
HAL Id: hal-01026318
https://hal.science/hal-01026318v1

Submitted on 21 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flocking of Multiple Unmanned Aerial Vehicles by LQR
Control

Osamah Saif, Isabelle Fantoni, Arturo Zavala-Río

To cite this version:
Osamah Saif, Isabelle Fantoni, Arturo Zavala-Río. Flocking of Multiple Unmanned Aerial Vehicles by
LQR Control. International Conference on Unmanned Aircraft Systems (ICUAS 2014), May 2014,
Orlando, FL, United States. pp.222-228. �hal-01026318�

https://hal.science/hal-01026318v1
https://hal.archives-ouvertes.fr


Flocking of Multiple Unmanned Aerial Vehicles by LQR Control

Osamah Saif1 and Isabelle Fantoni1 and Arturo Zavala-Rı́o2

Abstract— In this paper, we address the control problem of
multiple Unmanned Aerial Vehicles (UAVs) flocking by using
a behavior-based strategy. We conceive a behavior intending
to adress the control design towards a successful achievement
of the flocking task without fragmentation. Moreover, through
its implemention in UAVs, no rendezvous point is needed to
perform flocking. We design a control law, which is independent
of the number of UAVs in the flock. We use the LQR control
method to develop our strategy. Our proposed strategy deals
with the flocking problem from a measurement-mapping per-
spective. Simulation results show two scenarios of aggregation
and navigation of multiple UAVs.

I. INTRODUCTION

Flocking is a collective, harmonic and collision-free mo-

tion of animals. Biologists have studied flocks of birds,

swarms of insects, herds of quadruped, and schools of fish,

in order to understand the secret of this collective motion.

Moreover, they have searched to discover motivations that

lead animals to aggregate in groups [1] [2].

The amazing phenomenon of flocking has attracted control

and robotics scientists, so they have tried to imitate it

on robots platoons. One of the most advanced fields that

developed structures similar to flocking is flight formation

control. Three of them are cited here: leader-follower, virtual

leader and behavior-based control. In the leader-follower

structure, individuals in the formation follow one UAV

(Unmanned Aerial Vehicle), which is designated as a leader.

A formation flight mission trajectory is loaded in the leader,

and the followers track their leader. This structure is simple

and widely implemented in multi-UAVs formation [3], [4].

However, since the entire formation depends on one UAV,

the whole formation will be affected by a faulty leader.

The virtual leader structure consists of replacing a forma-

tion leader, in the leader-follower structure, by a virtual one.

All the UAVs in the formation receive the mission trajectory.

This trajectory is the virtual leader itself. One of the main

drawbacks of this structure is that the possibility of collision

between UAVs increases, since there is no feedback to the

formation. Moreover, the predefined trajectory of the mission

decreases the autonomy of the formation [4].

In the behavior-based control, each UAV follows some

rules to achieve the formation. In fact, this structure is in-

spired from the collective motion of animals. Among the first

technical works on this structure, we found the distributed
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behavioral model by Reynolds [5]. Although Reynolds was

specialized in computer graphics, his work inspired re-

searchers in control theory and robotics that applied the rules

of Reynolds in a theoretical and experimental framework

[6], [7]. Reynolds inspired his rules from biologists study of

animals collective motion. He considered that each individual

in a flock should follow rules in order to perform the flocking

behavior. These rules are: 1) Collision Avoidance; 2) Velocity

Matching, and 3) Flock Centering.

Olfati-Saber in [6] presented a concrete theoretical frame-

work for control design and stability analysis of multi-agent

flocking of dynamic systems. The author proved that his first

proposed algorithm embodies the rules of Reynolds. He used

a collective potential function to design the flock centering

behavior. Moreover, a velocity consensus term was added to

the potential term to achieve the velocity matching behavior.

Other algorithms were proposed for navigation and obstacle

avoidance. The stability of the proposed algorithms was ana-

lyzed by a monotonically decreasing structural function and

LaSalle’s invariance principle. One of the limitations of the

proposed algorithms is their dependence on the connectivity

degree between UAVs in a flock. Moreover, algorithm 1

(without navigation) dealt only with a local flocking problem,

i.e., he supposed that individuals are already in a flock. A

global problem is to consider, beside the local problem, the

trend to form a flock from scattered individuals or small

flocks.

