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A HYBRID VARIATIONAL PRINCIPLE FOR THE KELLER-SEGEL
SYSTEM IN R?

ADRIEN BLANCHET, JOSE ANTONIO CARRILLO, DAVID KINDERLEHRER,
MICHAL KOWALCZYK, PHILIPPE LAURENCOT, AND STEFANO LISINI

ABSTRACT. We construct weak global in time solutions to the classical Keller-Segel system
cell movement by chemotaxis in two dimensions when the total mass is below the well-
known critical value. Our construction takes advantage of the fact that the Keller-Segel
system can be realized as a gradient flow in a suitable functional product space. This allows
us to employ a hybrid variational principle which is a generalisation of the minimising
implicit scheme for Wasserstein distances introduced by Jordan, Kinderlehrer and Otto
(1998).
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1. INTRODUCTION

1.1. The model. The parabolic-parabolic Keller-Segel model [21, 22] is a drift-diffusion
system given by

Ou = Au — xodiv [uVo]
10000 = DoAv — agv + fou,  (t,x) € (0,00) x R?, (1.1)
ug € L}i_(RQ), Vo € Hl(R2),

where xo, 70, Do, ag, and Sy are given positive parameters and L}r (R?) denotes the positive
cone of L!(R?). The system (1.1) is a widely accepted model of chemotaxis, a phenomenon
in which organisms, most notably dictyostelium discoideum, with density u, are attracted
by a chemo-attractant v, produced by them. This feedback mechanism may lead to an
aggregation phenomena expressed by the concentration of the distribution function u at
some points and it may even grow without bounds as time progresses leading to blow-
up in density. The Keller-Segel model, which looks simple at first sight, is a very rich
mathematical system and it has been an object of very extensive investigation for the last
forty years. By introducing the new unknown functions

u(t, x) Dy

p(t,x) = , ot,x) = ———v(t,x),
GO = ol P B
and the two initial data
Uuo gb DO "
PO = T 0= S Y0,
[[uollx Bolluollx

where || - ||; denotes the L'-norm, we obtain the equivalent system

Oep = Ap — xdiv [pV¢] ,

TOp=Ap—ap+p, (t,x) € (0,00) x R?, (1.2)

po € LL(R?), ¢ € H'(R?),
with

= Dy =Dy X : Dy .

Note that with this rescaling pg is a probability density. It is immediate to notice that the
total mass of p is formally preserved along the flow,

/ p(t, ) dx:/ po(z) do =1, t>0
R2 R2

and that p(t,-) > 0 if pp > 0. Thus we can reduce to construct solutions such that p(t,-)
is a probability density for every ¢ > 0. We stress that the solutions obtained with our
technique automatically enjoy this property.

Taking 7 = 0 we obtain the so called parabolic-elliptic Keller-Segel model. Although
our focus here is the case 7 > 0, it is instructive to revise some basic facts about this
“simplified” system. Taking the initial condition pg such that the second moment

[ laPoula) do < oc,
RQ

and calculating formally the time derivative of the 2-moment My(t) = [ |2[*p(t, z) da

we obtain dMy(t)/ dt < 0 provided that x > 8m. This means that at some finite time

T > 0, Mo(T) = 0 which would imply total concentration of the mass. The conclusion is

that, for y > 8, there is finite time blow-up of classical solutions for the parabolic-elliptic

Keller-Segel model [6]. It turns out that when x < 87 solutions exist and are bounded
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for all times [10]. The borderline case x = 87 was considered in [9] where it was shown
that solutions for initial data with finite second moment exist globally but they become
unbounded and converge to a Dirac delta function as ¢t — oo. In all these references,
solutions were constructed by approximation methods leading to free energy solutions.

However, one can use the gradient flow approach introduced in [20, 29] for diffusions
and in [14] for nonlocal interactions to the parabolic-elliptic Keller-Segel model as in [7, 8].
In particular, the gradient flow interpretation leads to a nice understanding of the energy
landscape in the critical mass case x = 8w. There are infinitely many stationary solutions,
all of them locally asymptotically stable, for which a second Liapunov functional was found
in [8]. The key property of the gradient flow interpretation is that all stationary solutions
are infinitely apart from each other in the optimal transport euclidean distance, and each
of them has its own basin of attraction.

Returning to the parabolic-parabolic model, it is known that under the condition y < 87
and with reasonable assumptions on the initial condition, solutions to (1.2) exist for all
times [12, 27]. Our objective is to give another proof of the global in time existence. This
proof, which is based on the so called hybrid variational principle, does not give strictly
speaking any new existence result. Our objective is to emphasize an important, and not
immediately apparent, property: the variational character of the Keller-Segel model. It
also sheds some light on why when y > 87 the issue of global existence versus blow up
is so delicate in the parabolic-parabolic case. We note that it is proven in [3] that when
x > 87 and 7 is sufficiently large then there exist global self-similar solutions. It has also
been shown recently in [4] that for any initial condition and x > 87 there exists 7 such
that the Keller-Segel model has a global solution with this initial condition (the Cauchy
problem being understood in some weak sense, and solutions are not necessarily unique).
It is also proven recently in [30, 31] that blow-up solutions exist for supercritical mass close
to critical and the blow-up profile has been characterised, see also [15] for a formal analysis
and [18] for related results in a bounded domain. This variational interpretation of the
Keller-Segel model suggests that there might be a path in the function space along which
the free energy functional becomes unbounded leading possibly to blow-up “along” this
path. For numerical simulations inspired from the scheme see [16, 17].

Finally, let us mention that the solutions are proven to be unique and the functional has
some convexity over the set of solutions as soon as the cell density becomes bounded [13].

1.2. The formal gradient flow interpretation. We denote by P(R?) the set of Borel
probability measures on R? with finite second moment, and by

K:={pePR? :p< dzand / plog p dz < co}.
R2

Let us define the free energy of the Keller-Segel system (1.2) as £ : P(R?) x L%(R?) —

elp.dl= [ {5010 @) = o) 9(0) + 5 Vo) + G0} aa. (13

if (p,¢) € K x HY(R?) and &[p,#] = +oo otherwise. We will see in Lemma 2.2 that if
X < 87 then € cannot reach the value —oo. The domain of € coincides with K x H!(R?).
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We observe that, at least formally, the system (1.2) has the following “gradient flow”
structure

6
Oop =XV - (pV$> ;
s (1.4)
T8t¢ - _%7

where 0€/dp and 0E/d¢ denote the first variation of the functional £ with respect to
the variables p and ¢ respectively. Indeed, the right hand side in the first equation of
(1.4) is, up to a factor x, the “gradient” of £ along the curve t — p(t,-) with respect to
the Kantorovich-Rubinstein-Wasserstein distance, referred to hereafter as the Wasserstein
distance, Wy = dy and 0€/d¢ is the “gradient” of £ along the curve t — ¢(t,-) with
respect to the L2(R?) distance. We can formally compute the dissipation of &£[p, ¢] in (1.3)
along a solution of (1.4) as

d 0 0
ag[/’(t)@(t)] = /R2 [5—[)3#)4‘ ﬁaﬂb} dz

5E|? 1 A
__X/R2 pdx—;42<%> dz .

