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LARGE DEVIATIONS FOR THE SQUARED RADIAL
ORNSTEIN-UHLENBECK PROCESS

MARIE DU ROY DE CHAUMARAY

ABSTRACT. We establish large deviation principles for the couple of the maxi-
mum likelihood estimators of dimensional and drift coefficients in the generalised
squared radial Ornstein-Uhlenbeck process. We focus our attention to the most
tractable situation where the dimensional parameter a > 2 and the drift parame-
ter b < 0. In contrast to the previous literature, we state large deviation principles
when both dimensional and drift coefficient are estimated simultaneously.

1. INTRODUCTION

The generalized squared radial Ornstein-Uhlenbeck process, also known as the
Cox-Ingersoll-Ross process, is the strong solution of the stochastic differential equa-
tion

(11) dXt = (a + bXt)dt + 2\/ Xt dBt

where the initial state Xy = x > 0, the dimensional parameter a > 0, the drift
coefficient b € R and (B;) is a standard Brownian motion. The behaviour of the
process has been widely investigated and depends on the values of both coefficient
a and b. We shall restrict ourself to the most tractable situation where a > 2 and
b < 0. In this case, the process is ergodic and never reaches zero.

We estimate parameters a and b at the same time using a trajectory of the process
over the interval [0,7]. The maximum likelihood estimators (MLE) of a and b are
given by:

o Xpdt§y - dX, - TXr X Edt TS L dx,
(1.2)  ap = == T and by = —F——=— - .
§o Xedt§) < dt — T2 §o Xedt§) < dt — T2

Xt Xt

Overbeck [13] has shown that ar and br both converge almost surely to a and 0. In
addition, he has proven that
—b

VT (5 £ N(0,4C7Y) where C = (a2 1a :
br — b 1 -

Moderate deviation results for 47 and by are achieved in [7]. In addition, Zani [14]
established large deviation principles (LDP) for the MLE of a assuming b known and,
conversely, for the MLE of b assuming a known. Our goal is to extend her results to
the case where both parameters are estimated simultaneously. Our method is also
different and we explain how we have simplified her approach at the beginning of
Section 2.2 and Section 4, using a new strategy introduced by Bercu and Richou in
3] for the study of the Ornstein-Uhlenbeck process with shift.

The paper is organised as follows. Section 2 is devoted to an LDP for the couple
(ZL\T,/Z;T), which is obtained via LDPs for two other couples of estimators constructed
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2 MARIE DU ROY DE CHAUMARAY

on the MLE. Before we prove those results, which is respectively the aim of Sections
5 and 6, we investigate in Section 3 LDPs for some useful functionals of the process
and compute in Section 4 the normalized cumulant generating function of a given
quadruplet, which is a keystone for every LDP we establish in this paper. Technical
proofs are postponed to Appendix A to E.

2. MAIN RESULTS

We start by rewriting the estimators a; and ET in such a way that they are
much easier to handle. We need to suppose the starting point = > 0 to apply the
well-known It0’s formula to log X7. We obtain that

T T
2.1 —dX; =log Xy —1 21 —dt
(2.1 | X —tos e <tz 2|
which leads to
Sr (257 + Ly) — 3£ ~ (GF-2)%r— Ly
2.2 ar = T d bp=-=L
(2.2) ar v an T v
where the denominator Vp = Sp X — 1 with
1 1M1
Sr=—= | X;dt and Y7 = = —dt
T Tfo t an T T) X, )
and
_ log Xr —logx

Ly 7

For the remaining of the paper, we suppose the starting point x equal to 1. This
assumption does not change the large deviation results because both estimators,
with and without logz, are exponentially equivalent so that they share the same
LDP. We first consider couples of simplified estimators constructed from (ar,br)
using the fact that Ly and X7/T both tend to zero almost surely for 7' going to

infinity. This will be useful for the study of the MLE (ar, br).

2.1. Simplified estimators. A first strategy to propose simplified estimators of a
and b is to remove the logarithmic term Lz in the expression of a7 and by given by
(2.2). This way, we obtain a new couple (ar, br) defined by

28 Sy — 22 ~ ir _92)%
_ T T g sz—(T ) r

2.3 a
(2.3) ar Vi Vi

It is clear that &7 and by converge almost surely to a and b. Moreover, we also have
the same asymptotic normality

VT <%T N Z) £ N(0,4C7H).
o

The proof of this result can be found in appendix E. We also state an LDP for the
couple (ar, br) assuming both parameters a and b unknown.
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Theorem 2.1. The couple (aT,ZT) satisfies an LDP with good rate function

( 2
%(HH) +26 -0 fa>228<p3<0
orifa<2,5>0,

~b if (o, B) = (2,0),

+00 otherwise.

\

Proof. The proofs of this theorem and the two following corollaries are postponed
to Section 5. 0

We give the shape of this rate function in Figure 1 below in the particular case
(a,b) = (4,—1) and over [3,5] x [—4, —0.5]. One can notice that the rate function

reaches zero at point (4, —1).

l/llllllll/ﬂw = —

FiGURE 1. Rate function for the couple of simplified estimators (6T,5T)

LDPs for each estimator & and by immediately follow from contraction principle

[5].
Corollary 2.1. The sequence (ar) satisfies an LDP with good rate function

Z<a_6 Vi(a—2)2 2—a)> ifa <t

Jo(a) = §<a_\/a<(c;—_22)2+2)> z’fa)f:’

with ly = 2 + £1/64 + 9(a — 2)2.

Corollary 2.2. The sequence (ET) satisfies an LDP with good rate function

B b\* .
W(B) - ‘1(1‘5) ih<3
28 —b if =2
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Remark 2.1. This rate function is quite similar to the one obtained by Zani [14]
for the MLE of b assuming a known. They only differ from a multiplicative factor.

Figure 3 displays rate functions for both estimators in the particular case where
(a,b) = (4,-1).

A second strategy to propose simplified estimators of a and b is to remove the
term X7 /T in the expression of ar and by given by (2.2). Then, we obtain a new
couple (6T,ET) defined by
_ Sr(2%r + Ly) vy —2¥p—Ly

d bp=—m7—-——.
Vr e or Vr

As previously, ar and ET converge almost surely to a and b, and
VT (79 £ N0, 407Y).
br — b
The proof of this result is given in appendix E. We also establish an LDP for the

couple (ar, ET), and deduce as corollaries LDPs for both estimators, assuming a and
b unknown.

(2.4) ir

Theorem 2.2. The couple (ET,ET) satisfies an LDP with good rate function

( %(b—ﬁ)—%(b2_52)_§<ﬁ+@>2 if 6<0,0<a<a,
orif 6>0,a <0,
a a 5 o Bla—a) :
Kop(a, B) = < Z(b—ﬁ)—@(b _6)_8(a—2) if B<0,a > ay,,
—bCa if (avﬁ) = (070)7
\ +00 otherwise,

whereCazé(a—a)2+2—a, Co=12(4—a++/a>+16) and
g =—2(4-2-+a>—2a+4).

One can observe that the rate functions J,; and K, are equal over some domain
of R2. Tt is possible to see it on Figure 2 below which is quite similar to the previous
one and displays the rate function K, in the particular case where (a,b) = (4, —1).

Corollary 2.3. The sequence (ar) satisfies an LDP with good rate function
-bC, if o =0,

Ka(Oé) _ Ka,b(()é,ﬁb) ZfOé < (g, Q0 + O,
’ a— a((a—2)2+2) if a > «
4 a— 2 = “a

with By = bA (168/21/Cy + a> — 8X + 32)_1/2 and o, Cy and C, are defined in The-
orem 2.2.

Corollary 2.4. The sequence (ET) satisfies an LDP with good rate function

Ky(8) = nt{ Kop(a, §) / a e R},
In particular, Ky(0) = —bC, with the notations of the Theorem 2.2.

Figure 3 displays the rate functions for both estimators in the particular case
where (a,b) = (4, —1).
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FIGURE 2. Rate function for the couple of simplified estimators (ET,ET).

2.2. Large deviation results for the MLE. The next theorem gives a large devi-
ation principle for the MLE (ar, ET) of the couple (a, b). In contrast with the previous
literature, we consider both parameters unknown and estimate them simultaneously.
We also simplified the approach of the previous literature as our proofs only rely on
the Gartner-Ellis theorem and do not need, for example, accurate time-depending
changes of probability.

Theorem 2.3. The couple (ZL\T,BT) satisfies an LDP with good rate function I,
given over R? by

L.p(cv, B) = min (Jo (e, B), Kop(a, B)).
Corollary 2.5. The sequence (ar) satisfies an LDP with good rate function
I, (o) = min (J, (), K. ().
Corollary 2.6. The sequence (BT) satisfies an LDP with good rate function
I,(5) = min (Jy(8), Ki(5)) -

F1GURE 3. Rate functions for dimensional and drift parameters.
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3. SOME RESULTS ABOUT THE PROCESS

The aim of this section is to establish LDPs for Sy, ¥ and V7, which will be
useful for the proof of the main theorem.

