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Abstract

Given a set P of n points in the plane, the Oja depth of a point x ∈ R
2 is defined to be the sum

of the areas of all triangles defined by x and two points from P , normalized with respect to the area

of the convex hull of P . The Oja depth of P is the minimum Oja depth of any point in R
2. The

Oja depth conjecture states that any set P of n points in the plane has Oja depth at most n2/9. This

bound would be tight as there are examples where it is not possible to do better. We present a proof

of this conjecture. We also improve the previously best bounds for all Rd, d ≥ 3, via a different,

more combinatorial technique.

1 Introduction

The general area of statistical data analysis includes designing measures (called data-depth measures) to

succinctly capture the location, spread and variance of multivariate data. For example, for a set of points

in R, the notion of mean and median are two natural measures of its location. In particular, when the

data consists of a finite set of points in Euclidean space R
d, several notions for data depth have been

proposed over the years. With each such measure, there come two questions: i) proving the existence

of a point which suitably captures, with some guaranteed bounds, that measure and ii) devising efficient

algorithms to compute this point.

Given a set P of n points in R
d, some examples of data-depth measures are the following. Location

depth (also called Tukey depth) of a point x is the minimum number of points of P lying in any halfs-

pace containing x [Hod55, Tuk75, RRT99]. The Centerpoint Theorem [Rad46, Eck93] asserts that there

always exists a point of location depth at least n/(d+ 1), and that this value is tight. The point with the

highest location depth w.r.t. to a point-set P is called the Tukey-median of P . The computational ques-

tion of finding the Tukey-median of a point set has been studied extensively, and an optimal randomized

∗This research was funded by Deutsche Forschungsgemeinschaft within the Research Training Group (Graduiertenkolleg)
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algorithm with expected running time O(n log n) is known in R
2 [Cha04]. The best known deterministic

algorithm for computing the Tukey median takes time O(n log3 n) in R
2 [LS03].

Another example of a statistical depth measure is Simplicial depth [Liu90], which for a point x is the

number of simplices spanned by P that contain x. The First Selection Lemma [Bar82, Mat02] asserts that

there always exists a point with Simplicial depth at least cd · n
d+1, where c > 0 is a constant depending

only on d. The optimal value of cd is known only for d = 2, where c2 = 1/27 [BF84]. Determining

the exact value of c3 is still open, though it has been the subject of a flurry of work recently [BMRR10,

BMN10, Gro10, MW11]. As for the computational question, the current-best algorithm computes a point

with maximum simplicial depth in time O(n4) in R
2 [ALST03].

Another well-studied measure, first proposed by Weber [Web29] in 1909, is the so-called L1 median,

where the depth of a point q ∈ R
2 is defined to be the sum of the distances of q to the n input points.

It is known that the point with the lowest such depth is unique in R
2 and higher dimensions [Gal33].

Furthermore, it is also known that for n > 3 points the L1 median cannot be computed exactly [Sca33],

so the available algorithms only compute approximate solutions using gradients or iterations (See, for

example, [Gow74] and [GS98]).

In this paper, we study another well-known measure called the Oja depth of a point-set.

Oja depth. Given a full-dimensional set P of n points in R
d, the Oja depth [Oja83] of a point x ∈ R

d

w.r.t. P, denoted Oja-depth(x,P), is defined to be the sum of the volumes of all (d+1)-simplices spanned

by x and d points of P, normalized with respect to the volume of the convex hull of P . Formally, given

a set Q ⊂ R
d, let conv(Q) denote the convex hull of Q. Given a polyhedron C ⊂ R

d, let vol(C) denote

the d-dimensional volume of C. Then,

Oja-depth(x, P ) =
∑

{y1,...,yd}∈(Pd)

vol(conv(x, y1, . . . , yd))

vol(conv(P ))
(1)

The Oja depth of P, denoted Oja-depth(P ), is the minimum Oja depth over all x ∈ R
d. A point that

achieves this depth is called Oja median of P. Oja [Oja83] showed that such a point exists but it need not

be unique and in general the set of all the points attaining the minimum define a convex region. Since

Oja median is not necessarily unique, in this paper we will talk about the Oja depth of a point set instead

of the depth of the Oja median. Also, from now onwards we assume w.l.o.g. that vol(conv(P )) = 1. See

Figure 1 for an example of Oja depth of a random point-set in the plane.

