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Abstract

In this paper, we revisit the analyses of Antonie Stern (1925) and Hans Lewy
(1977) devoted to the construction of spherical harmonics with two or three nodal
domains. This is a natural continuation of our critical reading of A. Stern’s results
for Dirichlet eigenfunctions in the square [2].
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1 Introduction

Let D be a bounded domain in R
n. Let ∆ be the non-positive Laplacian with Dirichlet or

Neumann boundary conditions. We arrange the eigenvalues (λj)j∈N∗ of −∆ in increasing
order,

λ1 < λ2 ≤ λ3 ≤ · · · .

Courant’s 1923 celebrated nodal domain theorem [4], [5, p. 452] states that an eigenfunc-
tion associated with the n-th eigenvalue λn, has at most n nodal domains. On the other
hand, an eigenfunction associated with λn, has a least two nodal domains when n ≥ 2.
The question remained of an eventual lower bound for the number of nodal domains of
an n-th eigenfunction, as in the Sturm-Liouville theory.
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For 2-dimensional domains with Dirichlet boundary conditions, using the Faber-Krahn
inequality in an essential way, Åke Pleijel [19, 1956] proved that the number of nodal
domains of an n-th eigenfunction is asymptotically less than 0.7n ∗. As a corollary, one
can conclude that Courant’s theorem is sharp for finitely many eigenvalues only. Pleijel’s
result was later generalized by other authors [18, 1], including an analysis for the Neumann
boundary condition [20] (dimension 2, piecewise real analytic boundary)†. More recently,
starting from 2009, there has been a renewed interest for Courant’s theorem in the context
of minimal partitions, and the investigation of the cases in which Courant’s theorem is
sharp [8, 9], see Section 5. These developments motivated [2] and motivate the present
paper.

Let us now go back to the 1920’s. Antonie Stern’s 1925 thesis [21], written under the
supervision of Richard Courant, contains the following three results.

Theorem 1.1 Let D be the unit square in R
2, and ∆ the non-positive Laplacian with

Dirichlet boundary conditions. Then, for any integer m, there exists an eigenfunction u of
−∆, associated with the eigenvalue (4m2+1)π2, whose nodal set inside the square consists
of a single simple closed curve. As a consequence, u has exactly two nodal domains.

Theorem 1.2 Let S2 be the unit sphere in R
3, and ∆ the non-positive spherical Lapla-

cian. For any odd integer ℓ, there exists a spherical harmonic, of degree ℓ, whose nodal
set consists of a single simple closed curve. As a consequence, u has exactly two nodal
domains.

Theorem 1.3 Let S2 be the unit sphere in R
3, and ∆ the non-positive spherical Lapla-

cian. For any even integer ℓ ≥ 2, there exists a spherical harmonic, of degree ℓ, whose
nodal set consists of two disjoint simple closed curves. As a consequence, u has exactly
three nodal domains.

Theorem 1.1 is stated without proof in [5, p. 455], with a reference to Stern’s thesis [21],
and illustrated by two figures taken from [21]. Theorems 1.2 and 1.3 do not seem to be
mentioned in [5]. On the other hand, Stern’s results on spherical harmonics appear in a
1977 paper by Hans Lewy [12, Theorems 1 and 2], without any reference to A. Stern. In
his paper, Lewy also shows that the lower bound 3 is sharp.

In [22], we provide extracts from Stern’s thesis, with annotations and highlighting of the
main assertions and ideas.

Stern’s thesis is rather discursive. The main results are not stated as propositions or
theorems. They appear in the course of the thesis, for example in [22, tags E1, K1, K2]:

[E1] . . . es läßt sich beispielweise leicht zeigen, daß auf der Kugel bei jedem
Eigenwert die Gebietszahlen 2 oder 3 auftreten, und daß bei Ordnung nach

∗More precisely, less than 4π/λ(Disk1) where λ(Disk1) is the lowest eigenvalue of the Dirichlet
Laplacian in the disk of area 1.

†The case of the Neumann problem for the square was already considered in Pleijel’s article [19] and
revisited recently in [10].
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wachsenden Eigenwerten auch beim Quadrat die Gebietszahl 2 immer wieder
vorkommt.

[K1] Zunächst wollen wir zeigen, daß es zu jedem Eigenwert Eigenfunktio-
nen gibt, deren Nullinien die Kugelfläche nur in zwei oder drei Gebiete teilen.
. . . . . . Die Gebietszahl zwei tritt somit bei allen Eigenwerten
λn = (2r + 1)(2r + 2) r = 1, 2, · · · auf ;

[K2] ebenso wollen wir jetzt zeigen, daß die Gebietszahl drei bei allen Eigen-
werten λn = 2r(2r + 1), r = 1, 2, · · · immer wieder vorkommt.

Stern’s proofs are far from being complete, but she provides nice geometric arguments
[22, tags I1-I3], and figures.

[I1] Legen wir die beiden Knotenliniensysteme übereinander und schraffieren
wir die Gebiete, in denen beide Funktionen gleiches Verzeichen haben, so kann
die Knotenlinie der Kugelfunktion

P 2r+1
2r+1 (cosϑ) cos(2r + 1)ϕ+ µP2r+1(cosϑ) , µ > 0

nur in der nichtschraffierten Gebieten verlaufen

[I3] und zwar für hinreichend kleine µ in beliebiger Nachbarschaft der Knoten-
linien von P 2r+1

2r+1 (cosϑ) cos(2r + 1)ϕ, d. h. der 2r + 1 Meridiane, da sich bei

stetiger Änderung von µ das Knotenliniensystem stetig ändert . . . .

[I2] Da die Knotenlinie ferner durch die 2(2r+1)2 Schnittpunkte der Nullinien
der beiden obenstehenden Kugelfunktionen gehen muß . . .

Let us now explain Stern’s main ideas. In both cases, A. Stern starts from an eigen-
function u whose nodal set can be completely described. In the case of the unit square,
this function u is chosen to be sin(2mπx) sin(πy) + sin(πx) sin(2mπy). In the case of
the sphere, it is chosen to be the restriction to the sphere of the homogeneous harmonic
polynomial ℑ(x+ iy)ℓ. A. Stern then perturbs the eigenfunction u by some eigenfunction
v (in the same eigenspace), looking at the family uµ = u+ µv for µ small. The function
v is chosen to be sin(πx) sin(2mπy) for the square, and a spherical harmonic who nodal
sets mainly contains latitude circles (parallels) in the case of the sphere.

The main observation made by A. Stern is that for µ > 0, the nodal set N(uµ) satisfies

N ⊂ N(uµ) ⊂ N ∪ {u v < 0},

where N = N(u) ∩ N(v) is the set of zeros common to u and v. In the case of the
square, the connected components of the set {u v 6= 0} are small squares, whose vertices
belong to N . In the case of the sphere, they are square-like domains with vertices in
N , and triangle-like domains one of whose vertices is the north or south pole, and some
others belong to N . In both cases, the domains form a kind of grey/white checkerboard
(the connected open sets on which u v is positive/negative) on the unit square or on the
sphere. The above inclusions say that the nodal set N(uµ) contains N , and has to avoid
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the black squares, see [22, tags I1, I2]. A. Stern concludes by saying that the nodal set
N(uµ) deforms continuously, and remains close to the nodal set N(u) when µ is small,
[22, tag I3].

In [2], we gave a complete geometric proof of Theorem 1.1. In this paper, we give a
complete geometric proof of Theorems 1.2 and 1.3. In each case, our proofs use Stern’s
geometric ideas, together with an analysis of the possible local nodal patterns in the
square-like and triangle-like domains. For this purpose,

(i) we analyze the critical zeros (points in the nodal set which are also critical points),
and we show in particular that uµ does not have any critical zero when µ 6= 0 is
small enough (Lemmas 3.1 and 4.2);

(ii) we use separation lemmas (Lemmas 3.2 and 4.3) to exclude certain local nodal
patterns;

(iii) we use an energy argument to show that a connected component of the set
{u v 6= 0} cannot contain a simple closed nodal curve of uµ, see Properties 3.3 (iii)
and Properties 4.4 (vii);

(iv) we also use classical properties of nodal sets of eigenfunctions, as summarized in [2,
Section 5.2].

In her thesis, A.Stern refers to the continuity of the nodal set under a small perturbation
[22, tag I3], but does not give any detail. Lewy [12] uses a perturbation argument, with
complete proofs. Continuity arguments were explored later in [13]. In our proofs, the
continuity argument is replaced by the separation lemmas.

For any degree ℓ, A. Stern [21] and H. Lewy [12] give examples of a spherical harmonic ho

whose nodal set is a simple closed regular curve, when the degree is odd, and of a spherical
harmonic he whose nodal set consists of two disjoint simple closed regular curves, when
the degree is even.

When the degree ℓ is odd, Stern and Lewy start from the spherical harmonic W , whose
expression in spherical coordinates is given by w(ϑ, ϕ) = sinℓ(ϑ) sin(ℓϕ), and consider
the family W + µF , where F is a spherical harmonic of degree ℓ. Lewy [12, Theorem
1] only requires that F (p+) > 0 ; Stern (see the proof of Proposition 3.4) chooses F to
be the zonal spherical harmonic given by Pℓ(cosϑ) in spherical coordinates. As we shall
see, for µ small enough, 0 is a regular value of W + µF , and the nodal set N(W + µF )
is connected. As a consequence, one has two-parameter families of spherical harmonics
whose nodal sets are simple closed regular curves.

When the degree ℓ ≥ 2 is even, Stern and Lewy use different methods.

