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Abstract. The influence of the curvature of the imposed magnetic field on Reversed

Field Pinch dynamics is investigated by comparing the flow of a magnetofluid in a

torus with aspect ratio 1.83, with the flow in a periodic cylinder. It is found that

an axisymmetric toroidal mode is always present in the toroidal, but absent in the

cylindrical configuration. In particular, in contrast to the cylinder, the toroidal case

presents a double poloidal recirculation cell with a shear localized at the plasma edge.

Quasi-single-helicity states are found to be more persistent in toroidal than in periodic

cylinder geometry.
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1. Introduction

For the last decades research on magnetically controlled fusion has mainly focused on

toroidal devices such as the tokamak, stellarator or Reversed Field Pinch (RFP). Of

these devices the tokamak has received most interest due to its geometrical simplicity

as compared to the stellarator and the stability of its magnetic field as compared to

the RFP. This latter device possesses the technical advantage that the imposed toroidal

magnetic field needs not to be as large as for a tokamak, since the self-organized state

enhances the magnetic field through a mechanism akin to the dynamo effect often

invoked to explain the origin of the magnetic field of the Earth. This allows for the

use of less sophisticated coils to generate the toroidal magnetic field. However, it was

shown that RFP devices are plagued by magnetohydrodynamic (MHD) instabilities,

leading to a self-organized turbulent state which degrades the confinement quality. This

chaotic regime is called a multiple-helicity (MH) state because a multitude of helically

extended modes interact. The term helicity is used here to indicate the shape of the

modes, which have a poloidal and toroidal spatial frequency both different from zero.

However, in the last two decades quasi-single helicity (QSH) states were observed

in RFP experiments, where the full turbulent regime is avoided and the energy of one

helical mode predominates above the others [1, 2, 3, 4, 5]. In the QSH state there is a

decrease of magnetic chaos and the formation of a coherent helical structure within the

plasma. The reduction of particle transport was observed in QSH states with respect

to MH states [6, 7, 8]. Also it was found that increasing the toroidal current makes the

QSH regime more persistent [9, 10]. The QSH state is responsible for the creation of

internal transport barriers (ITB) that improve the confinement time by a factor of two

[11, 12]. Recently it was discovered that external transport barriers (ETB) are created

for low plasma densities that increase by 30% the confinement time. The origin of these

barriers is not well understood but it could be related to shear flows [13]. Given the

practical advantages of the RFP design, the discovery of this QSH state renewed the

interest of the fusion community in the RFP dynamics.

The investigation of a cylinder, periodic in the axial direction, is analytically more

tractable than a torus since a cylinder contains translational invariance both in axial

and azimuthal direction, whereas in a torus only translational invariance exists in the

toroidal direction. In the case in which the ratio of the larger to smaller radius of a

toroidal plasma tends to infinity, the effects of curvature become negligible and the

plasma can be locally approximated by a straight cylinder. In practice this ratio is

however in general not much larger than four so that such an approximation is, at least,

questionable. Nevertheless, a certain number of important features are observed both

in cylindrical and toroidal geometry. Due to the conceptual and technical simplicity

of the periodic cylinder, the majority of numerical studies of the RFP, using the MHD

approximation, consider therefore periodic cylindrical geometries, thereby ignoring the

influence of the curvature of the magnetic field.

Numerical MHD simulations became important tools in the investigation of RFPs
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in the 1980s, e.g. [14, 15]. In the 1990s an important body of results was produced

using efficient codes in cylindrical geometry [16, 17]. In particular the role of the