Known bounds. It is known that for every point set P , we have

Oja-depth(P ) ≤

(

n

d

)

To see this, observe that any (d + 1)-simplex spanned by points inside the convex hull of P can have

volume at most 1, and so a trivial upper-bound for Oja depth of any P ⊂ R
d is

(

n
d

)

, achieved by picking

any x ∈ conv(P ). Futhermore, one can construst a point set P such that

Oja-depth(P ) ≥

(

n

d+ 1

)d

.
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Figure 1: (a) Set of 30 points, together with a point (shaded black) with minimum Oja depth, (b) Con-

tours for a variant (http://cran.open-source-solution.org/web/packages/depth/

depth.pdf) of Oja depth for the point set on the left implemented in the statistical package R.

For this lower bound we construct P by placing n/(d + 1) points at each of the (d + 1) vertices of a

unit-volume simplex in R
d. It is easy to see that any point will have Oja depth at least (n/(d+ 1))d.

The conjecture in [CDI+10] is that the lower bound given above is tight.

Oja Depth Conjecture [CDI+10]: For all sets P ⊂ R
d of n points, Oja-depth(P ) ≤ ( n

d+1)
d.

The current best upper bound [CDI+10] is that the Oja depth of any set of n points is at most
(

n
d

)

/(d+1).
In particular, for d = 2, this gives n2/6 whereas our result implies an upper bound of n2/9. We would

like to remark that both [CDI+10] as well as we consider the center of mass of the given point set for

proving our bounds, but our analysis offers better (tight) bound for the Oja-depth.

The Oja depth conjecture states the existence of a low-depth point, but given P , computing the lowest-

depth point is also an interesting problem. In R
2, Rousseeuw and Ruts [RR96] presented a straightfor-

ward O(n5 log n) time algorithm for computing the lowest-depth point, which was then improved to the

current-best algorithm with running time O(n log3 n) [ALST03]. An approximate algorithm utilizing

fast rendering systems on current graphics hardware was presented in [KMV06, Mus04]. For general

d, various heuristics for computing points with low Oja depth were given by Ronkainen, Oja and Orpo-

nen [ROO03].

Our results. We present progress on the Oja depth conjecture. In Section 2, we present our main

theorem (Theorem 2.6), which completely resolves the planar case. In particular we prove that for every

set P of n points in R
2 the center of mass of the convex hull of P has depth at most n2

9 .

In Section 3, using completely different (and more combinatorial) techniques for higher dimensions, we
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also prove (Theorem 3.3 ) that every set P of n points in R
d, d ≥ 3, has Oja depth at most

2nd

2dd!
−

2d

(d+ 1)2(d+ 1)!

(

n

d

)

+O(nd−1).

This improves the previously best bounds by an order of magnitude.

2 A tight bound in R
2

We now come to prove a tight bound for R2. First, let us give some basic definitions. The center of mass

or centroid of a convex set X is defined as

c(X) =

∫

x∈X x dx

area (X)
.

For a discrete point set P , the center of mass of P is defined as the center of mass of the convex hull of

P . When we talk about the centroid of P , we refer to the center of mass of the convex hull (not to be

confused with the discrete centroid
∑

p/|P |).

In this paper, we will bound the Oja depth of the centroid of a set. As we will see the Oja depth of the

centroid is tight in the worst case. Our proof will rely on the following two known results.

Lemma 2.1. [Winternitz [Bla23]] Every line through the centroid of a convex object has at most 5
9 of

the total area on either side.

Lemma 2.2. [CDI+10] Let P be a convex object with unit area and let c be its centroid. Then every

simplex inside P which has c as a vertex has area at most 1
3 .

To simplify matters, we will use the following proposition.

Proposition 1. If we project an interior point p ∈ P radially outwards from the centroid c to the bound-

ary of the convex hull, the Oja depth of the point c does not decrease.

Proof. First, observe that the center of mass does not change. It suffices to show that every triangle that

has p as one of its vertices increases its area. Let T := ∆(c, p, q) be any triangle. The area of T is
1
2‖c− p‖ · h, where h is the height of T with respect to p− c. If we move p radially outwards to a point

p′, h does not change, but ‖c− p′‖ > ‖c− p‖. See Fig. 2.