In [7], G. Antonelli, et al followed the rules of Reynolds

and designed behavior-based control laws for multi-robot

systems flocking. Null-Space-based behavioral control laws

were used to follow the rules of Reynolds with the same

flocking local problem and connectivity degree dependence.

In this paper, we use the behavior-based control structure

to achieve a multi-UAVs flocking. We conceive a behavior

intending to adress the control design towards a successful

achievement of the flocking task without fragmentation. The

proposed behavior treats the flocking problem from a global

perspective, that is, we include a tendency of separated UAVs

to form a flock. We propose a new control strategy to achieve

the rules of Reynolds and the new proposed behavior. This

strategy is based on the LQR control. Moreover, this strategy

allows us to design an LQR controller, for each UAV, which

is independent of the number of UAVs within a flock. In

fact, we consider the flocking as a problem of trajectory (or

reference) generation, rather than an issue of control design.

The desired trajectory for each UAV is generated by using the

measured states of the UAVs in its field of view. Furthermore,

we expand our control strategy to perform a navigation

behavior. In this paper, we suppose that UAVs have a simple



linear dynamics (double integrator), in a similar manner as

the work in [6]. Nonlinear models will be treated in an

upcoming sequel of this paper.

The outline of this paper is: section II addresses, firstly,

preliminaries on the representation of multi-UAVs systems

by graph theory, on the formulation of the problem in the Eu-

clidean framework, on the modeling of multi-UAVs system,

and on the LQR control. Then, sections III and IV present

the main contributions and the results of simulations. Finally,

section V concludes by making remarks and presenting

future works.

II. PRELIMINARIES

In this section, we introduce the basic elements of our

work. Firstly, we start by presenting the graph theory as a

tool for modeling of multi-UAVs systems. Then, a Euclidean

representation of our system is introduced. After that, we

present the simplified dynamic model of a multi-UAVs sys-

tem. Finally, we introduce the LQR control in the perspective

of our work.

A. Multi-UAVs modeling by graph theory

Graph theory is a powerful tool to model multi-agents

systems. In the same way, we use Graph theory to represent

the multi-UAVs systems. Graph theory is used to describe

the topology of the system in a mathematical formulation. A

multi-UAVs system is represented by a graph G = (V ,E),
where V is a set of nodes V = {1,2, ...,M}, and E is a set

of edges E ⊆ {(i, j) : i, j ∈ V , i 6= j}. Every node represents

a UAV and edges depict the sensing between UAVs.

An adjacency matrix A is an M×M matrix with elements

ai, j = 1 if (i, j) ∈ E and ai, j = 0 otherwise. Connected UAVs

with a UAV i in the graph could be modeled by a set

γi =
{

j ∈ V : ai, j 6= 0
}

. We assume that every UAV has an

omni-directional detection capability, i.e. it can detect in all

directions. This capability of each UAV means that there is

a mutual detection between connected UAVs. The adjacency

matrix is then symmetric A T = A . Therefore, our graph

is undirected. For more information about graph theory, the

reader can refer to [8]. Fig. 1 shows a multi-UAVs system

of four UAVs represented as an undirected graph.
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Fig. 1: Four UAVs in an undirected graph

B. Euclidean framework

Before working on the dynamics of UAVs, we need to

represent our multi-UAVs system in the Euclidean space.

Therefore, every node i in the graph is represented as a

position pi ∈ R
f where f is the dimension of the space

(example: f = 2,3).

The neighbors of a UAV i is defined in the Euclidean space

by:

ηi =
{

p j ∈ R
f
, j ∈ V : ‖p j −pi‖< c

}

(1)

where ‖.‖ is the Euclidean norm, and c is the neighborhood

range.

C. Simplified dynamics of multi-UAVs

In this paper, we suppose that the UAV has a simple dy-

namics. The proposed dynamic model is a double integrator.

Furthermore, we assume that the body of a UAV is a particle

in the Euclidean framework. Equation (2) is a state-space

representation model of a UAV i in a flock.

