in the rotating frame
~ρaa ¼ ρaaeiaωt, ~ρaa ¼ ρaa
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