Stern starts from the spherical harmonic W , and perturbs it by the spherical harmonic
Vα whose expression in spherical coordinates is given by vα(ϑ, ϕ) = P 1

ℓ (cosϑ) sin(ϕ−α).
As we shall see, for µ small enough, 0 is a regular value of W + µVα (see the proof of
Proposition 4.5), and the nodal set N(W + µVα) has two connected components. This
construction gives us a three-parameter family of spherical harmonics of odd degree ℓ,
admitting 0 as a regular value, and whose nodal sets have two connected components.
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Lewy [12, Theorem 2] first constructs a spherical harmonic F of the form F (x, y, z) =
x y F1(x, y, z), where the second function only depends on the distance to the north pole
p+. The nodal set N(F ) consists of two orthogonal great circles through the poles p±,
and (ℓ − 2) latitude circles. The nodal set N(F ) has 4(ℓ − 2) + 2 singular points which
are double crossings. Lewy then constructs a spherical harmonic G, of degree ℓ, with ad
hoc signs at the singular points of N(F ), so that F + µG desingularizes N(F ) when µ is
small enough. He then shows that, for µ small enough, 0 is a regular value of F + µG,
and that the nodal set N(F + µG) has two connected components. This construction
yields a two-parameter family of such spherical harmonics.

As a matter of fact, one can prove that the set of spherical harmonics of odd degree
ℓ (resp. of even degree ℓ), which admit 0 as a regular value, and whose nodal set is
connected (resp. whose nodal set has two connected components), is an open set in Hℓ.
This is a consequence of the inverse function theorem and of the existence of the above
examples.

Finally, let us point out that our method yields sharp quantitative results. We indeed
show that there exists some positive µc such that for 0 < µ < µc the nodal set of uµ

is a regular 1-dimensional submanifold of the sphere, while the nodal set of uµc has
self-intersections.

The paper is organized as follows. In Section 2 we recall some properties of spherical har-
monics and Legendre functions. In Sections 3 and 4, we give detailed geometric proofs of
Stern’s first and second theorems for the sphere, with quantitative statements, Proposi-
tions 3.4 and 4.5. In Section 5, we recall the state of the art on the question of Courant
sharpness for the sphere. In the appendix, we provide some numerical computations of
nodal sets of spherical harmonics.

2 Preliminaries

2.1 Spherical harmonics

Denote by S
2 := {(x, y, z) ∈ R

3 | x2 + y2 + z2 = 1} the round 2-sphere. Given an integer
ℓ ∈ N, we call Hℓ the vector space of spherical harmonics of degree ℓ i.e., the restriction
to the sphere of the harmonic homogeneous polynomials in 3 variables in R

3. This is the
eigenspace of −∆ on S

2, associated with the eigenvalue ℓ(ℓ+1). It has dimension 2ℓ+1.
Given a spherical harmonic h(ξ, η, ζ) of degree ℓ, with (ξ, η, ζ) ∈ S

2, one can recover the
harmonic homogeneous polynomial H it comes from as follows. Let r = (x2+ y2+ z2)1/2.
Then,

H(x, y, z) = rℓ h(xr−1, yr−1, zr−1) . (2.1)

For simplicity, we shall henceforth identify the spherical harmonic h and the polynomial
H.

The space H0 is 1-dimensional, associated with the eigenvalue 0. The space H1 has
dimension 3. It is associated with the eigenvalue 2, and is generated by the coordi-
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nate functions x, y and z which have exactly two nodal domains. The space H2 has
dimension 5. It is associated with the eigenvalue 6, and is generated by the polynomials
yz, xz, xy, 2z2 − x2 − y2 and x2 − z2. It is easy to check that for µ > 0, small enough, the
spherical harmonic xy+µ (2z2 − x2 − y2) has exactly three nodal domains: the nodal set
of the spherical harmonic consists of two simple closed curves given by the intersection of
the sphere with a right cylinder over a hyperbola in the {x, y}-plane. Following A. Stern,
we shall later on consider a perturbation of the degree ℓ spherical harmonic ℑ(x+ iy)ℓ.

We denote the north and south poles of S
2 respectively by p+ = (0, 0, 1) and p− =

(0, 0,−1).

By abuse of language, we shall call spherical coordinates on the sphere S
2, the map

{

E : [0, π]× R → S
2 ,

E(ϑ, ϕ) = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) ,
(2.2)

where ϑ is the co-latitude, and ϕ the longitude.
The map E is a diffeomorphism from (0, π)× (ϕ0, 2π + ϕ0) onto S

2 \Mϕ0
, where Mϕ0

=
E([0, π], ϕ0) is the meridian from p+ to p− with longitude ϕ0. To cover S2 \ {p±}, we will
work in (0, π)× R2π i.e., modulo 2π in the ϕ variable (R2π = R/(2πZ)).

The map E can be viewed as the polar coordinates in the exponential map expp+ , which
sends the disk D(0, π), with center 0 and radius π in Tp+S

2, onto S
2 \ {p−} diffeomorphi-

cally. The variable ϑ is the distance to the north pole.

In the spherical coordinates, the antipodal map is given by (ϑ, ϕ) → (π − ϑ, π + ϕ).

In the sequel, we will illustrate the proofs by figures representing the nodal patterns
viewed through the exponential map i.e., in the disk D(0, π).

Using the spherical coordinates, the spherical harmonics can be described in terms of
Legendre functions and polynomials. In the next section, we fix some notation, and
recall useful properties of Legendre functions and polynomials.

2.2 Legendre functions and polynomials

The (2ℓ + 1)-dimensional vector space Hℓ of spherical harmonics of degree ℓ admits the
basis,

Pℓ(cosϑ), Pm
ℓ (cosϑ) cos(mϕ), Pm

ℓ (cosϑ) sin(mϕ) , (2.3)

where m is an integer 1 ≤ m ≤ ℓ, Pℓ the Legendre polynomial of degree ℓ, and Pm
ℓ the

Legendre functions. We use the notation and the normalizations of [16].

Properties 2.1 For 0 ≤ m ≤ ℓ, the Legendre function Pm
ℓ satisfies the differential

equation,
(

(1− t2)P ′(t)
)′
+

(

ℓ(ℓ+ 1)− m2

1− t2

)

P (t) = 0 . (2.4)

When m is 0, Pm
ℓ = Pℓ . Furthermore, the following properties hold.
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(i) Identities.

Pℓ(t) =
1

2ℓℓ!

(

d

dt

)ℓ

(t2 − 1)ℓ , (2.5)

Pm
ℓ (t) = (−1)m(1− t2)m/2

(

d

dt

)m

Pℓ(t) , (2.6)

and
(1− t2)P ′

ℓ(t) = ℓ Pℓ−1(t)− ℓ t Pℓ(t) . (2.7)

In particular, P ℓ
ℓ (cosϑ) = Cℓ sin

ℓ(ϑ) , where Cℓ is a constant.

(ii) The polynomial Pℓ has degree ℓ, the same parity as the integer ℓ, and satisfies

Pℓ(1) = 1 , Pℓ(−1) = (−1)ℓ , (2.8)

and
sup
[−1,1]

|Pℓ(t)| = 1 . (2.9)

(iii) The polynomial Pℓ(t) has ℓ simple roots tj = tj(ℓ) (j = 1, · · · , ℓ) in the interval
(−1, 1), enumerated in decreasing order. We write these roots as tj(ℓ) = cos(ϑj(ℓ)),
with

0 < ϑ1(ℓ) < ϑ2(ℓ) < · · · < ϑℓ−1(ℓ) < ϑℓ(ℓ) < π . (2.10)

The derivative P ′
ℓ(t) has (ℓ − 1) simple roots which we write as cos

(

ϑ′
j(ℓ)

)

. They
satisfy

0 < ϑ1(ℓ) < ϑ′
1(ℓ) < ϑ2(ℓ) < · · · < ϑℓ−1(ℓ) < ϑ′

ℓ−1(ℓ) < ϑℓ(ℓ) < π . (2.11)

Note that the values ϑj(ℓ) and ϑ′
j(ℓ) are symmetrical with respect to π

2
. As a con-

sequence, for ℓ odd, Pℓ(0) = 0 and P ′
ℓ(0) 6= 0, and for ℓ even, Pℓ(0) 6= 0 and

P ′
ℓ(0) = 0.

(iv) The polynomials Pℓ and Pℓ−1 have no common zero. More precisely, the zeros of Pℓ

and Pℓ−1 are intertwined:

0 < ϑ1(ℓ) < ϑ1(ℓ− 1) < ϑ2(ℓ) < · · · < ϑℓ−1(ℓ) < ϑℓ−1(ℓ− 1) < ϑℓ(ℓ) < π . (2.12)

(v) For the zeros of Pℓ, one has the inequalities,

2j − 1

2ℓ+ 1
π < ϑj(ℓ) <

2j

2ℓ+ 1
π , for j = 1, · · · , ℓ . (2.13)

(vi) Call pj(ℓ), 1 ≤ j ≤ [ ℓ
2
], the local maxima of |Pℓ(t)|, when t decreases from 1 to 0.

Then,
0 < p[ ℓ

2
](ℓ) < · · · < p2(ℓ) < p1(ℓ) < 1 . (2.14)

Here [·] denotes the integer part.
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(vii) For the derivative of the Legendre polynomial Pℓ(t), one has the inequality,

|P ′
ℓ(t)| ≤

ℓ(ℓ+ 1)

2
for − 1 ≤ t ≤ 1 , (2.15)

where the equality is achieved for ℓ = 0, 1 and when ℓ ≥ 2, for t = ±1.