Hartmann number and pinch ratio on the triggering of helical modes were assessed

in some detail in cylindrical geometry [18, 19, 20], and more recently the role of

compressibility [21, 22]. Recent studies in cylindrical geometry show some agreement

with experiments [23, 24, 25], but particularly important features such as the persistence

of the QSH state remain to be elucidated. Indeed the QSH state seems to become more

important in RFPs for increasing Lundquist number [12]. In simulations this has only

been observed if a particular type of boundary conditions is imposed [25]. Ideal MHD

equilibrium solvers allow to reproduce QSH equilibria [26], but need experimental input

such as the position of the helical axis, pressure profile and safety-factor profile. Three-

dimensional codes solving the MHD equations in toroidal geometries without a priori

definition of pressure and safety factor profiles exist, [27, 24, 28] but there is not yet,

to our knowledge, a study which systematically investigates the influence of curvature

on the dynamics of a toroidal magnetofluid in the RFP context. This motivates the

present study which compares, using exactly the same numerical code and governing

equations, the dynamics of a viscoresistive magnetofluid in a toroidal domain to those

in a cylindrical domain. We can thereby disentangle the influence of the toroidicity from

all other influences. By toroidicity we mean here the curvature of the magnetic field

induced by the toroidal geometry. In particular will we keep the minor radius of the

torus equal to the radius of the cylinder and will we fix the length of the cylinder to

have the same value as the length of the toroidal axis. The toroidal domain corresponds

then roughly to the cylindrical domain which has been bent to form a torus.

2. Visco-resistive MHD simulations

We consider non-ideal MHD in which both viscous and resistive effects are taken into

account. An isothermal, incompressible plasma is considered with uniform and constant

transport coefficients, which simplifies the problem as far as possible, while retaining the

required level of complexity to study the emergence of helical modes in a self-consistent

manner. Indeed, if we drop the resistive term and consider ideal MHD, the imposed

toroidal electric field will become independent from the toroidal plasma current, an

assumption which can dramatically change the plasma dynamics [29]. The Alfvén-

normalized viscoresistive MHD equations are [30],

∂tu−M−1∇2u = −∇p∗ + u× ω + j ×B, (1)

∂tB − S−1∇2B = ∇× (u×B), (2)

with ∇ · u = 0 and ∇ · B = 0, the current density j = ∇ × B, the vorticity

ω = ∇×u and the total pressure p∗ = p+u2/2. These equations are non-dimensionalized

using the poloidal Alfvén speed CA = Bref/
√
ρµ0, with Bref the reference poloidal

magnetic field, ρ the density and µ0 the permeability of vacuum. Our choice of an

isothermal incompressible description of the plasma is the simplest description which
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satistfies the conservation of mass. Two distinct geometries are considered: a torus and

a periodic cylinder (see Fig. 1), both with circular cross-section. The reference length L

is the diameter of these cross sections. This normalization introduces two dimensionless

quantities, S = CAL/λ andM = CAL/ν the Lundquist and viscous Lundquist numbers,

respectively, with λ the magnetic diffusivity and ν the kinematic viscosity. The ratio

of these two quantities is the magnetic Prandtl number Pr = ν/λ. We have chosen to

consider spatially uniform viscosity and resistivity values. These assumptions should

of course be refined if one wants to approach the behaviour of existing machines. We

think, however, that it is not desirable to introduce this refinement in the present study,

since it would impede us to disentangle the influence of the geometry on the dynamics

from the influence induced by the spatial profile of the transport coefficients.

We fix the diameter L ≡ 2a = 0.6π, and the axial length of the cylinder 2πR0,

where R0 = 0.55π is the length from the axis to the center of the toroidal cross section,

so that the cylinder has the same length as the toroidal axis passing through the center

of the torus’ poloidal cross-section. The torus has then an aspect ratio ∼ 1.83. We

have not carried out a systematic study on the influence of the aspect radius on the

dynamics. Rather do we focus on the relatively compact torus compared to a straight

cylinder to identify the influence of the presence of curvature of the magnetic field lines

on the dynamics. A systematic study varying the aspect ratio would indeed constitute

an interesting perspective. The reference poloidal magnetic field Bref = 0.15π, is set

such that the average toroidal or axial current-density are 〈jT 〉 = 1. For the toroidal