Lemma 3.1. The couple (St, %) satisfies an LDP with good rate function

Yy bQ (a — 2)2 ab
New—1) 8 — 0 0andzy —1>0
I(z,y) = 2(1’y—1)+8x+ ] y+ 1 if x >0,y >0 and zy >
0 otherwise.
Proof. See appendix A. -

The following result can be proven either directly with the same method or using
the previous lemma together with the contraction principle [5].

Theorem 3.1. The sequence (St) satisfies an LDP with good rate function

{@gﬁ >0

I(z) =
(z) +0o0 if £ < 0.

In addition, the sequence (Xr) satisfies an LDP with good rate function

J@%={«E%ﬁl >0

+o0 if © < 0.

It is now easy to establish a LDP for V. We recall that Vi = h (Sr, X7) where h
is the function defined on R? by h(z,y) = xy — 1.

Theorem 3.2. The sequence (V) verifies an LDP with good rate function

b 4 ab
K(z) = —Z\/(:L’+1)((a—2)2+5)+z if x>0

+0o0 if x < 0.

Proof. Tt follows immediately from Lemma 3.1 together with the contraction princi-
ple [5]. It only remains to explicitly evaluate the rate function K given, for all real
z, by
K(z) = inf I(x,
=) {(z,y)|z=zy—1} (@.9)
where [ is defined in Lemma 3.1. OJ

4. CUMULANT GENERATING FUNCTION FOR THE QUADRUPLET

To establish LDPs for the estimators by the same method as above for Vi, we need
the normalized cumulant generating function of the quadruplet (X¢ /T, St, X1, Lr).
However, we can show that this does not lead to a steep function (see [5] for the
definition). Thus the Gértner-Ellis theorem cannot be applied directly. In contrast
with the previous literature, we will not search another method to obtain large
deviation results. Our idea to overcome this difficulty is to consider instead the

quadruplet </\ /Xp /T, S, X, ET) , where

—log X log X
(4.1) L1 = —1] %1)@@ + %1XT21-
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Lemma 4.1. Let Ar(\, p,v,7v) be the normalized cumulant generating function of
the quadruplet («/XT/T S, ZT,ET) Denote by A the pointwise limit of Ap as T

tends to +oo. For all \,v € R, u<—2cmdl/< a2),
([ d ab A2
~ 21 i f A dvy =
2( +f) 4+d b if A>0and~v =0 2
) . ) 0rz’f*y<0,)\>0andz—2<2f(%b+2,
Adpr,y) =3 -2a+H)-Z+ —L  ifA<0and
(A, v, 7) 51+ 1) i orrayg YA<0andy<0 2
) . orify <0,A>0 and L; > 222
_5(1+f) az if A <0 andy =0,
\

where d = A/b*> — 8 and f =

(a —2)° — 8.

[\D|>—t

Remark 4.1. The function A is steep. Indeed, A is differentiable over its domain

Dy =R x [~o0, %[x[—oo, @[xﬂ%‘l and its gradient is given by

2\ g
s " o
(4.2) va_ |0 Tageta
' o T 2#1
fg2f+a+2 Ag
2f+a+2 1a,

Y

whereA1={()\,u,y,y)eDA/)\>O and vy =0 orvy<0,A>0 and}—§<2f:[fab”}

and Ay = {()\,,u,y,fy)eDA/)\éo and vy <0 orvy <0,A>0 and;_z > 2f;rjgr2

)2 f =0, we easily obtain that the norm of

Using that limu_)ﬁ d =0 and lim

v—1(a—2
8 8
(4.2) goes to infinity for any sequence in the interior of Dy converging to a boundary
point.

Proof. We want to find the limit as 17" — +o0 of

1 4 1
Ar(A\ p, v, 7y) = Tlog <E [exp <)\\/T\/XT+7TLT+MJ Xtdt+yf ?dt)}) .
0

0 t

It follows from Theorem 5.10 in [4] (with a misprint pointed out in [2]) that

1 0
(4.3) Ar(A, p,v,7) = 7 log (J M (T, 2, y) dy)
0
where [(T,y) = — _I;gy 1,00 + h’% 1,>1 and
a—2
N d./
o) = oty (o)
(4.4) 4 sinh (dT'/2) 2sinh (dT'/2)

X exp <—i (abT + d(z + y) coth (dT/2) + b(x — y)))

1
with d = 4/b?> — 8u and [ = 5 (a —2)° — 8v, Iy beeing the modified Bessel func-
tion of the first kind. We take out of the integral all the terms that do not depend
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on y. This leads to

Ar(\, p,v,7y) = % <log Jr + log (¢> ! (abT + dx coth (dT'/2) + alog(x) + bx))

4 sinh(dT/2) 4
where
“ o d/ry

45 _ MTy+~ TUT,y)— 2 (d coth(dT/2)—b) 2 I du.
S L ‘ ' Y1\ Ssmn@arey ) Y
However, as soon as 7' tends to infinity, coth(d7'/2) goes to 1, which implies that

1 dr b
(4.6) Tlirfm T (abT + dx coth (7> + alog(x) + bx) = _az.

On the other hand,

ll inh aT _ingil (1—e)
T\ ) T T8 2

which clearly leads to

1 dy/z d
4.7 lim —1 — | = ——.
(47) e T8 <4 sinh(dT/z)) 2

We have to establish the asymptotic behaviour of %log Jr. We split Jr into two
terms: Jpr = Hp + Kp where

1
(4.8) Hp — f e/\x/T_yf'walogyfozTyy“T’2 I (Br/y) dy
0
and
© a—2
(4.9) Kp = f MVTV=oTu T 1 (Bra/y) dy
1
with
dcoth(dT/2) — b dr/x
41 _ __ dvr
(4.10) ar 1 and - fr 2 sinh(dT/2)

We need the four following lemmas, whose proofs are postponed to Appendix B.

Lemma 4.2. For all v < 0 and A € R, one can find the following bounds for Hr as
T goes to infinity.

o1—f ~2T
Hr< — —3/2 T IN+ar/T+B8r/VT gf
P < Frrp VT hivTe Brexv -1
and ,
2717 T
Hr > —— —3/2 T e~ A\=ar/Tgf L
where g = 72“4‘”2.

Lemma 4.3. For allv >0 and A e R,

(Br)’
T(f + 27 P (VT + 1)

Hp <

and

f
Hp > % exp (—”yﬁ\/logT —qg logT) ,

where ep = e~ T <€ + e;w (1 — 29\/%7;%/7)) and € = exp ()\1)\20 + )\\/Tl)\<0).
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Lemma 4.4. For all A <0 and v € R and T tending to infinity, Kr = O ((BT)f)
Moreover if v = 0

o1—f (BT)f e—ar 1
K> T30 3ar 1= AT P <Mﬁ>

Lemma 4.5. For all A > 0 and vy e R,

T < 22;2{% (fB)T)f <5T + A\/—)%Hg 1 exp <()‘\/7:;5T)2)

/ A2T
K. > 217f ™ (/BT) M I
T Na—sra+ )M P dar

2(v+g-1)
where M4 \r = min { (%) )\\/_}

and

7aT

It is clear with those lemmas that the asymptotic behaviour of Jr depends on
the sign of A and ~:
e For all A > 0 and v > 0: we directly deduce from Lemmas 4.5 and 4.3 that, for T’
large enough,

2—f . /5, f 2y+2g—1 OVT+57)?
Hr + Kr < 2 2 (Br) ( T—i-)\\F) o < : 4T“+T —l—e')‘ﬁJrﬁT)

L+
and thus
1 1 A d A2

(4.11) hm Tlong f hm —logﬁT + hm T( \/;OZBT) = —f§ + T
We show alike by using the lower bounds of Lemmas 4.5 and 4.3 that
(4.12) TR A SR L

' et R RN
and we finally obtain

1 d A2

(4.13) Th_rgoflong——fa—l—d_b.

e For all A < 0 and v < 0: With Lemma 4.4, we know that Ky = O <(6T)f)
Thus, Hr + K+ = Hr + O ((ﬁT)f). Lemma 4.2 gives bounds for Hr, which lead to

1 7 VT _2ir
hm T log Jr < hm 1 log ((BT) hp x €xXp (E)) +Tlgrgo T log <1 + C’hTAv T )

where C' is some positive constant and

21-f 3
s —3/2 \/TQP“JFQT/TJFﬁT/\/T.
PU_FDV?Q 7l

2p
Using the fact that h}l)\ 767747 tends to zero as T' goes to infinity, we obtain

hrpy =

1 d 2

We obtain the same lower bound by using the lower bound in Lemma 4.2.
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e For all A < 0 and 7 > 0: Lemma 4.3 gives Hy = O ((BT)f exp (|)\|ﬁ)> and
by Lemma 4.4, we know that Ky = O ((BT) ) Consequently,