For these properties, we refer to [16, Chapters IV and V] and to [23]. In particular, Prop-
erties (v)-(vii) can be found in [23], resp. under Theorems 6.21.2, 7.3.1, and Inequality
(7.33.8).

Remarks. (i) Using (2.7), one can prove that for 1 ≤ j ≤ ℓ− 1,

ϑj(ℓ) < ϑj(ℓ− 1) < ϑ′
j(ℓ) . (2.16)

(ii) One can relate the asymptotic behavior of ϑ1(ℓ) as ℓ → +∞, to the first zero j0,1 of
the zero-th Bessel function J0, [23, Theorem 8.1.2],

ϑ1(ℓ) ∼ j0,1/ℓ . (2.17)

(iii) One can also relate the asymptotic behavior of p1(ℓ) as ℓ → +∞, to the first zero
j1,1 of the Bessel function J1 = −J ′

0,

p1(ℓ) ∼ −J0(j1,1) . (2.18)

3 Stern’s first theorem: odd case

The purpose of this section is to prove Theorem 1.2. As a matter of fact, we shall prove
a more quantitative result, Proposition 3.3, which implies the theorem. We use Stern’s
ideas sketched in the introduction.

Fix an integer ℓ ∈ N, without any parity assumption for the time being.

3.1 Notation

Up to scaling, there is a unique spherical harmonic Zℓ, of degree ℓ, which is invariant
under the rotations about the z-axis. Viewed in the spherical coordinates, this zonal
spherical harmonic is given by Pℓ(cosϑ). Let ϑ1(ℓ) < ϑ2(ℓ) < · · · < ϑℓ(ℓ) be the zeros
of the function ϑ → Pℓ(cosϑ) in the interval (0, π), see Properties 2.1 (iii). The nodal
set of the spherical harmonic Zℓ, denoted N(Zℓ), consists of precisely ℓ latitude circles
(parallels),

Li := {(ϑ, ϕ) | ϑ = ϑi(ℓ)} , 1 ≤ i ≤ ℓ .

They determine sectors on the sphere,

Li := {(ϑ, ϕ) | ϑi(ℓ) < ϑ < ϑi+1(ℓ)} , 0 ≤ i ≤ ℓ ,
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where ϑ0(ℓ) = 0 and ϑℓ+1(ℓ) = π. In the sector Li, the function Zℓ has the sign of (−1)i .

Call Wℓ the spherical harmonic of degree ℓ obtained by restricting the harmonic homoge-
neous polynomial ℑ(x+iy)ℓ to the sphere. Viewed in spherical coordinates, this spherical
harmonic is given by sinℓ(ϑ) sin(ℓϕ). Its nodal set N(Wℓ) consists of ℓ great circles of S

2

i.e., of 2ℓ meridians,

Mj = {(ϑ, ϕ) | ϕ = j
π

ℓ
} , 0 ≤ j ≤ 2ℓ− 1 .

They determine sectors on the sphere,

Mj = {(ϑ, ϕ) | j π
ℓ
< ϕ < (j + 1)

π

ℓ
} 0 ≤ j ≤ 2ℓ− 1 .

In the sector Mj the function Wℓ has the sign of (−1)j.

Note that these meridians meet at the north and south poles p± which are the only
singular points of the nodal set N(Wℓ) .

The intersection
N = N(Zℓ) ∩N(Wℓ)

is the finite set of zeros common to Zℓ and Wℓ.

We call qi,j the intersection point of Li with Mj , 1 ≤ i ≤ ℓ , 0 ≤ j ≤ 2ℓ− 1 , so that

N = {qi,j, 1 ≤ i ≤ ℓ, 0 ≤ j ≤ 2ℓ− 1} .

For 0 ≤ i ≤ ℓ and 0 ≤ j ≤ 2ℓ − 1, we introduce the sets Qi,j = Li ∩ Mj, which are
the connected components of the open set {Zℓ Wℓ 6= 0}. In Qi,j the sign of the function
Zℓ Wℓ is (−1)i+j .

The sets Qi,j form a checkerboard over the sphere, and following the idea of A. Stern,
they can be colored according to the sign of the function Zℓ Wℓ.

Finally, for 0 ≤ j ≤ 2ℓ− 1 , we introduce the meridian Bj,

Bj = {(ϑ, ϕ) | ϕ = (j +
1

2
)
π

ℓ
} , (3.1)

which bisects the sector Mj.

Figure 3.1 displays the latitude circles and the meridians viewed through the exponential
map at the north pole p+, in the cases ℓ = 3 and ℓ = 4. The common zeros of Wℓ and Zℓ

are the big dots. The coloring white/grey illustrates the sign of Zℓ Wℓ (see below). The
outer circle is mapped to the south pole by the exponential map.

3.2 The family Hµ,ℓ

Following Stern [21], we consider the one-parameter family of spherical harmonics,

Hµ,ℓ = Wℓ + µZℓ , (3.2)
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FEx1-L3L4-WZ-N-checker.png

Figure 3.1: Checkerboards in the cases ℓ = 3 and ℓ = 4.

which may be written in spherical coordinates as

hµ,ℓ(ϑ, ϕ) = sinℓ(ϑ) sin(ℓϕ) + µPℓ(cosϑ) . (3.3)

Note that
h−µ,ℓ(ϑ, ϕ) = −hµ,ℓ(ϑ, ϕ+

π

ℓ
) , (3.4)

for (ϑ, ϕ) ∈ (0, π)×R2π. It follows that we can restrict to the case µ > 0. We shall do so
for the remaining part of Section 3.

3.2.1 Critical zeros of Hµ,ℓ

We call critical zero of a function a point which is both a zero and a critical point.

According to Properties 2.1 (ii), Hµ,ℓ(p+) = µ, and Hµ,ℓ(p−) = (−1)ℓµ, and hence the
north and south poles do not belong to the nodal set N(Hµ,ℓ) when µ 6= 0. As a
consequence, for µ > 0, the critical zeros of Hµ,ℓ are located in S

2 \ {p±}, and we can
look for them in the spherical coordinates (ϑ, ϕ) ∈ (0, π)× R2π.
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For µ > 0, the point (ϑ, ϕ) corresponds to a critical zero of Hµ,ℓ, if and only if

hµ,ℓ(ϑ, ϕ) = 0 ,

∂ϑh
µ,ℓ(ϑ, ϕ) = 0 ,

∂ϕh
µ,ℓ(ϑ, ϕ) = 0 .

(3.5)

This is equivalent for (ϑ, ϕ) to satisfy the relations,

cos(ℓϕ) = 0 i.e., sin(ℓϕ) = ±1 ,

± sinℓ(ϑ) + µPℓ(cosϑ) = 0 ,

± ℓ cosϑ sinℓ−1(ϑ)− µ sinϑP ′
ℓ(cosϑ) = 0 .

(3.6)

We plug (2.7) into the third line in the above system, and notice that the second line
implies that ϑ 6= 0, π. It follows that, for µ 6= 0, (3.6) is equivalent to

cos(ℓϕ) = 0 i.e., sin(ℓϕ) = ±1 ,

1

µ
= ∓Pℓ(cosϑ)

sinℓ(ϑ)
,

Pℓ−1(cosϑ) = 0 .

(3.7)

By Properties 2.1 (iii)-(iv), the last equation in (3.7) has exactly (ℓ− 1) simple roots in
[0, π]. We denote them by, ϑ1(ℓ − 1) < . . . < ϑℓ−1(ℓ − 1). They are symmetrical with
respect to π

2
due to the parity of Pℓ−1.

It follows that, for µ > 0, the only possible critical zeros of the spherical harmonic Hµ,ℓ

are given in spherical coordinates by the points
(

ϑi(ℓ− 1), (j + 1
2
)π
ℓ

)

for 1 ≤ i ≤ ℓ − 1
and 0 ≤ j ≤ 2ℓ− 1. These points can only occur as critical zeros for finitely many values
of µ, given by the second equation in (3.7). Away from these values of µ, the spherical
harmonic Hµ,ℓ has no critical zero.

Since we restrict to µ > 0, the critical values of µ are given by

µi(ℓ) =
sinℓ (ϑi(ℓ− 1))

|Pℓ (cosϑi(ℓ− 1)) | , (3.8)

for 1 ≤ i ≤ ℓ− 1.
They are well-defined because the denominators do not vanish, since the zeros of Pℓ and
Pℓ−1 are intertwined, see Properties 2.1 (iv). For the value µi = µi(ℓ), the spherical
harmonic Hµi,ℓ has finitely many critical zeros which are well determined by equations
(3.7). Note that the values µi(ℓ) are positive.

Taking the parity of the Legendre polynomials into account, it suffices to consider the
values µi(ℓ) for 1 ≤ i ≤ [ ℓ

2
], where [ ℓ

2
] denotes the integer part of ℓ

2
. We summarize the

preceding discussion in the following lemma.

Lemma 3.1 Assume µ > 0, and define µc(ℓ) > 0 to be the infimum

µc(ℓ) = inf
1≤i≤[ ℓ

2
]
µi(ℓ) , (3.9)

11



where the positive values µi(ℓ) are given by (3.8).

The spherical harmonic
Hµ,ℓ = Wℓ + µZℓ

does not vanish at the north and south poles. Except for the values {µi}[
ℓ
2
]

i=1, H
µ,ℓ has no

critical zero. In particular, for 0 < µ < µc(ℓ), the function Hµ,ℓ has no critical zero,
its nodal set is a 1-dimensional submanifold of the sphere, and hence consists of finitely
many disjoint regular simple closed curves.