geometry we impose a magnetic field B0T
(R) ∝ 1/R. In a real device this field is

produced by the toroidal field coils located at the exterior of the vessel. A toroidal

electric field is also present, in order to induce a toroidal plasma current. This electric

field is chosen E0T
(R) ∝ 1/R [31]. For the present study we consider a constant

conductivity, and therefore the induced toroidal current density field has the same

dependence, j0T (R) ∝ 1/R. The toroidal magnetic and current density profiles give

the imposed three-dimensional helical magnetic field B0 = B0T
+ B0pol

. The poloidal

magnetic field is calculated from the current density distribution j0T (R). For more

details about its numerical generation in general geometries we refer to [32]. For the

cylindrical geometry the imposed axial magnetic and electric field are uniform. As

the conductivity is considered uniform the induced current density field will be so as

well. For a given geometry, the helical curvature of the magnetic field is in our system

determined by a single parameter, the pinch ratio Θ. Together with the value of the

Prandtl number and the Lundquist number this parameter will determine the behaviour

of the system. For the toroidal geometry Θ is defined as the wall averaged poloidal

magnetic field over the volume averaged toroidal (or axial) magnetic field, Θ = BP/〈BT 〉.
The boundary conditions are no-slip, u|wall = 0, for the velocity. For the magnetic

perturbations around the base field, the poloidal component and the component normal

to the wall vanish, B′
Pwall

= B′
⊥wall

= 0, while the toroidal (or axial) component is

free. The initial condition for the simulations are zero magnetic perturbations and zero

velocity for the toroidal geometry. In the cylindrical case the magnetic perturbations are
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Figure 1. Toroidal (left) and periodic cylinder geometry (right). The toroidal

direction is labeled T and the poloidal P .

zero but a small white noise (with rms value of 10−4) is introduced in the initial velocity

field in order to trigger the instability, a feature which is not necessary in the toroidal

simulations. Equations (1,2) are discretized with a Fourier pseudo-spectral method on

a Cartesian grid. To impose the boundary conditions we use the volume-penalization

technique. This method is benchmarked in detail for three-dimensional viscoresistive

MHD equations in [33]. The simulations are carried out on a cubic domain with 1283

grid points for all simulations.

For the considered geometry, under our assumptions, the dynamics are entirely

determined by the parameters M,Pr,Θ. In the present investigation we keep the

magnetic Prandtl number fixed at Pr = 3 and we consider two different viscous

Lundquist numbers M = 444 and M = 888. The value of the Prandtl number

is chosen as a compromise between physical considerations and numerical efficiency.

Indeed, Pr > 1 is expected to be found in fusion plasmas and was used in previous

numerical studies Pr ∈ [1, 20] [34]. However, high Pr number studies would limit the

simulations to focus on highly viscous behaviour, which is less realistic. Since the value

of the viscosity in fusion plasmas is not well defined, an investigation of the influence

of the Prandtl number constitutes an interesting perspective. Here we shall focus in

particular on the influence of the pinch ratio on the dynamics. All results are evaluated

once the system has obtained a statistically steady state.
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Figure 2. Ratio of the kinetic energy of the dominant toroidal modes over the total

kinetic energy for the torus geometry, M = 444 (top) and M = 888 (bottom) as a

function of Θ. Visualization of the modes: toroidal velocity isosurfaces +0.007 (blue)

and −0.007 (orange).
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Figure 3. Ratio of the kinetic energy of the dominant axial modes over the total

kinetic energy for the cylindrical geometry, M = 444 (top) and M = 888 (bottom) as

a function of Θ. Visualization of the modes: axial velocity isosurfaces +0.008 (blue)

and −0.008 (orange).