(4.15) hm %long f hm %logﬁT = —f 3

And the lower bounds given in Lemmas 4.3 and 4.4 lead to

(4.16) lim llogJT?f lim llogBTz —fc—l.
T 1 T—w T 2

e For all A > 0 and v < 0: using Lemmas 4.5 and 4.2, we show that

Hr+Kr < C(Br) <ETA exXp <7429 ) <6T * N—> T e <WT—+5T)2>)

40(T

where hr ) = VT eN+ar/T+8r/NT and (' is some positive constant. Thus

1 ]_ Xmax ﬁ7i 2 )\2
hm Tlong hm Tlog ((ﬁT)f ¢ <49 ‘“’)) = —f + max (Z b7 b)

We also show that

T AT
Hy + Kr = C (6r) (ﬁT,,\ exp <74—g> + My A €Xp (—))

40(T

where (' is still some positive constant and hy , = VT e~ M=or/T Tt leads to

) 1 72 )\2
(4.17) %?IOgJT f + max 5 db

5. PROOFS OF THE LDPS FOR THE COUPLES OF SIMPLIFIED ESTIMATORS

5.1. Proof of Theorem 2.1. We will now establish an LDP for the first couple of
simplified estimators. We notice that (ar,br) = f(5/Xr/T, S, Xr) where f is the
function defined on {(z,y, 2) € R3|yz # 1} by

2zy — 2 (2% —2)z
f(xayvz)_<yz_17 yz—l :

Thus, we first compute an LDP for the triplet («/XT/T, S, ET> and then apply
the contraction principle to the obtained rate function.

Lemma 5.1. The sequence {(«/XT/T, S, ET)} satisfies an LDP with good rate
function:

ab vV (a—2? b, (2*+2)°z
R A 0 —1>0
I(z,y,2) = 1 + Sy—i— S z 4:1: + S(yz—1) ifx =0y, 2,9z >

+o0 otherwise.

Proof. See appendix C. O
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We apply the contraction principle to the rate function I of Lemma 5.1. We
obtain that (ar, by) satisfies an LDP with good rate function J,; given by

(51) Ja,b(O‘7ﬁ) = inf {[<'T7y7 Z) |f(SL’,y,Z) = (057ﬁ)}

which reduces to

Ja,b(aa 6) = inf

Dy

ab b (a —2)? b, (2?2 +2)%z
{Z+§?/+ g 2% +m|f($,?/,z)—(0é,5)
where D; = {(x,y,2) € R*|z > 0,y > 0,2 > 0,y2 — 1 > 0} and the infimum over
the empty set is equal to the infinity. If (o, 5) = (2,0), as z > 0 on Dy, the only
condition to satisfy f(x,y,z2) = (2,0) is 2? = 2. Therefore

, ab b (a —2)? b 2z
(5.2) Jaup(2,0) = y>0’z>%1’£z_1>0 {Z tgyt g gt 1
We look for critical points. We find that the derivative equals zero for z = —#‘2
and y = —%2, which, replaced into (5.2), leads to

(5.3) Jup(2,0) = —b.

It is easy to see that J,,(a, ) = +o0 when o = 2 and 3 # 0 and when 5 = 0 and
a # 2 since we take the infimum over the empty set.
Otherwise, as f(z,y,2) = («, 3), we have
2=— yz—1=
2 _ 4 Y
This gives us some conditions on the parameters. First of all, z > 0 implies L >0

2—«

and yz > 1 implies y > + = 2_70‘ Thus, if % < 0 then J, (e, B) = +00, otherwise

o fab  (a—2)? p b y BBy +at2)”
Ja,b<a,ﬁ>—ggyf{z+ 3 g_a—za”b“%ﬂ)g*gm}

where D, = {y > 25%[fy + o > 0}. We set on D,

_ab (a—2)? B b y
(5.4) 9(y) =1+ 2_a—1a+(52—255)§+

B (By + a+2)?
8 By+a—2

e First case: < 0. If o < 2 then % < 0 and J,p(a, B) = +00.
We now suppose a > 2. As < 0, the condition Sy + a = 0 implies y < —% which
is in the domain. Therefore,

Japle, B) = | inf  g(y).

2—«a _a
B <YsTj

The derivative ¢'(y) vanishes at Z_TO‘ — ﬁ if 5 # b and at 2_70‘ if = b. Depending

on the value of , the function g will or not vanish on the domain. So the infimum
will sometimes be at the boundary of the domain. It is the case when § < b, but g

tends to infinity when y tends to 277‘“, so necessarily

g 2—a 4 2—a : 2—a 4 —«
For 5 > b, the condition o> 5 I8 always satisfied and 5 T 5 ST

if and only if 5 > % Consequently, if b < § < %, the derivative does not vanish on
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the domain and we find the same value of J,; as above, while if % < fB <0, we get

2-a 4 )Z(a—2)26(1+(2—a)b ’ 2 b

Ja,b aaﬁ =g ( - +
@D =9I\ 75m8) Tsema A2
e Second case: (> 0. Still for the same reasons, if o > 2, J,,(a, 5) = +o0. We
now suppose a < 2. As § > 0 the condition Sy + o = 0 becomes y > —% which is
smaller than Q’TO‘ Consequently,
Jap(a, ) = inf g(y).
B Y
The derivative is equal to zero for y = 277‘1 — ﬁ which is always greater than 277‘1
so inside the domain. We get
2—a 4 (a—2)%8 (2—a)b\>
Ja,baaﬁ :g( - ): 1+ +2/8—b
@D =9\ " 5m8) Tsema a2
O

5.2. Proofs of Corollaries 2.2 and 2.1. Using the contraction principle again,
we deduce from theorem 2.1 LDPs for both estimators. We begin with by because
the calculations are really straightforward.

Proof of Corollary 2.2. From the contraction principle, we know that
Jb(ﬁ) = inf [a,b<a7 6)
aeR
We have directly that J,(0) = J,,(2,0) = —b and that, for 5 # 0,

To(B) = Jup(2+ 82 ; 2 8).

This leads to the result noticing that it is continuous at point zero. O

Proof of Corollary 2.1. With the contraction principle again, we have
= inf :
Ja(@) = inf Jup( )

e First case: a = 2. We easily show that J,(2) = J,,(2,0) = —b.
e Second case: a < 2.

e lla=28 2-a)b\* .
J“(O‘>_6>E{8(2—a) <1+6(a—2)) 26 b}'
(2—a)b
V(a—2)2+16 (2 — «)

We investigate critical points 5y. We get fy = — which leads

to

b
Jal@) = Jusla,85) = 7 (a=6-1/[@ =27+ 162 —a)).
e Third case: a > 2. J,,(«, 8) = min(/4, I5) where

g J a2 2-ap\*
(5.5) I = f{78(2 ) Hiﬁ(a—?))

=~
VR

[

|
x| o
N—
(Y]
——

and

_ g Ja—278 2—a)p\* .
(5.6) I, = inf { )<1+ ) + 20 b}.
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For I5, with the calculations of the second case, we already know that the derivative
equals zero for 3y verifying

g2 — (2 —a)??
O (@a—2)2+16(2—a)
This is well defined if and only if (a —2)* + 16 (2—«a) > 0. And, S is in the domain

if and only if 8y < 0 and 2 < %. All those conditions are fulfilled if and only if
9(2 —a)* < (a—2)>+16(2 — a). As a > 2, we obtain the condition

10 1
a<£a:=§+§\/64+9(a—2)2

(2—a)b
A(a—2)2+16 (2 — «)

(5.7) L = Juy(a, Bo) = <a —6-+/(a—22+16(2— a)) .

Otherwise, for a > ¢,, the derivative never vanishes on the domain and the minimum
is reached at one of the boundaries. When [ goes to zero, the function goes to
infinity. Consequently,

w9 e (et )

and By = — . Thus, for 2 < a </,

For I, the idea is similar. The derivative equals zero for ; satisfying

ab? (a—2)
(a—2)2+2(a—-2)

B =

This time the domain is {B < g} So f3; is inside the domain if 8; < 0 and 37 > %.

