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LARGE DEVIATIONS FOR THE SQUARED RADIAL

ORNSTEIN-UHLENBECK PROCESS

MARIE DU ROY DE CHAUMARAY

Abstract. We establish large deviation principles for the couple of the maxi-
mum likelihood estimators of dimensional and drift coefficients in the generalised
squared radial Ornstein-Uhlenbeck process. We focus our attention to the most
tractable situation where the dimensional parameter a ą 2 and the drift parame-
ter b ă 0. In contrast to the previous literature, we state large deviation principles
when both dimensional and drift coefficient are estimated simultaneously.

1. Introduction

The generalized squared radial Ornstein-Uhlenbeck process, also known as the
Cox-Ingersoll-Ross process, is the strong solution of the stochastic differential equa-
tion

(1.1) dXt “ pa` bXtqdt ` 2
a
Xt dBt

where the initial state X0 “ x ě 0, the dimensional parameter a ą 0, the drift
coefficient b P R and pBtq is a standard Brownian motion. The behaviour of the
process has been widely investigated and depends on the values of both coefficient
a and b. We shall restrict ourself to the most tractable situation where a ą 2 and
b ă 0. In this case, the process is ergodic and never reaches zero.
We estimate parameters a and b at the same time using a trajectory of the process

over the interval r0, T s. The maximum likelihood estimators (MLE) of a and b are
given by:

(1.2) paT “
şT
0
Xt dt

şT
0

1
Xt

dXt ´ TXT
şT
0
Xt dt

şT
0

1
Xt

dt´ T 2
and pbT “

XT

şT
0

1
Xt

dt ´ T
şT
0

1
Xt

dXt
şT
0
Xt dt

şT
0

1
Xt

dt´ T 2
.

Overbeck [13] has shown that paT and pbT both converge almost surely to a and b. In
addition, he has proven that

?
T

ˆpaT ´ a
pbT ´ b

˙
LÝÑ N p0, 4C´1q where C “

ˆ ´b
a´2

1
1 ´a

b

˙
.

Moderate deviation results for paT and pbT are achieved in [7]. In addition, Zani [14]
established large deviation principles (LDP) for the MLE of a assuming b known and,
conversely, for the MLE of b assuming a known. Our goal is to extend her results to
the case where both parameters are estimated simultaneously. Our method is also
different and we explain how we have simplified her approach at the beginning of
Section 2.2 and Section 4, using a new strategy introduced by Bercu and Richou in
[3] for the study of the Ornstein-Uhlenbeck process with shift.
The paper is organised as follows. Section 2 is devoted to an LDP for the couple

ppaT ,pbT q, which is obtained via LDPs for two other couples of estimators constructed
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2 MARIE DU ROY DE CHAUMARAY

on the MLE. Before we prove those results, which is respectively the aim of Sections
5 and 6, we investigate in Section 3 LDPs for some useful functionals of the process
and compute in Section 4 the normalized cumulant generating function of a given
quadruplet, which is a keystone for every LDP we establish in this paper. Technical
proofs are postponed to Appendix A to E.

2. Main results

We start by rewriting the estimators paT and pbT in such a way that they are
much easier to handle. We need to suppose the starting point x ą 0 to apply the
well-known Itô’s formula to logXT . We obtain that

(2.1)

ż T

0

1

Xt

dXt “ logXT ´ log x` 2

ż T

0

1

Xt

dt

which leads to

(2.2) paT “ ST p2ΣT ` LT q ´ XT

T

VT
and pbT “ pXT

T
´ 2qΣT ´ LT

VT

where the denominator VT “ ST ΣT ´ 1 with

ST “ 1

T

ż T

0

Xt dt and ΣT “ 1

T

ż T

0

1

Xt

dt,

and

LT “ logXT ´ log x

T
.

For the remaining of the paper, we suppose the starting point x equal to 1. This
assumption does not change the large deviation results because both estimators,
with and without log x, are exponentially equivalent so that they share the same

LDP. We first consider couples of simplified estimators constructed from ppaT ,pbT q
using the fact that LT and XT {T both tend to zero almost surely for T going to

infinity. This will be useful for the study of the MLE ppaT ,pbT q.

2.1. Simplified estimators. A first strategy to propose simplified estimators of a

and b is to remove the logarithmic term LT in the expression of paT and pbT given by

(2.2). This way, we obtain a new couple praT ,rbT q defined by

(2.3) raT “ 2ST ΣT ´ XT

T

VT
and rbT “ pXT

T
´ 2qΣT

VT
.

It is clear that raT and rbT converge almost surely to a and b. Moreover, we also have
the same asymptotic normality

?
T

ˆraT ´ a
rbT ´ b

˙
LÝÑ N p0, 4C´1q.

The proof of this result can be found in appendix E. We also state an LDP for the

couple praT ,rbT q assuming both parameters a and b unknown.
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Theorem 2.1. The couple praT ,rbT q satisfies an LDP with good rate function

Ja,bpα, βq “

$
’’’’’’’’’’’&
’’’’’’’’’’’%

pa ´ 2q2β
8p2 ´ αq

ˆ
1 ` p2 ´ αqb

βpa´ 2q

˙2

` 2β ´ b if α ą 2, b
3

ď β ă 0

or if α ă 2, β ą 0,

pa ´ 2q2β
8p2 ´ αq

ˆ
1 ` p2 ´ αqb

βpa´ 2q

˙2

´ β

4

ˆ
1 ´ b

β

˙2

if α ą 2, β ď b
3
,

´b if pα, βq “ p2, 0q,

`8 otherwise.

Proof. The proofs of this theorem and the two following corollaries are postponed
to Section 5. �

We give the shape of this rate function in Figure 1 below in the particular case
pa, bq “ p4,´1q and over r3, 5s ˆ r´4,´0.5s. One can notice that the rate function
reaches zero at point p4,´1q.
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Figure 1. Rate function for the couple of simplified estimators praT ,rbT q

LDPs for each estimator raT and rbT immediately follow from contraction principle
[5].

Corollary 2.1. The sequence praT q satisfies an LDP with good rate function

Japαq “

$
’’&
’’%

b

4

´
a´ 6 ´

a
pa´ 2q2 ` 16p2 ´ αq

¯
if α ď ℓa,

b

4

˜
a ´

d
α

ˆpa´ 2q2
α ´ 2

` 2

˙¸
if α ě ℓa,

with ℓa “ 10
9

` 1
9

a
64 ` 9pa´ 2q2.

Corollary 2.2. The sequence prbT q satisfies an LDP with good rate function

Jbpβq “

$
&
%

´β

4

ˆ
1 ´ b

β

˙2

if β ď b
3
,

2β ´ b if β ě b
3
.
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Remark 2.1. This rate function is quite similar to the one obtained by Zani [14]
for the MLE of b assuming a known. They only differ from a multiplicative factor.

Figure 3 displays rate functions for both estimators in the particular case where
pa, bq “ p4,´1q.

A second strategy to propose simplified estimators of a and b is to remove the

term XT {T in the expression of paT and pbT given by (2.2). Then, we obtain a new

couple pqaT ,qbT q defined by

(2.4) qaT “ ST p2ΣT ` LT q
VT

and qbT “ ´2ΣT ´ LT

VT
.

As previously, qaT and qbT converge almost surely to a and b, and

?
T

ˆqaT ´ a
qbT ´ b

˙
LÝÑ N p0, 4C´1q.

The proof of this result is given in appendix E. We also establish an LDP for the

couple pqaT ,qbT q, and deduce as corollaries LDPs for both estimators, assuming a and
b unknown.

Theorem 2.2. The couple pqaT ,qbT q satisfies an LDP with good rate function

Ka,bpα, βq “

$
’’’’’’’’’’&
’’’’’’’’’’%

a

4
pb´ βq ´ α

8β

`
b2 ´ β2

˘
´ β

α

´?
2 `

a
Cα

¯2

if β ă 0, 0 ă α ď αa

or if β ą 0, α ă 0,

a

4
pb´ βq ´ α

8β

`
b2 ´ β2

˘
´ β pa ´ αq2

8 pα ´ 2q if β ă 0, α ě αa,

´bCa if pα, βq “ p0, 0q,

`8 otherwise,

where Cα “ 1
8

pa´ αq2 ` 2 ´ α, Ca “ 1
4

`
4 ´ a`

?
a2 ` 16

˘
and

αa “ ´2
3

`
a
2

´ 2 ´
?
a2 ´ 2a` 4

˘
.

One can observe that the rate functions Ja,b and Ka,b are equal over some domain
of R2. It is possible to see it on Figure 2 below which is quite similar to the previous
one and displays the rate function Ka,b in the particular case where pa, bq “ p4,´1q.
Corollary 2.3. The sequence pqaT q satisfies an LDP with good rate function

Kapαq “

$
’’’’&
’’’’%

´bCa if α “ 0,

Ka,bpα, βbq if α ă αa, α ‰ 0,

b

4

˜
a ´

d
α

ˆpa´ 2q2
α´ 2

` 2

˙¸
if α ě αa

with βb “ bλ
`
16

?
2
?
Cα ` a2 ´ 8λ ` 32

˘´1{2
and αa, Cα and Ca are defined in The-

orem 2.2.

Corollary 2.4. The sequence pqbT q satisfies an LDP with good rate function

Kbpβq “ inf
!
Ka,bpα, βq { α P R

)
.

In particular, Kbp0q “ ´bCa with the notations of the Theorem 2.2.

Figure 3 displays the rate functions for both estimators in the particular case
where pa, bq “ p4,´1q.
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Figure 2. Rate function for the couple of simplified estimators pqaT ,qbT q.

2.2. Large deviation results for the MLE. The next theorem gives a large devi-

ation principle for the MLE ppaT ,pbT q of the couple pa, bq. In contrast with the previous
literature, we consider both parameters unknown and estimate them simultaneously.
We also simplified the approach of the previous literature as our proofs only rely on
the Gärtner-Ellis theorem and do not need, for example, accurate time-depending
changes of probability.

Theorem 2.3. The couple ppaT ,pbT q satisfies an LDP with good rate function Ia,b
given over R

2 by
Ia,bpα, βq “ min pJa,bpα, βq, Ka,bpα, βqq .

Corollary 2.5. The sequence ppaT q satisfies an LDP with good rate function

Iapαq “ min pJapαq, Kapαqq .
Corollary 2.6. The sequence ppbT q satisfies an LDP with good rate function

Ibpβq “ min pJbpβq, Kbpβqq .
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Figure 3. Rate functions for dimensional and drift parameters.
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3. Some results about the process

The aim of this section is to establish LDPs for ST , ΣT and VT , which will be
useful for the proof of the main theorem.

Lemma 3.1. The couple pST ,ΣT q satisfies an LDP with good rate function

Ipx, yq “

$
&
%

y

2pxy ´ 1q ` b2

8
x` pa ´ 2q2

8
y ` ab

4
if x ą 0, y ą 0 and xy ´ 1 ą 0

`8 otherwise.

Proof. See appendix A. �

The following result can be proven either directly with the same method or using
the previous lemma together with the contraction principle [5].

Theorem 3.1. The sequence pST q satisfies an LDP with good rate function

Ipxq “
" pa`bxq2

8x
if x ą 0

`8 if x ď 0.

In addition, the sequence pΣT q satisfies an LDP with good rate function

Jpxq “
# `

pa´2qx`b

˘2

8x
if x ą 0

`8 if x ď 0.