3. Results of the simulations

In Fig. 2 it is shown that for a value of Θ < 1 the kinetic energy is mostly contained in

the zero toroidal mode. This means that the velocity field for these parameters is axi-

symmetric around the major axis of the torus. At higher values of Θ, roughly around

Θ = 1, the helical modes with n 6= 0 become more important. But even at the highest

values of Θ reported in the present investigation, the toroidal zero mode represents still
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Figure 4. Poloidal velocity vector norm (color) and poloidal streamlines in the toroidal

geometry (a-c) and cylinder (d). (a) – Total poloidal velocity field in a poloidal cut.

(b) – The azimuthally averaged poloidal field (mode n = 0). (c) – The total field (a)

minus the azimuthally averaged field (b). For M = 444 and Θ = 1.83. (d) – Total

poloidal velocity field in a poloidal cut in the cylinder for M = 444 and Θ = 2.16.

20% of the total kinetic energy and thus importantly affects the dynamics for all cases

considered here. In contrast, in the cylindrical geometry the relative influence of the

axial-invariant mode is negligible for all considered values of M and Θ. This marks an

important difference: due to the curvature of the magnetic field, RFP dynamics will

always be governed by a mix of helical modes, and toroidally invariant modes. These

latter are absent in cylindrical geometry.

The dominant helical modes at the higher pinch ratios are n or kz = 3, 4 for the

toroidal and cylindrical geometry (see Figs. 2 and 3). This result is in good agreement

with experimental data from the RFP RELAX [35], which possesses an aspect ratio ∼ 2

close to the one used in the present simulations. The dominant modes measured in this

device are n = 4 and n = 5 [35]. For the simulations performed with M = 888 there is

an equipartition of the kinetic energy between more modes in the cylindrical geometry

and the state is in a multiple-helicity state [1]. The toroidal simulations have a mode

n = 4 which continues to be significantly more energetic than the others. The toroidal

geometry displays thus a state closer to a single-helicity state than the cylinder.

In Fig. 4 (a), an instantaneous plot of the velocity field in a poloidal cross section is

presented for the simulation with M = 444 and Θ = 1.83 in the toroidal configuration.

Fig. 4 (b) shows the toroidally averaged poloidal flow, corresponding to the n = 0 mode.

This field is composed of two counter-rotating vortices, and is characterized by peaked

poloidal velocities located in the external region where a shear zone exists. The kinetic

energy of the zero mode is mainly localized at the plasma edge. The flow topology

is similar in the torus at low pinch ratio (Θ < 1). Such flow-fields were obtained

analytically for large transport coefficients in [36] and numerically for relatively high

Lundquist numbers in [30, 37]. In more realistic tokamak-like configurations with X-

point geometries using the MHD model with a bootstrap contribution a similar field

was observed [38] as well as using the reduced MHD model [39]. Our results give some

evidence that this axisymmetric field persists in the presence of the helical modes. In

Fig. 4 (c) we show the flow corresponding to the helical modes n 6= 0. The dominant

mode is n = 3. Hence this poloidal flow structure rotates three times around the
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Figure 5. Field reversal parameter F as a function of the pinch parameter Θ for the

toroidal and cylindrical simulations and experimental data of three RFP devices.

toroidal axis for one toroidal loop. If the total poloidal flow is compared to the poloidal

flow in the cylindrical geometry, Fig. 4 (d), an important difference is observed. The

double vortex flow pattern appearing in the torus is completely absent in the cylindrical

geometry. This poloidal flow pattern is relevant because the steep gradients induced by

these vortices can be responsible for the generation of internal transport barriers. A link

between the presence of such internal transport barriers and the magnetic topology of

the QSH state was recently suggested through an energy minimization argument [40].

4. Comparison with experimental results

The comparison of numerical simulations with experimental results is a rather

complicated exercise in the field of fusion plasmas. The assumption of scalar and

uniform transport coefficients is a bold approximation. Furthermore, the Lundquist

numbers in realistic machines is orders of magnitude larger than what we have used in

the present simulations. A detailed comparison with respect to local flow and magnetic

field measurements seems thus not appropriate and we will therefore focus on two global

parameters: the pinch ratio and the field-reversal parameter.