Note. The last assertion in the lemma follows from the fact that self-intersections in the
nodal set of an eigenfunction correspond to critical zeros, see [2], Section 5.2.

Remark. One can easily estimate µc(ℓ) from below. Using Properties 2.1 (ii) and (vi),
one finds that

µi(ℓ) >
sinℓ(ϑi(ℓ− 1))

pi(ℓ)
>

sinℓ(ϑ1(ℓ− 1))

p1(ℓ)
.

Hence,

µc(ℓ) ≥
sinℓ(ϑ1(ℓ− 1))

p1(ℓ)
. (3.10)

Note that one also has,

µc(ℓ) ≥ min

(

µ1(ℓ),
sinℓ(ϑ2(ℓ))

p2(ℓ)

)

. (3.11)

One can also obtain the asymptotics of µ1(ℓ) as ℓ tends to infinity. Recall that π
2ℓ+1

≤
ϑ1(ℓ) ≤ 2π

2ℓ+1
, and use Hilb’s formula [23, Theorems 8.21.6],

Pℓ(cosϑ) =

(

ϑ

sinϑ

)
1

2

J0

(

(ℓ+
1

2
)ϑ

)

+R(ϑ) ,

with
R(ϑ) = O(θ2) , if |ϑ| ≤ C/ℓ .

It follows that

ϑ1(ℓ) =
j0,1
ℓ+ 1

2

+O(1/ℓ3) ,

where j0,1 is the least positive zero of the Bessel function J0.

Compute

Pℓ (cosϑ1(ℓ− 1)) =

(

1 +O(
1

ℓ2
)

)

J0

(

(ℓ+
1

2
)
j0,1
ℓ− 1

2

)

+O(
1

ℓ2
) = j0,1J

′
0(j0,1)/(ℓ−

1

2
)+O(

1

ℓ2
) .

Recall that
µ1(ℓ) = sinℓ (ϑ1(ℓ− 1)) /|Pℓ (cosϑ1(ℓ− 1)) | .
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Observe that

sin (ϑ1(ℓ− 1)) =
j0,1
ℓ− 1

2

+O(1/ℓ3) .

Taking the power ℓ, the remainder term does not change the main term of the asymptotics,

sinℓ (ϑ1(ℓ− 1)) ∼
(

j0,1
ℓ− 1

2

)ℓ

.

Finally, we obtain

µ1(ℓ) ∼
(

j0,1
ℓ− 1

2

)ℓ−1
1

|J ′
0(j0,1)|

.

It turns out that the second term in the right hand side of (3.11) is asymptotically bigger
than the first one. It follows that the preceding formula holds with µ1(ℓ) replaced by
µc(ℓ) as well.

3.2.2 A separation lemma for N(Hµ,ℓ)

For 0 ≤ j ≤ 2ℓ− 1 , we look at the function Hµ,ℓ restricted to the meridian Bj . Let

bµ,ℓ,j = Hµ,ℓ|Bj
,

i.e.,
bµ,ℓ,j(ϑ) = (−1)j sinℓ(ϑ) + µPℓ(cosϑ) .

Recall the notation ϑ1(ℓ) and p1(ℓ), see Properties 2.1, (iii) and (vi).

Lemma 3.2 The functions bµ,ℓ,j satisfy the following properties.

(i) For 0 < µ < µc(ℓ), the function bµ,ℓ,j does not vanish in [ϑ1(ℓ), π − ϑ1(ℓ)] .

(ii) When ℓ and j are even, bµ,ℓ,j(ϑ) > 0 in [0, ϑ1(ℓ)] ∪ [π − ϑ1(ℓ), π].

(iii) When ℓ is even and j odd, the function bµ,ℓ,j(ϑ) vanishes exactly once in each
interval (0, ϑ1(ℓ)) and (π − ϑ1(ℓ), π).

(iv) When ℓ is odd and j even, the function bµ,ℓ,j(ϑ) is positive in [0, ϑ1(ℓ)] and vanishes
exactly once in (π − ϑ1(ℓ), π).

(v) When ℓ and j are odd, the function bµ,ℓ,j(ϑ) vanishes exactly once in (0, ϑ1(ℓ)) and
is negative in [π − ϑ1(ℓ), π].

The previous items describe the possible intersections of the nodal set N(Hµ,ℓ) with the
meridian Bj which bisects the sector Mj.
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Proof. (i) The function bµ,ℓ,j vanishes in the given interval if and only if

Pℓ(cosϑ)

sinℓ(ϑ)
=

(−1)j+1

µ
.

Call β1(ϑ) the function in the left hand side. Using (2.7), we obtain its derivative,

β′
1(ϑ) = − ℓ Pℓ−1(cosϑ)

sinℓ+1(ϑ)
. It follows that the local extrema of the function β1 are achieved at

the values ϑi(ℓ− 1), and that

bµ,ℓ,j(ϑi(ℓ− 1)) = (−1)j sinℓ(ϑi(ℓ− 1))
[

1 + (−1)jµ
Pℓ(cosϑi(ℓ− 1))

sinℓ(ϑi(ℓ− 1))

]

.

Using (3.8), the assertion follows. To prove assertions (ii)-(v), we look at the signs of the
functions Pℓ(cosϑ) and P ′

ℓ(cosϑ) in the intervals (0, ϑ1(ℓ)) and (π − ϑ1(ℓ), π) in order to
determine the signs of bµ,ℓ,j(ϑ) and ∂ϑb

µ,ℓ,j(ϑ). We leave the details to the reader. �

3.2.3 General properties of N(Hµ,ℓ)

We now state simple general properties of the nodal set of the spherical harmonic
Hµ,ℓ = Wℓ + µZℓ . We use the notation of Subsection 3.1.

Properties 3.3 For µ > 0, the nodal sets of the spherical harmonics Hµ,ℓ share the
following properties.

(i) The nodal set of Hµ,ℓ satisfies

N ⊂ N(Hµ,ℓ) ⊂ N ∪ {Zℓ Wℓ < 0}.
This means that a point in the nodal set of Hµ,ℓ is either one of the points in N ,
or a point in some open domain Qi,j, with (−1)i+j = −1.

(ii) The nodal set of Hµ,ℓ near each point qi,j ∈ N consists of a single regular arc which
is transversal to the latitude circle Li and to the meridian Mj. In other words,
an arc in the nodal set inside some domain Qi,j, with (−1)i+j = −1, can only
enter/exit Qi,j through a point in N (a vertex), and cannot cross the boundary of
Qi,j elsewhere.

(iii) For 0 < µ < µc(ℓ) (defined in Lemma 3.1), no connected component of the nodal
set N(Hµ,ℓ) can be entirely contained in some Qi,j .

Proof. Property (i) is clear. Property (ii) follows from the fact that both ∂ϑh
µ,ℓ and

∂ϕh
µ,ℓ do not vanish at the points (ϑi, j

π
ℓ
). Indeed, µ > 0, and Pℓ and P ′

ℓ have no common
zero according to Properties 2.1 (iv). For the proof of Property (iii), we observe that the
assumption on µ implies that the nodal set N(Hµ,ℓ) is a 1-dimensional submanifold of
the sphere i.e., a finite collection of disjoint regular simple closed curves. Assume that
one such closed curve is entirely contained in some domain Qi,j. This domain Qi,j would
contain some nodal domain of Hµ,ℓ, and hence its first Dirichlet eigenvalue λ would be
strictly less than ℓ(ℓ+ 1), the eigenvalue associated with Hµ,ℓ. On the other-hand, since
Qi,j is contained in one of the nodal domains of Zℓ (or of Wℓ), its first eigenvalue satisfies
λ > ℓ(ℓ+ 1) . This leads to a contradiction. �
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3.2.4 Local nodal patterns for Hµ,ℓ

Assume that 0 < µ < µc(ℓ).

Figure 3.2 is drawn in the case ℓ = 4, but aims at illustrating the possible local nodal
patterns in the general case. We look at square-like domainsQi,j which stay away from the
poles, and can be visited by the nodal set. This means that 1 ≤ i ≤ ℓ− 1, 0 ≤ j ≤ 2ℓ− 1
and that (−1)i+j = −1, corresponding to the white domains on the checkerboard, see
Properties 3.3 (i).

FEx1-L4-patterns-sq.png

Figure 3.2: Local nodal patterns away from the poles.

The local nodal pattern at the vertices is shown in the domain labelled (A). According
to Lemma 3.1, and our assumption on µ, the nodal set N(Hµ,ℓ) consists of finitely many
disjoint simple closed regular curves. According to Properties 3.3 (ii), it follows from
Jordan’s separation theorem that any such nodal curve can only enter a domain Qi,j at
a vertex, and exit at another one. Taking into account Properties 3.3 (iii), this leaves
exactly three possibilities for the nodal pattern in a domainQi,j, illustrated in the domains
labelled (B), (C) and (D). According to the separation Lemma 3.2, both (C) and (D)
are impossible. Notice that case (D) could also be discarded by the fact that the nodal
curves do not intersect (absence of critical zeros). Finally, the only possible local nodal
pattern in the square-like domain Qi,j is the one shown in (B): the nodal curves “follow”
the meridians.

Remark. In Stern’s thesis this conclusion follows from the claim that the nodal set
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depends continuously on µ and that µ is small enough.

Figure 3.3 is drawn in the case ℓ = 3, but aims at illustrating the possible local nodal
patterns in the general case. We look at triangle-like domains Qi,j one of whose vertices
is at the north or south pole and can be visited by the nodal set. This means that i = 0
or ℓ, 0 ≤ j ≤ 2ℓ− 1 and that (−1)i+j = −1, see Properties 3.3 (i).