It is now easy to establish a LDP for VT . We recall that VT “ h pST ,ΣT q where h
is the function defined on R

2 by hpx, yq “ xy ´ 1.

Theorem 3.2. The sequence pVT q verifies an LDP with good rate function

Kpxq “

$
’&
’%

´ b

4

d
px` 1q

ˆ
pa´ 2q2 ` 4

x

˙
` ab

4
if x ą 0

`8 if x ď 0.

Proof. It follows immediately from Lemma 3.1 together with the contraction princi-
ple [5]. It only remains to explicitly evaluate the rate function K given, for all real
z, by

Kpzq “ inf
tpx,yq|z“xy´1u

Ipx, yq

where I is defined in Lemma 3.1. �

4. Cumulant generating function for the quadruplet

To establish LDPs for the estimators by the same method as above for VT , we need
the normalized cumulant generating function of the quadruplet pXT {T, ST ,ΣT , LT q.
However, we can show that this does not lead to a steep function (see [5] for the
definition). Thus the Gärtner-Ellis theorem cannot be applied directly. In contrast
with the previous literature, we will not search another method to obtain large
deviation results. Our idea to overcome this difficulty is to consider instead the

quadruplet
´a

XT {T , ST ,ΣT ,LT

¯
, where

(4.1) LT “ ´
c

´ logXT

T
1XT ă1 ` logXT

T
1XT ě1.
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Lemma 4.1. Let ΛT pλ, µ, ν, γq be the normalized cumulant generating function of

the quadruplet
´a

XT {T , ST ,ΣT ,LT

¯
. Denote by Λ the pointwise limit of ΛT as T

tends to `8. For all λ, γ P R, µ ă b2

8
and ν ă pa´2q2

8
,

Λpλ, µ, ν, γq “

$
’’’’’’’’’’&
’’’’’’’’’’%

´d

2
p1 ` fq ´ ab

4
` λ2

d ´ b
if λ ą 0 and γ ě 0

or if γ ă 0, λ ą 0 and γ2

λ2 ă 2f`a`2

d´b
,

´d

2
p1 ` fq ´ ab

4
` γ2

2f ` a` 2
if λ ď 0 and γ ă 0

or if γ ă 0, λ ą 0 and γ2

λ2 ě 2f`a`2

d´b
,

´d

2
p1 ` fq ´ ab

4
if λ ď 0 and γ ě 0,

where d “
a
b2 ´ 8µ and f “ 1

2

b
pa ´ 2q2 ´ 8ν.

Remark 4.1. The function Λ is steep. Indeed, Λ is differentiable over its domain

DΛ “ R
4 ˆ r´8, b

2

8
rˆr´8,

pa´2q2
8

rˆR
4 and its gradient is given by

(4.2) ∇Λ “

¨
˚̊
˚̋

2λ
d´b

1∆1

2p1`fq
d

` 4λ2

dpd´bq21∆1

d
2f

` 2γ2

fp2f`a`2q21∆2

2γ

2f`a`2
1∆2

˛
‹‹‹‚,

where ∆1 “
!

pλ, µ, ν, γq P DΛ { λ ą 0 and γ ě 0 or γ ă 0, λ ą 0 and γ2

λ2 ă 2f`a`2

d´b

)

and ∆2 “
!

pλ, µ, ν, γq P DΛ { λ ď 0 and γ ă 0 or γ ă 0, λ ą 0 and γ2

λ2 ě 2f`a`2

d´b

)
.

Using that lim
µÑ b2

8

d “ 0 and limνÑ 1

8
pa´2q2 f “ 0, we easily obtain that the norm of

(4.2) goes to infinity for any sequence in the interior of DΛ converging to a boundary
point.

Proof. We want to find the limit as T Ñ `8 of

ΛT pλ, µ, ν, γq “ 1

T
log

ˆ
E

„
exp

ˆ
λ

?
T
a
XT ` γ TLT ` µ

ż T

0

Xt dt ` ν

ż T

0

1

Xt

dt

˙˙
.

It follows from Theorem 5.10 in [4] (with a misprint pointed out in [2]) that

(4.3) ΛT pλ, µ, ν, γq “ 1

T
log

ˆż 8

0

eλ
?
Ty`γ T lpT,yqppT, x, yq dy

˙

where lpT, yq “ ´
b

´ log y

T
1yă1 ` log y

T
1yě1 and

(4.4)
ppT, x, yq “ d px{yq´ a´2

4

4 sinh pdT {2q If
ˆ

d
?
xy

2 sinh pdT {2q

˙

ˆ exp

ˆ
´1

4
pabT ` dpx` yq coth pdT {2q ` bpx ´ yqq

˙

with d “
a
b2 ´ 8µ and f “ 1

2

b
pa´ 2q2 ´ 8ν, If beeing the modified Bessel func-

tion of the first kind. We take out of the integral all the terms that do not depend
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on y. This leads to

ΛT pλ, µ, ν, γq “ 1

T

ˆ
logJT ` log

ˆ
d

?
x

4 sinhpdT {2q

˙
´ 1

4
pabT ` dx coth pdT {2q ` a logpxq ` bxq

˙

where

(4.5) JT “
ż 8

0

eλ
?
Ty`γ T lpT,yq´ y

4
pd cothpdT {2q´bqy

a´2

4 If

ˆ
d

?
xy

2 sinhpdT {2q

˙
dy.

However, as soon as T tends to infinity, cothpdT {2q goes to 1, which implies that

(4.6) lim
TÑ`8

´ 1

4T

ˆ
abT ` dx coth

ˆ
dT

2

˙
` a logpxq ` bx

˙
“ ´ab

4
.

On the other hand,

1

T
log

ˆ
sinh

ˆ
dT

2

˙˙
“ 1

T

dT

2
` 1

T
log

ˆp1 ´ e´dT q
2

˙

which clearly leads to

(4.7) lim
TÑ`8

1

T
log

ˆ
d

?
x

4 sinhpdT {2q

˙
“ ´d

2
.

We have to establish the asymptotic behaviour of 1
T
logJT . We split JT into two

terms: JT “ HT ` KT where

(4.8) HT “
ż 1

0

eλ
?
Ty´γ

?´T log y´αT yy
a´2

4 If pβT
?
yq dy

and

(4.9) KT “
ż 8

1

eλ
?
Ty´αT yyγ` a´2

4 If pβT
?
yq dy

with

(4.10) αT “ d cothpdT {2q ´ b

4
and βT “ d

?
x

2 sinhpdT {2q .

We need the four following lemmas, whose proofs are postponed to Appendix B.

Lemma 4.2. For all γ ă 0 and λ P R, one can find the following bounds for HT as
T goes to infinity.

HT ď 21´f

Γpf ` 1q
?
πg´3{2|γ|

?
T e|λ|`αT {T`βT {

?
Tβ

f
T exp

ˆ
γ2T

4g

˙

and

HT ě 2´1´f

Γpf ` 1q
?
πg´3{2|γ|

?
T e´|λ|´αT {Tβf

T exp

ˆ
γ2T

4g

˙
,

where g “ 2f`a`2

4
.

Lemma 4.3. For all γ ě 0 and λ P R,

HT ď pβT qf
Γpf ` 1q2f exp

´
|λ|

?
T ` βT

¯

and

HT ě pβT qf εT

2f Γ p1 ` fq exp
´

´γ
?
T
a

log T ´ g log T
¯
,

where εT “ e´αT

´
ε ` e´|λ|

g

´
1 ´ γ

?
T

2g
?
log T`γ

?
T

¯¯
and ε “ exp

`
λ1λě0 ` λ

?
T1λă0

˘
.



LARGE DEVIATIONS FOR THE SQUARED RADIAL ORNSTEIN-UHLENBECK PROCESS 9

Lemma 4.4. For all λ ď 0 and γ P R and T tending to infinity, KT “ O
´

pβT qf
¯
.

Moreover if γ ě 0,

KT ě 21´f pβT qf
Γp1 ` fq

e´αT

2αT

1

1 ´ λ
?
T

2αT

exp
´
λ

?
T
¯
.

Lemma 4.5. For all λ ą 0 and γ P R,

KT ď 22´f
?
2π pβT qf

Γp1 ` fq
´
βT ` λ

?
T
¯2γ`2g´1

exp

ˆpλ
?
T ` βT q2
4αT

˙

and

KT ě 21´f

c
π

d´ b

pβT qf
Γp1 ` fq mγ,λ,T exp

ˆ
λ2T

4αT

˙
.

where mγ,λ,T “ min

"´
λ

?
T

αT

¯2pγ`g´1q
; λ

?
T

αT

*
.

It is clear with those lemmas that the asymptotic behaviour of JT depends on
the sign of λ and γ:
‚ For all λ ą 0 and γ ě 0: we directly deduce from Lemmas 4.5 and 4.3 that, for T
large enough,

HT ` KT ď 22´f
?
2π pβT qf

Γp1 ` fq
´
βT ` λ

?
T
¯2γ`2g´1

ˆ
e

pλ
?
T`βT q2
4αT ` e|λ|

?
T`βT

˙

and thus

(4.11) lim
TÑ8

1

T
logJT ď f lim

TÑ8

1

T
log βT ` lim

TÑ8

1

T

pλ
?
T ` βT q2
4αT

“ ´f d
2

` λ2

d ´ b
.

We show alike by using the lower bounds of Lemmas 4.5 and 4.3 that

(4.12) lim
TÑ8

1

T
logJT ě ´f d

2
` λ2

d ´ b

and we finally obtain

(4.13) lim
TÑ8

1

T
logJT “ ´f d

2
` λ2

d ´ b
.

‚ For all λ ď 0 and γ ă 0: With Lemma 4.4, we know that KT “ O
´

pβT qf
¯
.

Thus, HT `KT “ HT `O
´

pβT qf
¯
. Lemma 4.2 gives bounds for HT , which lead to

lim
TÑ8

1

T
logJT ď lim

TÑ8

1

T
log

ˆ
pβT qf hT,λ,γ exp

ˆ
γ2T

4g

˙˙
` lim

TÑ8

1

T
log

ˆ
1 ` Ch´1

T,λ,γe
´ γ2T

4g

˙

where C is some positive constant and

hT,λ,γ “ 21´f

Γpf ` 1q
?
πg´3{2|γ|

?
T e|λ|`αT {T`βT {

?
T .

Using the fact that h´1
T,λ,γe

´ γ2T
4g tends to zero as T goes to infinity, we obtain

(4.14) lim
TÑ8

1

T
logJT ď ´f d

2
` γ2

4g
.

We obtain the same lower bound by using the lower bound in Lemma 4.2.
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‚ For all λ ď 0 and γ ě 0: Lemma 4.3 gives HT “ O
´

pβT qf exp
`
|λ|

?
T
˘¯

and

by Lemma 4.4, we know that KT “ O
´

pβT qf
¯
. Consequently,

(4.15) lim
TÑ8

1

T
logJT ď f lim

TÑ8

1

T
log βT “ ´f d

2
.

And the lower bounds given in Lemmas 4.3 and 4.4 lead to

(4.16) lim
TÑ8

1

T
logJT ě f lim

TÑ8

1

T
log βT “ ´f d

2
.