This implies that in order to prove an upper bound, we can assume that P is in convex position. Note that

the aforementioned transformation brings the point only in weakly convex position, that is, some of the

points lying on the boundary of the convex hull might not actually be vertices of the convex hull. This,

however, is sufficient for our proof and for brevity we will use “convex” to mean “weakly convex”.

From now on, let P be a set of points in convex postion, and let c := c(conv(P )) denote its center of

mass as defined above. Further, let p1, . . . , pn denote the points sorted clockwise by angle from c. We

define the distance of two points pi, pj as the difference of their position in this order (modulo n):

dist(pi, pj) := min{j − i mod n, i− j mod n} ⊆ {1, . . . , ⌊n/2⌋}.
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Figure 2: Moving points to the boundary increases the Oja depth

A triangle that is formed by c and two points at distance i is called an i-triangle, or triangle of type i.
Observe that for each i, 1 ≤ i < ⌊n/2⌋, there are exactly n triangles of type i. Further, if n is even, then

there are n/2 triangles of type ⌊n/2⌋, otherwise there are n. These constitute all possible triangles.

Let C ⊆ P , and let C be the boundary of the convex hull of C. This will be called a cycle. The length

of a cycle is simply the number of elements in C. A cycle C of length i induces i triangles that arise by

taking all triangles formed by an edge in C and the center of mass c (of conv(P )). The area induced by

C is the sum of areas of these i triangles. See Fig. 3(a).

pi1pi6

pi5

pi4 pi3

pi2c

C

P

(a) A cycle and its induced triangles

c

(b) A case when c lies outside convex hull of C

Figure 3: Cycles

The triangles induced by C = P form a partition of conv(P ). Thus

Lemma 2.3. The total area of all triangles of type 1 is exactly 1.
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The following shows that we can generalize this lemma to bound the total area induced by any cycle:

Lemma 2.4. Let C be a cycle. Then C induces a total area of at most 1.

Proof. We distinguish two cases.

Case 1: The centroid c lies in the convex hull of C. In this case, all triangles are disjoint, so the area is at

most one.

Case 2: c does not lie in the convex hull of C (see Fig. 3(b)). Then there is a line through c that has

all the triangles induced by C on one side. Then we can remove one triangle – the one induced by the

pair {pij , pij+1
} that has c on the left side (the gray triangle shown in the figure) – to get a set of disjoint

triangles. By Lemma 2.1, the area of the remaining triangles can thus be at most 5/9. By Lemma 2.2,

the removed triangle has an area of at most 1/3. Thus, the total area is at most 8/9.

We now prove the key lemma, which is a general version of Lemma 2.3.

Lemma 2.5. The total area of all triangles of type i is at most i.

Proof. To prove this lemma for a fixed i, we will create n cycles. Each cycle will consist of one triangle

of type i, and n− i triangles of type 1 (counting multiplicities). We then determine the total area of these

cycles and subtract the area of all 1-triangles. This will give the desired result.

Let p1, . . . , pn be the points ordered by angles from the centroid c. For j = 1 . . . n, let Cj be the cycle

consisting of the n−i+1 points {pj+i mod n, pj+i+1 mod n, . . . , pj−1 mod n, pj mod n}. This is a cycle

that consists of one triangle of type i (the one defined by the three points c, pj , pj+i), and n− i triangles

of type 1.

By Lemma 2.4, every cycle Cj induces an area of at most 1. If we sum up the areas of all cycles Cj ,
1 ≤ j ≤ n, we thus get an area of at most n.

We now determine how often we have counted each triangle. Each i-triangle is counted exactly once.

Further, for every cycle we count n − i triangles of type 1. For reasons of symmetry, each 1-triangle is

counted equally often. Indeed, each one is counted exactly n − i times over all the cycles. By Lemma

2.3, their area is exactly n− i, which we can subtract from n to get the total area of the i-triangles:

∑

i-triangle T

area(T ) =≤ n− (n− i) ·





∑

1-triangle T

area(T )



 = n− (n− i) = i.