It leads us to
- ala—2)
b _b\/(a—2)2+2(a—2)

with the condition 9a(a — 2) > (a — 2)* 4+ 2(a — 2) on « which gives the same limit
value ¢,. We get

8(2 — )

Tus(, B) = Z (a - \/a ((‘;__22)2 + 2)) if a > 0,

We now come back to J,;(a, #). Combining (5.7), (5.8) and (5.9), we obtain

(
min E ( )7 Ja (aa %
min Ja b(a 61)7 Ja (a’ 3

Jup(a, by =2 <((a_2)+3(2_0‘))2 - 1) if2 <</,
(5.9) I =

Jap(a, ) = min([y, I1) = { ); if2<a</,

) ifa >4,

and it is easy to deduce that

o JaplenBy) if2<a <,
(5.10) Jap(e, B) = { Jap(a, B1) if o> £,

This leads to the conclusion, noticing that it is continuous at the point o = 2. [
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5.3. Proof of Theorem 2.2. We consider the second couple of simplified estima-
tors defined by

- St (2%r + Lr)
ar =

- —2%7 — Ly

d by = ——.
VT an T VT
We notice that <ET,ET) = h(Sr,Xr,Lr), where h is the function defined on
{(y,2,t) e R%lyz — 1 # 0} by

h(y’ 2, t) _ Yy (22 — t21t§0 + t1t>0)7 t21t§0 — t1t>0 — 2z .
yz —1 yz —1

Once again, we start by computing an LDP for the triplet (Sp, Y7, Lr) and then

we deduce an LDP for the couple of estimators applying the contraction principle
to the obtained rate function.

Lemma 5.2. The sequence {(St, %7, L)} satisfies an LDP with good rate function

b b —2)? 4z(yt? +1) + ¢4
ab b e e RPN Y 00
T and yz —1 > 0,
+o0 otherwise.
Proof. The proof is postponed to Appendix D. OJ

By the contraction principle applied to the rate function I of Lemma 5.2, we

obtain that (ET,ET> satisfies an LDP with good rate function K, given by

Ka,b@%ﬁ) = inf {T<y7z7t>|h(y7 Z,t) = (057ﬁ)7 (y7 Z,t) € Rsuyz —1# 0}

which reduces to

Ka,b<a7 6) =

ab b (a—2)* a 4z(yt? + 1) + t'y
inf { — + — —?
%{fﬁ{ 7 TRV TR T T TR
where D, 5 = {(y,2,t) e R*ly > 0,2 > 0,yz — 1 > 0, < 0 and h(y, 2,t) = (a, 3)} and
the infimum over the empty set is equal to infinity. The condition h(y, z,t) = («, )
implies that

By=—a and t* = (2 —a)z — f.

It gives us some additional conditions on the parameters. First of all, we notice that
for a or B equal to zero, D, g is not empty if and only if the other one is also zero.
Thus, Kup(a, 8) = +00 over {0} x R} and R} x {0}. If a = 8 =0, t* = 2z. We

replace it into the infimum and look for critical points. We obtain zy = \/ﬁ and

yo = Hva+l6 VfZHG. This leads to

b
Kan(0,0) = =7 (4— a+Va? + 16) .

Moreover, for g # 0, as y = —%, D, s is empty as soon as a and /3 have the same
sign. So Kyp(a, ) = +o0 over R} x R} and R, x R, . Besides, both expressions
will give us boundaries for z depending on the sign of o, § and 2 — o, because t2
must be positive and z must be greater than % Assuming that all conditions are

fulfilled, we derive from Lemma 5.2 that

f(—%,z, (2—a)z— 6) =App+Coz — QQBZ
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where C, and A, g do not depend on z, and are defined by

1 ab> ab aBf af

(5.11) Cazg(a—a)Q—FQ—a and Aaﬁ:—gg—kz—Z-k?'
Thus,
20z
.12 Kop(a,B) =inf{ Ay 5+ Coz —
(5.12) 0. ) = gt { Ana + Coz - 222

where D, = {z > 0|z > —g and (2 —a)z — 3= 0}.

e First case: a < 0. We have already shown that K,,(a,8) = +o0 if § < 0.

For g > 0, 0 < % < _ﬂa so D, = {z > —g} We look for critical points of

App+ Coz — fﬁf 5 over this domain. We find that critical points z, satisfy
232
Ca

We notice that for o negative C, is always positive. So the only critical point that

(2o + B)? =

remains in the domain is zg = —g (1 + 4 /%) As the function tends to infinity on

the boundaries of D,, it actually reaches the infimum we were looking for at this
critical point zp. Replacing it into (5.12), we find

(5.13) Raales )= At Coo - ojoﬁ ioﬁ
. a o 6 2
_ Z(b—ﬁ)—@(bQ—BQ)—a<\/§+\/FQ) .

e Second case: 0 < o < 2. For f > 0, Kyp(c,3) = +00. For g < 0, the
condition (2 — a)z — 8 = 0 is always verified. Thus D, = {z > —g} We do exactly
the same than in the first case and find the same critical point and the infimum
given by formula (5.13).

e Third case: a > 2. The case § > 0 has already been seen. We consider

B < 0. We investigate the critical points of A, 5 + Chz — Offfﬁ over the domain D,,

given in this case by D, = {—g <z < %} We need to distinguish cases depending
on the sign of C,.

If « < a+4—2y/a (which is greater than 2 because a > 2), C, is positive and
we find the same critical points than in the first case. The condition z > —2 is still

only verified by :
I5; 2
= P14/ =).
=0 o o C,

But, the condition zy < % is not satisfied for all « in [2,a + 4 — 2+/a[. Indeed,

(5.14) 0> CHp and only if Ci(a —2)? >4

— o

which leads to the following condition on «:

30% +2(a —4)a — (a* +8) > 0.
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One of the roots is negative. The other one is inside [2,a + 4 — 24/al:

2
(5.15) =% <g—2—\/a2—2a+4>.

Thus, for a < ag, the infimum is reached at zy, and is given by (5.13), while for

a > Qg, Zp is not inside the domain D, so the derivative does not vanish and the

infimum is reached at one of the boundaries. We notice that for z tending to —g,

App + Coz — Ofﬁf 5 tends to the infinity. Thus, the infimum is reached at the other
B

boundary of the domain: 2y = 57-. Replacing it into (5.12), we obtain

(b—ﬁ) @ (52_52)_M.

(5.16) Kop(a, ) = " 38 8 (o —2)

If € [a+4—2ya;a+ 4+ 24y/a], then C, is null or negative so the derivative
cannot vanish and K, is given by (5.16).

If « > a+4+24/a, then C,, is positive but as a > «, the critical point zj is greater

than % so outside the domain D,. The infimum is reached at the boundary %

of the domain and is still given by (5.16).
O

5.4. Proofs of Corollaries 2.3 and 2.4.

Proof of Corollary 2.4. The result is a direct application of the contraction principle
to the rate function K, of Theorem 2.2. We did not obtain an explicit expression
of the infimum. 0J

Proof of Corollary 2.3. With the contraction principle again, we know that the (ar)
satisfies an LDP with good rate function

Ka(a) = gelﬂg Ka,b(av 6)

e First case: a = 0. We easily show that K,(0) = K,,(0,0) = —bC,.
e Second case: a < 0. We rewrite

2
K.(a) = inf {Aaﬁ _B (V2 ++/Ca) } .
£>0 (6]
The critical points 3y satisfy

: a?b?
5.17 _ 7
(5.17) fo 164/2y/C,, + a2 — 8a + 32

which is clearly well defined for all a < 0. Using the fact that « < 0 and b < 0 and
as [y must be positive, we obtain

(5.18) B = ba (16\72\/07 +a? — 8+ 32) o
and
(519) Ka(a) = Ka,b(aa BO)

e Third case: 0 < o < a,. This time

K.(a) = inf {Aaﬁ - g (v2+ @)2} .

£<0



LARGE DEVIATIONS FOR THE SQUARED RADIAL ORNSTEIN-UHLENBECK PROCESS 17

The critical points [y are still given by (5.17). It is well defined for all o < a.
Namely, 164/2y/C, + a®> — 8a + 32 is a decreasing function on « over this domain
and is positive at the point «,. Indeed, we know from (5 14) and (5.15) that oza > 2
satisfies (a, —2)? = 2C,,, which leads to 16/24/C,, +a® — 8, +32 = 8a, +a? > 0.
This time o > 0 and [y must be negative but we obtain anyway the same critical
point fy given by (5.18) and the infimum K, by (5.19).

e Fourth case: a > «a,. This time

o352 824 (1))

Using the results of the third case of the proof of Corollary 2.1, we obtain the same
critical point and the same infimum.