{

ẋi = Ai xi +Bi ui

yi = Ci xi
(2)

where xi = [pi ṗi]
T , xi ∈R

l is the state vector, ui ∈R
f is the

control input and yi ∈R
l is the system output, with (l = 2 f ).

In this paper, we consider yi = xi. The state-space matrices

are:

Ai =

(

0 f I f

0 f 0 f

)

Bi =

(

0 f

I f

)

Ci = Il

where, I f and Il are f × f and l× l identity matrices and 0 f is

an f × f zero matrix. This system is, therefore, controllable

and observable.

Now, we can formulate the state-space model of multiple

UAVs. Let us consider, as in [6], p = col (p1, ...,pM)∈R
f×M

the position configuration of all nodes in the multi-UAVs

graph, where M is the number of UAVs. Moreover, all

the states, the outputs, and the control inputs of the multi-

UAVs system are written as x = col (x1, ...,xM) ∈ R
l×M ,

y = col (y1, ...,yM) ∈ R
l×M and u = col (u1, ...,uM) ∈ R

f×M

respectively. Thus, we can write the multi-UAVs state-space

system as follows:

{

ẋ = Ax+Bu

y = Cx
(3)

where, A = IM ⊗Ai, B = IM ⊗Bi, and C = IM ⊗Ci, with

⊗ being the Kronecker product.

We define x
j
ηi
= [p j ṗ j]

T , ∈ R
l , with j ∈ γi, as the state

of a neighboring UAV j measured by a UAV i. Then, the

measured states of all the neighbors could be written as the

vector xηi
= col

(

x1
ηi
, ...,x

q
ηi

)

∈ R
l×q where q = |ηi| is the

number of neighbors.



D. LQR control

The LQR (Linear Quadratic Regulator) objective for a

dynamic system such as (2) is to find the control input that

minimizes the following cost function:

JLQR =
∫ ∞

0
yT

i (t) Q yi(t)+uT
i (t) R ui(t) dt (4)

where yi is the controlled output, Q and R are symmetric

positive-definite matrices of dimensions l × l and f × f

respectively. These two matrices are weighting matrices used

to design the control law in order to respect the performance

specification of the controlled system. This problem will be

treated in a sequel paper dealing with a real-time application

of our proposed strategy.

The control input ui, which minimizes JLQR and which

stabilizes the controlled output to zero, is then given by:

ui =−Kxi (5)

where K is the LQR gain matrix:

K = R−1BT P (6)

P is a symmetric positive-definite matrix and the solution of

the following Algebraic Riccati Equation [9].

AT P+PA+Q−PBR−1BT P = 0 (7)

with Q = CT QC.

In the trajectory tracking problem, the objective is to

stabilize the error e = xi −xd to zero, asymptotically. Then,

the control input is written as:

ui =−K(xi −xd)+ud (8)

where, xd and ud are the state of the desired trajectory

and the feedforward control, respectively. This trajectory

should be feasible , i.e., the trajectory must be an equilibrium

solution of the closed-loop system [10]. In this paper, we

consider ud = 0.

III. MAIN RESULTS

In this section, we present the main contributions of this

paper. Firstly, we introduce a new behavior in addition to

the rules of Reynolds. Then, we present an LQR control

strategy for multi-UAVs flocking. Finally, the control strategy

is extended to adapt the navigation behavior.

A. Aggregation behavior

Several studies on flocking and schooling behavior discuss

a behavioral tendency in the individuals [1] [2]. In [1], a

crucial question was: What makes fish gather in a school?

The answer to this question reveals a tendency in the

individuals to join and to stay within a school for different

reasons, like hunting or protection.

In the technological side of dealing with flocking or

schooling phenomena, scientists focus on a local problem.

They tried to answer the question: How do individuals

avoid collision and align themselves? They supposed that

individuals are already in a flock. A global problem is to

consider, in addition to the local problem, the trend to form

a flock from scattered individuals or small flocks.