\Y 5
We recall here that the variational scheme introduced by Jordan, Kinderlehrer, and Otto
in [20] is based, generally speaking, on a gradient flow of some free energy in the Wasserstein
topology. Here, we work in a product space topology P(R?) x L2(R?) and this justifies the
name hybrid variational principle for the implicit scheme that we will introduce in what
follows, and which makes the notion of the gradient flow in this context rigorous.

We should point out that hybrid variational principles have been already used to show
existence of solutions for a model of the Janossy effect in a dye doped liquid crystal [23],
for the the Keller-Segel model with critical diffusion in R, N > 3 [11] and some of its
variants [33, 34, 26], and for the thin film Muskat problem in [24].

1.3. Main results. When a problem has a gradient flow structure, then its trajectories
follow the steepest descent path, and one way to prove existence of solutions is by employing
some implicit discrete in time approximation scheme. Suitable time interpolation and
compactness arguments should finally give the convergence towards a solution when the
time step goes to zero.

The main result of this work is the construction of solutions to (1.2) using an adapted
version of the implicit variational schemes introduced in [20] for the case of the Wasserstein
distance. The general setting in metric spaces was also developed by De Giorgi school
with the name of minimizing movement approximation scheme (see [2] and the references
therein). The minimising scheme is as follows: given an initial condition (pg, ¢g) € K x
H'(R?) and a time step i > 0, we define a sequence (p}!, ¢7'),>0 in K x H!(R?) by

{ (P, 3) = (po, o)

n+1 ¢n+1

(1.5)
h ) S Argmin(p,¢)€l€XHl(R2) fh,n[p7 ¢] ) n > 07

(ph 9

where

1 1 n n
Fhnlp, 0] = 5 ;d%v(ﬂaph)+7 16 — Dbl 2(gey | + Elp, 0]

and dyy denotes the Wasserstein distance which is defined in Section 2.2.

Theorem 1.1 (Convergence of the scheme). Assume that the constants in the Keller-Segel

system satisfy 0 < x < 87, 7 > 0 and o > 0. Given (po, po) € K x H (R?) there ewists
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a sequence (pt, %) € K x HY(R?) satisfying the variational principle (1.5). Defining the
piecewise constant function

(on(t), &n (1)) = (k> d1),  ift € (n—1)h,nh],

there exists a decreasing sequence (hj); going to 0 as j goes to oo and a continuous curve
(p,#) : [0,00) — P(R?) x L2(R?) such that

pr,(t) = p(t)  weakly in LY(R?), t>0,

bn; (t) = ¢(t) weakly in L*(R?) and strongly in L} (R?), ¢>0, pé€ [l,+00).
Moreover, (p,¢) satisfies the following regularity properties:

(i) p € CY2([0,T); P(R?)) and ¢ € CY/2([0,T); L%(R?)), for every T > 0.

(ii) For all T > 0, we have the estimate

sup { [ [lePott.o) + plt. o) ogp(e.0)] dot o | <o (1)
t€[0,T R2

(iii) The pair (p, @) is a weak solution of the Keller-Segel system (1.2) in the sense that

+oo
/ / Oép —VE-(Vp—xpVe) dzdt =0, for all € € C3°((0,00) x R?),
0 R2

T01p = Ap— a4+ p, a.e. in (0,00) x R2.

(1.7)

Theorem 1.2 (Dissipation inequality). Under the same assumptions as Theorem 1.1, the
solution (p, ¢) constructed in Theorem 1.1 furthermore satisfies:

(i) The regularity property: for all T > 0, p € L*(0,T;R?) N LY((0,T); WH1(R?)),
¢ € L2((0,T); H2(R?))NH((0,T); L2(R?)), and the Fisher information bound holds

[ L
0 R2
(ii) The energy dissipation inequality: For all T > 0
2 1 /T
p dx dt + - /0 |A¢ — agp + PH?}(Rz) dt+

p
1 (T
bk

+ E[p(T), o(T)] < E[po, ¢o]-

Obviously the interval (0,7) can be replaced by any (7%, T5) in RT. Since we do not know
whether the non-negative p is positive in R? the meaning in (1.8) is that the integrand is

2
pdx dt < +o0. (1.8)

\V4
2P \Vé
P

(1.9)

equal to |V log p[z p if p is positive and zero elsewhere. Owing to the energy dissipation an
alternative formulation for the equation on p is 9,p+ V- (pJ) = 0 with J := Vlog p — xVo
where p is positive and J(t) € L2(R?, p(t) dz) for almost every t.

Several difficulties arise in the proof of the well-posedness and convergence of the min-
imising scheme. First of all, since the energy £ is not displacement convex, standard results
from [2, 32] do not apply and even the existence of a minimiser is not clear. This is pri-
marily because we choose to work in the whole space R? rather than a bounded domain, a
choice made to replicate the optimal known results. Section 3 is devoted to this minimisa-
tion problem. Let us mention that this functional has some convexity properties but only
when restricted to bounded densities as proven in [13]. However, we cannot take advantage
of this convexity for the construction of weak solutions with the regularity stated on the
initial data.

The second issue has to do with the regularity of the minimisers obtained in each step
without which we cannot show convergence of the discrete scheme to a solution of (1.7). To
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derive the Euler-Lagrange equation satisfied by a minimiser (p, ¢) of F, ,, in K x HY(R?),
the parameters h and n being fixed, we consider an “optimal transport” perturbation for
p and a L2-perturbation for ¢ defined for § € (0,1) by

ps=(d+dQ)pp, ds:=¢+dw,

where ¢ € C§°(R%;R?) and w € C§°(R?). We note that ps is the push forward of p by the
map id+4d¢. Identifying the Euler-Lagrange equation requires passage to the limit as 6 — 0
in
diy (s, po) — diy (p, po)
26

which can be done by standard arguments, and also in

5 [Loo-psonw)ar= [ o) [‘“”““;”W” (et 8¢(@))] de.

1
and = / (ps log ps — plog p) du,
R2

This is where the main difficulty lies: indeed, since ¢ € H!(R?), we only have

¢po(id 4+ 6¢) — ¢
0

while p is only in K. Consequently the product p( - V¢ which is the candidate for the limit
may not be well defined and the regularity of (p, ¢) has to be improved. We also remark
that the dissipation of the functional involves A¢, and therefore we need to show additional
regularity on the potential ¢ to have a well-defined dissipation of (1.3). A general strategy
to overcome this regularity issue is explained in subsection 3.2.1 using an adaptation of the
arguments in [11, 25].

~ (V¢ inI2(R),

2. PRELIMINARIES

2.1. Lower semi-continuity of functional defined on measures. The following lower
semi-continuity result is very useful. For the proof we refer to Theorem 2.34 and Example
2.36 of [1].

