Abdelkader Ouali

Samir Loudni

Lakhdar Loukil

Yahia Lebbah

Une approche parallèle coopérative exploitant la décomposition arborescente dans VNS

teaching and research institutions in France or abroad, or from public or private research centers.

Introduction

La notion de décomposition arborescente, proposée par Robertson et Seymour [START_REF] Robertson | Graph minors. ii. algorithmic aspects of treewidth[END_REF], vise à découper un problème en sous-problèmes (clusters) constituant un graphe acyclique. Chaque cluster correspond à un sous-ensemble de variables fortement connectées. Chaque sous-problème, étant plus petit que le problème original, devient plus facile à résoudre. L'intérêt d'exploiter les propriétés structurelles d'un problème a été attesté dans divers domaines : pour vérifier la satisfiabilité dans SAT [START_REF] Rish | Resolution versus search : Two strategies for SAT[END_REF], pour résoudre les CSP (CTE [START_REF] Dechter | Tree clustering for constraint networks[END_REF]), dans les réseaux bayésiens (AND/OR graph search [START_REF] Marinescu | AND/OR branch-and-bound search for combinatorial optimization in graphical models[END_REF]), en bases de données relationnelles [START_REF] Gottlob | Size and treewidth bounds for conjunctive queries[END_REF][START_REF] Gottlob | Tractable database design through bounded treewidth[END_REF], sur des problèmes d'optimisation sous contraintes (BTD [START_REF] Terrioux | Hybrid backtracking bounded by tree-decomposition of constraint networks[END_REF], Lc-BTD + [START_REF] De Givry | Exploiting tree decomposition and soft local consistency in weighted csp[END_REF], RDS-BTD [START_REF] Sánchez | Russian doll search with tree decomposition[END_REF]). Toutes ces propositions exploitent la décomposition arborescente dans des méthodes de recherche complète.

Plus récemment, Fontaine et al. [START_REF] Fontaine | Exploiting tree decomposition for guiding neighborhoods exploration for VNS[END_REF] ont proposé la méthode DGVNS (Decomposition Guided VNS) permettant d'exploiter les clusters issus de la décomposition arborescente du graphe de contraintes, pour guider l'exploration des voisinages dans les méthodes de type VNS. Cependant, sur des problèmes de grande taille, les performances de DGVNS décroient significativement en raison du nombre important de clusters à considérer séquentiellement.

Dans ce papier, nous proposons une première stratégie de parallélisation de DGVNS appelée CPDGVNS (Cooperative Parallel DGVNS) qui consiste simplement à explorer tous les clusters en parallèle. CPDGVNS suit l'architecture maître-esclave, où le processus maître mémorise, met à jour, et communique la meilleure solution courante, alors que les processus esclaves gèrent l'exploration des clusters individuels. Les processus individuels coopèrent d'une façon asynchrone en échangeant des informations sur la meilleure solution courante. Ceci garantit l'indépendance des processus esclaves individuels et permet de démarrer à partir de plusieurs solutions initiales différentes, favorisant ainsi une meilleure diversification.

Les expérimentations effectuées sur des instances réelles (RLFAP et tagSNP) montrent que CPDGVNS produit un gain significatif en termes de temps d'exécution par rapport à DGVNS. A notre connaissance, notre proposition est la première tentative utilisant la décomposition arborescente pour paralléliser efficacement l'exploration de grands voisinnages dans VNS.

Définitions et notations

Réseau de fonctions de coût

Un réseau de fonctions de coût (CFN) est un couple (X, W) où X={x 1 , . . . , x n } est un ensemble de n variables et W est un ensemble de e fonctions de coût. Chaque variable x i ∈ X a un domaine fini D i de valeurs qui peuvent lui être affectées. La taille du plus grand domaine est notée d. Une affectation de x i à la valeur a ∈ D i est notée (x i , a). Pour un sous-ensemble de variables S ⊆ X, on note D S le produit cartésien des domaines des variables de S. Pour un n-uplet donné t, t[S] représente la projection du n-uplet t sur l'ensemble de variables S. Une affectation complète t=(a 1 , ..., a n) est une affectation de toutes les variables ; dans le cas contraire, on l'appelle affectation partielle. Une fonction de coût w S ∈ W , de portée S ⊆ X, est une fonction w S : D S → [0, k ⊤] où k ⊤ est un coût entier maximum (fini ou non) utilisé pour représenter les affectations interdites (exprimant des contraintes dures). Pour capturer fidèlement les contraintes dures, les coûts sont combinés par l'addition bornée ⊕, définie par α ⊕ β = min(k ⊤ , α + β). Le problème consiste à trouver une affectation complète t de l'ensemble des variables minimisant la combinaison des fonctions de coût w S ∈W w S (t[S]).