The consideration of the flocking local problem is clear in

the rules of Reynolds [5]. The rules of Reynolds focus on

collision avoidance, velocity matching, and flock centering

which are a local flocking problems. In [6], algorithm 1 of

Olfati-Saber embodied the rules of Reynolds. This algorithm

failed to perform the flocking, as emphasized by the author.

Moreover, in the second algorithm of Olfati-Saber, a ren-

dezvous point was defined to attract the individuals, in order

to form a flock.

From a robotics and control theory point of view, flock

formation should be autonomous. Therefore, no rendezvous

point should be predefined to form a flock. In fact, Olfati-

Saber’s algorithms can achieve an autonomous formation

control, without a rendezvous point, by increasing the neigh-

boring region of agents. However, defining an attracting

rendezvous point and restricting the neighboring region limit

the computational cost due to the increase of connections

between agents. This limitation of neighboring region leads

to a fragmentation phenomenon, which appeared in the

simulations results of Olfati-Saber without a rendezvous

point [6]. The same considerations are also found in [7].

The limitation of neighboring regions is useful to fix

distances between agents. However, naturally, the distances

between flock or school individuals are not fixed [1]. In

this paper, we prefer to follow the natural phenomenon of

flocking and consider variable security distances between

agents.

In this work, we introduce a new behavior, which views

the flocking problem from a global perspective. We suppose

that individuals in a flock are not yet grouped. This behavior

is the Aggregation behavior.

Definition 1: (Aggregation behavior) It is the trend of

individuals or sub-flocks to join each other, in their range

of sight, in order to form a flock.

To model such behavior in a flock of UAVs, we

propose a new set for each UAV. This set includes all

the individuals in a UAV range of sight. It is defined as

Γi =
{

ν j ∈V : ‖pj −pi‖< b
}

, where b is the UAV range of

sight and b > c (c is the neighboring region).

Unlike the works of Olfati-Saber in [6] and G. Antonelli

et al in [7], there is no need for a rendezvous point to

gather UAVs in a flock. Moreover, we realize that the

fragmentation problem, issued in the two aforementioned

works, is overcome by implementing this behavior in the

individuals of the flock (see section IV).

B. LQR control for multiple UAVs

The problem of multiple agents (or vehicles) is that

the computational cost and the control design complexity

increase with the raise of the number of agents and the

connectivity between them [11]. In this section, we introduce

a new strategy of multiple UAVs control that shows the

independence (or slight-dependence) of control design on the

number of UAVs and on the connectivity. The linear nature



of the LQR control is one of the main characteristics that

allowed us to develop this strategy. In this paper, we assume

that each UAV can measure the states of all the agents in its

range of sight.

The most crucial part of our work is the trajectory gen-

eration. In fact, we claim that the flocking is a trajectory

generation problem rather than a control design issue. The

desired trajectory for each UAV is generated by using the

measured states of the UAVs in its field of view.

Drawing inspiration from Reynolds [5], one of the objec-

tives of multi-UAVs flocking control is to ensure a collision-

free region between the flock individuals. The control objec-

tive could be written as follows:

‖p j(t)−pi(t)‖→ d , t → ∞ , ∀ j ∈ ηi,∀i ∈ V (9)

This objective could be written in a vectorial form as:

p j(t)−pi(t)→ d ni j(t) , t → ∞, ∀ j ∈ ηi,∀i ∈ V (10)

where d is a security distance or the radius of the collision-

free region, with d < c. ni j is the unit vector indicating

the direction from UAV i to UAV j. This vector could be

represented by two different ways, as in following equations

.

ni j =
p j −pi

‖p j −pi‖
(11)

ni j = [cosθi j sinθi j]
T

(12)

where θi j is the orientation angle. The representation in

equation (12) is given in Fig. 2, with f = 2.

Moreover, another objective of multi-UAVs flocking is

the velocity matching or consensus of all the UAVs in the

flock. This objective could be represented mathematically as

follows:

ṗ j(t)− ṗi(t)→ 0 , t → ∞, ∀ j ∈ ηi,∀i ∈ V (13)

  

x

y

xi

yi

pi

pj

θ ij

nij

Fig. 2: Unit vector representation.