Proposition 2.1. Let (fin)n>0, (Yn)n>0 be two sequences of Borel positive measures in RY,
d > 1, such that p, is absolutely continuous with respect to ~y, for each n > 1. Consider
f:R —[0,00] a convex function with super-linear growth at infinity. Assume that (fin)n>0,
(Yn)n>0 weakly-* converge (in duality with C.(RY)) to u and y respectively and

dpn
dv, .
() e
Then p is absolutely continuous with respect to v and
. dgen, du
> — .
mint [ 7 () = [(G) @

2.2. Wasserstein distance and transport map. We recall that the Wasserstein dis-
tance in P(R?), is defined by

d% (p,v) = min / z—yl?dy: (« =pu, (7 =v 2.1

W= _min [l uPar s = (2.1

where m;, i = 1,2, denote the canonical projections on the factors. When p is absolutely

continuous with respect to the Lebesgue measure, the minimum problem (2.1) has a unique
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solution ~ induced by a transport map 7/, v = (id, Ty )44e. In particular, T}; is the unique
solution of the Monge optimal transport problem

i S —id?dp: Sup=
S:Rrggw{/ﬂ@’ " dpe: Syu V}’

of which (2.1) is the Kantorovich relaxed version. Finally, we recall that if also v is abso-
lutely continuous with respect to Lebesgue measure, then

7Y oT, =id p-ae. and T, oT) =id v-ae. (2.2)

Since in this paper we deal only with absolutely continuous measures, we identify the
measures with their densities with respect to the Lebesgue measure.

2.3. Boundedness from below of the functional £. The following result is due to [12,
Lemma 3.1] and is a consequence of the Onofri inequality on the sphere [28]:

Lemma 2.1 (Onofri Inequality). Let H : R> — R be defined by

1
1O e

Then the following inequality holds:
1
/ eVH dx < exp (/ YH dx + —/ V)2 dﬂ:) Ve € HY(R?). (2.3)
R2 R2 167 R2
We can now make use of this inequality to obtain the lower bound of the functional in
(1.3).

Lemma 2.2 (Lower bound on &). Let 0 < x < 87 and a > 0. Then there exist constants
v >0 and Cy > 0 such that v is independent of a and it holds

8m — X 2 2
lp.6) > S [ pltogpl o+ [V, + ol e

+£?/pbﬂhh—0h Y (p, ¢) € P(R?) x HY(R?).
2X R2

(2.4)

Proof. The proof follows the lines of [12, Theorem 3.2]. Let § € (0,1) be a constant to be
choosen later. By Jensen’s inequality, for all 1 : R? — R

1— 1— x/(1-0)
/ [—5plogp—wp] dx:——(S log <67 pdx
R2 [ X X Jr2 p

> B log (/ eX¥/(1=9) dx> .
X R2

Applying this inequality to ¢ = ¢ + (1 — J) log H/x we obtain

1-6 1-4¢
/R2 [Tplogp—gbp] dx:/RQ [Tplogp—ﬂ)ﬂ] dCE—F/RQP(¢—¢) dz

1—5bg< H@W“5ﬂh>
X R2
1-4
4+ — plog H dzx.
X R2
7

v




By Onofri’s inequality (2.3) we obtain, for any ¢ > 0,

2 2
1-96 1-9 ng X HV(bHLQ(]RQ)
- - _ > - W)

(éQ[Xfpbgp Wﬁdx— X (A;1-6de+ 167(1—0)

1-90
4+ — plog H dx
R2

X
X[Vl
> _/ 6 H dz — | HL2(R2)
2 167(1 — )

1—-90
+ — plog H dx
X JR2

1

€2 2
2 = Slltame) — S 1H L2y —

XHV¢H%2(R2)
167(1 — )

1-90
4+ — plog H dz.
X  Jr2

Choosing € = ax/(87(1 — 0)) > 0, we obtain

5 1
Elp,¢] = — /RQ plogp dz — || H |z gz + v [HWH%Q(R?) + 04H¢Hi?(m2>}

1-46
4+ — plog H dx
X JRr2

with v :=1/2 — x/(16 7(1 — ¢)). By Carleman’s estimate (B.1)
20 4Aw(1—-9)

0 26
Elp; 9] 2—/ p|log pl dx+—/ plog H doz — = — | H 12 e
X JR2 X JR2 ex ax
1—-96
+v |1V e + lll +—/ plog H dx
196l + ellolfaen] + = |
_9 > 2 146
= ; /]R2 P‘ log P‘ dox +v |:HV¢HL2(]R2) + O‘H¢HL2(R2)] + T o plog H dz
20 4m(1—9) 9
a & - TXHHHL?(R?)-
Since x < 81 we can take § = (87 — x)/(167). Observing that § < 1/2, (2.4) follows with
v = (87 — x)/(167 + 2x) > 0 and C; = 87 — x/(8mex) + 87 + x/(4ax) | H||3. -

3. ONE STEP VARIATIONAL PROBLEM

3.1. Existence of minimizers.

Proposition 3.1 (Existence of minimizers). If 0 < x < 87 and a > 0 then for any
(p, ) € K x HY(R?) the functional
1 [diy(p.p) 712

-7:[,0,¢] = % T_FT HQS_QSHLQ(RQ) —{—g[p,gb]
is bounded from below in P(R?) x H'(R?) and sequentially lower semi-continuous with
respect to the narrow topology in P(R?) and the weak topology in L2(R?) for all h,T > 0.
Moreover the sub-levels of F are sequentially compact with respect to those same topologies.
In particular, the functional F admits a minimizer in P(R?) x H!(R?).
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Proof. e Lower bound for F: By the Young Inequality and the definition of the distance
dy, we have that

_ 1 _
G(p0) 2 5 [ JePp(e) do = [ JaPpla) da
R2 R2

Since log H(x) = —logm — 2log(1 + |z|?), we deduce
3 1 1 3
o [oplogH ot ot (o) = [ (1l = S log(1 + W))pm) o

2x Jr
——1og7r——/ 2f2p(

This quantity is bounded from below because the function s € [0, 00) — s/(4h) —% log(1+s)

is bounded from below. Using Lemma 2.2, we have thus obtained that there exist Co =
vmin{1,a} > 0, C3 = C3(h) € R such that for all (p, ) € Po(R?) x H'(R?), we get

8 —x 9
T [ pltogpl+ Ca lolfiugs +Co (31)

Flp, 9] >

e Lower semi-continuity of F: we take a sequence (p,)n>1 € P2(R?) narrowly convergent
to p and ¢, € HY(R?) such that (¢, ),>1 weakly converges to ¢ with respect to the L?(IR?)-
topology. Denoting by

Yo =e"Hdr, y=e’Hdr, p,=pyde, p=pdx

the functional F can be rewritten in the following form

1 1 1
f[pnaQSn] = _/ [dﬂ 10g <%> + _:| d’)/n - — 6X¢"H dz (32)
X Jr2 | dm dvn e ex Jr2