O

6. PROOF OF THEOREM 2.3
6.1. Existence of an LDP.

Lemma 6.1. The quadruplet (n/ X1/T, S, X1, L1) satisfies an LDP with good rate
function A* given by

(6.1) AN (z,y,2,t) =+ forx < 0,t >0,y <0,2<0 oryz—1<0.

and, otherwise,

(6.2) A (z,y,z,t) = suph(d, f)
Dy
where Dy y = {d >0, f > 0} and, with ¢(f) =2f + a + 2,
b’ — d? —2)"—4f% d b
h(d,f)zi<t\/<p(f)—x\/d—b)2+y : sl 2>8 i, s+51+H+ T

Proof. Using Gartner-Ellis theorem, we have to compute the Fenchel-Legendre trans-
form A* of the cumulant generating function A defined in Theorem 4.1:

(6.3) N (z,y, 2z, t) = sup {zA + ypu + zv + ty — A(x,y, 2, 1)}
D

where D = {)\ eR, veR, u< —, y < 2” 2) } We show with the same arguments
than for the other LDP proofs that

(6.4) AN (x,y,2,t) = 400 for x < 0,t >0,y <0,z <0 oryz—1<0.

Besides, for x > 0, the part involving A in the function we want to optimize is
always negative for A < 0 and sometimes positive for A > 0. Thus the supremum is
necessarily reached for some A > 0. With the same argument for ¢t < 0, we show that
we only have to consider v < 0. Replacing px and v by their expression in d and f,
the domain D over which we optimize reduces to D = {\ > 0,7 < 0,d > 0, f > 0}.
Replacing A by its value leads to

A*(z,y, z,t) = max(Sy, Ss),

where

R (a—2)2— 4f2 ab N
Sy = sup {x)\er S + 2z 3 +t7+2(1+f) 1 d—b}
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b — d? (a —2)* —4f? d ab 72
= + + +iyv+-(1+f)+———=¢.
S sup {:c)\ Y 3 z 3 try 2( ) 1 ( )}

We first consider S;. The domain over which we take the supremum is given by

Dm{l—ié%}z{)\<0,d>0,f>0,0>’y>— %)\}

Over this domain, as ¢t < 0, 0 < ty < —t %)\, so that the supremum of ¢y is

equal to —tA %. Thus, if we set D; = {A < 0,d > 0, f > 0},

b — d? (a—2)* —4f? o(f) d ab A2
. v A % @ .
S, sglp{x)\er A + 2z A tA d—b+2< +f)+4 T

The supremum over A is easy to compute. Indeed, the function is concave on A and
the critical point is given by

d—b o(f)
AZT(‘“t m)

Finally, with Dy ; = {d > 0, f > 0}, we obtain

51ZSUP{i(t\/w(f)—x\/d—b>2+yb2_d2 + (a=2) _4f2z+g(1+f)+a—b}.

Das 8 8 2 4

We do the same thing with S, computing first the supremum over A and then over
~v. We obtain S; = Sy, so that

(6.5) AN (z,y,z,t) = S; =suph(d, f)
Dy
where
h(d, f) = i (t\/w(f)—wd—b>2+y62;d2 + (a_2)8 _4f2z+g(1+f)+azb.
O

Remark 6.1. This supremum is not explicitly computable but, as the function h is
concave, it is reached for some (d*, f*) and this gives the rate function of the LDP

satisfied by the quadruplet (/Xr/T,St, %7, L1).

Lemma 6.2. The couple (@T,ET) satisfies an LDP with good rate function I,; given
over R? by

([ K,,(0,0) if (a, 8) = (0,0),
Ja,b(27 0) 7;f (Oé, 6) = (27 0>7
[a,b<a76> = 9
inf supH(:L’,t,d, f) Zf (OZ,B) EDl UDQ UD3,
Dx,t Dd,f
+00 otherwise.

\

where D1 = R™ x Rf, Dy =]0,2[xR, D3 = [2,+0[xR,, Dgys = {d >0, f > 0},

2 t2
T4 — +6>1
62—«

Dx,t: {:E}O,tém
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and

1 2 b2_d2 2
H(z,t,d, f) = Z(WQf+a+2—;pwl—b) + 3360‘
(a—2°—4f2 12+ 3 d ab
— (1 —.
* 8 2—a+2( T+

Proof. As (@T,ET) = g(/Xp/T,Sr,Yr, Lr) where ¢ is the function defined on
{(z,y,2,1) e Ryz — 1 # 0} by

Y (22 — t21tg0 + t1t>0) — .I‘z t21t<0 — t1t>0 + (1’2 — 2)2
g(l‘, Y,z t) = ) ’
yz —1 yz —1
the contraction principle and Lemma 6.1 give us that the couple (@T,ET) satisfies
an LDP with good rate function I,; given by

(6.6) Lap(a, B) = mf {A*(z, y, 2, 1) |9 (2, 2,1) = (@, B)} -

We can reduce the domain over which we look for the infimum using (6.1). The
condition g(z,y,z,t) = (a, ) gives us a link between x and y and one between t
and z:

(6.7) By=a*—a and (2—a)z=1t>+p.

We first notice that if @« < 0 and f < 0 then y is negative and for all z, z, t,
A*(x,y,z,t) = +oo such as [,p(a, 5). Similarly, if § > 0 and o > 2, z is negative
and A*(z,y, 2z,t) = o0 for all x, y, ¢, then [,p(a, 5) = +o0. If =0 and a < 0,
the first condition in (6.7) leads to x? negative and if @ = 2 and 8 > 0 the second
condition gives ¢? negative. So, in both cases, we get I, (v, 3) = +00. We now focus
on the values of a and 3 for which I, is not clearly infinite. We first consider the
two remaining limit cases : (0,0) and (2,0). If &« = 8 = 0 then the first condition of
(6.7) gives 2% = a = 0 so that

(68) ]a,b(oa 0) = Ka,b(ov O)

Similarly, if « = 2 and 8 = 0, the second condition implies that t* = (2 — a)z = 0
and consequently

(69) ]a,b(zvo) = Ja,b(270)'

For all remaining values of («, ), we define the function

1 2 b2—d2x2—a
H(r,t,d, f) = Z<1m/2f+a+2—x\/d—b) b
(a—2°—4f2 2+ 3 d ab
~(1 =
+ 5 2_a+2( + f) +

(6.10)

and obtain the announced result:

(6.11) I.p(cv, B) = inf sup H(x,t,d, f),
Dx,t Dd,f
where D, , = {x > 0,t < 0|5e s 1} and Dy = {d > 0, f > 0. 0

We were not able to compute I, ; directly. It is the aim of the next subsection.
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6.2. Evaluating the rate function /,;. We want to show that
(6.12) Lop(a, f) = min (Jop(ev, B), Kap(ev, B))

where J,;, and K, ; are the rate functions for the two couples of simplified estimators
(see Theorems 2.1 and 2.2) and 1, is given by Lemma 6.2 We notice that

K.p(o, B) = 1nf sup H(0,t,d, f) and J, (e, B) = mf sup H(z,0,d, f).

IS0 Dy w20 Dy s
Thus it easily follows that
(6.13) I, p(cr, B) < min (Jo (e, B), Kop(a, ).

So, we just have to show the other inequality.
We name QT = <5T, bT) and §T = <5T7 bT) 1XT21 + (\G,/T,\BT> 1XT<1'

Lemma 6.3. The estimators 01 and é\T are exponentially equivalent, which means
that for all € > 0,

lim ? log P <|| Or — 07 ||> 5) —

T—+w0

In particular, as the sequence (HAT) satisfies an LDP with good rate function Iy, then
the same LDP holds true for (7).

Proof. From the definition of each estimator, we get that

X
St Lrlx, =1 — F1lxp <1

Vi

ar — (rlx,<; + arlx,>1) =

and
XS lx,<1 — Lrlx s
Vi '

br — <ET1XT<1 + gT1XT>1> =

Thus, for all ¢ > 0,

P (|| 6r—0rll> <) < P5+ Q5 + 17 +

ST LTlx >1 £ ) %1XT<1 e
where P; =P == , Q5 =P > ,
’ < Vi 2v2) 9 Vr 22
X
Ll o € (LT]-X >1 € )

e =P|[|L = > and ¢ =P == . For all n > 0,
b Vr 2\/5) ar Vr 22 7
we have the following upper bounds:

3 |LT1X >1| >
P <P(|S7|2 ——= | +P|———>
<P (18rl > 55 )+ (el
€

6.14 <P(Sr=>—+=)+P(Lr1 >0 + P (Ve <1),

(6.14) <T 27}\/5) (Lrlxps1 = 0°) + P (Ve <)
£ X 2
(6.15) pr<P|Zr> \f +P 1XT<1 >0 ) +P(Vr <n),
21

€ en
(6.16) gr <P (LT1XT>1 > ﬁ) +P(Vr<n),
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and
XT en

6.17 T<P|—1 > — | +P(Vr<n).
( ) Q7 < T Xr<1 2\/§> ( T T})
First of all, using Theorem 3.1, we show that for all ¢ > —3,

) 1
(6.18) Tl_l)l’_{loc T loglP (St = ¢) = —I(c)
and for all ¢ > —G—EQ,

1

(6.19) lim —logP (X7 > c¢) = —J(c)