Let us consider the simple case of two UAVs i and j

that detect each other and aggregate to form a flock. We

deal with this problem as a trajectory tracking problem. The

ξ (xηi
,xdi) K UAV

uixηi ri yi

−

Fig. 3: The desired trajectory for UAV i is generated by using the
measured states of the UAVs in its field of view. Only one controller
is needed.

error system in UAV i could be, therefore, written by using

equations (10) and (13), as the following:

ei j =

(

pi −p j +d ni j

ṗi − ṗ j

)

= xi − ri j (14)

where ri j is considered as the state of the desired trajectory.

In other words, it is the desired relative state of UAV i. In

fact, ri j is the state of the UAV j, shifted by a security

distance d. ri j is written as follows:

ri j = x j −xdi j (15)

where xdi j is a shifting state defined as:

xdi j =

(

d ni j

0

)

∈ R
l (16)

The control law, in the UAV i, that ensures the convergence

of UAVs and the control constraint in (10) is written as

follows:

ui j =−K (xi − ri j) (17)

We calculate the control law of UAV j by the same way.

In the problem of multiple UAVs, we define the vector of

the shifting states of a UAV i as xdi = col(xdi1, ...,xdiq) ∈
R

l×q ∀ j ∈ ηi. Moreover, we can obviously see that each

UAV in a flock has more than one neighbor. Therefore, the

dimensions of the vector of the neighboring states xηi
and

the state xi of a UAV i are not compatible. This problem

could be solved by mapping xηi
to be compatible with the

dimensions of xi.

Let ξ : Rl×q →R
l be a differentiable function that is used

to generate the trajectory of a UAV i in the flock in order to

achieve a desired behavior. Then ri could be written as:

ri = ξ (xηi
,xdi) (18)

The function in (18) means that it is not necessary to design

multi-controllers for each UAV. This method decreases the

computational cost. The block diagram in Fig. 3 shows the

application of this strategy on a UAV i.

We define the average function of a vector z =
col(z1, ...,zn) as follows:

Aven(z) =
1

n

n

∑
j=1

z j (19)

Theorem 1: (Average control strategy) Consider q UAVs

that tend to form a flock. The following control law of UAV

i ∈ V



ui =−Kxi +Kξ (xηi
,xdi) (20)

ensures the aggregation behavior and asymptotically stabi-

lizes the flock formation. The function ξ (xηi
,xdi) is written

as the following:

ξ (xηi
,xdi) = Aven(xηi

−xdi) (21)

Proof: The LQR control law in (17) stabilizes the UAV

i and ensures the aggregation of two UAVs. For q UAVs ∈ηi,

we need q control laws. Then, we have:

ui1 = −Kxi +Kri1

...
...

...

uiq = −Kxi +Kriq

(22)

A solution to decrease the number of controllers is to

calculate the average of the q control laws and apply the

output of the average to the system. We obtain:

ui =
1

q

q

∑
j=1

ui j (23)

By applying (23) we get:

ui =−Kxi +
K

q

q

∑
j=1

ri j (24)

Replacing ri j by its expression in (15), then we get the

resultant control law given by equation (20).

Remark 1: The design of this control law in (20) is

independent of the number of UAVs.

Remark 2: The security distance d is user-defined and it

is dependent on the number of UAVs. Gaps between flock

individuals will converge to distances around d. The security

distance should be set higher when the number of UAVs

increases. The distance d should be determined carefully

in order to avoid collision, since the state of each UAV

converges to an average vector.

C. Navigation behavior

In this section, we introduce a navigation behavior that

allows a flock of multiple UAVs to navigate from initial

positions toward a destination. The destination is predefined

by the user and stocked in the memory of UAVs. The

navigation of a multi-UAVs flock is in a free space, i.e. there

are no obstacles. In this section, no obstacles are faced in the

path of the navigation.

The control strategy used to perform the navigation task

is similar to the average strategy. It consists of defining a

navigation vector that contains the position and the velocity

of the destination. It could be written as xnav = [pnav ṗnav]
T ∈

R
l . In this paper, we focus on the navigation toward a fixed

destination rather than tracking a trajectory or a mobile

target. Therefore, the velocity in the navigation vector is

0 ∈ R
f . Tracking trajectories will be addressed in a future

work.