Now we prove the main result of this section:

Theorem 2.6. Let P be any set of points in the plane with area(conv(P )) = 1, and let c be the centroid

of conv(P ). Then the Oja depth of c is at most n2

9 . Furthermore, the centroid can be computed in

O(n log n) time.
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Proof. We will bound the area of the triangles depending on their type. For i-triangles with 1 ≤ i ≤
⌊n/3⌋, we will use Lemma 2.5. For i-triangles with ⌊n/3⌋ < i ≤ ⌊n/2⌋, this would give us a bound

worse than n/3, so we will use Lemma 2.2 for each of these.

By Lemma 2.5, the sum of the areas of all triangles of type at most ⌊n/3⌋ is at most

⌊n/3⌋
∑

i=1

i =
⌊n/3⌋ (⌊n/3⌋+ 1)

2
=

1

2

⌊n

3

⌋2
+

1

2

⌊n

3

⌋

.

If n is odd, there are n (⌊n/2⌋ − ⌊n/3⌋) triangles remaining, n for each type j, ⌊n/3⌋ < j ≤ ⌊n/2⌋. If

n is even, there are only n/2 triangles of type n/2 and so n (⌊n/2⌋ − ⌊n/3⌋ − 1/2) triangles remaining.

In either case the number of remaining triangles is n2/2− n ⌊n/3⌋ − n/2. For these we use Lemma 2.2

to bound the area of each by 1/3. Thus, the area of these remaining triangles is at most n2

6 − n
3

⌊

n
3

⌋

− n
6 .

So the Oja depth is at most 1
2

⌊

n
3

⌋2
+ 1

2

⌊

n
3

⌋

+ n2

6 − n
3

⌊

n
3

⌋

− n
6 .

To complete the proof we distinguish the cases when n is of the form 3k, 3k + 1 or 3k + 2.

Case n = 3k :

1
2

⌊

n
3

⌋2
+ 1

2

⌊

n
3

⌋

+ n2

6 − n
3

⌊

n
3

⌋

− n
6 = k2

2 + k
2 + 3k2

2 − k2 − k
2 = k2 = n2

9

Case n = 3k + 1 :

1
2

⌊

n
3

⌋2
+ 1

2

⌊

n
3

⌋

+ n2

6 − n
3

⌊

n
3

⌋

− n
6 = k2

2 + k
2 +

3k2

2 +k+ 1
6 −k2− k

3 −
k
2 −

1
6 = k2+ 2k

3 ≤ (3k+1)2

9 = n2

9

Case n = 3k + 2 :

1
2

⌊

n
3

⌋2
+ 1

2

⌊

n
3

⌋

+ n2

6 − n
3

⌊

n
3

⌋

− n
6 = k2

2 + k
2+

3k2

2 +2k+ 2
3−k2− 2k

3 − k
2−

1
3 = k2+ 4k

3 + 1
3 ≤ (3k+2)2

9 = n2

9

Thus, the Oja depth of the centroid is at most n2/9. Finally, note that c = c(conv(P )) can be computed

in O(n log n) time by triangulating conv(P ).

3 Higher Dimensions

We now present improved bounds for the Oja depth problem in dimensions greater than two. Before the

main theorem, we need the following two lemmas.

Lemma 3.1. Given any set P of n points in R
d and any point q ∈ R

d, any line l through q intersects at

most f(n, d) (d− 1)-simplices spanned by P , where f(n, d) = 2nd

2dd!
+O(nd−1).

Proof. Project P onto the hyper plane H orthogonal to l to get the point set P ′ in R
d−1. The line l

becomes a point on H , say point l∗. Then l intersects the (d − 1)-simplex spanned by {p1, . . . , pd} if

and only if the convex hull of the corresponding points in P ′ contains the point l∗. By Barany [Bar82],

given n points in R
d, any point in R

d is contained in at most these many d-simplices:

2n

n+ d+ 1
·

(

(n+ d+ 1)/2

d+ 1

)

if n− d is odd
2(n− d)

n+ d+ 2
·

(

(n+ d+ 2)/2

d+ 1

)

if n− d is even

7



Note that both the bounds above are equal within additive factor of O(nd), and simplifying the first, we

get:

2n

n+ d+ 1
·

(

(n+ d+ 1)/2

d+ 1

)

≤ 2 ·

(

(n+ d+ 1)/2

d+ 1

)

≤
2(n+ d+ 1)d+1

2d+1(d+ 1)!
≤

2nd+1

2d+1(d+ 1)!
+O(nd)

We apply this to P ′ in R
d−1 to get the desired result.