FEx1-L3-patterns-tr.png

Figure 3.3: Local nodal patterns near the poles.

The same arguments as above show that there is only one possible nodal pattern.

3.2.5 A. Stern’s first theorem for the sphere

We can now state the following quantitative version of A. Stern’s first theorem, see
Theorem 1.2. Recall the notation µc(ℓ), see Lemma 3.1.

Proposition 3.4 Assume that 0 < µ < µc(ℓ).

(i) When ℓ is odd, the nodal set N(Hµ,ℓ) is a unique regular simple closed curve and
hence, the eigenfunction Hµ,ℓ has exactly two nodal domains.

(ii) When ℓ is even, the nodal set N(Hµ,ℓ) is the union of ℓ regular disjoint simple closed
curves and hence, the eigenfunction Hµ,ℓ has exactly (ℓ+ 1) nodal domains.

Proof. According to the remark following Lemma 3.1, under the assumption on µ, the
nodal set of Hµ,ℓ is a regular 1-dimensional submanifold. Since the eigenfunction Hµ,ℓ
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does not vanish at the north and south poles, we can work in the exponential map at the
north pole. For the proofs below, keep in mind Section 3.2.4.

Proof of Proposition 3.4, Assertion (ii). The integer ℓ is assumed to be even. The proof
is illustrated by Figure 3.4 which shows parts of the nodal patterns of Zℓ (latitude circles)
and Wℓ (meridians) viewed in the exponential map centered at the north pole p+. The
south pole corresponds to the outer circle (the boundary of the maximal domain in which
the exponential map is a diffeomorphism). The meridian Mj is labelled [j]; the meridian
Bj is labelled {j} .

FEx1-even.png

Figure 3.4: Case ℓ even, j odd.

Call B′
j the intersection

B′
j = Bj ∩ {ϑ1(ℓ) ≤ ϑ ≤ π − ϑ1(ℓ)}.

We now use Lemma 3.2.

(a) When j is even, the function bµ,ℓ,j(ϑ) is positive in [0, ϑ1(ℓ)]∪[π−ϑ1(ℓ), π], and hence,
by Lemma 3.2, N(Hµ,ℓ) ∩ Bj = ∅ . When j is odd, the function bµ,ℓ,j(ϑ) has exactly one
zero in each of the intervals (0, ϑ1(ℓ)) and (π − ϑ1(ℓ), π). It follows that N(Hµ,ℓ) ∩ Bj

consists of exactly two points, one in Q0,j and one in Qℓ,j.

(b) Choose j = 2k+1, odd (see Figure 3.4). Note that there are exactly ℓ such values of
j between 0 and 2ℓ−1. In Q0,j the nodal set N(Hµ,ℓ) can only consist of a curve from the
point q1,j to the point q1,j+1 (see Subsection 3.1 for the notation, and use Properties 3.3),
intersecting Bj at exactly one point. This curve is part of a connected component (a
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simple closed curve) γk ⊂ N(Hµ,ℓ). We now follow the curve γk, starting from q1,j in
the direction of q1,j+1. According to the preceding point (a), γk can meet neither Bj+1,
nor B′

j. Therefore, according to Paragraph 3.2.4, the curve has to go through the points
q1,j+1, q2,j+1, . . . , qℓ,j+1 passing alternatively inside Mj+1 or Mj. Since ℓ is even, at qℓ,j+1,
the curve enters Qℓ,j, crosses Bj (at a single point), and exits Qℓ,j at qℓ,j. Since it
can cross neither Bj−1, nor B′

j, the curve γk has to go back to q1,j, through the points
qℓ−1,j, . . . , q2,j, alternatively inside Mj or Mj−1. This means that the simple closed curve
γk goes through all the points in N ∩Mj, with j = 2k + 1.

(c) In this way, we obtain ℓ simple closed curves γ1, . . . , γℓ which are connected compo-
nents of N(Hµ,ℓ), with the curve γk (where j = 2k + 1) contained in the sector bounded
by the meridians Bj−1 and Bj+1 and containing Bj. Furthermore, these ℓ curves visit
all the points qi,j ∈ N . It follows from Properties 3.3 (iii) that there can be no other
components, and that

N(Hµ,ℓ) = ∪ℓ
k=1γk .

This finishes the proof of Proposition 3.4, Assertion (ii). �

Proof of Proposition 3.4, Assertion (i). The integer ℓ is now assumed to be odd. The
proof is illustrated by Figure 3.5 which shows parts of the nodal patterns of Zℓ (latitude
circles) and Wℓ (meridians) viewed in the exponential map centered at the north pole p+ .
The south pole corresponds to the outer circle (the boundary of the domain in which the
exponential map is a diffeomorphism). The meridian Mj is labelled [j]; the meridian Bj

is labelled {j} .
As in the previous proof, call B′

j the intersection

B′
j = Bj ∩ {ϑ1(ℓ) ≤ ϑ ≤ π − ϑ1(ℓ)}.

(a) When j is even, the function bµ,ℓ,j(ϑ) is positive in [0, ϑ1], and admits exactly one
zero in the interval (π − ϑ1, π). Hence N(Hµ,ℓ) ∩ Bj contains exactly one point located
in Qℓ,j. When j is odd, the function bµ,ℓ,j(ϑ) has exactly one zero in the interval (0, ϑ1)
and is negative in [π − ϑ1, π]. By Lemma 3.2, it follows that N(Hµ,ℓ) ∩ Bj consists of
exactly one point located in Q0,j.

(b) Choose j = 1. InQ0,1 the nodal setN(Hµ,ℓ) can only consist of a curve going from the
point q1,1 to the point q1,2 (see Subsection 3.1 for the notation and use Properties 3.3),
intersecting B1 at exactly one point. This curve is part of a connected component (a
simple closed curve) γ ⊂ N(Hµ,ℓ). We now follow the curve γ, starting from q1,1 in the
direction of q1,2. According to the preceding point (a), γ can meet neither B′

2, nor B1, so
that it has to go through the points q1,2, q2,2, . . . , qℓ,2 passing alternatively inside M2 or
M1. Because ℓ is odd, at qℓ,2, the curve exits Qℓ−1,1, enters Qℓ,2, crosses B2 (at a single
point), and exits Qℓ,2 at qℓ,3 into M3. Since it can cross neither B′

3, nor B
′
2, the curve γ

has to go to q1,3, through the points qℓ−1,3, . . . q2,3, alternatively inside M2 or M3. The
curve γ therefore goes from q1,1 to q1,3 where we can start again with the same argument
as before. Iterating ℓ times the argument, the curve γ gets back to its initial point q1,1.

(c) In this way, we obtain a simple closed curve γ in N(Hµ,ℓ), which crosses all the merid-
ians Bj once, and which visits all the points qi,j ∈ N . It follows from Properties 3.3 (iii)
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FEx1-odd.png

Figure 3.5: Case ℓ odd.

that there can be no other component and that

N(Hµ,ℓ) = γ .

This finishes the proof of Proposition 3.4, Assertion (i). �

It is easy to follow the above proofs on Figure 3.6 which shows the nodal set of Hµ,ℓ, in
the exponential map at p+, for µ > 0 small enough and for ℓ = 3 (left) and ℓ = 4 (right).

4 Stern’s second theorem: even case

The purpose of this section is to prove Theorem 1.3. As a matter of fact, we shall give
a more quantitative result, Proposition 4.5, which implies the theorem. As in Section 3,
we follow the ideas of A. Stern sketched in the introduction.

Fix an integer
ℓ = 2r ≥ 2 ,

as well as an angle α defined by

α =
ǫπ

2r
, with 0 < ǫ <

1

2
. (4.1)
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FEx1-L3L4-WZ-N-checker-nodal.png

Figure 3.6: Cases ℓ = 3 and ℓ = 4.

4.1 Notation

As in the first example, we consider the spherical harmonic of degree ℓ = 2r

W (x, y, z) = ℑ(x+ iy)2r , (4.2)

whose expression in spherical coordinates (ϑ, ϕ) ∈ (0, π)× R2π is given by

w(ϑ, ϕ) = sin2r(ϑ) sin(2rϕ) . (4.3)

The perturbation of W is chosen to be the spherical harmonic Vα, of degree 2r, whose
expression in spherical coordinates is given by

vα(ϑ, ϕ) = P 1
2r(cosϑ) sin(ϕ− α) . (4.4)

According to Properties 2.1 (i), we have P 1
2r(t) = −(1− t2)1/2 d

dt
P2r(t), so that

vα(ϑ, ϕ) = − sinϑP ′
2r(cosϑ) sin(ϕ− α) . (4.5)
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According to (2.1), the corresponding harmonic homogeneous polynomial of degree 2r in
R

3 is given by the formula

Vα(x, y, z) = (sinαx− cosα y)
r−1
∑

j=0

ajz
2r−2j−1(x2 + y2 + z2)j , (4.6)

where the aj’s are the coefficients of the polynomial P ′
2r,

P ′
2r(t) =

r−1
∑

j=0

ajt
2r−2j−1 .

The nodal set of the spherical harmonic W consists of the 2ℓ = 4r meridians Mj, 0 ≤ j ≤
4r − 1 , defined as in Subsection 3.1,

N(W ) =
4r−1
⋃

j=0

Mj ,

with the corresponding open sectors Mj on the sphere.

These meridians meet at the north and south poles which are the only critical zeros of
W , W (p±) = 0, and dp±W = 0 (the differential of the function W at the poles).