L 1
+; /R? pnlog H dz + 5 <||V¢n||iQ(R2) + QHQSnHiQ(RQ)) (3.3)

L (div(pn,p)
X

i #7llon = e ) (3.4

* Lower semi-continuity of (3.2): By (3.1) the sequence (¢, )n>1 is bounded in H!(R?), and
after possibly extracting a sub-sequence, we may assume that

(n(x))n>1 — H(x) for ae. x € R?. (3.5)
We prove that (v,)n>1 narrowly converges to 1, i.e. for all ¢ € Cp(R?)
lim X @ H (2)p(z) da = / @ H (z)p(x) da. (3.6)
n—oo RQ RQ

Indeed, H dz is a finite measure in R? and, by Onofri’s inequality (2.3) and the boundedness
of the (¢, )n>1 in HY(R?), we deduce

2
/ <ex¢"4p> Hdx < H(pHioo(Rg)/ X [T dg
R2 R2
2
< Nl ey exp [2X | dH dz+ 2 [Vl e
= L (R2) " A nlL2(R?)

2
X
e N e DY =/ e
<C.



Therefore, (eX?n),,>1 is bounded in L2(R?; H dx), and thus it is uniformly integrable with
respect to the measure H dz. Recalling (3.5) we may apply Vitali’s Dominated Convergence
Theorem and obtain (3.6). By Proposition 2.1 applied to the non-negative convex function
f(s) = slog s+ 1/e we obtain the lower semi-continuity of the right hand side of (3.2).

* Lower semi-continuity of (3.3): Since the lower semi-continuity property of F is obvious
if limsup,,_,oo Flpn, Pn] = 00, it is not restrictive to assume that there exists a constant
C' such that Flp,,¢,] < C. Combining the upper bound Flp,, ¢,] < C with the lower
bound (2.4) on & we deduce that (d%(pn,p))n>1 is bounded so that (p,),>1 is bounded
in Py(R?). Since log H = o(|z|?) as |z| — oo, this last bound and the narrow convergence
imply the convergence

lim pnlongx:/ plog H dx .
n—0o0 R2 R2
By (3.1) the sequence (¢,,)n>1 is bounded in H!(R?), and after possibly extracting a
sub-sequence, we may assume that it converges weakly to ¢ in H'(R?). Thus, the lower
semicontinuity of the last two terms in (3.3) are obvious.
* Lower semi-continuity of (3.4): it follows from the lower semi-continuity of the Wasser-
stein distance and the lower semi-continuity of the L? norm. U

3.2. Improved regularity of the minimizers.

3.2.1. Matthes-McCann-Savaré flow interchange technique. We will use a variation of a
powerful method developed by Matthes-McCann-Savaré in [25].
We denote by X the metric space P(R?) x L2(R?) endowed with the metric

1
d*(ur, uz) = ;d%ﬁ/(m,ﬂz) +7 [lo1 — dallf2 @), (3.7)

where u; = (pi, ¢4), i = 1,2.
The scheme (1.5) can be rephrased as

1
(pp, ¢p) = up minimises in X the functional wu — %dQ(u, uf =) 4+ Efu] (3.8)

for all n > 1 and h > 0 starting from ug = (po, P0)-
Assume that V : X — (—o0,+00] is a proper lower semi continuous functional that

admits a continuous semigroup (S) )¢ in Dom()) satisfying the following Evolution Vari-
ational Inequality (EVI)

ldQ(Sz?j(u)v ﬁ) — & (u7 ﬁ)

5 . +V[SY (u)] < V], u,u € Dom(V), t > 0. (3.9)
The dissipation of £ along the flow (S} );>0 associated to V is defined by
Elu] — E[SY ()]

DY E&[u) := lim sup
t10 t

By the minimising scheme (3.8), for any u € Dom(V) we have

L P + €] < =) + €]

2h 2h
Choosing u = Sg;uz for ¢t > 0, and dividing by ¢ we obtain
Elup) — EISY ()] _ 1 [d(SYug). g ) — o up )
t — 2h t

10



As V satisfies (3.9) we have
Elup] — EISY (up)] _ VIwp '] = VISV ()]

3.10
t - h (3.10)
Since V is lower semi continuous, passing to the limit ¢ — 0 we obtain
V n—11 Viu?
pVepp) < 2t 1= Viui] (3.11)

h
So that the differential estimate (3.10) is converted into the discrete estimate (3.11) for the
approximation scheme (3.8), which could provide additional information on uj according
to the properties of DYE. In particular when DYE > 0 we can expect to control uy by the
prior state u}' "' if V[u} '] < 400, which is the situation dealt with in [25]. In our case
we do not have the nice property DYE > 0 but we can decompose DYE into a positive
contribution and a controlled remainder (see Lemma 3.1).

3.2.2. Regularity of minimizers. As already mentioned in the introduction we turn to ad-
ditional regularity properties of p and ¢ using the method introduced above. We define the
functional V : Po(R?) x L2(R?) — (—oc, +00] by

Vit = < [ oo ple) do+ 3 [ (V6@ +ao(w)?] do.

if (p, ) € K x HY(R?) and V[p, ¢] = +00o otherwise.

It is well known that V is lower semi continuous with respect to the narrow topology
in p and the L? weak topology in ¢. Moreover, V generates a continuous semigroup in
Dom(V) = K x HY(R?) satisfying the EVI (3.9) (see [2]).

Lemma 3.1 (Improved regularity of minimizers). Consider the sequence of minimizers
(pp, oF) and let A satisfy

2
AZ/ leongdm—i—él/ prlog(1 + |x|?) dz + = + 2log w + 16.
R2 R2 (§]

Then pf € WHL(R?), Vit /pit € L2(p}), ¢ € H2(R?), and there exists a constant C(A) > 0
such that
1

2x Je2

Vop|?
7
h

1 1 n— n— n on
pp dx + §||A¢Z + ot — agll||3 < 7 (Vop~t en ) = Viok, o7))

+ () + 56413 - (3.12)

Proof. We use the notation ul! = (p, ¢7) and u(t) = (o(t), ®(t)) = SY(p, ¢7) = SY (u}l)
for ¢t > 0. The functions o, ® solve the equations

0o = Ao in (0,00) x R, &(0) = py,

) (3.13)
0P =A® —ad in (0,00) x R*, @(0) = ¢},
and satisfy the following identities:

d Vo(t)[*

— t)1 t)de = — t)d — t

7 R20() ogo(t) dr /R? o) o(t) de > —o0, vt >0,
1d 2 2 2
—— | [VO@) +a®(@)de=— [ |AD()— ad(t)]” dz > —o0, Vit > 0.
2 dt R2 R2



Step 1 - We give an estimate of ||o(¢)||3. From the inequality (A.2)

Vo (t)|?

o(t)

lo(t)] < e Jor(t) log o (1) 1.1y + Le.