Décomposition arborescente

Le graphe de contraintes d'un CFN est un graphe G=(X,E) composé d'un sommet par variable et il existe une arête {u, v} ∈ E si, et seulement si, ∃ w S ∈ W, u, v ∈ S. Définition 1. Une décomposition arborescente [START_REF] Robertson | Graph minors. ii. algorithmic aspects of treewidth[END_REF] de G=(X, E) est un couple (C T , T) où : T = (I, A) est un arbre avec pour ensemble de noeuds I et pour ensemble d'arêtes A, C T = {C i | i ∈ I} est une famille de sous-ensembles de X (appelés clusters) telle que :

(i) ∪ i∈I C i = X , (ii) ∀ (u, v) ∈ E, ∃ C i ∈ C T A B C D E F (
t.q. u, v ∈ C i , (iii) ∀ i, j, k ∈ I, si j est sur le chemin de i à k dans T , alors C i ∩ C k ⊆ C j . L'
(C i , C j) ∈ E T entre les sommets C i et C j ssi sep(C i , C j) = ∅.
Il existe beaucoup de travaux sur les décompositions arborescentes. Habituellement, le problème considéré est de produire une décomposition avec une largeur arborescente minimale, un problème NP-difficile [START_REF] Arnborg | Complexity of finding embeddings in a k-tree[END_REF]. Des décompositions approchées, obtenues par triangulation, sont souvent exploitées.

Nous avons utilisé l'heuristique Maximum Cardinality Search (MCS) [START_REF] Tarjan | Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs[END_REF] permettant de produire des décompositions arborescentes avec des largeurs de décomposition plus petites.

La Fig. 1 illustre les trois étapes nécessaires au calcul d'une décomposition arborescente d'un graphe G (a). Tout d'abord, le graphe G est triangulé par l'ajout de l'arête BC (b). Ensuite, on calcule les cliques maximales afin de constituer le graphe de clusters (c). Enfin, on obtient la décomposition arborescente de G (d).

VNS guidée par la décomposition arborescente (DGVNS)

DGVNS (Decomposition Guided VNS) [START_REF] Fontaine | Exploiting tree decomposition for guiding neighborhoods exploration for VNS[END_REF] étend le principe de VNDS [START_REF] Hansen | Variable neighborhood decomposition search[END_REF] (Variable Neighborhood Decomposition Search), en exploitant le graphe de clusters Algorithme 1 DGVNS Require: The constraint graph (X,W), initial number of variables to unassign kinit, maximum number of variables to unassign kmax, discrepancy δmax for LDS.

1: let G be the constraints graph of (X, W) 2: let (C T , T) be a tree decomposition of G 3: let C T = {C1, C2, ..., Cp} 4: S ← genRandomSol() 5: k ← kinit, i ← 1 6: while (k < kmax)∧(not TimeOut) do 7:

Cand ← CompleteCluster(Ci, k)

8:

Xun ← Hneighborhood(Cand, k, S)

9:

A ← S\{(xi, a) | xi ∈ Xun} 10:

S ′ ← LDS+CP(A, Xun, δmax, f (S), S)
11:

neighbourhoodChange(S, S ′ , k, i)

12: end while 13: return S 14: procedure neighbourhoodChange(S, S ′ , k, i) 15:

if f (S ′) < f (S) then 16:

S ← S ′ , k ← kinit, i ← succ(i)