‚ For all λ ą 0 and γ ă 0: using Lemmas 4.5 and 4.2, we show that

HT`KT ď C pβT qf
ˆ
hT,λ exp

ˆ
γ2T

4g

˙
`
´
βT ` λ

?
T
¯2γ`2g´1

exp

ˆpλ
?
T ` βT q2
4αT

˙˙

where hT,λ “
?
T e|λ|`αT {T`βT {

?
T and C is some positive constant. Thus

lim
TÑ8

1

T
logJT ď lim

TÑ8

1

T
log

˜
pβT qf eTˆmax

ˆ
γ2

4g
; λ2

d´b

˙¸
“ ´f d

2
` max

ˆ
γ2

4g
;
λ2

d ´ b

˙
.

We also show that

HT ` KT ě C pβT qf
ˆ
hT,λ exp

ˆ
γ2T

4g

˙
` mγ,λ,T exp

ˆ
λ2T

4αT

˙˙

where C is still some positive constant and hT,λ “
?
T e´|λ|´αT {T . It leads to

(4.17) lim
TÑ8

1

T
logJT ě ´f d

2
` max

ˆ
γ2

4g
;
λ2

d ´ b

˙
.

�

5. Proofs of the LDPs for the couples of simplified estimators

5.1. Proof of Theorem 2.1. We will now establish an LDP for the first couple of

simplified estimators. We notice that praT ,rbT q “ fp
a
XT {T , ST ,ΣT q where f is the

function defined on tpx, y, zq P R
3|yz ‰ 1u by

fpx, y, zq “
ˆ
2zy ´ x2

yz ´ 1
,

px2 ´ 2qz
yz ´ 1

˙
.

Thus, we first compute an LDP for the triplet
´a

XT {T , ST ,ΣT

¯
and then apply

the contraction principle to the obtained rate function.

Lemma 5.1. The sequence
!´a

XT {T , ST ,ΣT

¯)
satisfies an LDP with good rate

function:

Ipx, y, zq “

$
&
%

ab

4
` b2

8
y ` pa ´ 2q2

8
z ´ b

4
x2 ` px2 ` 2q2z

8pyz ´ 1q if x ě 0, y, z, yz ´ 1 ą 0

`8 otherwise.

Proof. See appendix C. �
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We apply the contraction principle to the rate function I of Lemma 5.1. We

obtain that praT ,rbT q satisfies an LDP with good rate function Ja,b given by

(5.1) Ja,bpα, βq “ inf tIpx, y, zq |fpx, y, zq “ pα, βqu
which reduces to

Ja,bpα, βq “ inf
DI

"
ab

4
` b2

8
y ` pa´ 2q2

8
z ´ b

4
x2 ` px2 ` 2q2z

8pyz ´ 1q |fpx, y, zq “ pα, βq
*

where DI “ tpx, y, zq P R
3|x ě 0, y ą 0, z ą 0, yz ´ 1 ą 0u and the infimum over

the empty set is equal to the infinity. If pα, βq “ p2, 0q, as z ą 0 on DI , the only
condition to satisfy fpx, y, zq “ p2, 0q is x2 “ 2. Therefore

(5.2) Ja,bp2, 0q “ inf
yą0,zą0,yz´1ą0

"
ab

4
` b2

8
y ` pa´ 2q2

8
z ´ b

2
` 2z

yz ´ 1

*
.

We look for critical points. We find that the derivative equals zero for z “ ´ b
a´2

and y “ ´a`2
b
, which, replaced into (5.2), leads to

(5.3) Ja,bp2, 0q “ ´b.
It is easy to see that Ja,bpα, βq “ `8 when α “ 2 and β ‰ 0 and when β “ 0 and
α ‰ 2 since we take the infimum over the empty set.
Otherwise, as fpx, y, zq “ pα, βq, we have

z “ β

2 ´ α
, yz ´ 1 “ βy ` α ´ 2

2 ´ α
and x2 “ βy ` α.

This gives us some conditions on the parameters. First of all, z ą 0 implies β

2´α
ą 0

and yz ą 1 implies y ą 1
z

“ 2´α
β
. Thus, if β

2´α
ă 0 then Ja,bpα, βq “ `8, otherwise

Ja,bpα, βq “ inf
Dy

"
ab

4
` pa ´ 2q2

8

β

2 ´ α
´ b

4
α ` pb2 ´ 2bβqy

8
` β

8

pβy ` α ` 2q2
βy ` α ´ 2

*

where Dy “ ty ą 2´α
β

|βy ` α ě 0u. We set on Dy,

(5.4) gpyq :“ ab

4
` pa´ 2q2

8

β

2 ´ α
´ b

4
α` pb2 ´ 2bβqy

8
` β

8

pβy ` α` 2q2
βy ` α ´ 2

.

‚ First case: β ă 0. If α ă 2 then β

2´α
ă 0 and Ja,bpα, βq “ `8.

We now suppose α ą 2. As β ă 0, the condition βy ` α ě 0 implies y ď ´α
β
which

is in the domain. Therefore,

Ja,bpα, βq “ inf
2´α
β

ăyď´α
β

gpyq.

The derivative g1pyq vanishes at 2´α
β

´ 4
b´β

if β ‰ b and at 2´α
β

if β “ b. Depending

on the value of β, the function g will or not vanish on the domain. So the infimum
will sometimes be at the boundary of the domain. It is the case when β ď b, but g
tends to infinity when y tends to 2´α

β
, so necessarily

Ja,bpα, βq “ g

ˆ
´α

β

˙
“ pa ´ 2q2β

8p2 ´ αq

ˆ
1 ` p2 ´ αqb

βpa´ 2q

˙2

´ β

4

ˆ
1 ´ b

β

˙2

.

For β ą b, the condition 2´α
β

´ 4
b´β

ą 2´α
β

is always satisfied and 2´α
β

´ 4
b´β

ď ´α
β

if and only if β ě b
3
. Consequently, if b ă β ď b

3
, the derivative does not vanish on
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the domain and we find the same value of Ja,b as above, while if b
3

ă β ă 0, we get

Ja,bpα, βq “ g

ˆ
2 ´ α

β
´ 4

b ´ β

˙
“ pa´ 2q2β

8p2 ´ αq

ˆ
1 ` p2 ´ αqb

βpa´ 2q

˙2

` 2β ´ b.

‚ Second case: β ą 0. Still for the same reasons, if α ą 2, Ja,bpα, βq “ `8. We
now suppose α ă 2. As β ą 0 the condition βy ` α ě 0 becomes y ě ´α

β
which is

smaller than 2´α
β
. Consequently,

Ja,bpα, βq “ inf
2´α
β

ăy
gpyq.

The derivative is equal to zero for y “ 2´α
β

´ 4
b´β

which is always greater than 2´α
β

so inside the domain. We get

Ja,bpα, βq “ g

ˆ
2 ´ α

β
´ 4

b ´ β

˙
“ pa´ 2q2β

8p2 ´ αq

ˆ
1 ` p2 ´ αqb

βpa´ 2q

˙2

` 2β ´ b.

5.2. Proofs of Corollaries 2.2 and 2.1. Using the contraction principle again,

we deduce from theorem 2.1 LDPs for both estimators. We begin with rbT because
the calculations are really straightforward.

Proof of Corollary 2.2. From the contraction principle, we know that

Jbpβq “ inf
αPR

Ia,bpα, βq.

We have directly that Jbp0q “ Ja,bp2, 0q “ ´b and that, for β ‰ 0,

Jbpβq “ Ja,bp2 ` β
a´ 2

b
, βq.

This leads to the result noticing that it is continuous at point zero. �

Proof of Corollary 2.1. With the contraction principle again, we have

Japαq “ inf
βPR

Ja,bpα, βq.

‚ First case: α “ 2. We easily show that Jap2q “ Ja,bp2, 0q “ ´b.
‚ Second case: α ă 2.

Japαq “ inf
βą0

#
pa´ 2q2β
8p2 ´ αq

ˆ
1 ` p2 ´ αqb

βpa´ 2q

˙2

` 2β ´ b

+
.

We investigate critical points β0. We get β0 “ ´ p2 ´ αq ba
pa´ 2q2 ` 16 p2 ´ αq

which leads

to

Japαq “ Ja,bpα, β0q “ b

4

´
a´ 6 ´

a
pa ´ 2q2 ` 16 p2 ´ αq

¯
.

‚ Third case: α ą 2. Ja,bpα, βq “ minpI1, I2q where

(5.5) I1 “ inf
βď b

3

#
pa´ 2q2β
8p2 ´ αq

ˆ
1 ` p2 ´ αqb

βpa´ 2q

˙2

´ β

4

ˆ
1 ´ b

β

˙2
+

and

(5.6) I2 “ inf
b
3

ďβă0

#
pa´ 2q2β
8p2 ´ αq

ˆ
1 ` p2 ´ αqb

βpa´ 2q

˙2

` 2β ´ b

+
.
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For I2, with the calculations of the second case, we already know that the derivative
equals zero for β0 verifying

β2
0 “ p2 ´ αq2 b2

pa´ 2q2 ` 16 p2 ´ αq .

This is well defined if and only if pa´ 2q2 ` 16 p2´αq ą 0. And, β0 is in the domain

if and only if β0 ă 0 and β2
0 ď b2

9
. All those conditions are fulfilled if and only if

9p2 ´ αq2 ď pa ´ 2q2 ` 16p2 ´ αq. As α ą 2, we obtain the condition

α ă ℓa :“
10

9
` 1

9

a
64 ` 9pa´ 2q2

and β0 “ ´ p2 ´ αq ba
pa ´ 2q2 ` 16 p2 ´ αq

. Thus, for 2 ă α ă ℓa

(5.7) I2 “ Ja,bpα, β0q “ b

4

´
a ´ 6 ´

a
pa´ 2q2 ` 16p2 ´ αq

¯
.

Otherwise, for α ě ℓa, the derivative never vanishes on the domain and the minimum
is reached at one of the boundaries. When β goes to zero, the function goes to
infinity. Consequently,

(5.8) I2 “ Ja,bpα,
b

3
q “ b

3

˜
ppa ´ 2q ` 3p2 ´ αqq2

8p2 ´ αq ´ 1

¸
.

For I1, the idea is similar. The derivative equals zero for β1 satisfying

β2
1 “ α b2 pα ´ 2q

pa´ 2q2 ` 2 pα´ 2q .

This time the domain is
 
β ă b

3

(
. So β1 is inside the domain if β1 ă 0 and β2

1 ě b2

9
.

It leads us to

β1 “ b

d
α pα ´ 2q

pa´ 2q2 ` 2 pα´ 2q
with the condition 9αpα´ 2q ą pa´ 2q2 ` 2pα´ 2q on α which gives the same limit
value ℓa. We get

(5.9) I1 “

$
’’’’&
’’’’%

Ja,bpα, b3q “ b

3

˜
ppa ´ 2q ` 3p2 ´ αqq2

8p2 ´ αq ´ 1

¸
if 2 ă α ă ℓa

Ja,bpα, β1q “ b

4

˜
a´

d
α

ˆpa´ 2q2
α ´ 2

` 2

˙¸
if α ě ℓa.

We now come back to Ja,bpα, βq. Combining (5.7), (5.8) and (5.9), we obtain

Ja,bpα, βq “ minpI1, I2q “
"

min
`
Ja,bpα, β0q, Ja,bpα, b3q

˘
if 2 ă α ď ℓa

min
`
Ja,bpα, β1q, Ja,bpα, b3q

˘
if α ą ℓa,

and it is easy to deduce that

(5.10) Ja,bpα, βq “
"
Ja,bpα, β0q if 2 ă α ď ℓa
Ja,bpα, β1q if α ą ℓa.