L2(a(1))

From Carleman’s estimate (B.1), we deduce
2
llo(t)logo(t)]: < / o(t)logo(t) de + — + 2logm + 4/ o(t)log(1 + |z|?) d.
R2 (§] R2

Since ¢+ [po 0(t)logo(t) da is decreasing in [0, +00) and

4 o(t)log(1 + |z|?) dz = / o(t)A(log(1 + |z|?)) dz
R2

dt R2
/ )t dp<a
= o(t)——= dz ,
re (L4222

we infer that

2
/ o(t)|logo(t)| de < / o(t)logo(t) de + — 4+ 2logm + 4/ o(t)log(1 + |z|?) dz
R2 R2 (§ R2

2
< / pf log pf dx + o + +2logm +4/ pFlog(1 + |z|?) dz + 16t
R2 R2
A

for ¢ € (0,1]. We thus obtain that

Vo () |?

o(t)

ol < e

+ L. (3.14)
L2(o (1))

Step 2 - Instead of computing DVE[uZ] we use the regularity properties for the solutions
of the equations (3.13) and we compute DY E[u(t)] for t > 0. In this case we claim that

DYE[u(t)] = Dlu(t)] — R[u(t)], t>0 (3.15)
where
Dlu(t)] := i/R VUOES) (1) da + |AB() + o(t) — ad(D)2
and

Rlut)] = [oO)laeny = o [ o) do.
12



Indeed, owing to the smoothness of the solutions of (3.13), we have that for ¢ > 0

d 1 |Vol|?
DY = — = —= ol dr — o
Elu(t)] dtg[a’ @] . /R2 . dz /R2 0o dx

—/ 08t<1> dz — ||A(I) — (Jé‘l)HiQ(Rz)
R2

2
= —l/ &dx—/ d Ao dx
X Jrz O R2

—/ o(AP — ad) dz — ||AD — a@\\%g(Rg)
R2

1 2
= _—/ md3:—2/ U(Aq)—a@)dx—a/ o® dx
X JRr2 ag R2 R2

_HO-H%P(RQ) + ||0||i2(R2) —[|A® — O‘(I)HiQ(RQ)

1 Vol?
— [ e a0 o - atl e + ol

—a/ oc®dx.
R2
hence (3.15).

Taking into account that ¢ — ||®(¢)||3 is decreasing in [0, c0), we deduce from (3.14) and
the definition of D(u(t)), the following estimate for R[u(t)]

o [0
Ru(®) < (1+5) lo@ e + S190)F2s)
2

a+2 ||Vo(t) a 9
< A + L.+ —||®}
o+ 2

a
<e AxDlu(t)] + Le + §‘|¢Z‘|i2(R2)'

Choosing ¢ = 1/(xA(a + 2)) we obtain
1 o,
Rlu(®)] < 5Plu(t)] + C(A) + 5|’¢h”%2(R2)7
where C(A) = L. with the choice of ¢ above. Then we have
1 an
Dlu(t)] = DYEu(t)] + R[u(t)] < DYE[u(®)] + 5 Dlu®)] + C(A) + S li2@)  (3.16)

Step 3 - The function t — E[u(t)] is continuous in [0, +00). This property is clear for ¢ > 0
owing to the smoothness of u(t). We only have to prove the continuity at 0. Recalling that
ast—0

/ o(t)logo(t) de — / pp log pp dez,
R2 R2

1 1
3 [ IVOOF +a@?] do o3 [ [IVehE +aéq] de,

we have to prove that [p, ®(t)o(t) do — [z ¢} pft da.

Introducing A(s) = (s+1)log(s+ 1) — s and its convex conjugate A*(s) =e®* —s—1 we
recall Young’s inequality s s’ < A(s) + A*(s) for s,s" € [0,00). We also recall a variant of
Moser-Trudinger’s inequality, see [19]:

(3.17)

/ (62”2 — 1) dz < CHuH%Q(Rg) for u € H'(R?) such that [|[Vullj2ge) <1. (3.18)
R2

13



Let € € (0,1) be such that

e sup [[®(¢)[lm(re) < 1. (3.19)
te€[0,1]
Since ®(t) converges to ¢} in H'(R?) as ¢t — 0, there is t. € (0,1) such that
[®(t) — Pl ey <1 for t € [0,¢.]. (3.20)

Let ¢t € [0,t.]. On the one hand, it follows from Young’s inequality, (3.18), and (3.19) that
Leole - ar< [ a0 aor [ acero)
R2 9 R2

£) — pn
S/ A<|J()€7ph|> dz + Ce? sup H@(t)HiQ(Rg). (3.21)
R2

s€[0,1]

On the other hand Young’s inequality, (3.18), and (3.20) give

) _ AN
[ —eae < [ aee [ ar (12O o

n C n
< [ ACH) dot Z100 - Gl - (322
Since o(t)log o (t) — pflog py in L'(R?) and ®(t) — ¢} in L*(R?), we let ¢t — 0 in (3.21)
and (3.22) and obtain
L, @@att) - e da

lim sup
t—0

< Ce? sup [|®(t)||72 (R2) / Aepp) d
s€[0,1]

We finally use the integrability of p} logp; to pass to the limit as € — 0 in the above
inequality and conclude that

lim

= 0,
t—0

/ (@(t)o(t) — & pf) da
R2

thereby completing the proof of the continuity of ¢ — E[u(t)].
Step 4 - By the Lagrange theorem, since t — E[u(t)] is continuous at ¢ = 0 and differen-
tiable at t > 0, for every ¢ > 0 there exists 0(t) € (0,t) such that

5[“2] _tg[u(t)] — DVS[u(H(t))].
From (3.10), we obtain DYE[u(A(t))] < + (V(u}~ b - V(SY(u}}))), and finally by (3.16)
SDWOO)] < § (V™) ~ VST @h) +C) + Seflags. (329

Then lim sup,_,, D[u(6(t))] < +oo due to (3.17).
Denoting by o = o(6(tx)) and @) = ®(0(tx)) sequences given by tx — 0 as k — +oo,
we have

2
limsup/ —| opdx < +o0 (3.24)
k—+oco JR2| Ok
and
limsup [|A®y, + o — a®y||?, (R2) < 00
k—4-00

Moreover, by (3.14) and (3.24) we obtain

lim sup ||o |2 (R2) < F00.
k—+o00
14



By weak compactness in L2(R?), taking into account that oy, — pp, narrowly and @5 — ¢}
strongly in H!(R?), we pass to the limit by lower semicontinuity and we obtain that Py €
L2(R?), A¢gl € L*(R?), ¢7 € H?(R?) and

1865 + i — adiFaqge) < liminf [ A® + 0 — a®i e (3.25)

Finally, by Proposition C.1, defining vy, := Vo /oy there exists v € L?(R?, o7;R?) such
that, up to a subsequence,