17:

else 18:

k ← k + 1, i ← succ(i)
19:

end if 20: end procedure pour guider l'exploration de grands voisinages. Les voisinages sont obtenus en désaffectant une sous-partie de la solution courante selon une heuristique de choix de variables. La reconstruction de la solution sur les variables désinstanciées est effectuée par une recherche arborescente partielle, LDS (Limited discrepancy search, [START_REF] Harvey | Limited discrepancy search[END_REF]), aidée par la propagation des contraintes (CP) basée sur un calcul de minorants. L'algorithme 1 présente le pseudo-code de DGVNS. Tout d'abord, il construit une décomposition arborescente de G (ligne 2), puis génère aléatoirement une solution initiale S (fonction genInitSol, ligne 4)). Afin de favoriser les mouvements dans des régions fortement liées, DGVNS se base sur les structures de voisinages N k,i (cf. Définition 3). En effet, le concept de cluster permet d'exhiber ces régions, de part sa taille (plus petite que le problème initial), et de part la forte connexion entre les variables qu'il contient. Ainsi, l'ensemble de variables candidates Cand à désaffecter sont sélectionnées à partir du cluster C i . Si (k > |C i |), Cand est étendu aux variables des clusters C j voisins de C i afin de prendre en compte la topologie du graphe de clusters. Ce traitement est réalisé par la fonction CompleteCluster(C i , k) (ligne 7). Un sous ensemble X un de k variables est sélectionné aléatoirement dans Cand parmi les variables en conflit par l'heuristique de voisinage Hneighborhood (line 8). Une affectation partielle A est générée à partir de la solution courante S en désaffectant les k variables de X un (ligne 9). Ensuite, ces variables sont reconstruites (ligne 10) par une recherche arborescente partielle LDS [START_REF] Harvey | Limited discrepancy search[END_REF], aidée par la propagation de contraintes (CP) (voir [START_REF] Loudni | Combining VNS with constraint programming for solving anytime optimization problems[END_REF] pour plus de détails). La recherche s'arrête dès que la dimension maximale de voisinage k max ou le TimeOut est atteint (ligne 6).

La procédure NeighborhoodChange contrôle les mécanismes d'intensification et de diversification de DGVNS (cf. Algorithme 1). Soit p le nombre total de clusters, succ une fonction de succession3 , et N k,i la structure de voisinage courante. Si LDS+CP ne trouve par de meilleure solution S ′ dans le voisinage de S, DGVNS cherche des améliorations dans N (k+1),succ(i) (la structure de voisinage où (k + 1) variables de Cand seront désaffectées) (ligne 18)). Quand une solution de meilleure qualité S ′ est trouvée par LDS+CP dans le voisinage N k,i , S ′ devient la solution courante (ligne 15), k est réinitialisé à k init et le prochain cluster est considéré (ligne 16).

3 La méthode CPDGVNS (Cooperative Parallel DGVNS)

3.1 Architecture maître-esclave asynchrone de CPDGVNS La motivation principale de la parallélisation est l'amélioration des performances des algorithmes liées au temps d'exécution et à la qualité des solutions. Plusieurs travaux sur la parallélisation des métaheuristiques confirment cette tendance. Les divers travaux sur les métaheuristiques parallèles indiquent également que, bien que les méthodes basées sur des stratégies de recherche indépendantes donnent de bons résultats, elles sont généralement surclassées par les stratégies de recherche asynchrones coopératives (voir [START_REF] Gabriel Crainic | Cooperative parallel variable neighborhood search for the p-median[END_REF] pour plus de détails). C'est cette approche que nous avons adoptée dans le présent papier.

Notre méthode, nommée CPDGVNS (pour Cooperative Parallel DGVNS), consiste simplement à explorer en parallèle tous les clusters fournis par une décomposition arborescente. Elle suit une architecture maître-esclave où le processus maître maintient, met à jour et communique la meilleure solution courante ; les processus esclaves explorent les clusters et coopèrent en échangeant des informations sur les meilleures solutions trouvées lors de la recherche. Ils communiquent exclusivement avec le processus maître. Les mises à jour des solutions et les communications s'effectuent de manière asynchrone. Ainsi, cette approche est plus avantageuse que l'approche synchrone car elle permet aux processus esclaves de démarrer à partir de solutions initiales différentes au cours des résolutions intermédiaires des clusters, permettant ainsi une plus grande diversification.