T—+o0 T

where [ and J are given in Theorem 3.1. Likewise, we deduce from Theorem 3.2
that for any ¢ > 0 small enough

) 1
(6.20) TLHJrrloo T logP (Vr <¢) = —K (c).
We now consider the parts involving L. For all ¢ > 0 and A > 0:
P (LT]-XT21 = C) =P (lOg XT]-XT21 = CT)

< E [eAlogXT:I e—AcT )

Hence
1 1
7108 P (Lrlx,=1 2 ¢) < —Act log (E[Xx7])-

Asymptotic properties of the moments of the process X as T tends to infinity can
be found in Proposition 3 of [2], and give that the second term tends to zero for T
going to infinity. Thus, for any A > 0 and ¢ > 0, we have the following upper bound

1
lim sup T logP (Lrlx,>1 = ¢) < —Ac
T—+w
Consequently, letting A go to infinity, we obtain that for all ¢ > 0,
1
(6.21) lim sup T logP (Lrlyx,>1 = ¢) = —0.
T—+00
Finally, we consider the terms involving % For all ¢ > 0 and A > O:

X
P (TT]'XT<1 > c> <E [e,\XT1XT<1] e~ AT

A—AcT
L et

Hence

1 X A
TlOgP <TT1XT<1 = C) < —Ac + T

Thus, for any A > 0 and ¢ > 0, we have the following upper bound

1 Xr
li —logP | —1 = < —Ae
ITTET;OP T 0g ( T X<l C) c

Consequently, letting A go to infinity, we obtain that for all ¢ > 0,

1 X
(6.22) lim sup T log P <?T1XT<1 > c) — .

T—+w0
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Consequently, combining the limits (6.18) to (6.22) , we are able to compute the
asymptotic behaviour of the bounds (6.14) to (6.17) and we show that for all ¢ > 0
and all 7 > 0 small enough,
1 ~ p—
lim sup T log P (|| O — Or ||> 6) < —M.,,

T—+00

€ €
where M., = min{[I | ——= ), J | ——= ), K . Each term in this minimum
o { (277\/5) (2%/5) (77)}
tends to infinity as 1 goes to zero, so that M, , itself tends to infinity. This gives

the announced result. O

Proof of Theorem 2.3. We have already shown in Lemma 6.2 that 1,,(2,0) = J,4(2,0)
and 1,,(0,0) = K,;(0,0) and that, except at this two points, [,; is infinite over
R~ x R~ and over [2, 40| x RT. We also know by (6.13) that

Ia,b(aa 6) < min (Ja,b(aa 6)7 Ka,b(av 6)) )
so we still need to establish the other inequality over the remaining domain. In the
sequel, we show that, for all compact subsets C' = R?,

1 _
(6.23) lim sup T loglP (67 € C) < — inf min{Jy(c, B), Kop(ar, B)}.

T— 400 (e, B)eC

It is sufficient to consider compact subsets of R? instead of closed ones, as we already
know that the sequence 07 satisfies an LDP with good rate function I, and R? is
locally compact so that the family (IP’ (@T € o))T is exponentially tight (see Lemma
1.2.18 and Exercise 1.2.19 of [5]). And this will prove the announced result as, by
Lemma 6.3, the sequences 1 and éT share the same LDP.

First of all, we notice that 0p = g(x/X¢/T,Sr, Y7, Lr) where g is the function
defined over {(z,y, z,t) € R*yz — 1 # 0} by

(6.24) g(x,y,z,t) = (y (22 = 1*14<g) — 2°Lizg tPlycg + (2714 — 2)Z>

yz — 1 ’ yz — 1
and the quadruplet (/X7 /T, Sy, X7, L7) satisfies an LDP with good rate function
A* given by Lemma 6.1. As the function g given by (6.24) is not continuous, we
cannot apply directly the contraction principle. However,

1 _
(6.25) limsup —logP (fy € C) < — inf A"
Tt 1T g 1(0)
We need to describe the subset ¢g=!(C). A quadruplet (z,y,z,t) of R* belongs

to g=1(C) if and only if there exists a sequence (Z,, Yn, 2n, tn)
(e, Bn),, € C such that, as n tends to infinity,

, and a sequence

(626) (:L‘naynaznatn) - ($7y727t)
and for all n
(6'27> g(xnvynaznatn> = (anaﬁn)

As C'is a compact subset, up to a subsequence, there exists («, 5) € C' such that
(aun, Bn) converges to («, 5) as n goes to infinity. Moreover, (6.27) is equivalent to
the following conditions for all n:

Bnyn = xiltn>0 — Oy
and
(2 - an) Zp = tiltn<0 + Bn
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Up to a subsequence again, both indicator functions converge toward 1 or 0. Thus,
letting n go to infinity, we obtain conditions on (x,y, z,t) which lead to

= |J piyuD,
(a,8)eC
where
Dl ={(z,y,2,1) e R* xRF|By = 2? —a and (2-a)z =}
and
D;,B:{(x yath)ERSXR |fy=—a and (2—a)z +5}

Thus, (6.25) becomes

1 _
6.28 limsup = logP (A € C) < — inf min< inf A*; inf A* }.
( ) T—>+oop T & ( g ) (ar,B)eC {D;,e Dos }
For all o # 2 and 8 # 0, we easily rewrite D;rﬂ = {(x, ”““QT*“, %,t) reR,t> O}
and D, = {(a: —g,g+§,t> reR < o}.
As the rate function A* given by Lemma 6.1 is infinite for ¢ > 0, the infimum

over D+5 reduces to the infimum over {(x, :”QEO‘, 250{’ O) ,T € R} which is equal to
Jap (@, B). Over D 5, we know by Lemma 6.1 that

2
A*(x’—%,%,t>=sup {i( - —t\/i) + ar (t }

Dg, 5

where 14 ¢(t) does not depend on x. Thus,

N a t*+ 0 N a t*+ 0
—_— > —_—
A <x, '3 ,t) A <0, '3 ,t>

and the infimum over D_ ; is greater than the infimum over { (O -2 TB, t) b < O}

which is equal to K, (o, 5).
We now need to investigate the cases o = 2 and 8 = 0 before concluding. For 8 = 0
and a ¢ ]0,2[, we already know the value of I,,. If a € ]0, 2],

D}y ={(z,y,2,t) e R* x R|2* = a and z =0} and D, = .
And with the argument than before we obtain that for all « € ]0, 2[,
Iy (a,0) = Jup (a,0) = min {J,p (a,0) ; K p (e, 0)}

as K, (o, 0) is equal to infinity. Now, for v = 2, we have already computed I, for

all = 0. For 8 <0,
26 = and D, 5 = {(x,y,Z,t)eR?’ x R™|py = —2 and t* = —6}

We obtain that
2
D2—B = {(x,—B,z,t> ,teR, ze R, t < 0}

and with the same argument than before, the infimum over this subset is greater
than the infimum over {(O, —%,z,t) zeR 0}, which is equal to K, (2, 3).

Thus, as Ju (2, ) is equal to infinity, we can conclude that

Lap(2,0) = min{Jop (2, ) ; Kap (2,5)} -
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APPENDIX A: PROOF OF LEMMA 3.1

We apply the Gértner-Ellis theorem (see [5]). It is easy to deduce from Theo-
rem 4.1 that the pointwise limit A of the normalized cumulant generating function
Ar of the couple (St,X7) is given by

~ d ab
(A.1) Apv)=—5 A+ f)——

where d = A/b?> — 8u and [ = (% — 1)2 — 2v. We easily get from Remark 4.1 that

the function A is steep. To obtain the rate function I, we just have to compute the
Fenchel-Legendre transform of A:

(A.2) I(z,y) = supa%)2 {:E,u +yv — Au, 1/)} :

82, (a=2)?
p<F,v<-—g

First we note that
(A.3) fore <0ory<0, I(z,y) =+,

because /N\(u, v) tends to —oo as v or p tends to —co. Only the case x > 0 and y > 0
remains to be studied.
We look for the critical points. If zy — 1 # 0, we obtain

(Ad) (ji) -4 <2ly) |

But dy and fy must both be positive, so the solution is in the domain if and only if
xy — 1 > 0. It is easy to check that this critical point corresponds to a maximum of

A. Using the fact that y = % et v = w and replacing it into (A.2), we get
Y ¥  (a—2)?%* ab
A5 1 = — + — —.

To conclude, we need to examine the case z > 0, y > 0 and xy — 1 < 0. We already
know that for v and u tending to —oo, —/N\(,u, v) tends to +c0. However, as x and y
are non negative, we cannot conclude directly. But it is possible to find a direction
in which A dominate the expression. Note that, for —v and —pu large enough,

~

zp+yv — AN, v) ~ zp+ yv + /uv.
Let £ > 0 and v = ku. We just have to find a k > 0 that satisfies
E*(y* — 1) + 2zyk + 2% < 0.