This leads to the conclusion, noticing that it is continuous at the point α “ 2. �
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5.3. Proof of Theorem 2.2. We consider the second couple of simplified estima-
tors defined by

qaT “ ST p2ΣT ` LT q
VT

and qbT “ ´2ΣT ´ LT

VT
.

We notice that
´
qaT ,qbT

¯
“ hpST ,ΣT ,LT q, where h is the function defined on

tpy, z, tq P R
3|yz ´ 1 ‰ 0u by

hpy, z, tq “
ˆ
y p2z ´ t21tď0 ` t1tą0q

yz ´ 1
,
t21tď0 ´ t1tą0 ´ 2z

yz ´ 1

˙
.

Once again, we start by computing an LDP for the triplet pST ,ΣT ,LT q and then
we deduce an LDP for the couple of estimators applying the contraction principle
to the obtained rate function.

Lemma 5.2. The sequence tpST ,ΣT ,LT qu satisfies an LDP with good rate function

rIpy, z, tq “

$
’’&
’’%

ab

4
` b2

8
y ` pa´ 2q2

8
z ` a

4
t2 ` 4zpyt2 ` 1q ` t4y

8pyz ´ 1q if t ď 0, y ą 0, z ą 0

and yz ´ 1 ą 0,
`8 otherwise.

Proof. The proof is postponed to Appendix D. �

By the contraction principle applied to the rate function rI of Lemma 5.2, we

obtain that
´
qaT ,qbT

¯
satisfies an LDP with good rate function Ka,b given by

Ka,bpα, βq “ inf
!
rIpy, z, tq|hpy, z, tq “ pα, βq, py, z, tq P R

3, yz ´ 1 ‰ 0
)

which reduces to

Ka,bpα, βq “ inf
Dα,β

"
ab

4
` b2

8
y ` pa ´ 2q2

8
z ` a

4
t2 ` 4zpyt2 ` 1q ` t4y

8pyz ´ 1q

*

whereDα,β “ tpy, z, tq P R
3|y ą 0, z ą 0, yz ´ 1 ą 0, t ď 0 and hpy, z, tq “ pα, βqu and

the infimum over the empty set is equal to infinity. The condition hpy, z, tq “ pα, βq
implies that

βy “ ´α and t2 “ p2 ´ αqz ´ β.

It gives us some additional conditions on the parameters. First of all, we notice that
for α or β equal to zero, Dα,β is not empty if and only if the other one is also zero.
Thus, Ka,bpα, βq “ `8 over t0u ˆ R

`
˚ and R

`
˚ ˆ t0u. If α “ β “ 0, t2 “ 2z. We

replace it into the infimum and look for critical points. We obtain z0 “ ´b?
a2`16

and

y0 “ 4`
?
a2`16

´b
. This leads to

Ka,bp0, 0q “ ´ b

4

´
4 ´ a`

?
a2 ` 16

¯
.

Moreover, for β ‰ 0, as y “ ´α
β
, Dα,β is empty as soon as α and β have the same

sign. So Ka,bpα, βq “ `8 over R
`
˚ ˆ R

`
˚ and R

´
˚ ˆ R

´
˚ . Besides, both expressions

will give us boundaries for z depending on the sign of α, β and 2 ´ α, because t2

must be positive and z must be greater than 1
y
. Assuming that all conditions are

fulfilled, we derive from Lemma 5.2 that

rI
ˆ

´α

β
, z,

a
p2 ´ αqz ´ β

˙
“ Aα,β ` Cαz ´ 2βz

αz ` β
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where Cα and Aα,β do not depend on z, and are defined by

(5.11) Cα “ 1

8
pa´ αq2 ` 2 ´ α and Aα,β “ ´α

β

b2

8
` ab

4
´ aβ

4
` αβ

8
.

Thus,

(5.12) Ka,bpα, βq “ inf
Dz

"
Aα,β ` Cαz ´ 2βz

αz ` β

*

where Dz “
 
z ą 0|z ą ´β

α
and p2 ´ αqz ´ β ě 0

(
.

‚ First case: α ă 0. We have already shown that Ka,bpα, βq “ `8 if β ă 0.

For β ą 0, 0 ă β

2´α
ď β

´α
so Dz “

 
z ą ´β

α

(
. We look for critical points of

Aα,β ` Cαz ´ 2βz

αz`β
over this domain. We find that critical points z0 satisfy

pαz0 ` βq2 “ 2β2

Cα

We notice that for α negative Cα is always positive. So the only critical point that

remains in the domain is z0 “ ´β

α

´
1 `

b
2
Cα

¯
. As the function tends to infinity on

the boundaries of Dz, it actually reaches the infimum we were looking for at this
critical point z0. Replacing it into (5.12), we find

(5.13)
Ka,bpα, βq “ Aα,β ` Cαz0 ´ 2βz0

αz0 ` β

“ a

4
pb´ βq ´ α

8β

`
b2 ´ β2

˘
´ β

α

´?
2 `

a
Cα

¯2

.

‚ Second case: 0 ă α ď 2. For β ą 0, Ka,bpα, βq “ `8. For β ă 0, the

condition p2 ´ αqz ´ β ě 0 is always verified. Thus Dz “
 
z ą ´β

α

(
. We do exactly

the same than in the first case and find the same critical point and the infimum
given by formula (5.13).

‚ Third case: α ą 2. The case β ą 0 has already been seen. We consider
β ă 0. We investigate the critical points of Aα,β `Cαz ´ 2βz

αz`β
over the domain Dz,

given in this case by Dz “
 

´β

α
ă z ď β

2´α

(
. We need to distinguish cases depending

on the sign of Cα.

If α ă a ` 4 ´ 2
?
a (which is greater than 2 because a ą 2), Cα is positive and

we find the same critical points than in the first case. The condition z ą ´β

α
is still

only verified by

z0 “ ´β

α

ˆ
1 `

c
2

Cα

˙
.

But, the condition z0 ď β

2´α
is not satisfied for all α in r2, a` 4 ´ 2

?
ar. Indeed,

(5.14) z0 ą β

2 ´ α
if and only if

2

Cα

pα´ 2q2 ą 4

which leads to the following condition on α:

3α2 ` 2pa´ 4qα´ pa2 ` 8q ą 0.
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One of the roots is negative. The other one is inside r2, a` 4 ´ 2
?
ar:

(5.15) αa “ ´2

3

´a
2

´ 2 ´
?
a2 ´ 2a` 4

¯
.

Thus, for α ď αa, the infimum is reached at z0 and is given by (5.13), while for
α ą αa, z0 is not inside the domain Dz so the derivative does not vanish and the
infimum is reached at one of the boundaries. We notice that for z tending to ´β

α
,

Aα,β ` Cαz ´ 2βz

αz`β
tends to the infinity. Thus, the infimum is reached at the other

boundary of the domain: z0 “ β

2´α
. Replacing it into (5.12), we obtain

(5.16) Ka,bpα, βq “ a

4
pb ´ βq ´ α

8β

`
b2 ´ β2

˘
´ β pa´ αq2

8 pα ´ 2q .

If α P ra ` 4 ´ 2
?
a; a ` 4 ` 2

?
as, then Cα is null or negative so the derivative

cannot vanish and Ka,b is given by (5.16).

If α ą a`4`2
?
a, then Cα is positive but as α ą αa the critical point z0 is greater

than β

2´α
so outside the domain Dz. The infimum is reached at the boundary β

2´α

of the domain and is still given by (5.16).

5.4. Proofs of Corollaries 2.3 and 2.4.

Proof of Corollary 2.4. The result is a direct application of the contraction principle
to the rate function Ka,b of Theorem 2.2. We did not obtain an explicit expression
of the infimum. �

Proof of Corollary 2.3. With the contraction principle again, we know that the pqaT q
satisfies an LDP with good rate function

Kapαq “ inf
βPR

Ka,bpα, βq.

‚ First case: α “ 0. We easily show that Kap0q “ Ka,bp0, 0q “ ´bCa.
‚ Second case: α ă 0. We rewrite

Kapαq “ inf
βą0

"
Aα,β ´ β

α

´?
2 `

a
Cα

¯2
*
.

The critical points β0 satisfy

(5.17) β2
0 “ α2b2

16
?
2
?
Cα ` a2 ´ 8α ` 32

,

which is clearly well defined for all α ă 0. Using the fact that α ă 0 and b ă 0 and
as β0 must be positive, we obtain

(5.18) β0 “ bα
´
16

?
2
a
Cα ` a2 ´ 8α ` 32

¯´1{2

and

(5.19) Kapαq “ Ka,bpα, β0q.

‚ Third case: 0 ă α ď αa. This time

Kapαq “ inf
βă0

"
Aα,β ´ β

α

´?
2 `

a
Cα

¯2
*
.
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The critical points β0 are still given by (5.17). It is well defined for all α ă αa.
Namely, 16

?
2
?
Cα ` a2 ´ 8α ` 32 is a decreasing function on α over this domain

and is positive at the point αa. Indeed, we know from (5.14) and (5.15) that αa ą 2
satisfies pαa ´2q2 “ 2Cαa

, which leads to 16
?
2
a
Cαa

`a2 ´8αa `32 “ 8αa `a2 ą 0.
This time α ą 0 and β0 must be negative but we obtain anyway the same critical
point β0 given by (5.18) and the infimum Ka by (5.19).
‚ Fourth case: α ě αa. This time

Kapαq “ inf
βă0

#
pa´ 2q2β
8p2 ´ αq

ˆ
1 ` p2 ´ αqb

βpa´ 2q

˙2

´ β

4

ˆ
1 ´ b

β

˙2
+
.

Using the results of the third case of the proof of Corollary 2.1, we obtain the same
critical point and the same infimum.

�

6. Proof of Theorem 2.3

6.1. Existence of an LDP.

Lemma 6.1. The quadruplet p
a
XT {T , ST ,ΣT ,LT q satisfies an LDP with good rate

function Λ˚ given by

(6.1) Λ˚px, y, z, tq “ `8 for x ă 0, t ą 0, y ď 0, z ď 0 or yz ´ 1 ď 0.

and, otherwise,

(6.2) Λ˚px, y, z, tq “ sup
Dd,f

hpd, fq

where Dd,f “ td ą 0, f ą 0u and, with ϕpfq “ 2f ` a` 2,

hpd, fq “ 1

4

´
t
a
ϕpfq ´ x

?
d ´ b

¯2

` y
b2 ´ d2

8
` pa ´ 2q2 ´ 4f 2

8
z ` d

2
p1 ` fq ` ab

4
.

Proof. Using Gärtner-Ellis theorem, we have to compute the Fenchel-Legendre trans-
form Λ˚ of the cumulant generating function Λ defined in Theorem 4.1:

(6.3) Λ˚px, y, z, tq “ sup
D

txλ ` yµ` zν ` tγ ´ Λpx, y, z, tqu

where D “
!
λ P R, γ P R, µ ă b2

8
, ν ă pa´2q2

8

)
. We show with the same arguments

than for the other LDP proofs that

(6.4) Λ˚px, y, z, tq “ `8 for x ă 0, t ą 0, y ď 0, z ď 0 or yz ´ 1 ď 0.