Algorithme du processus maître

Soient C T = {C 1 , ..., C p } l'ensemble des clusters et n sl le nombre de processus esclaves utilisés. Dans notre approche, pour profiter pleinement de la parallélisation, le nombre n sl4 de processus esclaves est égal au nombre de clusters. Les processus esclaves sont numérotés de 1 à n sl , alors que le processus maître sera désigné par la valeur zéro.

Algorithme 2 Processus maître 1: function CPDGVNS(X, W, kinit, δmax, n sl) 2:

let G be the constraints graph of (X, W)

3:

let (C T , T) be a tree decomposition of G

4:

let C T = {C1, C2, ..., Cp}

5:

S ← genRandomSol()

6:

i ← 1

7:

for each slave r = 1, . . . , n sl , in parallel do

8:

kmax ← |Ci|

9:

Send(r, i, kinit, kmax, δmax, S)

10:

i ← succ(i)

11:

end for

12:

F inished ← 0, adj ← 0 13: while (F inished < n sl) do

14:

Receive(r, S ′ r)

15:

if (f (S ′ r) < f (S)) then 16
:

S ← S ′ r , adj ← 0 17: i ← succ(i),

22:

Select the jth cluster Cj from neighbor(Ci)

23:

kmax ← kmax + |Cj |

24:

end for

25:

end if

26:

if (not global TimeOut) then

27:

Send(r, i, kinit, kmax, δmax, S)

28:

else F inished + +

29:

end if

30:

end while

31:

return S 32: end function L'algorithme 2 décrit le pseudo-code du processus maître. Il démarre d'une décomposition arborescente de G (ligne 3) et d'une solution initiale S générée aléatoirement (ligne 5). Le maître initie la recherche en lançant l'exécution en parallèle de n sl processus esclaves (ligne 7). Ceci est réalisé par l'envoie à chaque processus esclave r de la même solution initiale, du cluster associé C i de l'ensemble C T et des valeurs des paramètres k init , k max et δ max (ligne 9). La liste C T des clusters est gérée en FIFO pour assurer que tout cluster soit traité par un seul processus esclave (ligne 10). La valeur de k max est initialisée à la taille du cluster affecté au processus esclave (ligne 8). Ceci restreint le choix du nombre de variables à désinstancier uniquement aux variables du cluster. Après la phase d'initialisation, le maître attend de recevoir la meilleure solutions trouvée par chaque processus esclave (lignes 13-28). La réception de ce message est traitée dans la ligne [START_REF] Marinescu | AND/OR branch-and-bound search for combinatorial optimization in graphical models[END_REF] Tout d'abord, la diversification effectuée en passant du cluster C i au cluster C succ(i) est nécessaire. En effet, les expérimentations que nous avons menées ont montré que le fait de rester sur le même cluster conduit à de faibles améliorations : le choix d'un nouveau cluster permet d'améliorer la qualité de la solution en visitant de nouvelles zones de l'espace de recherche. De plus, quand un minimum local est trouvé dans le voisinage courant, l'augmentation de la valeur de k max permettra également une certaine diversification en agrandissant la taille du voisinage. Si le délai global T imeOut n'est pas atteint, on poursuit la recherche en relançant le processus esclave r à partir de la meilleure solution globale disponible (ligne 27). Sinon, elle est arrêtée (ligne 31). L'ensemble du processus de résolution se termine lorsque tous les processus esclaves se terminent (ligne 13).