If y < 1 then all £ > —ymj fit. Else, if y > 1, necessarily * < 1 and we use
the same argument with p = kv this time. We have found directions for which
xp + yv — A(p, v) tends to 400, so that the supremum itself is equal to +c0. And,

(A.6) for x > 0,y > 0 such that xzy — 1 <0, I(z,y)= +00.
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APPENDIX B: PROOFS OF LEMMAS 4.2 TO 4.5

The four following proofs rely on lower and upper bounds for the modified Bessel
function of the first kind, given by formula (6.25) of [12]. More precisely, for all
z>0and v > —%, we have:

(B.1) 1< <2)UF(V + 1)1, (2) < €.

z

B.1. Proof of Lemma 4.2. It is easy to deduce the following upper and lower
bounds from (B.1):

(Bryy) (Br/y)?
(B2) (1) S BV S g

Replacing it into the expression of Hp given by (4.8) leads to:

2/T(1 1 s
(B.3) %HT >J eA\/T_yﬂ\/mfaTyyf% dy
T
and
(B.4) w <J BTVTHIWTy—7/~Tlog y— aTyy dy
T 0

We consider separately the integrals over [0, T] and over [+, 1]. On the one hand,

eBrVI+MWTy—7y/=Tlogy— Ty o) R dy < eBT\/@Hx/T_yfwalogy dy

ﬂl*—‘
Sl

< 1x sup (eﬁT\/@Jr)\\/T_y*“/\/i*TlOgy)
[£:1]
< MVT+Br—7y/-Tlog %
0 (eu—wﬁm)

On the other hand, with the same argument, we show that

1
J PNTIW Tz 522 gy 0 ((D-VTVIRT),
1

T

Over [0, %], VTV PVl and e~ are bounded. So we have

1 1

f T TRgg-ary 25072 gy, o pman/T-IA J e~V TTogy ) 252 g
0 0

and

el

f BrVI+MWTy—7/=Tlogy—ary y
0

1
gy < Nrar/THBrNT f " — W TTogy ¥ 4y,

Using the change of variable given by z = v/—logy + i, where g = M, we

obtain:
1

1 +a0
JT e~V Tlogy y9tdy = 26% e=97 <z — _’y\/T) dz
0 \/logTJr% g

2
T
2e g (

+00 T (+%°
J e 97 ydy — i e 97 dz) .

\/logTJr% 2g \/IOgTJr%
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By dominated convergence as v < 0, the first integral tends to zero when T goes to

infinity and the second one tends to the positive constant 7 This leads to the
following bounds, for 7" large enough:

2
J e~V T -1 g <2\[|7’\/— (’V4_T>
0 g

j oW o1 g |7|\F (72_T)
0 4g

Combined with the result over [%, 1], it gives the announced result.

B.2. Proof of Lemma 4.3. The upper bound easily follows from (B.2). Actually,
for all v > 0 and A € R, we obtain

HT < 6% J‘ (Af+ﬁT)f v+ —T logy 2f+a 2 dy

(B5) L(f+1)2f
B ANVT+B
S a0 VT,

Besides, using the lower bound of (B.2), we clearly have, for all ¥ > 0 and A € R,

Bpeer f MW\ i—yv/~TTogy , 2ta=2
B.6 Hp > Vy—7vV/=Tlogy d
(B.6) TET 0 ), € Y v

To obtain the announced lower bound, we need to consider separately the integral

over [0, 7] and over [£,1]. On the one hand, the integral over [1,1] is easy to
handle.

1
ATy Tlogy 2502 4 W IIogT 2=
(B.7) e Y dy>ce T ,

1

T

where £ = exp ()\1)\20 + )\\/Tl,ko). On the other hand,

1

1
J T VTV TRy 25 g I J oW TRy 2 g
0 0

Using the variable change z = y/—logy + V‘/_ , where we recall that g = 2 +4“+2, we

obtain
1
J e —yv/—T'logy y 2T JJFOO efgz2 (Z— ’Vﬁ) d
0 Viog T+ 4T 29

Firstly, we clearly have

+00 1 T 2
f e 9% 2dz = —exp —g log T + ﬂ )
VIogT+23L 2g 2g

Besides, for the second part of the integral, we have

+00 9 +00 ) 1
J e dy = J e 9% 2z x —dz
Viog T+ 7T Viog T+ 2T z

N

400
1 J‘
ViogT+ \/m+

2
T
— 72g\/m+’7\/7 exp <—g <\/logT+ g—g) )
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Thus, for any positive v, we have the following lower bound:

1

a— 1 ’y\/T
e —yv/—T'logy 2f+ 2 d > 2 (1 . ) ex <— loeT — TA/lo T) .
L v v> 2y TinT +ovT) P oloaT v Vg T

Combined with (B.7), this leads to

(Br) emer (e W WT
= gt (' s ) ) o0 (VT = et

B.3. Proof of Lemma 4.4. Using the inequality (B.2) for the modified Bessel
function Iy in (4.9), we obtain

(B 8) K < ﬁ +oo eﬁT\/ng)\\/T_yfaTy ,Y+2f+47a—2 d
' TERTA+ N y y
and
(BT)f fﬂo MTy— 2f+a=2
B.9 Kr> ————F"—— y—ary , v+ du.
2f+a=2

To go further, we need to consider the sign of the exponent v +
o If v+ 2f+“ 2 < 0: using the fact that y’7+2f+4a_2

variable u = /y — )@%BT, we obtain the following asymptotic behaviour for the
upper bound of K,

1
< 1 and with the change of

f +00
KT < (BT) J e(ﬁTJr)\\/T)\/gfaTy dy

2IT(1+ f)
;o OWTepp)? Fe0 MT +
-2 para (o WT+BrY
2T (1+1) | ATy 20p
2ap
o OWT+7)?
< dfgape o (At ga)
where A; and A, are given by:
+oo 1 —« 1,@
(B.10) A = f e T ydu = ——e T( 2or >
1_>“/j7+f8T 20(T
ar

and

+00 5 +00 5 1 1
(B.11) Ay = J e T du = J e T ux —du < ———A;.
1 1

_ ATy _ ATy u 1 — A2WT+Br
2ap 2ap 2CVT
Thus:
(WT+67)? o (1 AYTH8r Lr
K 2(8r)” QTTT Le ar|(1 2ar 14+ 2ar
T = 2IT(1+f) 2ar 1— MWT+Br
(B.12) By 2ar

_ (Br)’ 2ar
- QfF(lq-;-f)OéT (1 + - /\\/TT+ﬁT> exp ()\\/T + Br —ar) .

2o
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o If v + 21222 > 0: with formula 3.462(1) in [8], we get

OWT+87)>
Kp < 8o’ <2 (2a7) T T (27 + 29) Sar D_sr1g) (M)

2/D(1+f) V2ar
1
_ J eBTVI+HMWTy—ary yv+g—1 dy)
0

_ VT+87)>
2(8r)’ (2a7)" 09D (29+29)  PEHETS Br AT
S - 2Tfr(1+f) e 5T D_g(yig) \Tf2aT ’

where D_y(,44) is the parabolic cylinder function defined by 9.250 in [8]. But, if
A <0, for T large enough, —B7 — AW/T > 0 so formula 9.246(1) of [8] gives

D (—BT—WT) <6T—Af ) 2009 oo
20+ \ T m ) € :

8ar
QOJT 20(T

Thus K7 = O(B}) as T goes to infinity. If A = 0, we use formula 9.246(2) in [8].

D —Br\ _ V2m br 2W+2g716(§§;2
20t Bar ) T T (2y + 29) \V2ar '

This leads to the same conclusion: as T goes to infinity,

(B.13) Kr=0 ((5T)f> .

Otherwise, for the proof of Lemma 4.1, we also need a lower bound for K¢ when
v = 0. We note that over [1, +oo[, 797 > 1, so that

27f f p+oo
(B.14) Kp > % f VT T-ary g
With the change of variable given by u = /y — é{, it becomes
21-1 (87) f AQT o u2 )\\/7
o= NG J AVT G 201 ) du
(B.15) , o o
> 2 fl(ﬁT—) 62“; J e Ty du + WT e~ dy
ra+f) 1T 200 Jy avT
o o

However, the first integral is easily computable:

+o : 1 WTN
(B.16) J e T udu = 2o &XP (—aT (1 — f) )

1T aT
2ap

and for the second one, we clearly have the following upper bound,

+00 _ +00 P
Sl éfeaTu du — Slféﬁe aTquldu
a @
1 +o0 —apu?
< § e~ du
= WT )T
(B.17) I=%ar "1 %ag
2
11 _ _ AT
< 1_éﬁ2aT6Xp< aT(l 2aT>>.
ar

Using the fact that A < 0 and combining (B.15), (B.16) and (B.17), we show the
announced result:

2! (Br)! e g
(B.18) K12 500 2o <1+1 i exp(mf>
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All those results are still true for A = 0.