/R2 ¢ - vgog do dt — /]R2 @ - vpp dx dt, (3.26)

for every ¢ € Cg°(R?,R?). Since vp} € L}(R?) and

/gp-vkakdx:/ @-Vakdx:—/ (V-@)Jkdx%—/(v-gp)pde,
R2 R2 R2 R2

we deduce from (3.26) that, vpf = Vpi and pf! € WH(R?). Finally, the lower semiconti-
nuity property (C.1) yields that

/ Vor |’
Rz | Pp
The final inequality (3.12) follows from (3.23), (3.27), (3.25), (3.17), and the definition of
the dissipation D. O

Voy 2

Ok

oy dz. (3.27)

pp dz < lim 1nf/
R2

k——4o00

3.3. The Euler-Lagrange equation.

Lemma 3.2 (Euler-Lagrange equation). Let 0 < x < 87, (po, ¢o) € K x HY(R?) and h > 0.
If (py, o1) is the sequence of the scheme (1.5), then

1 n-1
Lo o —xaven) ao = [ | ~ia) ¢ ot as (3.28)

for every ¢ € C°(R?*;R?), and

op ' — ¢
| (adivad—minde=r [ By, (3.29)
RQ RQ h
for every n € C3°(R?). Moreover, the following identities are satisfied:
Vo ? &y (op, h ")
Vo o dy = W PR 3.30
Lo = xven) o de = WL (3:30)
and Lo
165 — &5 1P e
|Gk — agh + bl = L (3.31)
Finally, the approximative weak solution estimate
. & (o, Py ")
L €6k = )+ 1 VE- (Vo= p V)] da| < €y DA 332
holds for any & € C5°(R?).
Proof. In order to simplify the notation, in this proof we use the notation p = py, p = p)~ L

o=df, b=t
Let ¢ € C°(R?%* R?) and 7 € C3°(R?) be two smooth functions. Define 75 := id + § ¢ and
for 6 € (0,1),

15



e It is standard, see [32, Theorem 5.30] for instance, that

1
lim — (pslog ps — plog p) doz = — Al(z) p(z) dz . (3.33)
5—0 0 R2 R2

e It is also classical, see [32, Theorem 8.13] for instance, that

d2 =\ d2 =~
lim W(P&P)Qé wlpp) _ _/R2 [(id —T2) - (CoT?)] p da, (3.34)

where T[—f is the optimal map pushing p onto p.
e A standard computation gives

.1
tim L (1961 + o 65122 ey — [V012aqa) — 0 10lEagsn)
:/ (Vo -Vn+apn) dx :/ (—A¢+agp) ndz . (3.35)
R2 R2

e Since ¢ € H'(R?), we have
¢oTs — ¢

)
and recalling that p € L2(R?) by Lemma 3.1, we conclude that

1 1
5 [0 —mesl@)de =5 [ plo=00Ts) = dnoTs] da

—(-V¢ in L%(R?), noTs — n in L2(R?),

(3.36)
— — (C-Vo+mn)p dx .

6—0 R2

e We then infer from (3.33), (3.34), (3.35), and (3.36) that

0 < lim 5 (Flps, 65] — Flp. )
1 _ T T
— i =) Tt [ n(o-d)da

1
- = Agpdx—/ pC-Vo¢dx
X JRr2 R2

—/RQpndx—F/RQ[_A@‘FOHMndx'

The above inequality being valid for arbitrary (¢,n) € C§°(R%;R?) x C5°(R?), it is also valid
for (—¢, —n) so that we end up with

L 6-9 _ -

;/RQC (Vp—xpVo) dac—i—/R2 <T - Ad+ ap p> n dz (3.37)
1

= RQ(x—Tg)'(COTf)ﬁdx-

Taking ¢ = 0 in (3.37) we obtain (3.29). While choosing n = 0 in (3.37) gives, for all
(e Cr(R2:R?)

[ ¢ Tp=xove) do= 1 [ w-10)- (CoTf) paa, (3.39)
R2 R2

and (3.28) follows from (2.2) and the fact that 7% pushes  onto p.
16



In order to obtain (3.30), we observe that V7 € L4(R?) as a consequence of the regu-
larity ¢ € H*(R?) established in Lemma 3.1 and the continuous embedding of H?(R?) in
WL4(R?). Since pf € L?(R?) we conclude that V¢l € L%(p). From (3.28) it follows that

va n __ 1 pZH : . 2/ n
W —xVop, = E(Tpﬁ —id), in L*(pp).

The equality of the L?(p}) norms yields (3.30) after using the properties and the definition
of optimal transport T5. Identity (3.31) follows immediately by (3.29).
Finally consider ¢ € C5°(R?). By the Taylor expansion, we have, for z € R?

|z — Tp (=)

|€(z) = E(TF () = (VE o TY)(x) - (x — T} (2))| < | D*€[|100(r2) 5

Multiplying by p and integrating over R? gives

5 diy (p, p
/RQ [€p—Ep— (VESTE) - (id = T2) p| dz| < ||D*¢|1 RQ)#_
Combining the above inequality with (3.38) (with { = V&) leads us to (3.32). 0

4. CONVERGENCE

4.1. One-step estimates.

Lemma 4.1 (Uniform estimates). There exists a constant Cy > 0 such that, for all h,T >0
and N > 1 satisfying Nh < T,

oo Ll dx+—§jd2 (1. 01) + ZWH DA

8T —x

N N N2 N |2
167 x /}R2 Py |log py | dz +v [HV% HL2(R2) + |, HL2(R2)]

1

where v is defined in the proof of Lemma 2.2.

Proof. For n >0, F[ppt, ¢/t < FlpR, ¢71], so that
1
QX—hd%v(pZ“,ph) ||¢”“ ShlIteme) + Elop T Oh T < Elop. o] -
Summing up over n € {0,--- , N — 1}, we find

1 N—

_hz (i oh) + Zuwl Ohlta@e) + Eloi’ o] < Elpo.go] - (4.1)

By Cauchy-Schwarz’ inequality, we deduce that

2
diy (o3, o) [Z dw ( n+1=ph

17
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We thus infer from (4.1), (4.2), and the lower bound (2.4) for £ that

Elpo, do] > 4X—Td2 (o8’ Ph) h Z diy (pp ™, i) + Z lop*t = dhll3

8T —x
167y

3
+ —/ o log H daz — O . (4.3)
2X R2

/R oi1og ol o+ IV Faqae + alléf IFaes

Since the triangle inequality implies that

[ ol e = o o 0u) < 2 ) + 2 o8 0

= 2diy (pp, , ) +2 /R2 jz[*po da

it follows that Equation (4.3) results in

3
—/ pflvlog(1+|x|)dx>—04< ) / lz|2p
X JR2

N—
1
oh Z diy (o™, PR + Z loh ™ = GRlIE 2 ge
n=0
8 —x

N N N N
e AT AL [uwh [ o

where

A 310 s
04 = g[p07¢0]+cl+ g ——/ ‘x’ 0 da .
Since log(1 + |z|?) < |z|? 4+ (—loge), for all e >0 and z € R, we obtain
C4+—/ lz|?p dﬂ:+ (—logs —/ |lz|2p d$+—2d2 nH’Ph

N-1
T n+l _ nj2 8m —x Nioo oVl d
DICARTIES = RATALE

+ v (I IFagaey + alloh Ieqes) | -
Taking ¢ := 1/(487T) and Cy = Cy + %log 48 we obtain the desired bound. O

4.2. Estimates on the interpolant. We consider the piecewise constant time dependent
pair of functions (pp, ¢p,) defined by

(P (t): on(t)) == (Ph., 1) » t € ((n—1)h,nhl, n=>0.