The nodal set of the spherical harmonic Vα consists of (2r − 1) latitude circles L′
i (1 ≤

i ≤ 2r − 1), and two meridians M ′
0 and M ′

1,

N(Vα) =
2r−1
⋃

j=0

L′
i

⋃

M ′
0

⋃

M ′
1 . (4.7)

The latitude circles,

L′
i = {(ϑ, ϕ) | ϑ = ϑ′

i(2r)} , 1 ≤ i ≤ 2r − 1 , (4.8)

are associated with the (2r − 1) zeros, 0 < ϑ′
1(2r) < · · · < ϑ′

2r−1(2r) < π , of the
function P ′

2r(cosϑ), see Properties 2.1 (iii), and we let ϑ′
0(2r) = 0 and ϑ′

2r(2r) = π. They
determine sectors

L′
i = {(ϑ, ϕ) | ϑ′

i(2r) < ϑ < ϑ′
i+1(2r)} , 0 ≤ i ≤ 2r − 1 . (4.9)

The meridians M ′
k are given by

M ′
0 = {(ϑ, ϕ) | ϕ = α} and M ′

1 = {(ϑ, ϕ) | ϕ = α + π} . (4.10)

They determine sectors

M′
0 = {(ϑ, ϕ) | α < ϕ < α + π} and M′

1 = {(ϑ, ϕ) | α + π < ϕ < 2π + α} . (4.11)
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FEx2-L4-VW.png

Figure 4.1: Nodal sets N(W ) and N(Vα), when ℓ = 2r = 4.

Figure 4.1 shows the nodal sets N(W ) and N(Vα), in the case ℓ = 2r = 4 . They are
viewed in the exponential map expp+ i.e., in the disk D(0, π), whose boundary corre-
sponds to the cut-locus of p+ i.e., p− . In the figures, the meridians Mj are labelled [j];
the latitude circles L′

i are labelled {i′}, and the meridians M ′
k are labelled [k′].

As in the first example, the set N = N(W ) ∩ N(Vα) of common zeros to the spherical
harmonics W and Vα, plays a special role. We have

N = {p+, p−}
⋃

{qi,j | 1 ≤ i ≤ 2r − 1, 0 ≤ j ≤ 4r − 1} , (4.12)

where qi,j is the intersection point of the latitude circle L′
i with the meridian Mj.

Figure 4.2 shows the set N in the exponential map. The points in N appear as the big
dots: the intersection points of the latitude circles L′

i, with the meridians Mj, and the
poles. Note that the south pole is represented by two small dots, one on the meridian
M ′

0, one on the meridian M ′
1. Note that there are no other dots on these meridians, see

Properties 4.4 (iii).

We also introduce the connected components of the set {W Vα 6= 0},

Qi,j,k = L′
i ∩Mj ∩M′

k , 0 ≤ i ≤ 2r − 1, 0 ≤ j ≤ 4r − 1, k = 0, 1 . (4.13)

Note that
sgn(W Vα) = (−1)i+j+k+1 on Qi,j,k . (4.14)
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FEx2-L4-VW-N.png

Figure 4.2: The set N in the case ℓ = 2r = 4.

4.2 The family Hµ

4.2.1 Definition

Following the ideas of Stern [21], we consider the one-parameter family of spherical har-
monics of degree ℓ = 2r,

Hµ(x, y, z) = W (x, y, z)− µVα(x, y, z) , (4.15)

whose expression in spherical coordinates is given by

hµ(ϑ, ϕ) = w(ϑ, ϕ)− µ vα(ϑ, ϕ) ,

= sin2r(ϑ) sin(2rϕ) + µ sinϑP ′
2r(cosϑ) sin(ϕ− α) .

(4.16)

Note that
h−µ(ϑ, ϕ) = hµ(ϑ, ϕ+ π) . (4.17)

It follows that it suffices to consider the case µ > 0. We shall therefore assume that µ > 0
for the remainder of Section 4.

4.2.2 Critical zeros

We now investigate the critical zeros of Hµ. The spherical harmonic W vanishes at
order at least 3 at the poles, while the nodal set of Vα is a piece of great circle at each
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pole. It follows that the north and south poles are not critical points of N(Hµ), see also
Properties 4.4 (i). We can therefore look for critical zeros in the spherical coordinates
i.e., look for critical zeros of hµ in (0, π)× R2π.

The point (ϑ, ϕ) ∈ (0, π)× R2π is a critical zero of hµ if and only if,

hµ(ϑ, ϕ) = 0 ,

∂ϑh
µ(ϑ, ϕ) = 0 ,

∂ϕh
µ(ϑ, ϕ) = 0 .

(4.18)

Using the second order differential equation (2.4) satisfied by the Legendre polynomial
P2r, we find that

∂ϑh
µ(ϑ, ϕ) = 2r cosϑ sin2r−1(ϑ) sin(2rϕ)

+ µ sin(ϕ− α)
[

2r(2r + 1)P2r(cosϑ)− cosϑP ′
2r(cosϑ)

]

.

It follows that the point (ϑ, ϕ) ∈ (0, π)× R2π is a critical zero of hµ if and only if,

sin2r−1(ϑ) sin(2rϕ) + µP ′
2r(cosϑ) sin(ϕ− α) = 0 ,

2r cosϑ sin2r−1(ϑ) sin(2rϕ)

+ µ sin(ϕ− α)
[

2r(2r + 1)P2r(cosϑ)− cosϑP ′
2r(cosϑ)

]

= 0 ,

2r sin2r−1(ϑ) cos(2rϕ) + µP ′
2r(cosϑ) cos(ϕ− α) = 0 .

(4.19)

The pair of the first and third equations in (4.19) is equivalent to the pair of the first
and third equations in (4.20) below. Plugging the first equation in (4.19) into the second
one, using the fact that µ > 0 and that ϑ ∈ (0, π), we get the second equation in (4.20).
It follows that the point (ϑ, ϕ) ∈ (0, π)× R2π is a critical zero of hµ if and only if,

µP ′
2r(cosϑ) + sin2r−1(ϑ)

[

2r cos(2rϕ) cos(ϕ− α) + sin(2rϕ) sin(ϕ− α)
]

= 0 ,

sin(ϕ− α)
[

2rP2r(cosϑ)− cosϑP ′
2r(cosϑ)

]

= 0 ,

2r cos(2rϕ) sin(ϕ− α)− sin(2rϕ) cos(ϕ− α) = 0 .

(4.20)

Property 4.1 Assume that µ > 0. Then, the product sin(2rϕ) sin(ϕ−α) does not vanish
at the critical zeros of Hµ.

This property follows from the third equation in (4.20).

Finally, it follows that the point (ϑ, ϕ) ∈ (0, π)× R2π is a critical zero of hµ if and only
if,

µP ′
2r(cosϑ) + sin2r−1(ϑ)

[

2r cos(2rϕ) cos(ϕ− α) + sin(2rϕ) sin(ϕ− α)
]

= 0 ,

2rP2r(cosϑ)− cosϑP ′
2r(cosϑ) = 0 ,

2r cos(2rϕ) sin(ϕ− α)− sin(2rϕ) cos(ϕ− α) = 0 .

(4.21)

We first analyze the second equation in (4.21). Define Q(t) := 2rP2r(t) − tP ′
2r(t) . This

is an even polynomial of degree less than or equal to (2r − 2). For parity reasons the
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roots of the polynomials Q,P2r and P ′
2r are symmetric with respect to 0 , and it suffices

to look at t ≥ 0 . According to Properties 2.1 (iii), the positive roots ti of P2r , and t′i of
P ′
2r satisfy

0 = t′r < tr < t′r−1 < tr−1 < · · · < t2 < t′1 < t1 < 1 .

The following equalities are easy to check,

sgn(P2r(t
′
i)) = (−1)i and sgn(P ′

2r(ti)) = (−1)i−1 ,

sgn(Q(ti)) = (−1)i and sgn(Q(t′i−1)) = (−1)i−1 .

It follows that Q vanishes at least once in each interval (ti+1, t
′
i) for 1 ≤ i ≤ r− 1 . Since

Q has at most (r − 1) non-negative zeros, we can conclude that Q has exactly (r − 1)
zeros in (0, 1), and more precisely one zero, which we denote by cosωi, in each interval
(ti+1, t

′
i), so that ωi ∈ (ϑ′

i(2r), ϑi+1(2r)), and

0 < ϑ1(2r) < ϑ′
1(2r) < ω1 < ϑ2(2r) < · · · < ϑ′

r−1(2r) < ωr−1 < ϑr(2r) < ϑ′
r(2r) =

π

2
.

Note that the inequalities are strict i.e., that P2r(cosωi) 6= 0 and P ′
2r(cosωi) 6= 0 , and

that the zeros ωi depend on ℓ = 2r .

We now analyze the third equation in (4.21). Define the function,

f(ϕ) = 2r cos(2rϕ) sin(ϕ− α)− sin(2rϕ) cos(ϕ− α) . (4.22)

The function f satisfies f(π+ϕ)+f(ϕ) = 0 , and f ′(ϕ) = −(4r2−1) sin(2rϕ) sin(ϕ−α) .
An easy analysis in [0, π] (using the choice of α) shows that f does not vanish in [0, π

2r
],

and has exactly one zero in each interval [j π
2r
, (j + 1) π

2r
] for 1 ≤ j ≤ 2r − 1 . It follows

that f has exactly (4r − 2) zeros in [0, 2π], 0 < ϕ1 < ϕ2 < · · · < ϕ4r−2 < 2π, and that
ϕj ∈

(

j π
2r
, (j + 1) π

2r

)

.