B.4. Proof of Lemma 4.5. As previously, we use (B.2) to find lower and upper
bounds for Kt as T goes to infinity, for all A > 0. We consider two cases depending
on the sign of the exponent v + g — 1.

e If v+g—1<0: As in the proof of Lemma 4.4, we have the following upper bound

2 (Br)’ 70*/_*% 5T
B.1 Kr < ———— A
(B.19) TS T+ ) " Sy
+oo ,
where A; = J T e T udu tends to zero for all A > 0 by dominated conver-
1- 2ap =

+00

gence, and Ay = J e~ dy tends to the positive constant 2,/7%. Thus,

1 AT+ B
T 2ap
T

for T large enough,

I owTrer)?
B.20 Ky <2i-f, [T _00) dar
(B-20) T Nd—barT(1+ )€

For the lower bound, with the change of variable given by u = /y — M , we obtain

+00
KT > 2_f(5T)f f e)\ﬁ\/@—aTy y’y-i-g—l dy
1

T(1+f)
2(y+g—1)
_ 2 ) ij_T +OO —aru? )‘\/_ o AVT
= T ) eter e u + u +
_ AT 20 2o
ar
+o0 2(y+g-1)
217f(BT)f Z\Q_T —ozTu2 )\\/_
> Z_VT) olap e 2 max < u; du
r'(1+f) _% 20
AT +00
217f(5T)f AT <2>\ﬁ>2(7+9—1) prYs —opu? —aru? 2(y+9-1)
> 4o
> o oeT S 1_;_ﬁ€ du + éﬁe (2u) du
21— f(ﬁ )f 22T )\\/T 2(y+g-1) %f _ 2
s et (o) [ o
T 1— 3\/_
ar

By dominated convergence, the last integral converges as T tends to infinity to the
positive constant 2, /5% . For T large enough, this leads to

f 20vt9-1) 5
(B.21) Ky s oot |7 B0 MWT ¢lar
d—2b F(l + f) ar

e If v+ g—1>0: over [1,+o0[, we notice that 4791 > 1. Thus

2= (Br)) (T MWT
B.22 Kr> ———— eMVIVITaTy dy.
(5.22) "> e | y
With the change of variable given by v = \/y — ’;{, it becomes
K 211 (Br)! iaT +o —apu? MWT d
T2 TRaep T S e (w5 du
arT
_ A2
> 21F(€(f?))fe4aT <SIFOO;\/_ efaTu wdu + )\\F Sl )\ T 7aTu2 dU)
ar

By dominated convergence, the first integral in the last expression tends to zero as
T goes to infinity and the second integral converges to the positive constant 2, /5%
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It gives, for T large enough,

1-f I )\T
(B.23) KT>4/d 2((57}}) A?i .

Moreover, we establish the upper bound with formula 3.462(1) of [8] as in the pre-
vious proof.

¥ _ (Aﬁ+3T)2 -
Kr < 2;1?%1@)(2 (2ar) OTIT (27 +2g) ¢ T Doy (Ljﬁﬁ)
1
_f eBrVI+MWTy—ary yﬂﬂrgfl dy
0
_ - r(2y+2g)  OVIHT)
< 9! f(ﬁT)f@OzT) (v+9) é(ﬁfél)e Sar D72(7+g)< B\?ﬁf)

But —f8r — A\W/T < 0 so, by formula 9.246(2) in [8]

—Br — WT Vo2r (Br+ WTNTTT ovres?
- - ~ e ar
2ar I (2v 4+ 29) V2ar

D—2(7+9) <

This gives, for T' large enough,

22-F/27 (Br)’ 2y+2g-1 %ﬁ
T+ f) (Br+2VT) T

This easily leads to the announced result.

(B.24) Kr <

APPENDIX C: PROOF OF LEMMA 5.1

We call L the pointwise limit of the cumulant generating function of the triplet
(Xr/T,Sr,%7). We notice that L(A\, pu,v) = A\ p,v,0) where A is given by
Lemma 4.1. We easily deduce from Remark 4.1 that the function L is steep. We
apply the Gartner-Ellis theorem: the rate function is given by the Fenchel-Legendre
transform of L on its effective domain.

(C.1) I(z,y,2) = sup {xX +yp+zv— LA\ u,v)}.

AeR, ,u<— P G 2)2
For y and 2z we recognize the exact same term than in Theorem 3.2. So with the
same argument, we show that

(C.2) fory<0,z2<0oryz—1<0, I(z,y,2) = +0.

Besides, if 2 < 0 then for A tending to —oo, Az — 400 and I(z,y, z) = +0 because
A does not depend on A for A\ < 0. Moreover, for x > 0, the term on A is always
negative for \ negative and sometimes positive if A is positive. So the supremum is
necessarily reached for A > 0. We finally have to calculate:

(C.3) I(x,y,2) = sup {aX+yp+z2v— A\ p,v)}

A>0, p<%,u<%
with z > 0,y > 0, 2z > 0 and yz — 1 > 0. We do exactly as in Appendix A,
we are looking for critical points and the calculations are very similar. We find:

Ao — g(z(x2+2) D), o = L <b2 2(ac +2)2> and vy = % ((a— 2)2 (22 +2) )’ which

yz—1 (yz—1)2 (y=—1)?
leads easily to I. O
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APPENDIX D: PROOF OF LEMMA 5.2

The pointwise limit of the cumulant generating function of the considered triplet
is easily given by A(0, i, v,7y) where A is defined in Lemma 4.1:

L+ -9 +2f+a+2 ify <0

(1+f)— “Zb else.

(D.1) A0, p,v,7) = {

NN

1
We recall that d = /b?> — 8u and [ = 5«/((1 —2)?2 — 8v. Using the Gértner-Ellis

theorem, we have

(D.2) I(y,zt) = sup {yp + zv +ty — A0, p, v, 7)}

2
~YER, ,u<— l/<%

With the same argument than for the other couple of simplified estimators, we show
that T(y,z,t) = 4o fory < 0, 2z < 0oryz—1 < 0. We also notice that for
t > 0 the expression inside the supremum tends to infinity as v goes to infinity.
So T(y,z t) = +oo for t > 0. Besides, for ¢ < 0, the part involving = is always
negative for v > 0 and sometimes positive for v < 0. It implies that the supremum
is necesseraly reached for v < 0. Replacing i and v by their expression on d and f,
we obtain, for y >0, 2 >0, yz—1>0and t <0,

~ V—d®>  (a—2)%—4f? ab d 2 }
I(y,z,t) = su + 2z +ity+ —+ = (1+ —_— .
(y ) 'y<0,d>IO),f>0 {y 8 8 7 4 2 ( f) 2f +a+2
We investigate critical points. We obtain

yt? + 2 2+ 22 yt(t* +2z) at
D.3 = — do= dvy="—"""+—-.
(D-3) fo 20yz—1) " yz—1 ane o 2(yz—1) 2
Replacing it into the expression of I , we easily get the announced result.

O

APPENDIX E: PROOFS OF ASYMPTOTIC NORMALITY RESULTS FOR THE TWO
COUPLES OF SIMPLIFIED ESTIMATORS

The key to obtain those results is Slutsky’s lemma. Indeed, we have

(E.1) ﬁ(%;:g) :\/T(;T_b> +¢—< sTLT>

Vr

where

a =b
VT (9779 & N0, 40 Y with 0 = (a2 1),

by — b -1 -2
and we show that the right-hand side of (E.1) converges to zero in probability.
Namely, it is well known (see for instance Lemma 3 of [13]) that S; converges

almost surely to —% and Vy to —25. And for all € > 0, we have

P32 >¢) = P(llogXg| > VTe)

< P(log Xy = Te) + P (—log X > Te)
< E(X7)e Ve + E (X7) e VTe

T—+00
— 5 0
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because E (X7) converges almost surely to E (Xy) = —¢ (see [13] Lemma 3) and,
as the parameter a is supposed greater than 2, we obtain from Proposition 3 in [2]
that
bI'(a/2 —1)
2 T'(a/2)
This gives the announced convergence in probability to zero. Thus, with Slutsky’s
lemma, the simplified estimators (&T,ET) satisfy the same asymptotic normality

result than the MLE.
Similarly, for the second couple of simplified estimators, we have

(E.2) \FT(ET_“) — \FT(aT_“) +ﬁ<_7§_§gT>.

by — b by — b -

E (X;') — =E(X2').

o0

As Y converges almost surely to —%2 and Vr to ﬁ,

Xr/ VT converges to zero in probability. For all € > 0,

B er) <

with the same argument than before. Thus (ET,ET) also satisfies the same asymp-
totic normality result.

we only have to show that

O
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