Lemma 4.2 (Time integrated estimates). Let T' > 0. There exists a constant C5(T) > 0
such that, for all h > 0 and N > 1 satisfying Nh <'T it holds

/Nh ( / Von(s)|”
0 R2

on(s) pr(s) dz + [ Adn(s) + pu(s) — a(ﬁh(s)H%m@)) ds < C5(T) .

18



Proof. Fix N > 1 such that Nh <T. We set

2 9% 1
AT) =16+ 21 -+ C 16T 1+ — log T .
(T) + 0g7r+e+ 4(871 X—i— X ><+T—i—(og )+>

By Lemma 4.1, for n € {1,--- , N} we obtain
[ otrossdora [ pitos(i+laP)do< [ phllogol o+ [ foPop ds
R2 R2 R2 R2

< <8;67TX + 16XT> Cy (1 + % + (log T)+> = A(T) — 16 — Z —2logm. (4.4)

We then infer from Lemma 3.1 that, for n € {0,--- ,N — 1}

9
X JR2

vpn-i-l

y P Az + [|AG] + pp ™ — adp T2 g2y
h

2 mn mn T T
< [/RQ pitlog p da —/ i log pptt dx}
T n n n
+ = |IVR IR gy + alleh 2qee) — 197 IRaqee) — alléft Faee)
+ CAD) + allépt o -

Summing over n € {O oo N — 1} gives

_Z/RQ

n+1
py dz + Z 1AGE + ot = agp I 2 gey

2
<— U po log po d:c—/ pi, log py’ dw}
xXh [ Jr2 R2

.
[ I560l2agge) + alldolBaqee) — VR oz — alloh e

n+1

+ NC(M(T +aZH<z>"“||Lz<R2 :

Therefore, using once more Lemma 4.1 together with (4.4), we conclude that

iAMAQWM$

2 Nh
pu(s) da ds+/0 [AGR(s) + pr(s) — adn(s)|[F2 (e ds

2
<= [/ polog po dx —i—A(T)] +aNh sup H¢hHL2 (R2)
X R2 ne[l,N

+ 7 IV G0llEaae, + alldolFaqes) | + th<A<T>>

rCu U UT+ (8T oy

which completes the proof. O

<C(T) +

4.3. De Giorgi interpolant and Discrete energy dissipation. In order to obtain an
energy dissipation estimate we introduce the so called De Giorgi variational interpolant
(see for instance [2, Section 3.2]). We define the De Giorgi interpolant as follows

1

ap(t) € Argmin,cx {m

A (u,uf ) + E(U)} , t € ((n—1)h,nh).
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We can also assume that @y (nh) = uj for any n € N. We use the notation (pp(t), ¢n(t)) =
Up(t).

Proposition 4.1. For every t > 0, (ﬁh(t),(gh(t)) enjoy the same reqularity properties of
(pp, @}) given by Lemma 3.1 and the following discrete energy identity holds for all N € N
and h >0

Vpn

Nh
/ — —xV¢y
RQ
Vﬂh

Nh T Nh _ B :
/ — —xVn ﬁh dz dt + 5/ [Adh — agn + phlli2(re) dt
R2 0
+5[Ph(Nh ¢h(Nh)] E[po; pol-

Moreover for every T' > 0 there exists a constant C(T') such that

d? (a (t),up(t) < C(T)h, VYt e[0,T). (4.6)

2 - Nh
pn dz dt + 5/0 |AGL — agn + prllfeme) dt

(4.5)

Proof. From [2, Lemma 3.2.2] we have the one step energy identity

L) 1t diad), uy )
“3),

2 n—1)h t_(n_l)h

n—1
5 - 5 dt + E(up) = E(up ™).

Defining the function

d(a(t), up ")

Gp(t) = F—(n—Dh

t € ((n—1)h,nh],
and summing from n = 1 to N, we obtain
N d2 uh n 1) 1 Nh

- Z T ) R ditEwy) = Eu). (4.7)

The same argument of Lemma 3.1 shows that (py(t), o5 (t)) enjoy the same regularity
properties of (p}}, ¢}') and we can obtain the Euler-Lagrange equation for (p(t), ¢5(t)):

< (VO ~xanVn @) do+ [ (~Adu(0)+ adult) = i(®) 0 da
1 o ) oh ' — on(®)
BT /RQ(Tph(t) Id) - Cpp(t) dx + 1 e == 1)k n dz,
for every ¢ € C°(R?;R?) and 7 € C§°(R?). As in Lemma 3.2 it follows that
Vin(t) N ~dy(Bn(t), oY)
L P = xVano)| (o da = R (48)
and
- 2 19n.(t) = &~ 1E2 2
1AGA () — adn(t) + ou(B) 22z = T2t L) (4.9)

(t = (n—1)h)?
fort € ((n—1)h,nh]. Recalling the definition of d and using the identities (4.8), (4.9), (3.30),
and (3.31) in (4.7) we obtain (4.5).
Finally, the estimate (4.6) follows from Lemma 4.1 using the same argument of [2,
Lemma 3.2.2]. O
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Lemma 4.3 (Time equicontinuity). Let T' > 0. There exist Cs and Cy such that for all
(t,s) € [0,7)* and h € (0,1), we get

dw (pn(t), pn(s)) < Co(T)(V]t — s+ Vh) |

16n(t) = dn(s)lli2@me) < Cr(T)(V]E = s+ Vh) .

Proof. Let 0 < s < t and set N := [t/h]| and P := [s/h|, where [a] denotes the superior
integer part of the real number a. By Lemma 4.1, we deduce that

d(up (t), up(s)) = d(u , ul) Z d(up,up™) < VN -P Z a2 (uf, up )

< \/N — P\/2h(Cy + (logT)4 ) ,

which gives the time equi-continuity for p, and ¢ recalling the definition (3.7) of the
distance d. O

4.4. Proof of Theorems 1.1 and 1.2.

Proof. Let T > 0.
e Convergence of (pp,)n, and (¢p)p: By Lemma 4.1, we obtain
sup | dn ()] m2) < +oo. (4.10)
t€[0,7],he(0,1)
Thus {¢n(t) : (t,h) € [0,7] x (0,1)} is in a weakly compact subset of H!(R?). Also,
Lemma 4.1 implies that

sup [ || pp, (1) da +/ pn(t)]log pp(t)] dz| < 4o0. (4.11)
t€[0,7],he(0,1) L/R2 R2

Hence, the set {pn(t) : (t,h) € [0,T] x (0,1)} is tight and equi-integrable. Thus, by
Dunford-Pettis theorem, this set is weakly compact in L!(R?).