Algorithme du processus esclave

L'algorithme 3 décrit le pseudo-code du processus esclave r. Il requiert la décomposition arborescente (C T , T) de G. Il reçoit du maître l'index du cluster à traiter, les valeurs des paramètres k init , k max , la valeur du paramètre δ max pour LDS+CP et la solution initiale S (ligne 1). Comme pour DGVNS, l'ensemble Cand des variables candidates à désinstancier est choisi parmi les variables du cluster Un sous-ensemble de k variables X un est aléatoirement sélectionné dans Cand parmi les variables en conflit par l'heuristique de voisinage Hneighborhood (ligne 6). Une affectation partielle A est générée à partir de la solution courante S r en désinstanciant les k variables sélectionnées ; les (nk) variables non sélectionnées conservent leurs valeurs actuelles dans S (ligne 7). Les variables non affectées sont ensuite construites par LDS+CP (ligne 8). Si LDS+CP trouve une solution de mailleure qualité S ′ r dans le voisinage de S r (ligne 13) alors S ′ r devient la solution courante (ligne 14) et k is est réinitialisé à k init (ligne 15). Sinon, contrairement à DGVNS, le processus esclave cherche à améliorer la solution dans la structure de voisinage où (k+1) variables de X seront désinstanciées (ligne 17). Ce traitement est réalisé par la procedure neighbourhoodChange(S r , S ′ r , k) (ligne 9). La recherche s'arrête quand elle atteint le nombre maximal k max de variables à désinstancier ou le local T imeOut (ligne 4).

C i . Si (k > |C i |) et (k max > |C i |) (

Jeux de test

Les expérimentations ont été réalisées sur les instances de deux problèmes modélisés sous forme de CFN (voir la Section 2.1).

Instances RLFAP : Le CELAR (Centre d'Electronique de l'Armement) a rendu publique un ensemble d'instances du problème d'affectation de fréquences radio (RLFAP) [START_REF] Cabon | Radio link frequency assignment[END_REF]. Le problème consiste à affecter un nombre limité de fréquences à un ensemble de liens radio définis entre des paires de sites, dans l'objectif de minimiser les interférences dues à la réutilisation des fréquences. Nous détaillons les expérimentations sur les instances les plus difficiles : Scen06, Scen07 et Scen08.

Instances SPOT5 : La gestion quotidienne d'un satellite d'observation terrestre comme SPOT5 nécessite la sélection d'un sous-ensemble de photos candidates conformément à des limitations d'ordre physique, en maximisant l'importance des photos sélectionnées [START_REF] Bensana | Earth observation satellite management[END_REF]. Nous détaillons les expérimentations de sept instances parmi celles qui ne comportent pas des contraintes dures de capacité.

Instances tagSNP : Un polymorphisme nucléotidique simple "A Single Nucleotide Polymorphism" (SNP) est une variation d'une séquence DNA qui apparait quand un nucléotide unique -A, T, C ou G -dans le génome diffère entre des membres de l'espère biologique ou des paires de chromosomes dans un individu [START_REF] Carlson | Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium[END_REF]. Les SNPs apparaissent comme des marques biologiques qui peuvent aider pour prédire le risque de développement de certaines maladies. Le problème tagSNP consiste en la sélection d'un petit sous-ensemble de SNPs, appelé tag-SNPs, qui capture une grande part de l'information génétique. Ce problème est réputé difficile à résoudre, en raison de sa relation étroite au problème de couverture d'ensembles (set covering problem) qui est NP-dur [START_REF] Sánchez | Russian doll search with tree decomposition[END_REF]. Nous présentons des expérimentations sur neuf instances difficiles dérivées du chromosome humain 1-data 5 avec r 0 =0.5 (jusqu'à n=1550 variables où la taille maximale du domaine d est comprise entre 30 et 266, ainsi que e=250, 000 fonctions de coût). Trois instances sont de taille moyenne, et six autres instances sont de grande taille.

Expérimentations

Le protocole expérimental

Pour comparer CPDGVNS à DGVNS et VNS/LDS+CP 6 , nous avons adopté les mêmes paramètres que ceux décrits dans [START_REF] Fontaine | Exploiting tree decomposition for guiding neighborhoods exploration for VNS[END_REF]. La valeur de déviation de LDS est fixée à 3. Les paramètres k min et k max sont respectivement fixés à 4 et à n (le nombre total de variables) de telle sorte que toutes les variables du problèmes soient couvertes, et la valeur global T imeOut est fixée à 3600 secondes. En ce qui concerne CPDGVNS, le nombre de processus n sl est fixé à |C T | qui est le nombre de clusters de la décomposition arborescente. Tous les processus utilisent la même décomposition arborescente au niveau de chaque instance.