Quantitatively our numerical results are compared to experimental data of three

different RFP devices. The first set of experimental data comes from the REPUTE

experiment, described in [41, 42], the second set of data is the RFP ZT-40M [41, 43]

and the third is from the device RELAX [35]. We recall that this last experiment has

a low aspect ratio ∼ 2, close to the aspect ratio used in the present simulations. This
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device has the particularity to allow Θ to be greater than two, whereas for the majority

of RFP experiments the pinch ratio is around 1.5. In Fig. 5 our numerical and the

experimental results are presented in the Θ − F plane. F is the reversal parameter

defined as the wall averaged toroidal magnetic field over the volume averaged toroidal

magnetic field, F = BT/〈BT 〉. We also show the theoretical curve found by Taylor [44]

that has been recently critically reviewed in [45] with respect to its relevance to the

RFP dynamics.

From Fig. 5 we can see that the simulations give results in the Θ − F plane

comparable to those obtained in the RFP experiments: the reversal of the toroidal

magnetic field BT for the considered experiments occurs around the same value, for

Θ ≈ 1.5. The set of simulations that fits best the experiments is the one performed

for a toroidal geometry with viscous Lundquist number M = 888. In this figure we

note that both the geometry and the Lundquist number play an important role in

the evolution of the reversal parameter F with Θ. Using the toroidal geometry and

increasing sufficiently the viscous Lundquist number, we fit better the experimental

data. It is not yet clear whether we can get a magnetic surface averaged toroidal reversal

at the torus edge for high enough values of M . In this study the computational resources

where not sufficient to carry out higher resolution computations enabling higher viscous

Lundquist and Prandtl number simulations. It seems that a reversed magnetic field

is more easily obtained in the constant pressure description adopted in, for instance

[34]. This explains, perhaps, that those results compare better to experiments. A

drawback of such a MHD description is that it severely violates the conservation of

mass of the system. We have therefore preferred to stay within the incompressible

description of the plasma, which is the simplest description which allows to satisfy the

mass-conservation principle. Further studies are needed to investigate to what extent

one must take into account the conservation of mass, and compressibility effects in order

to more realistically approach the behaviour of a RFP plasma.

In the present work, within the MHD description that we have adopted and in

the parameter range that we have considered, the agreement of the Θ − F value with

experiment seems to be closer for the toroidal than for the cylindrical RFP simulations.

5. Conclusions

The toroidal and cylindrical simulations carried out in the present study help to

understand the role of toroidicity in the RFP dynamics. The helical instability appearing

for increasing pinch ratio is quite similar for both cases. Generally, if the viscous

Lundquist number is not too important a single helical mode dominates the system, so

that we are close to the quasi-single helicity state found in experiments. For increasing

viscous Lundquist number a turbulent state appears at large pinch ratio, showing

equipartition of the energy between the helical modes in the cylindrical geometry,

whereas, for the parameters considered in the present case, a single helical mode remains

dominant in the toroidal geometry. It seems that the QSH state is more persistent in
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toroidal than in cylindrical configuration. Another fundamental qualitative difference

between the cylinder and the torus is the axisymmetric flow that disappears in the

cylindrical case. The toroidally invariant poloidal flow is composed of two counter-

rotating vortices. In a straight cylinder this characteristic of the plasma dynamics does

not appear. Quantitatively, better agreement of the F (Θ) dependence is observed for

toroidal simulations.

An important perspective is the study of the influence of more sophisticated

resistivity profiles on the dynamics. This is currently under investigation. Since we have

shown that the toroidicity influences the dynamics, a refined study of the influence of the

aspect ratio on RFP dynamics would be a valuable contribution to the field. Further

desirable refinements are the implementation of an equation of state and, of course,

higher resolution simulations in order to reach more realistic values of the Lundquist

and magnetic Prandtl number.
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