Besides, for x ě 0, the part involving λ in the function we want to optimize is
always negative for λ ď 0 and sometimes positive for λ ą 0. Thus the supremum is
necessarily reached for some λ ą 0. With the same argument for t ď 0, we show that
we only have to consider γ ă 0. Replacing µ and ν by their expression in d and f ,
the domain D over which we optimize reduces to D “ tλ ą 0, γ ă 0, d ą 0, f ą 0u.
Replacing Λ by its value leads to

Λ˚px, y, z, tq “ maxpS1, S2q,
where

S1 “ sup
DX

!
γ2

λ2
ďϕpfq

d´b

)

"
xλ ` y

b2 ´ d2

8
` z

pa ´ 2q2 ´ 4f 2

8
` tγ ` d

2
p1 ` fq ` ab

4
´ λ2

d ´ b

*
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and

S2 “ sup
DX

!
γ2

λ2
ěϕpfq

d´b

)

"
xλ ` y

b2 ´ d2

8
` z

pa ´ 2q2 ´ 4f 2

8
` tγ ` d

2
p1 ` fq ` ab

4
´ γ2

ϕpfq

*
.

We first consider S1. The domain over which we take the supremum is given by

D X
"
γ2

λ2
ď ϕpfq
d ´ b

*
“
#
λ ă 0, d ą 0, f ą 0, 0 ą γ ě ´

c
ϕpfq
d ´ b

λ

+
.

Over this domain, as t ď 0, 0 ď tγ ď ´t
b

ϕpfq
d´b

λ, so that the supremum of tγ is

equal to ´tλ
b

ϕpfq
d´b

. Thus, if we set D1 “ tλ ă 0, d ą 0, f ą 0u,

S1 “ sup
D1

#
xλ ` y

b2 ´ d2

8
` z

pa ´ 2q2 ´ 4f 2

8
´ tλ

c
ϕpfq
d ´ b

` d

2
p1 ` fq ` ab

4
´ λ2

d ´ b

+
.

The supremum over λ is easy to compute. Indeed, the function is concave on λ and
the critical point is given by

λ “ d´ b

2

˜
x ´ t

c
ϕpfq
d ´ b

¸
.

Finally, with Dd,f “ td ą 0, f ą 0u, we obtain

S1 “ sup
Dd,f

#
1

4

´
t
a
ϕpfq ´ x

?
d ´ b

¯2

` y
b2 ´ d2

8
` pa ´ 2q2 ´ 4f 2

8
z ` d

2
p1 ` fq ` ab

4

+
.

We do the same thing with S2, computing first the supremum over λ and then over
γ. We obtain S1 “ S2, so that

(6.5) Λ˚px, y, z, tq “ S1 “ sup
Dd,f

hpd, fq

where

hpd, fq “ 1

4

´
t
a
ϕpfq ´ x

?
d ´ b

¯2

` y
b2 ´ d2

8
` pa´ 2q2 ´ 4f 2

8
z ` d

2
p1 ` fq ` ab

4
.

�

Remark 6.1. This supremum is not explicitly computable but, as the function h is
concave, it is reached for some pd˚, f˚q and this gives the rate function of the LDP

satisfied by the quadruplet p
a
XT {T , ST ,ΣT ,LT q.

Lemma 6.2. The couple ppaT ,pbT q satisfies an LDP with good rate function Ia,b given
over R

2 by

Ia,bpα, βq “

$
’’’’’’&
’’’’’’%

Ka,bp0, 0q if pα, βq “ p0, 0q,

Ja,bp2, 0q if pα, βq “ p2, 0q,

inf
Dx,t

sup
Dd,f

Hpx, t, d, fq if pα, βq P D1 Y D2 Y D3,

`8 otherwise.

where D1 “ R
´ ˆ R

`
˚ , D2 “s0, 2rˆR, D3 “ r2,`8rˆR

´
˚ , Dd,f “ td ą 0, f ą 0u,

Dx,t “
"
x ě 0, t ď 0|x

2 ´ α

β

t2 ` β

2 ´ α
ą 1

*
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and

Hpx, t, d, fq “ 1

4

´
t
a
2f ` a` 2 ´ x

?
d ´ b

¯2

` b2 ´ d2

8

x2 ´ α

β

`pa´ 2q2 ´ 4f 2

8

t2 ` β

2 ´ α
` d

2
p1 ` fq ` ab

4
.

Proof. As ppaT ,pbT q “ gp
a
XT {T , ST ,ΣT ,LT q where g is the function defined on

tpx, y, z, tq P R
4|yz ´ 1 ‰ 0u by

gpx, y, z, tq “
ˆ
y p2z ´ t21tď0 ` t1tą0q ´ x2

yz ´ 1
,
t21tď0 ´ t1tą0 ` px2 ´ 2qz

yz ´ 1

˙
,

the contraction principle and Lemma 6.1 give us that the couple ppaT ,pbT q satisfies
an LDP with good rate function Ia,b given by

(6.6) Ia,bpα, βq “ inf tΛ˚px, y, z, tq|gpx, y, z, tq “ pα, βqu .

We can reduce the domain over which we look for the infimum using (6.1). The
condition gpx, y, z, tq “ pα, βq gives us a link between x and y and one between t

and z:

(6.7) βy “ x2 ´ α and p2 ´ αq z “ t2 ` β.

We first notice that if α ď 0 and β ă 0 then y is negative and for all x, z, t,
Λ˚px, y, z, tq “ `8 such as Ia,bpα, βq. Similarly, if β ě 0 and α ą 2, z is negative
and Λ˚px, y, z, tq “ `8 for all x, y, t, then Ia,bpα, βq “ `8. If β “ 0 and α ă 0,
the first condition in (6.7) leads to x2 negative and if α “ 2 and β ą 0 the second
condition gives t2 negative. So, in both cases, we get Ia,bpα, βq “ `8. We now focus
on the values of α and β for which Ia,b is not clearly infinite. We first consider the
two remaining limit cases : p0, 0q and p2, 0q. If α “ β “ 0 then the first condition of
(6.7) gives x2 “ α “ 0 so that

(6.8) Ia,bp0, 0q “ Ka,bp0, 0q.

Similarly, if α “ 2 and β “ 0, the second condition implies that t2 “ p2 ´ αqz “ 0
and consequently

(6.9) Ia,bp2, 0q “ Ja,bp2, 0q.

For all remaining values of pα, βq, we define the function

(6.10)
Hpx, t, d, fq “ 1

4

´
t
a

2f ` a` 2 ´ x
?
d ´ b

¯2

` b2 ´ d2

8

x2 ´ α

β

`pa ´ 2q2 ´ 4f 2

8

t2 ` β

2 ´ α
` d

2
p1 ` fq ` ab

4

and obtain the announced result:

(6.11) Ia,bpα, βq “ inf
Dx,t

sup
Dd,f

Hpx, t, d, fq,

where Dx,t “
!
x ě 0, t ď 0|x2´α

β

t2`β

2´α
ą 1

)
and Dd,f “ td ą 0, f ą 0u. �

We were not able to compute Ia,b directly. It is the aim of the next subsection.
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6.2. Evaluating the rate function Ia,b. We want to show that

(6.12) Ia,bpα, βq “ min pJa,bpα, βq, Ka,bpα, βqq
where Ja,b and Ka,b are the rate functions for the two couples of simplified estimators
(see Theorems 2.1 and 2.2) and Ia,b is given by Lemma 6.2 We notice that

Ka,bpα, βq “ inf
tď0

sup
Dd,f

Hp0, t, d, fq and Ja,bpα, βq “ inf
xě0

sup
Dd,f

Hpx, 0, d, fq.

Thus it easily follows that

(6.13) Ia,bpα, βq ď min pJa,bpα, βq, Ka,bpα, βqq .
So, we just have to show the other inequality.

We name pθT “
´
paT ,pbT

¯
and θT “

´
raT ,rbT

¯
1XT ě1 `

´
qaT ,qbT

¯
1XT ă1.

Lemma 6.3. The estimators θT and pθT are exponentially equivalent, which means
that for all ε ą 0,

lim
TÑ`8

1

T
logP

´
‖ pθT ´ θT ‖ą ε

¯
“ ´8.

In particular, as the sequence ppθT q satisfies an LDP with good rate function Ia,b, then

the same LDP holds true for pθT q.
Proof. From the definition of each estimator, we get that

paT ´ praT1XT ă1 ` qaT1XT ě1q “ ST LT1XT ě1 ´ XT

T
1XT ă1

VT

and

pbT ´
´
rbT1XT ă1 `qbT1XT ě1

¯
“

XT

T
ΣT1XT ă1 ´ LT1XT ě1

VT
.

Thus, for all ε ą 0,

P

´
‖ pθT ´ θT ‖ą ε

¯
ď P ε

T ` Qε
T ` pεT ` qεT

where P ε
T “ P

ˆˇ̌
ˇ̌ST LT1XT ě1

VT

ˇ̌
ˇ̌ ě ε

2
?
2

˙
, Qε

T “ P

˜ˇ̌
ˇ̌
ˇ
XT

T
1XT ă1

VT

ˇ̌
ˇ̌
ˇ ě ε

2
?
2

¸
,

pεT “ P

˜ˇ̌
ˇ̌
ˇ
XT

T
ΣT1XT ă1

VT

ˇ̌
ˇ̌
ˇ ě ε

2
?
2

¸
and qεT “ P

ˆˇ̌
ˇ̌LT1XT ě1

VT

ˇ̌
ˇ̌ ě ε

2
?
2

˙
. For all η ą 0,

we have the following upper bounds:

P ε
T ď P

ˆ
|ST | ě ε

2η
?
2

˙
` P

ˆ |LT1XT ě1|
VT

ě η

˙

ď P

ˆ
ST ě ε

2η
?
2

˙
` P

`
LT1XT ě1 ě η2

˘
` P pVT ď ηq ,(6.14)

(6.15) pεT ď P

ˆ
ΣT ě ε

2η
?
2

˙
` P

ˆ
XT

T
1XT ă1 ě η2

˙
` P pVT ď ηq ,

(6.16) qεT ď P

ˆ
LT1XT ě1 ě εη

2
?
2

˙
` P pVT ď ηq ,
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and

(6.17) Qε
T ď P

ˆ
XT

T
1XT ă1 ě εη

2
?
2

˙
` P pVT ď ηq .

First of all, using Theorem 3.1, we show that for all c ą ´a
b
,

(6.18) lim
TÑ`8

1

T
log P pST ě cq “ ´Ipcq

and for all c ą ´ b
a´2

,

(6.19) lim
TÑ`8

1

T
log P pΣT ě cq “ ´Jpcq

where I and J are given in Theorem 3.1. Likewise, we deduce from Theorem 3.2
that for any c ą 0 small enough

(6.20) lim
TÑ`8

1

T
log P pVT ď cq “ ´K pcq .

We now consider the parts involving LT . For all c ą 0 and λ ą 0:

P pLT1XT ě1 ě cq “ P plogXT1XT ě1 ě cT q
ď E

“
eλ logXT

‰
e´λcT .

Hence
1

T
log P pLT1XT ě1 ě cq ď ´λc` 1

T
log

`
E
“
Xλ

T

‰˘
.

Asymptotic properties of the moments of the process XT as T tends to infinity can
be found in Proposition 3 of [2], and give that the second term tends to zero for T
going to infinity. Thus, for any λ ą 0 and c ą 0, we have the following upper bound

lim sup
TÑ`8

1

T
log P pLT1XT ě1 ě cq ď ´λc.