The only possible critical zeros of Hµ are given in spherical coordinates by the points
(ωi, ϕj) and (π − ωi, ϕj) , for 1 ≤ i ≤ r − 1 and 1 ≤ j ≤ 4r − 2 . These points can only
occur as critical zeros for finitely many values of µ given by the first equation in (4.21).
Since we work with µ > 0, these critical values of µ are given (see also the first line in
(4.19)) by

µi,j(α) =
∣

∣

∣

sin2r−1(ωi) sin(2rϕj)

P ′
2r(cosωi) sin(ϕj − α)

∣

∣

∣
, (4.23)

for 1 ≤ i ≤ r − 1, 1 ≤ j ≤ 2r − 1 , and can be numerically computed.
We summarize the preceding analysis in the following lemma.

Lemma 4.2 For µ > 0 , the spherical harmonic Hµ has no critical zero except for finitely
many values of µ which are given by (4.23). For the values of µi,j(α) , the spherical
harmonic Hµ has finitely many critical zeros. Define the number µc(α, 2r) to be

µc(α, 2r) = inf µi,j(α) , (4.24)

where the infimum is taken over 1 ≤ i ≤ r − 1 , and 1 ≤ j ≤ 2r − 1 . Then, for
0 < µ < µc(α, 2r) , the function Hµ has no critical zero, so that its nodal set N(Hµ)
consists of finitely many disjoint simple closed curves.

Remark. One can bound µc(α, 2r) from below using the inequalities satisfied by the ωi,
and Properties 2.1 (vii).
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4.2.3 A separation lemma for N(Hµ)

For 1 ≤ j ≤ 4r − 2 , call Cj the meridian,

Cj = {(ϑ, ϕ) | ϕ = ϕj} , (4.25)

where ϕj are the zeros of the function f defined in (4.22).
We now look at the restriction of the spherical harmonic Hµ to the meridian Cj. Recall
from Properties 2.1 (iii), that cosϑ′

1(2r) is the largest zero of the function P ′
2r(cosϑ) in

[0, π].

Lemma 4.3 Define the functions,

bµ,j(ϑ) = hµ(ϑ, ϕj)

= sin(2rϕj) sin
2r(ϑ) + µ sinϑP ′

2r(cosϑ) sin(ϕj − α) .
(4.26)

Assume that 2r + 1 ≤ j ≤ 4r − 1.

(i) For 0 < µ < µc(α, 2r), the functions bµ,j(ϑ) do not vanish in the interval
[ϑ′

1(2r), π − ϑ′
1(2r)].

(ii) When j is odd, the function bµ,j(ϑ) vanishes exactly once in the interval (0, ϑ′
1(2r))

and does not vanish in the interval [π − ϑ′
1(2r), π].

(iii) When j is even, the function bµ,j(ϑ) vanishes exactly once in the interval
(π − ϑ′

1(2r), π) and does not vanish in the interval [0, ϑ′
1(2r)].

The above assertions determine the possible intersections of the nodal set N(Hµ) with the
meridian Cj.

Proof. Notice that the assumptions on j and α imply that sin(ϕj − α) < 0, and that
(−1)j sin(2rϕj) > 0. The function bµ,j vanishes at the points such that

sinϑP ′
2r(cosϑ)

sin2r(ϑ)
= − sin(2rϕj)

µ sin(ϕj − α)
.

Call β2(ϑ) the function in the left-hand side. Using the differential equation satisfied by
P2r, one finds that

β′
2(ϑ) = (2r + 1)

2r P2r(cosϑ)− cosϑP ′
2r(cosϑ)

sin2r(ϑ)
.

The local extrema of β2 in the interval [ϑ′
1(2r), π − ϑ′

1(2r)] are achieved at the zeros
ωi ∈ (ϑ′

i(2r), ϑi+1(2r)) of the second equation in (4.21), for 1 ≤ i ≤ 2r − 2. We have at
these points,

hµ(ωi, ϕj) = sin2r(2rϕj) sin(ωi)
[

1 + µ
P ′
2r(cosωi) sin(ϕj − α)

sin(2rϕj) sin
2r−1(ωi)

]

.

The first assertion follows from (4.23).
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We now determine what happens in the intervals (0, ϑ′
1(2r)) and (π − ϑ′

1(2r), π).

Write bµ,j(ϑ) = (−1)j sinϑ fj(ϑ). The derivative f ′
j(ϑ)is given by

f ′
j(ϑ) = (2r − 1) (−1)j sin(2rϕj) cosϑ sin2r−2(ϑ)− (−1)j µ sinϑP

′′

2r(cosϑ) sin(ϕj − α) .

Recall that P2r and P
′′

2r are even functions and that P ′
2r is odd. The largest zeros of theses

functions in [−1, 1] satisfy, with an obvious notation,

t2 < t
′′

1 < t′1 < t1 < 1 .

Looking at the signs of these functions in the various intervals between t2 and 1, and using
the parity to determine what happens near −1 , we can make the following observations.

• Case j odd. For ϑ ∈ (0, ϑ′
1), fj(ϑ) > 0. On the other-hand, fj(π − ϑ′

1) > 0 and
fj(π) < 0 , while f ′

j(ϑ) < 0 in (π − ϑ′
1, π) .

• Case j even. For ϑ ∈ (π − ϑ′
1, π), fj(ϑ) > 0 . On the other-hand, fj(0) < 0 and

fj(ϑ
′
1) > 0 , while f ′

j > in (0, ϑ′
1) .

The second and third assertion follows. �

4.2.4 General properties of N(Hµ)

Properties 4.4 For µ > 0, the nodal sets N(Hµ) share the following properties.

(i) The north and south poles are zeros of order 1 of Hµ, Hµ(p±) = 0, and dp±H
µ 6= 0.

In particular, near each pole, the nodal set N(Hµ) consists of a single arc, tangent
to the great circle M ′

0 ∪M ′
1.

(ii) The nodal set N(Hµ) satisfies,

N ⊂ N(Hµ) ⊂ N
⋃

{W Vα > 0} . (4.27)

(iii) Since α = ǫπ
2r
, with 0 < ǫ < 1

2
, the nodal set N(Hµ) meets the great circle M ′

0 ∪M ′
1

at the poles tangentially, and nowhere else.

(iv) The connected components of N(Hµ) are contained in either the closed hemisphere
M′

0 or in M′
1.

(v) The points in N (common zeros to the spherical harmonics W and Vα) are not
critical zeros of Hµ. At the points qi,j ∈ N , 1 ≤ i ≤ 2r − 1, 0 ≤ j ≤ 4j − 1 , the
nodal set N(Hµ) consists of a single arc which is transversal to the latitude circles
L′
i and to the meridians Mj.

(vi) For 0 < µ < µa,α (defined in (4.24)), no closed component of the nodal set N(Hµ)
can be entirely contained in some domain Qi,j,k.
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Proof. Assertion (i) follows from the fact that near the poles, N(Vα) is a piece of great
circle, while W vanishes at order at least 3. Assertion (ii) is clear (this is the checkerboard
property introduced by A. Stern as we recalled in the introduction). Assertion (iii) is
clear because the great circle M ′

0 ∪ M ′
1 only meets the nodal set N(W ) at the poles.

Assertion (iv) follows from Assertion (ii), the choice of α and the parity of ℓ = 2r. We
can indeed look at a neighborhood of the north pole (the pattern near the south pole
is the image of the pattern at the north pole under the antipodal map). The nodal
curve at p+ must visit the domains Q0,0,1 and Q0,2r,1, both in M′

1, and cannot visit the
domains Q0,0,0 and Q0,2r,0. On the other-hand, as we already pointed out, the nodal set
cannot meet the great circle M ′

0 ∪M ′
1. Assertion (v) follows by checking that the partial

derivatives ∂ϑh
µ and ∂ϕh

µ do not vanish at the points (ϑ′
i,

jπ
2r
). Assertion (vi) follows by

using the same energy argument as in Properties 3.3. �

Figure 4.3 illustrates the proof of Properties 4.4. The checkerboard appears in white/grey
(allowed/forbidden domains).

FEx2-L4-VW-N-checker.png

Figure 4.3: The checkerboard for ℓ = 2r = 4 and µ > 0.

4.2.5 Local nodal patterns for Hµ

The arguments to determine the local nodal patterns for Hµ are the same as in Para-
graph 3.2.4, with an extra case. Namely, at each pole, the nodal set N(Hµ) is a single arc
tangent to the great circleM ′

0∪M ′
1, going through two triangle-like domains, one of whose

vertices is the pole. One of the two remaining vertices does not belong to N , the other
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does belong to N so that the local nodal pattern is well determined. See Figures 3.2, 3.3
and 4.3.

4.2.6 A. Stern’s second theorem

We can now state the following improved version of Stern’s second theorem, Theorem 1.3.
Recall the definition of µc(α, 2r) given in (4.24).

Proposition 4.5 For α satisfying (4.1) and 0 < µ < µc(α, 2r) ,

(i) the spherical harmonic Hµ, of degree 2r, introduced in (4.15), has no critical zero,

(ii) the nodal set N(Hµ) of Hµ has exactly two connected components i.e., consists of
exactly two simple closed curves which do not intersect.

In particular, for 0 < µ < µc(α, 2r), the spherical harmonic Hµ has exactly three nodal
domains.