Lemma 3.2. Given any set P of n points in R
d, there exists a point q such that any half-infinite ray from

q intersects at least 2d
(d+1)2(d+1)!

(

n
d

)

(d− 1)-simplices spanned by P .

Proof. This follows directly from a recent result of Gromov [Gro10], who showed that given any set P ,

there exists a point q contained in at least 2d
(d+1)(d+1)!

(

n
d+1

)

simplices spanned by P . Now note that any

half-infinite ray from q must intersect exactly one (d − 1)-dimensional face of each simplex containing

q and each such (d − 1)-simplex can be counted at most n − d times. Simplifying, we get the desired

result.

Remark: There have been several improvements [MW11, KMS12] (and still ongoing) after the initial

paper of Gromov; however as these improvements are significant only for small constant dimensions, we

prefer to give the above considerably simpler bound of Gromov. It is clear that any improvement in the

above bound gives a corresponding improvement for our result.

Given a set P and a point q, call a simplex a q-simplex if it is spanned by q and d other points of P .

Theorem 3.3. Given any set P of n points in R
d, there exists a point q with Oja depth at most

2nd

2dd!
−

2d

(d+ 1)2(d+ 1)!

(

n

d

)

+O(nd−1).

Proof. Let q be the point from Lemma 3.2. Assign a weight function, w(r), to each point r ∈ conv(P ),
where w(r) is the number of q-simplices spanned by P and q that contain r. Then note that if r is

contained in a q-simplex, spanned by, say, {q, pi1 , . . . , pid}, then the half-infinite ray −→qr intersects the

(d− 1)-simplex spanned by {pi1 , . . . , pid}. Therefore w(r) is equal to the number of (d− 1)-simplices

intersected by the ray −→qr. To upper-bound this, note that the ray starting from q but in the opposite

direction to the ray −→qr, intersects at least 2d
(d+1)2(d+1)!

(

n
d

)

(d − 1)-simplices (by Lemma 3.2). On the

other hand, by Lemma 3.1, the entire line passing through q and r intersects at most 2nd

2dd!
+ O(nd−1)

(d − 1)-simplices spanned by P . These two together imply that the ray −→qr intersects at most 2nd

2dd!
−

2d
(d+1)2(d+1)!

(

n
d

)

+ O(nd−1) (d − 1)-simplices spanned by P , and this is also an upper bound on w(r).
Finally, we have

∑

|P ′|=d

vol(conv({q} ∪ P ′)) =

∫

x∈conv(P )
w(x) dx

≤

(

2nd

2dd!
−

2d

(d+ 1)2(d+ 1)!

(

n

d

)

+O(nd−1)

)∫

x∈conv(P )
dx

=
2nd

2dd!
−

2d

(d+ 1)2(d+ 1)!

(

n

d

)

+O(nd−1),

8



finishing the proof.

Remark: For approximate comparison, the previous-best result gives the upper-bound of
(

n
d

)

/(d+ 1) ≈
nd

(d+1)d! , while the above result, even after ignoring the much-smaller second term, gives the upper-bound

of 2nd

2dd!
– an exponential improvement.

4 Conclusion and further prospects

The technique we used to prove the two-dimensional case fails in higher dimensions due to our inability

to characterize and count the number of sets of type i. As a triangle of type i in the planar case corre-

sponds to a line which has exactly i− 1 points on the outer side, looking at d-dimensional i-sets1 seems

to be a promising approach to adapt our two-dimensional technique to higher dimensions. Using this,

one might be able to prove the d-dimensional analogue of Theorem 2.6:

Conjecture 4.1. (Strong Oja Depth Conjecture) Let P be a set of points in R
d. Then the center of mass

of the convex hull of P has Oja depth at most

(

n

d+ 1

)d

.

On the contrary, we do not expect to prove the exact bound using our combinatorial higher-dimensional

technique.

Besides the (static) combinatorial questions, the main computational question is whether or not the Oja

depth of a point set in R
d can be computed in polynomial time, or at least in time O(f(d) · nc) for

any computable function f . (Problems that admit algorithms with such a running time are called fixed-

parameter tractable.) More precisely, we ask whether the following decision problem NP-hard: Given a

set of points P in R
d a point x, and an integer N, is Oja-depth(x, P ) ≤ N?
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