Consequently, letting λ go to infinity, we obtain that for all c ą 0,

(6.21) lim sup
TÑ`8

1

T
log P pLT1XT ě1 ě cq “ ´8.

Finally, we consider the terms involving XT

T
. For all c ą 0 and λ ą 0:

P

ˆ
XT

T
1XT ă1 ě c

˙
ď E

“
eλXT 1XT ă1

‰
e´λcT

ď eλ´λcT .

Hence
1

T
logP

ˆ
XT

T
1XT ă1 ě c

˙
ď ´λc` λ

T
.

Thus, for any λ ą 0 and c ą 0, we have the following upper bound

lim sup
TÑ`8

1

T
logP

ˆ
XT

T
1XT ă1 ě c

˙
ď ´λc.

Consequently, letting λ go to infinity, we obtain that for all c ą 0,

(6.22) lim sup
TÑ`8

1

T
log P

ˆ
XT

T
1XT ă1 ě c

˙
“ ´8.
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Consequently, combining the limits (6.18) to (6.22) , we are able to compute the
asymptotic behaviour of the bounds (6.14) to (6.17) and we show that for all ε ą 0
and all η ą 0 small enough,

lim sup
TÑ`8

1

T
log P

´
‖ pθT ´ θT ‖ą ε

¯
ď ´Mε,η ,

where Mε,η “ min

"
I

ˆ
ε

2η
?
2

˙
, J

ˆ
ε

2η
?
2

˙
, K pηq

*
. Each term in this minimum

tends to infinity as η goes to zero, so that Mε,η itself tends to infinity. This gives
the announced result. �

Proof of Theorem 2.3. We have already shown in Lemma 6.2 that Ia,bp2, 0q “ Ja,bp2, 0q
and Ia,bp0, 0q “ Ka,bp0, 0q and that, except at this two points, Ia,b is infinite over
R

´ ˆ R
´ and over r2,`8r ˆ R

`. We also know by (6.13) that

Ia,bpα, βq ď min pJa,bpα, βq;Ka,bpα, βqq ,
so we still need to establish the other inequality over the remaining domain. In the
sequel, we show that, for all compact subsets C Ă R

2,

(6.23) lim sup
TÑ`8

1

T
logP

`
θT P C

˘
ď ´ inf

pα,βqPC
mintJa,bpα, βq, Ka,bpα, βqu.

It is sufficient to consider compact subsets of R2 instead of closed ones, as we already
know that the sequence θT satisfies an LDP with good rate function Ia,b and R

2 is

locally compact so that the family
`
P
`
θT P ‚

˘˘
T
is exponentially tight (see Lemma

1.2.18 and Exercise 1.2.19 of [5]). And this will prove the announced result as, by

Lemma 6.3, the sequences θT and pθT share the same LDP.
First of all, we notice that θT “ gp

a
XT {T , ST ,ΣT ,LT q where g is the function

defined over tpx, y, z, tq P R
4|yz ´ 1 ‰ 0u by

(6.24) gpx, y, z, tq “
ˆ
y p2z ´ t21tă0q ´ x21tě0

yz ´ 1
,
t21tă0 ` px21tě0 ´ 2qz

yz ´ 1

˙
,

and the quadruplet p
a
XT {T , ST ,ΣT ,LT q satisfies an LDP with good rate function

Λ˚ given by Lemma 6.1. As the function g given by (6.24) is not continuous, we
cannot apply directly the contraction principle. However,

(6.25) lim sup
TÑ`8

1

T
log P

`
θT P C

˘
ď ´ inf

g´1pCq
Λ˚.

We need to describe the subset g´1 pCq. A quadruplet px, y, z, tq of R
4 belongs

to g´1 pCq if and only if there exists a sequence pxn, yn, zn, tnqn and a sequence
pαn, βnqn P C such that, as n tends to infinity,

(6.26) pxn, yn, zn, tnq Ñ px, y, z, tq
and for all n

(6.27) g pxn, yn, zn, tnq “ pαn, βnq
As C is a compact subset, up to a subsequence, there exists pα, βq P C such that
pαn, βnq converges to pα, βq as n goes to infinity. Moreover, (6.27) is equivalent to
the following conditions for all n:

βnyn “ x2n1tně0 ´ αn

and
p2 ´ αnq zn “ t2n1tnă0 ` βn.
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Up to a subsequence again, both indicator functions converge toward 1 or 0. Thus,
letting n go to infinity, we obtain conditions on px, y, z, tq which lead to

g´1 pCq “
ď

pα,βqPC
D`

α,β Y D´
α,β

where

D`
α,β “

 
px, y, z, tq P R

3 ˆ R
`|βy “ x2 ´ α and p2 ´ αq z “ β

(

and

D´
α,β “

 
px, y, z, tq P R

3 ˆ R
´|βy “ ´α and p2 ´ αq z “ t2 ` β

(
.

Thus, (6.25) becomes

(6.28) lim sup
TÑ`8

1

T
log P

`
θT P C

˘
ď ´ inf

pα,βqPC
min

#
inf
D

`
α,β

Λ˚ ; inf
D

´
α,β

Λ˚

+
.

For all α ‰ 2 and β ‰ 0, we easily rewrite D`
α,β “

!´
x, x

2´α
β
, β

2´α
, t
¯
, x P R, t ě 0

)

and D´
α,β “

!´
x,´α

β
, t

2`β

2´α
, t
¯
, x P R, t ď 0

)
.

As the rate function Λ˚ given by Lemma 6.1 is infinite for t ą 0, the infimum

over D`
α,β reduces to the infimum over

!´
x, x

2´α
β
, β

2´α
, 0
¯
, x P R

)
which is equal to

Ja,b pα, βq. Over D´
α,β, we know by Lemma 6.1 that

Λ˚
ˆ
x,´α

β
,
t2 ` β

2 ´ α
, t

˙
“ sup

Dd,f

"
1

4

´
x

?
d ´ b ´ t

a
ϕpfq

¯2

` ψd,f ptq
*

where ψd,f ptq does not depend on x. Thus,

Λ˚
ˆ
x,´α

β
,
t2 ` β

2 ´ α
, t

˙
ě Λ˚

ˆ
0,´α

β
,
t2 ` β

2 ´ α
, t

˙

and the infimum over D´
α,β is greater than the infimum over

!´
0,´α

β
, t

2`β

2´α
, t
¯
, t ď 0

)

which is equal to Ka,b pα, βq.
We now need to investigate the cases α “ 2 and β “ 0 before concluding. For β “ 0
and α R s0, 2r, we already know the value of Ia,b. If α P s0, 2r,

D`
α,0 “

 
px, y, z, tq P R

3 ˆ R
`|x2 “ α and z “ 0

(
and D´

α,0 “ H.

And with the argument than before we obtain that for all α P s0, 2r,
Ia,b pα, 0q “ Ja,b pα, 0q “ min tJa,b pα, 0q ;Ka,b pα, 0qu

as Ka,b pα, 0q is equal to infinity. Now, for α “ 2, we have already computed Ia,b for
all β ě 0. For β ă 0,

D`
2,β “ H and D´

2,β “
 

px, y, z, tq P R
3 ˆ R

´|βy “ ´2 and t2 “ ´β
(
.

We obtain that

D´
2,β “

"ˆ
x,´ 2

β
, z, t

˙
, x P R, z P R, t ď 0

*

and with the same argument than before, the infimum over this subset is greater

than the infimum over
!´

0,´ 2
β
, z, t

¯
, z P R, t ď 0

)
, which is equal to Ka,b p2, βq.

Thus, as Ja,b p2, βq is equal to infinity, we can conclude that

Ia,b p2, βq “ min tJa,b p2, βq ;Ka,b p2, βqu .
�
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Appendix A: proof of Lemma 3.1

We apply the Gärtner-Ellis theorem (see [5]). It is easy to deduce from Theo-

rem 4.1 that the pointwise limit rΛ of the normalized cumulant generating function
rΛT of the couple pST ,ΣT q is given by

(A.1) rΛpµ, νq “ ´d

2
p1 ` fq ´ ab

4

where d “
a
b2 ´ 8µ and f “

b`
a
2

´ 1
˘2 ´ 2ν. We easily get from Remark 4.1 that

the function rΛ is steep. To obtain the rate function I, we just have to compute the

Fenchel-Legendre transform of rΛ:

(A.2) Ipx, yq “ sup
µă b2

8
, νă pa´2q2

8

!
xµ ` yν ´ rΛpµ, νq

)
.

First we note that

(A.3) for x ď 0 or y ď 0, Ipx, yq “ `8,

because rΛpµ, νq tends to ´8 as ν or µ tends to ´8. Only the case x ą 0 and y ą 0
remains to be studied.
We look for the critical points. If xy ´ 1 ‰ 0, we obtain

(A.4)

ˆ
d0
f0

˙
“ 1

xy ´ 1

ˆ
2y
1

˙
.

But d0 and f0 must both be positive, so the solution is in the domain if and only if
xy ´ 1 ą 0. It is easy to check that this critical point corresponds to a maximum of
rΛ. Using the fact that µ “ b2´d2

8
et ν “ pa

2
´1q2´f2

2
and replacing it into (A.2), we get

(A.5) Ipx, yq “ y

2pxy ´ 1q ` b2

8
x ` pa´ 2q2

8
y ` ab

4
.

To conclude, we need to examine the case x ą 0, y ą 0 and xy ´ 1 ă 0. We already

know that for ν and µ tending to ´8, ´rΛpµ, νq tends to `8. However, as x and y
are non negative, we cannot conclude directly. But it is possible to find a direction

in which rΛ dominate the expression. Note that, for ´ν and ´µ large enough,

xµ ` yν ´ rΛpµ, νq „ xµ ` yν ` ?
µν.

Let k ą 0 and ν “ kµ. We just have to find a k ą 0 that satisfies

k2py2 ´ 1q ` 2xyk ` x2 ă 0.

If y ă 1 then all k ą ´ x
y´1

fit. Else, if y ě 1, necessarily x ă 1 and we use

the same argument with µ “ kν this time. We have found directions for which

xµ ` yν ´ rΛpµ, νq tends to `8, so that the supremum itself is equal to `8. And,

(A.6) for x ą 0, y ą 0 such that xy ´ 1 ă 0, Ipx, yq “ `8.
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Appendix B: Proofs of Lemmas 4.2 to 4.5

The four following proofs rely on lower and upper bounds for the modified Bessel
function of the first kind, given by formula (6.25) of [12]. More precisely, for all
z ą 0 and ν ą ´1

2
, we have:

(B.1) 1 ă
ˆ
2

z

˙ν

Γ pν ` 1q Iν pzq ă ez.

B.1. Proof of Lemma 4.2. It is easy to deduce the following upper and lower
bounds from (B.1):

(B.2)
pβT

?
yqf

2f Γpf ` 1q ď If pβT
?
yq ď pβT

?
yqf

2fΓpf ` 1qe
βT

?
y.

Replacing it into the expression of HT given by (4.8) leads to:

(B.3)
2fΓp1 ` fq

β
f
T

HT ě
ż 1

0

eλ
?
Ty´γ

?´T log y´αT y y
2f`a´2

4 dy

and

(B.4)
2fΓp1 ` fq

β
f
T

HT ď
ż 1

0

eβT
?
y`λ

?
Ty´γ

?´T log y´αT y y
2f`a´2

4 dy.