Proof of Proposition 4.5

Note that Hµ is even, so that it is invariant under the antipodal map, and so is its nodal
set N(Hµ). We have already seen, Properties 4.4, that a connected component of N(Hµ)
is contained in either M′

0 or M′
1. Furthermore, there is one connected component, call

it γ, which is contained in M′
1, and which is tangent to the great circle M ′

0 ∪M ′
1 at the

north pole p+. Similarly, there is another connected component which is contained in
M′

0, and which is tangent to M ′
0 ∪M ′

1 at the south pole p−. The second can be deduced
from γ by applying the antipodal map.

It follows that it suffices to look at the part of the nodal set N(Hµ) which is contained
in M′

1. For this reason, we only have to consider the meridians Cj for 2r + 1 ≤ j ≤
4r − 1. The connected component γ is a simple closed curve. Start from the north pole,
tangentially to M ′

0, inside the domain Q0,0,1 . The only possibility for γ is to exit Q0,0,1

through the point q1,0,1. Using the separation lemma, Lemma 4.2, and the analysis of
local nodal patterns, we see that γ has to wind aroundM0, inside the white domains, until
it reaches the last point q2r−1,0,1 , at which it has to enter the white domain Q2r−1,4r−1,1 ,
cross the meridian B4r−1, exit through the point q2r−1,4r−1,1 and wind along M4r−1 until
it reaches the domain Q0,4r−2,1 , etc . The situation is similar to the one we encountered
in the proof of Proposition 3.4 (i). Indeed, the important point in this proof was that
the number ℓ of latitude circle Li was odd. In the present case we have ℓ = 2r, but the
number of latitude circles L′

i is 2r − 1, an odd integer. The proof of Section 3 applies
mutatis mutandis, and the conclusion is that γ goes back to the north pole after going
up and down r times, visiting all the points in N ∩M′

1. Using Properties 4.4, it follows
that N(Hµ) ∩ M′

1 has exactly one connected component γ. Using the antipodal map,
this means that N(Hµ) has exactly two connected components. �

Figure 4.4 shows the nodal pattern of Hµ in the exponential map, with one component
tangent to the great circle M ′

0 ∪M ′
1 at the north pole, the other at the south pole.
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FEx2-L4-VW-checker-nodal.png

Figure 4.4: The nodal set N(Hµ).

5 Courant sharp property and open questions for

minimal partitions for the sphere.

Leydold’s thesis [15] (see also a preliminary analysis in [13]) is devoted to this question.
We reproduce below some synthesis essentially extracted from [9]. Given a spherical
harmonic u, let µ(u) denote the number of nodal domains of u (this notation should not
induce confusion with the parameter µ).

• Courant’s theorem for the sphere says that for any uℓ ∈ Hℓ,

µ(uℓ) ≤ ℓ2 + 1 .

• Pleijel’s asymptotic bound for the number of nodal domains extends to bounded
domains in R

n, and more generally to compact n-manifolds with boundary, with a
constant γ(n) < 1 replacing the constant γ(2) = 4/(j0,1)

2 in the right-hand side of
(5.1) (Peetre [18], Bérard-Meyer [1]). It is also interesting to note that this constant
is independent of the geometry. In particular Pleijel’s theorem is true in the case
of the sphere. For any sequence of eigenfunctions uℓ ∈ Hℓ

lim sup
ℓ→+∞

µ(uℓ)

ℓ(ℓ− 1)
≤ 4

(j0,1)2
. (5.1)

• Leydold stated the following conjecture on the maximal cardinal of nodal sets of a
spherical harmonic.
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Conjecture 5.1

max
u∈Hℓ

µ(u) =

{

1
2
(ℓ+ 1)2 if ℓ is odd,

1
2
ℓ(ℓ+ 2) if ℓ is even.

The values in the right hand side are the maximum numbers of nodal domains of
the decomposed spherical harmonics in spherical coordinates. This conjecture is
proved in [15] for ℓ ≤ 6. Note that the example treated in the appendix for ℓ = 3
(middle subfigure in Fig. A.3) shows the optimality in this case. In [14], Leydold
constructs regular spherical harmonics of degree ℓ with O( ℓ

2

4
) nodal domains, see

also [6, Theorem 2.1].

Conjecture 5.1 implies that the unique Courant sharp situation correspond to the
first and second eigenvalues. This last statement is true as a consequence of the
following theorem by Karpushkin [11].

Theorem 5.2

max
u∈Hℓ

µ(u) ≤
{

ℓ(ℓ− 2) + 5 if ℓ is odd,
ℓ(ℓ− 2) + 4 if ℓ is even.

Conjecture 5.1 implies the following inequality which improves Pleijel’s theorem.

Conjecture 5.3 For any sequence of eigenfunctions uℓ ∈ Hℓ, we have

lim sup
ℓ→+∞

µ(uℓ)

ℓ(ℓ− 1)
≤ 1

2
. (5.2)

It is easy to see that (5.2) cannot be improved (look at product eigenfunctions).

• Spectral minimal partitions are for example defined in [8]. Motivated by a conjec-
ture in harmonic analysis popularized by Bishop [3] (who refers to [7]), the authors
of [8] have proved in [9] that up to rotation the minimal 3-partition is the so-called
Y -partition ({0 < φ < 2π

3
}, {2π

3
< φ < 4π

3
}, and {4π

3
< φ < 2π}). There is a conjec-

ture that the four faces of a spherical tetrahedron determine a minimal 4-partition
on S

2. What we get from the previous item and the general theory of [8] (nodal
minimal partitions should correspond to a Courant sharp situation) is that minimal
k-partitions cannot be nodal for k > 2.

• With a different point of view, let us mention the contributions of [17] on random
spherical harmonics.

A Some simulations with Maple

In this appendix, we provide some pictures issued from numerical computations with
Maple. The nodal sets are viewed in the exponential map at the north pole. The outer
circle, at distance π, is the cut-locus of p+ and corresponds to the south pole.
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MEx1-L3L4-v-big.png

Figure A.1: Example 1, with ℓ = 3 and ℓ = 4.
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MEx1-L5L6-v-big.png

Figure A.2: Example 1, with ℓ = 5 and ℓ = 6.

Figure A.1 illustrates Proposition 3.4 in the cases ℓ = 3 (left) and ℓ = 4 (right).

The figures in the top line show the checkerboard associated with Zℓ and Wℓ. The figures
in the bottom line show the nodal set of Hµ,ℓ for µ small enough.

Figure A.2 illustrates Proposition 3.4 in the cases ℓ = 5 (left) and ℓ = 6 (right).

Figure A.3 illustrates the occurence of critical zeros in Stern’s Example 1, with ℓ =
3. The corresponding Legendre polynomial is P3(t) = 1

2
t (5t2 − 3) . The polynomial

P2(t) = 1
2
(3t2 − 1) has two roots ± 1√

3
. According to Section 3.2.1, there are twelve

possible critical zeros, given in spherical coordinates by the points
(

arccos(± 1√
3
), j π

6

)

with j ∈ {1, 3, 5, 7, 9, 11}, and exactly two critical values of the parameter, µ = ±
√
2 .

For µ > 0, there is exactly one critical value µ =
√
2, which is associated with six critical

zeros. Figure A.3 shows the nodal set N(Hµ,3) for µ <
√
2 (left), for µ =

√
2 (center)

and for µ >
√
2 (right).
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MEx1-L3-bifurcation.png

Figure A.3: Appearance and disappearance of critical zeros.
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MEx2-L4L6.png

Figure A.4: Stern’s Example 2 in the cases ℓ = 4 and ℓ = 6.

Figure A.4 illustrates Proposition 4.4. The figures in the top line show the nodal sets of
W,Vα, and Hµ for µ small. The great circle M ′

0 ∪M ′
1 divides the sphere into two closed

hemispheres. Each one contains a simple closed nodal curve tangent to the great circle
at one of the poles. As usual, the south pole is represented by the outer circle (dotted
line), the cut-locus of 0 in the tangent space at p+. The figures in the bottom line show
the nodal sets of Hµ alone.
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101-138.

[9] B. Helffer, T. Hoffmann-Ostenhof and S. Terracini. On spectral minimal partitions:
the case of the sphere. Around the research of Vladimir Maz’ya. III, p. 153-178, Int.
Math. Ser. 13, Springer (N.Y.) 2010.

[10] B. Helffer and M. Persson Sundqvist. Nodal domains in the square–the Neumann
case–. Preprint 2014. ArXiv: 1410.6702.

[11] V.N. Karpushkin. Topology of the zeros of eigenfunctions. Funktional Anal. i Priloze-
hen 23:3 (1989), 59-60.

[12] H. Lewy. On the minimum number of domains in which the nodal lines of spherical
harmonics divide the sphere. Comm. Partial Differential Equations 2:12 (1977), 1233-
1244.

[13] J. Leydold. Knotenlinien und Knotengebiete von Eigenfunktionen. Diplom Arbeit,
Universität Wien (1989), unpublished. Available at http://othes.univie.ac.at/

34443/

[14] J. Leydold. Nodal properties of spherical harmonics. Dissertation Universität Wien
(January 1993).

36

http://othes.univie.ac.at/34443/
http://othes.univie.ac.at/34443/


[15] J. Leydold. On the number of nodal domains of spherical harmonics. Topology 35
(1996), 301-321.

[16] W. Magnus, F. Oberhettinger and R.P. Soni. Formulas and Theorems for the Special
Functions of Mathematical Physics. Third Edition. Berlin: Springer-Verlag, 1966.

[17] F. Nazarov and M. Sodin. On the number of nodal domains of random spherical
harmonics. Amer. J. Math. 131 (2009), 1337-1357.

[18] J. Peetre. A generalization of Courant nodal theorem. Math. Scandinavica 5 (1957),
15-20.
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