Now, we define the following function to achieve the

aggregation and the navigation behaviors:

ξ (xηi
,xdi,xnav) = Aven(col(xηi

−xdi,xnav)) (25)

Therefore, the control law that allows the multi-UAVs

system to make the aggregation and the navigation behaviors

is given as the following:

ui =−Kxi +Kξ (xηi
,xdi,xnav) (26)

IV. SIMULATION RESULTS

In this section, we illustrate simulations of the multi-

UAVs system. We simulate both behaviors, presented in the

previous section, by using MATLAB. The simulation is done

in a two-dimensional space. The initial positions of UAVs

are generated randomly by using the normal distribution

function. Moreover, the initial velocities of UAVs are set

at zeros. The step size of the simulation is 0.01s. The

weighting matrices are: Q= I4 and R= 10−3×I2. The matrix

K is calculated by using the lqr MATLAB function [9].

Furthermore, UAVs are represented as red circles, where the

real position of a UAV is the center of the circle. For clarity

purposes, the size of UAVs is chosen greater than simulation

scales, which could yield to ambiguous separation distances.

The videos of the simulation results are available at the link

in [12].

A. Aggregation behavior

In this part, we simulate the aggregation of 5 UAVs. The

variance and the mean of the initial positions are set at

21 and 0, respectively. The range of the two-dimensional

simulation plan is the x y position square [−20,20]. The

flocking parameters are defined as the following: d = 5,

c = 30. Therefore, we suppose that the range of sight of

each UAV covers the entire simulation plan. Moreover, we

suppose that each UAV can measure the states of all the other

UAVs in its range of sight.

Fig. 4 shows six snapshots of running simulation over

time. This simulation is performed by using the average con-

trol strategy (20). The UAVs start scattered in the simulation

plan. By analyzing the simulation, each UAV performs a

repulsion action when there are some UAVs in its collision-

free region. This action ensures a security distance between

UAVs. Moreover, every UAV activates the aggregation be-

havior when a UAV or more are in its range of sight.

Therefore, UAVs start to converge to each other to form a

flock. The convergence is performed without collision. After

a sufficient time, a flock of UAVs is formed and stabilized.

In this simulation, we do not define a rendezvous point, and

there is no fragmentation in the flock. Moreover, we can see

clearly security distances between individuals. These security

distances ensure collision-free flock.

B. Navigation

In this part, we illustrate the navigation of 8 UAVs in a free

space. The variance of initial positions is 21 and the mean is

−30. The simulation plan is expanded to be the x y position



square [−60,60]. The flocking parameters are defined as the

following: d = 12, c = 30. The desired destination is the

position (40,40), so the navigation vector is [40 40 0 0]T .

Fig. 5 shows six snapshots of the navigation behavior

realized by using the control law in (26), which is applied in

every UAV in the flock. The flock performs the aggregation

behavior while navigating toward the desired destination.

Safety distances are kept throughout the navigation path.

Finally, the flock is uniformly formed and stabilized at the

destination position.

V. CONCLUSIONS

In this paper, we addressed the control problem of multiple

Unmanned Aerial Vehicles (UAVs) flocking by using a

behavior-based strategy. We conceived a behavior intending

to adress the control design towards a successful achieve-

ment of the flocking task without fragmentation. Moreover,

through its implemention in UAVs, no rendezvous point was

needed to perform flocking. We designed an LQR control

law, which is independent of the number of UAVs in the

flock. Our proposed strategy dealt with the flocking problem

from a measurement-mapping perspective. Simulation results

showed the efficiency of our strategy in the aggregation and

in the navigation of multi-UAVs flocking in a free space.

Our future work will focus on expanding the proposed

strategies on non linear models of (Unmanned Aerial Vehi-

cles) UAVs. Moreover, we will focus on implementing these

strategies in a real-time application.
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Fig. 4: multi-UAVs aggregation snapshots (Average strategy). No fragmentation in the flock, even if there is no rendezvous point.
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Fig. 5: multi-UAVs navigation snapshots. The algorithm ensures the aggregation and the navigation.
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