We consider separately the integrals over r0, 1
T

s and over r 1
T
, 1s. On the one hand,ż 1

1

T

eβT
?
y`λ

?
Ty´γ

?
´T log y´αT y y

2f`a´2

4 dy ď
ż 1

1

T

eβT
?
y`λ

?
Ty´γ

?
´T log y dy

ď 1 ˆ sup
r 1

T
,1s

´
eβT

?
y`λ

?
Ty´γ

?´T log y
¯

ď eλ
?
T`βT ´γ

?
´T log 1

T

“ O
´
epλ´γq

?
T

?
log T

¯
.

On the other hand, with the same argument, we show that
ż 1

1

T

eλ
?
Ty´γ

?
´T log y´αT y y

2f`a´2

4 dy “ O
´
epλ´γq

?
T

?
log T

¯
.

Over r0, 1
T

s, eλ
?
Ty, eβt

?
y and e´αT y are bounded. So we have

ż 1

T

0

eλ
?
Ty´γ

?´T log y´αT y y
2f`a´2

4 dy ě e´αT {T´|λ|
ż 1

T

0

e´γ
?´T log y y

2f`a´2

4 dy

and
ż 1

T

0

eβT
?
y`λ

?
Ty´γ

?´T log y´αT y y
2f`a´2

4 dy ď e|λ|`αT {T`βT {
?
T

ż 1

T

0

e´γ
?´T log y y

2f`a´2

2 dy.

Using the change of variable given by z “
?

´ log y ` γ
?
T

2g
, where g “ 2f`a`2

4
, we

obtain:
ż 1

T

0

e´γ
?´T log y yg´1 dy “ 2e

γ2T
4g

ż `8

?
log T` γ

?
T

2g

e´g z2

ˆ
z ´ γ

?
T

2g

˙
dz

“ 2e
γ2T
4g

˜ż `8

?
log T` γ

?
T

2g

e´g z2 z dz ´ γ
?
T

2g

ż `8

?
log T` γ

?
T

2g

e´g z2 dz

¸
.
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By dominated convergence as γ ă 0, the first integral tends to zero when T goes to

infinity and the second one tends to the positive constant
b

π
g
. This leads to the

following bounds, for T large enough:
ż 1

T

0

e´γ
?

´T log y yg´1 dy ď 2

c
π

g

|γ|
?
T

g
exp

ˆ
γ2T

4g

˙

ż 1

T

0

e´γ
?

´T log y yg´1 dy ě 1

2

c
π

g

|γ|
?
T

g
exp

ˆ
γ2T

4g

˙
.

Combined with the result over r 1
T
, 1s, it gives the announced result.

B.2. Proof of Lemma 4.3. The upper bound easily follows from (B.2). Actually,
for all γ ą 0 and λ P R, we obtain

(B.5)
HT ď β

f
T

Γpf`1q2f

ż 1

0

epλ
?
T`βT q?

y´γ
?´T log y y

2f`a´2

4 dy

ď β
f
T

Γpf`1q2f e
|λ|

?
T`βT .

Besides, using the lower bound of (B.2), we clearly have, for all γ ą 0 and λ P R,

(B.6) HT ě β
f
T e

´αT

Γpf ` 1q2f
ż 1

0

eλ
?
T

?
y´γ

?´T log y y
2f`a´2

4 dy.

To obtain the announced lower bound, we need to consider separately the integral
over r0, 1

T
s and over r 1

T
, 1s. On the one hand, the integral over r 1

T
, 1s is easy to

handle.

(B.7)

ż 1

1

T

eλ
?
Ty´γ

?
´T log y y

2f`a´2

4 dy ě ε e´γ
?
T

?
log T T´ 2f`a´2

4 ,

where ε “ exp
`
λ1λě0 ` λ

?
T1λă0

˘
. On the other hand,

ż 1

T

0

eλ
?
T

?
y´γ

?´T log y y
2f`a´2

4 dy ě e´|λ|
ż 1

T

0

e´γ
?´T log y y

2f`a´2

4 dy

Using the variable change z “
?

´ log y ` γ
?
T

2g
, where we recall that g “ 2f`a`2

4
, we

obtain
ż 1

T

0

e´γ
?

´T log y y
2f`a´2

4 dy “ 2 e
γ2T
4g

ż `8

?
log T` γ

?
T

2g

e´g z2

ˆ
z ´ γ

?
T

2g

˙
dz.

Firstly, we clearly have
ż `8

?
log T` γ

?
T

2g

e´g z2 z dz “ 1

2g
exp

˜
´g

ˆa
log T ` γ

?
T

2g

˙2
¸
.

Besides, for the second part of the integral, we have
ż `8

?
log T` γ

?
T

2g

e´g z2 dz “
ż `8

?
log T` γ

?
T

2g

e´g z2 z ˆ 1

z
dz

ď 1?
log T` γ

?
T

2g

ż `8

?
log T` γ

?
T

2g

e´g z2 zdz

“ 1

2g
?
log T`γ

?
T
exp

ˆ
´g

´?
log T ` γ

?
T

2g

¯2
˙
.
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Thus, for any positive γ, we have the following lower bound:

ż 1

T

0

e´γ
?´T log y y

2f`a´2

4 dy ě 1

g

ˆ
1 ´ γ

?
T

2g
?
log T ` γ

?
T

˙
exp

´
´g log T ´ γ

?
T
a

log T
¯
.

Combined with (B.7), this leads to

HT ě pβT qf e´αT

2f Γ p1 ` fq

ˆ
ε ` e´|λ|

g

ˆ
1 ´ γ

?
T

2g
?
log T ` γ

?
T

˙˙
exp

´
´γ

?
T
a

log T ´ g log T
¯
.

B.3. Proof of Lemma 4.4. Using the inequality (B.2) for the modified Bessel
function If in (4.9), we obtain

(B.8) KT ď pβT qf
2fΓp1 ` fq

ż `8

1

eβT
?
y`λ

?
Ty´αT y yγ` 2f`a´2

4 dy

and

(B.9) KT ě pβT qf
2fΓp1 ` fq

ż `8

1

eλ
?
Ty´αT y yγ` 2f`a´2

4 dy.

To go further, we need to consider the sign of the exponent γ ` 2f`a´2

4
.

‚ If γ ` 2f`a´2

4
ď 0: using the fact that yγ` 2f`a´2

4 ď 1 and with the change of

variable u “ ?
y ´ λ

?
T`βT

2αT
, we obtain the following asymptotic behaviour for the

upper bound of KT ,

KT ď pβT qf
2fΓp1 ` fq

ż `8

1

epβT `λ
?
Tq?

y´αT y dy

“ 2pβT qf
2fΓp1`fqe

pλ?
T`βT q2
4αT

ż `8

1´λ
?
T`βT
2αT

e´αT u2

ˆ
u ` λ

?
T ` βT

2αT

˙
du

ď 2pβT qf
2fΓp1`fqe

pλ?
T`βT q2
4αT

´
A1 ` βT

2αT
A2

¯

where A1 and A2 are given by:

(B.10) A1 “
ż `8

1´λ
?
T`βT
2αT

e´αT u2

u du “ 1

2αT

e
´αT

ˆ
1´λ

?
T`βT
2αT

˙
2

and

(B.11) A2 “
ż `8

1´λ
?
T`βT
2αT

e´αT u2

du “
ż `8

1´λ
?
T`βT
2αT

e´αT u2

u ˆ 1

u
du ď 1

1 ´ λ
?
T`βT

2αT

A1.

Thus:

(B.12)

KT ď 2pβT qf
2fΓp1`fqe

pλ?
T`βT q2
4αT

1
2αT

e
´αT

ˆ
1´λ

?
T`βT
2αT

˙
2
˜
1 `

βT

2αT

1 ´ λ
?
T`βT

2αT

¸

“ pβT qf
2fΓp1`fqαT

˜
1 `

βT

2αT

1 ´ λ
?
T`βT

2αT

¸
exp

`
λ

?
T ` βT ´ αT

˘
.
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‚ If γ ` 2f`a´2

4
ą 0: with formula 3.462(1) in [8], we get

KT ď pβT qf
2fΓp1`fq

ˆ
2 p2αT q´pγ`gq Γ p2γ ` 2gq e

pλ
?
T`βT q2
8αT D´2pγ`gq

´
´βT ´λ

?
T?

2αT

¯

´
ż 1

0

eβT
?
y`λ

?
Ty´αT y yγ`g´1 dy

˙

ď 2pβT qf p2αT q´pγ`gqΓp2γ`2gq
2fΓp1`fq e

pλ
?
T`βT q2
8αT D´2pγ`gq

´
´βT ´λ

?
T?

2αT

¯
,

where D´2pγ`gq is the parabolic cylinder function defined by 9.250 in [8]. But, if

λ ă 0, for T large enough, ´βT ´ λ
?
T ą 0 so formula 9.246(1) of [8] gives

D´2pγ`gq

ˆ´βT ´ λ
?
T?

2αT

˙
„
ˆ´βT ´ λ

?
T?

2αT

˙´2pγ`gq

e
´ pλ

?
T`βT q2
8αT .

Thus KT “ Opβf
T q as T goes to infinity. If λ “ 0, we use formula 9.246(2) in [8].

D´2pγ`gq

ˆ ´βT?
2αT

˙
„

?
2π

Γ p2γ ` 2gq

ˆ
βT?
2αT

˙2γ`2g´1

e
pβT q2
8αT .

This leads to the same conclusion: as T goes to infinity,

(B.13) KT “ O
´

pβT qf
¯
.

Otherwise, for the proof of Lemma 4.1, we also need a lower bound for KT when
γ ě 0. We note that over r1,`8r, yγ`g´1 ě 1, so that

(B.14) KT ě 2´f pβT qf
Γp1 ` fq

ż `8

1

eλ
?
T

?
y´αT y dy.

With the change of variable given by u “ ?
y ´ λ

?
T

2αT
, it becomes

(B.15)

KT ě 21´f pβT qf
Γp1`fq e

λ2T
4αT

ż `8

1´λ
?
T

2αT

e´αT u2pu ` λ
?
T

2αT

q du

ě 21´f pβT qf
Γp1`fq e

λ2T
4αT

˜ż `8

1´λ
?
T

2αT

e´αT u2

u du` λ
?
T

2αT

ż `8

1´λ
?
T

2αT

e´αT u2

du

¸

However, the first integral is easily computable:

(B.16)

ż `8

1´λ
?
T

2αT

e´αT u2

u du “ 1

2αT

exp

˜
´αT

ˆ
1 ´ λ

?
T

2αT

˙2
¸

and for the second one, we clearly have the following upper bound,

(B.17)

ş`8
1´λ

?
T

2αT

e´αT u2

du “
ş`8
1´λ

?
T

2αT

e´αT u2

u ˆ 1
u
du

ď 1

1´λ
?
T

2αT

ş`8
1´λ

?
T

2αT

e´αT u2

u du

ď 1

1´λ
?
T

2αT

1
2αT

exp

ˆ
´αT

´
1 ´ λ

?
T

2αT

¯2
˙
.

Using the fact that λ ă 0 and combining (B.15), (B.16) and (B.17), we show the
announced result:

(B.18) KT ě 21´f pβT qf
Γp1 ` fq

e´αT

2αT

˜
1 `

λ
?
T

2αT

1 ´ λ
?
T

2αT

¸
exp

´
λ

?
T
¯
.
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All those results are still true for λ “ 0.