In addition, the equi-continuity stated in Lemma 4.3 guarantees that, for all 0 < s <
t<T,

1irilsgp 16n(t) = dn(s)|F2mey < Cr(T)VE—s,
_)

and

limsup dyw (pn(t), pr(s)) < Ce(T)Vt - s.

h—0
We then infer from a variant of the Ascoli-Arzela theorem [2, Proposition 3.3.1] that there
exist a monotone sequence (h;); of positive numbers, h; — 0, and curves

¢ € CVA([0,THLA(R?),  peCV?(0,T]; P2(R?)),

such that

on, (t) = ¢(t)  weakly in H'(R?) for all ¢ € [0,T]
and

pn,; (t) = p(t)  weakly in L'(R?) for all ¢ € [0, 7.
Passing to the limit as h; — 0 in (4.11) and in (4.10), by semicontinuity we obtain the
bounds in (1.6).
e Moreover, Lemma 4.2 implies that (¢y,);, is bounded in L2(0, 7; H?(R?)). We can assume
without lose of generality,

¢n, — ¢ weakly in L*(0,T; H*(R?)) (4.12)
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and

on, — ¢ in L2(0,T; LY (R?)).
By standard interpolation results we obtain that

¢n, — ¢ in L2(0, T; Hi (R?)). (4.13)

loc

e Lemma 4.2 also implies that (|[Vpp,/pn,lli2(p, )); is bounded in L2(0,T). Then, from
J
the inequality (A.2) and the second bound in (4.11), we obtain that (p,); is bounded in
L2((0,T) x R?). We deduce that, after extracting a subsequence,
pr; — p  weakly in L2(0,T;R?). (4.14)

In order to pass to the limit in Vpj,;, we use Proposition C.1 with the measures du; =
pn; dz dt/T in the space (0,7') x R? and the vector fields v; = Vpn;/pn;- By Lemma 4.2,

we have
T
sup/ / ]vaQphj dr dt < +o0 .
Jj Jo R2

Setting du = p dx dt/T, there exists v € L2((0,T) x R? u;R?) (consequently vp €
L1((0,T) x R?)) such that, up to a subsequence,

T T
/ / @-vjphjdxdt—)/ / p-vpdedt,
0 JR2 0 JRr2

for every ¢ € C3°((0,T) x R?). Since vp € L1((0,T) x R?), we can deduce

T T
/ / © - Vj Ph,; dxdt:/ / - Vpp,; dz dt
0 R2 0 R2

T T
:—/ /(V-w)phjdmdt%—/ /(V-(p)pdmdt.
0 R2 0 R2

Consequently, vp = Vp and p € LY(0,7;WH1(R?)). Finally, the lower semicontinuity
property (C.1) yields (1.8).

e Identifying the limit: Writing the Euler-Lagrange equation, see Lemma 3.2, with a time
dependent test function, we obtain a time discrete formulation of the system (1.2). Thanks
to the convergences (4.12)-(4.13) for (¢p)p, the convergence (4.14) for (pp ), and the previous
step for (Vpp)n, we can pass to the limit in this time discrete formulation and conclude
that (p, ¢) is a weak solution to the Keller-Segel system (1.2).

e Energy inequality: We first recall that De Giorgi interpolant converges to the same
limit as the piecewise constant interpolant, see (4.6). This fact together with the above
compactness properties, Proposition C.1, and the lower semicontinuity of £, we can pass
to the limit in the discrete energy identity (4.5) obtaining the energy inequality (1.9). O

APPENDIX A. BILER-HEBISCH-NADZIEJA INEQUALITY
A similar inequality is proved in [5].

Lemma A.1 (Biler-Hebisch-Nadzieja inequality). Given € > 0, there is Lo > 0 such that
for all non-negative f € H'(R?) satisfying f?log f € L1(R?)

£ T2y < IV FIIE2 gyl F* 1og fllLigey + Lell FllF2 g2y - (A1)
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Proof. For N > 1 define

0 ifs<N
On(s) =< 2(s—N) it N <s<2N
s if s >N

By Gagliardo-Nirenberg’s inequality

1f gz = 1f —ON() +ONNTage) < CUON)Laz@e) + Cllf — ON(FlILa ey
< ClIVON(AIE2 @) ION (2 ge) + C f*de
{f<2n}
< OlVFlie@e / fAdz+ 4CN2/ f?dz
{f>N} {f<2n}
C
< m”foiz(ﬂ@)HfQ 10g fllLi @2y + CON?(|f 722y
hence (A.1) by choosing appropriately N in terms of . O

Corollary A.1. For any e > 0, there exists L. > 0 such that

2

plIF 22y <& plog pllrr ey + Lellplln 2y (A.2)

L2(p)

for all p € LY (R?) such that plog p € L'(R?) and Vp/p € L*(R?, p; R?).

APPENDIX B. A CARLEMAN TYPE ESTIMATE

Lemma B.1 (Carleman Estimate). Let p € P(R?) be such that [g.p|logp| dz and
ng plog H dx are finite then

2
/]R2p\logp\dmg/RQplogpdx—i—g—Q/RQplongx. (B.1)

Proof. Set p = plg1)(p),

/ pllog pl dx:—/ ﬁlogﬁdx—i—/ plog p dx
R2 R2 {p>1}

_ p p
= 1 dr —2 log H do — 2 —1 —)Hd
Jowoan=2 [ piositar-2 [ Goe (5) #as

Since ||H||; = 1 it follows from Jensen’s inequality that

/p]logp[dmg/ plogpdx+210g7r+4/ plog(1 + |z|?) dx
R2 R2 R2

p p
—2 —H 1 —H
</R2H dx)og(/RQH dx)

2
g/ plogpdx+210g7r+—+4/ plog(1 + |zf*) dx .
R2 € R2

The desired result comes directly from the definition of H since p < p. (]
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APPENDIX C. COMPACTNESS OF VECTOR FIELDS
We recall the following result, see [2, Theorem 5.4.4].

Proposition C.1. Let U be an open set of RE. If (jun)n is a sequence of probability mea-
sures in U narrowly converging to u and (vy), is a sequence of vector fields in L2(U, p; RY)
satisfying
sSup ||vnHL2(U,un;RK) < +o00,
n

then there exists a vector field v € L2(U, pi; RE) such that

n—oo

i [ pvndin= [ produ o eCEURN
u u

and

lim inf {lvg |2 @4, 5m5) 2 10]lL2 @4 srE)- (C.1)
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