B.4. Proof of Lemma 4.5. As previously, we use (B.2) to find lower and upper
bounds for KT as T goes to infinity, for all λ ą 0. We consider two cases depending
on the sign of the exponent γ ` g ´ 1.
‚ If γ`g´1 ď 0: As in the proof of Lemma 4.4, we have the following upper bound

(B.19) KT ď 2 pβT qf
2fΓp1 ` fqe

pλ?
T`βT q2
4αT

ˆ
A1 ` βT

2αT

A2

˙

where A1 “
ż `8

1´λ
?
T`βT
2αT

e´αT u2

u du tends to zero for all λ ą 0 by dominated conver-

gence, and A2 “
ż `8

1´λ
?
T`βT
2αT

e´αT u2

du tends to the positive constant 2
a

π
d´b

. Thus,

for T large enough,

(B.20) KT ď 21´f

c
π

d ´ b

pβT q1`f

αT Γp1 ` fq e
pλ?

T`βT q2
4αT .

For the lower bound, with the change of variable given by u “ ?
y´ λ

?
T

2αT
, we obtain

KT ě 2´f pβT qf
Γp1`fq

ż `8

1

eλ
?
T

?
y´αT y yγ`g´1 dy

“ 21´f pβT qf
Γp1`fq e

λ2T
4αT

ż `8

1´λ
?
T

2αT

e´αT u2

ˆ
u ` λ

?
T

2αT

˙2pγ`g´1q ˆ
u` λ

?
T

2αT

˙
du

ě 21´f pβT qf
Γp1`fq e

λ2T
4αT

ż `8

1´λ
?
T

2αT

e´αT u2

ˆ
2max

"
u;
λ

?
T

2αT

*˙2pγ`g´1q

du

ě 21´f pβT qf
Γp1`fq e

λ2T
4αT

˜´
2λ

?
T

2αT

¯2pγ`g´1q ż λ
?
T

2αT

1´λ
?
T

2αT

e´αT u2

du `
ż `8

λ
?
T

2αT

e´αT u2 p2uq2pγ`g´1q du

¸

ě 21´f pβT qf
Γp1`fq e

λ2T
4αT

´
λ

?
T

αT

¯2pγ`g´1q ż λ
?
T

2αT

1´λ
?
T

2αT

e´αT u2

du.

By dominated convergence, the last integral converges as T tends to infinity to the
positive constant 2

a
π

d´b
. For T large enough, this leads to

(B.21) KT ě 21´f

c
π

d´ b

pβT qf
Γp1 ` fq

ˆ
λ

?
T

αT

˙2pγ`g´1q

e
λ2T
4αT .

‚ If γ ` g ´ 1 ą 0: over r1,`8r, we notice that yγ`g´1 ě 1. Thus

(B.22) KT ě 2´f pβT qf
Γp1 ` fq

ż `8

1

eλ
?
T

?
y´αT y dy.

With the change of variable given by u “ ?
y ´ λ

?
T

2αT
, it becomes

KT ě 21´f pβT qf
Γp1`fq e

λ2T
4αT

ş`8
1´λ

?
T

2αT

e´αT u2pu ` λ
?
T

2αT
q du

ě 21´f pβT qf
Γp1`fq e

λ2T
4αT

ˆş`8
1´λ

?
T

2αT

e´αT u2

u du` λ
?
T

2αT

ş`8
1´λ

?
T

2αT

e´αT u2

du

˙

By dominated convergence, the first integral in the last expression tends to zero as
T goes to infinity and the second integral converges to the positive constant 2

a
π

d´b
.
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It gives, for T large enough,

(B.23) KT ě
c

π

d ´ b

21´f pβT qf
Γp1 ` fq

λ
?
T

2αT

e
λ2T
4αT .

Moreover, we establish the upper bound with formula 3.462(1) of [8] as in the pre-
vious proof.

KT ď pβT qf
2fΓp1`fq

ˆ
2 p2αT q´pγ`gq Γ p2γ ` 2gq e

pλ
?
T`βT q2
8αT D´2pγ`gq

´
´βT ´λ

?
T?

2αT

¯

´
ż 1

0

eβT
?
y`λ

?
Ty´αT y yγ`g´1 dy

˙

ď 21´f pβT qf p2αT q´pγ`gq Γp2γ`2gq
Γp1`fq e

pλ
?
T`βT q2
8αT D´2pγ`gq

´
´βT ´λ

?
T?

2αT

¯
.

But ´βT ´ λ
?
T ă 0 so, by formula 9.246(2) in [8]

D´2pγ`gq

ˆ´βT ´ λ
?
T?

2αT

˙
„

?
2π

Γ p2γ ` 2gq

ˆ
βT ` λ

?
T?

2αT

˙2γ`2g´1

e
pλ

?
T`βT q2
8αT .

This gives, for T large enough,

(B.24) KT ď 22´f
?
2π pβT qf

Γp1 ` fq
´
βT ` λ

?
T
¯2γ`2g´1

e
pλ

?
T`βT q2
4αT .

This easily leads to the announced result.

Appendix C: proof of Lemma 5.1

We call L the pointwise limit of the cumulant generating function of the triplet
pXT {T, ST ,ΣT q. We notice that Lpλ, µ, νq “ Λpλ, µ, ν, 0q where Λ is given by
Lemma 4.1. We easily deduce from Remark 4.1 that the function L is steep. We
apply the Gärtner-Ellis theorem: the rate function is given by the Fenchel-Legendre
transform of L on its effective domain.

(C.1) Ipx, y, zq “ sup
λPR, µă b2

8
, νă pa´2q2

8

txλ ` yµ` zν ´ Lpλ, µ, νqu .

For y and z we recognize the exact same term than in Theorem 3.2. So with the
same argument, we show that

(C.2) for y ď 0, z ď 0 or yz ´ 1 ď 0, Ipx, y, zq “ `8.

Besides, if x ă 0 then for λ tending to ´8, λx Ñ `8 and Ipx, y, zq “ `8 because
Λ does not depend on λ for λ ă 0. Moreover, for x ą 0, the term on λ is always
negative for λ negative and sometimes positive if λ is positive. So the supremum is
necessarily reached for λ ą 0. We finally have to calculate:

(C.3) Ipx, y, zq “ sup
λą0, µă b2

8
, νă pa´2q2

8

txλ ` yµ` zν ´ Λpλ, µ, νqu

with x ě 0, y ą 0, z ą 0 and yz ´ 1 ą 0. We do exactly as in Appendix A,
we are looking for critical points and the calculations are very similar. We find:

λ0 “ x
2
p zpx2`2q

yz´1
´ bq, µ0 “ 1

8

´
b2 ´ z2px2`2q2

pyz´1q2

¯
and ν0 “ 1

8

´
pa´ 2q2 ´ px2`2q2

pyz´1q2

¯
, which

leads easily to I.
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Appendix D: Proof of Lemma 5.2

The pointwise limit of the cumulant generating function of the considered triplet
is easily given by Λp0, µ, ν, γq where Λ is defined in Lemma 4.1:

(D.1) Λp0, µ, ν, γq “
#

´d
2

p1 ` fq ´ ab
4

` γ2

2f`a`2
if γ ă 0

´d
2

p1 ` fq ´ ab
4

else.

We recall that d “
a
b2 ´ 8µ and f “ 1

2

a
pa ´ 2q2 ´ 8ν. Using the Gärtner-Ellis

theorem, we have

(D.2) rIpy, z, tq “ sup
γPR, µă b2

8
, νă pa´2q2

8

tyµ` zν ` tγ ´ Λp0, µ, ν, γqu .

With the same argument than for the other couple of simplified estimators, we show
that rIpy, z, tq “ `8 for y ă 0, z ă 0 or yz ´ 1 ă 0. We also notice that for
t ą 0 the expression inside the supremum tends to infinity as γ goes to infinity.
So rIpy, z, tq “ `8 for t ą 0. Besides, for t ď 0, the part involving γ is always
negative for γ ě 0 and sometimes positive for γ ă 0. It implies that the supremum
is necesseraly reached for γ ă 0. Replacing µ and ν by their expression on d and f ,
we obtain, for y ą 0, z ą 0, yz ´ 1 ą 0 and t ď 0,

rIpy, z, tq “ sup
γă0, dą0, fą0

"
y
b2 ´ d2

8
` z

pa ´ 2q2 ´ 4f 2

8
` tγ ` ab

4
` d

2
p1 ` fq ´ γ2

2f ` a` 2

*
.

We investigate critical points. We obtain

(D.3) f0 “ yt2 ` 2

2pyz ´ 1q , d0 “ t2 ` 2z

yz ´ 1
and γ0 “ ytpt2 ` 2zq

2pyz ´ 1q ` at

2
.

Replacing it into the expression of rI, we easily get the announced result.

Appendix E: Proofs of asymptotic normality results for the two

couples of simplified estimators

The key to obtain those results is Slutsky’s lemma. Indeed, we have

(E.1)
?
T

ˆraT ´ a
rbT ´ b

˙
“

?
T

ˆpaT ´ a
pbT ´ b

˙
`

?
T

˜
´STLT

VT
LT

VT

¸

where
?
T

ˆpaT ´ a
pbT ´ b

˙
LÝÑ N p0, 4C´1q with C “

ˆ ´b
a´2

´1
´1 ´a

b

˙
,

and we show that the right-hand side of (E.1) converges to zero in probability.
Namely, it is well known (see for instance Lemma 3 of [13]) that ST converges
almost surely to ´a

b
and VT to 2

a´2
. And for all ε ą 0, we have

P

´
| logXT?

T
| ě ε

¯
“ P

`
| logXT | ě

?
Tε

˘

ď P
`
logXT ě

?
Tε

˘
` P

`
´ logXT ě

?
Tε

˘

ď E pXT q e´
?
Tε ` E

`
X´1

T

˘
e´

?
Tε

TÑ`8ÝÝÝÝÑ 0
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because E pXT q converges almost surely to E pX8q “ ´a
b
(see [13] Lemma 3) and,

as the parameter a is supposed greater than 2, we obtain from Proposition 3 in [2]
that

E
`
X´1

T

˘
Ñ ´ b

2

Γpa{2 ´ 1q
Γpa{2q “ E

`
X´1

8
˘
.

This gives the announced convergence in probability to zero. Thus, with Slutsky’s

lemma, the simplified estimators praT ,rbT q satisfy the same asymptotic normality
result than the MLE.
Similarly, for the second couple of simplified estimators, we have

(E.2)
?
T

ˆqaT ´ a
qbT ´ b

˙
“

?
T

ˆpaT ´ a
pbT ´ b

˙
`

?
T

˜
XT

TVT

´XTΣT

TVT

¸
.

As ΣT converges almost surely to ´ b
a´2

and VT to 2
a´2

, we only have to show that

XT {
?
T converges to zero in probability. For all ǫ ą 0,

P

ˆˇ̌
ˇ̌XT?
T

ˇ̌
ˇ̌ ě ε

˙
“ P

´
XT ě

?
Tε

¯
ď E pXT q

´
?
Tε

TÑ`8ÝÝÝÝÑ 0

with the same argument than before. Thus pqaT ,qbT q also satisfies the same asymp-
totic normality result.
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