Les expérimentations ont été effectuées à l'unité de calcul intensif de l'université d'Oran en Algérie 7 . Chaque instance est exécutée 50 fois. Toutes les stratégies de recherche sont implantées en C++ en utilisant la librairie toulbar2 8 . La parallélisation est mise en oeuvre dans l'environnement MPI (Message Passing Interface) 9 . Par exemple, les routines de transmission send et receive correspondent respectivement aux procédures M P I Send et M P I Recv de la librairie MPI.

Pour évaluer l'impact de la stratégie de parallélisation, nous comparons la qualité des solutions obtenues avec VNS/LDS+CP, DGVNS et CPDGVNS en considérant le temps d'exécution. Nous avons fixé le temps d'exécution limite alloué à chaque processus esclave (i.e. local T imeOut) à global T imeOut/n sl . Au niveau de chaque instance et chaque méthode, nous indiquons le nombre de processus esclaves utilisés par CPDGVNS, le nombre d'exécutions avec succès pour atteindre l'optimum, "succ. exécutions/exécutions totales", le temps CPU moyen (en secondes) des exécutions avec succès, le coût moyen sur les 50 exécutions, et le meilleur coût (entre crochets) des exécutions sans succès.

Conclusion

Dans ce papier, nous avons introduit une première approche parallèle coopérative pour DGVNS qui explore de manière parallèle les clusters issus de la décomposition arborescente du graphe de contraintes. CPDGVNS affecte à de nombreux processus esclaves des parties différentes de l'espace de recherche, permettant ainsi une meilleure diversification. Notre approche parallèle intensifie la recherche, via les processus esclaves, autour de la meilleure solution courante. Les résultats expérimentaux montrent que la version parallèle de DGVNS est beaucoup plus efficace que la version séquentielle, à la fois en taux de succès et en temps d'exécution. Nous sommes entrain de prospecter une meilleure coopération entre les processus esclaves sur des processeurs graphiques GPU.

 a) Graphe original G. Cliques maximales du graphe triangulé (graphe de clusters). Décomposition arborescente de G de largeur 2.

Figure 1 .

 1 Figure 1. Étapes de calcul d'une décomposition arborescente d'un graphe G.

Définition 3 .

 3 Soit G T =(C T ,E T) le graphe de clusters associé à G. Soient C i ∈ C T un cluster de G T et k ∈ [1 . . . n] la dimension du voisinage. La structure de voisinage N k,i désigne l'ensemble des combinaisons de k variables parmi C i .

 voir traitement réalisé par les lignes 21-23, Algorithme 2), alors on complète Cand en considérant les clusters C j adjacents à C i . Ce traitement est réalisé par la fonction CompleteCluster(C i , k) (ligne 5).

 intersection entre deux clusters est appelée séparateur, et est notée sep(C i , C j). Deux clusters sont adjacents s'ils partagent au moins une variable. Le voisinage d'un cluster C i dans T est voisinage(C i)={C j | j ∈ I, sep(C i , C j) = ∅}.

	Définition 2. Un graphe de clusters, pour une décomposition arborescente (C T ,
	T), est un graphe non-orienté G T = (C T , E T) dont les sommets sont les éléments
	de C T et il existe une arête

 . Soit S ′ r la meilleure solution communiquée par le processus esclave r au maître. Si S ′ r est de meilleure qualité que S (ligne 15), S ′ r devient la meilleure solution globale (ligne 16), le cluster suivant C i est considéré et k max est réinitialisé à |C i | (ligne 17). Sinon, on cherche à améliorer la solution dans le cluster suivant C i (ligne 19) et on élargie l'ensemble des variables candidates à désinstancier en ajoutant les clusters C j adjacents à C i . Ce traitement est réalisé en augmentant le nombre de clusters adjacents adj à considérer (ligne 20) et la valeur de k max en conséquence (lignes 21-23). Ceci est fait chaque fois que le processus esclave ne réussit pas à améliorer la meilleure solution globale.

	Algorithme 3 Processus esclave r
	Require: Tree decomposition (CT , T)
	1: Receive(r, i, kinit, kmax, δmax, S)
	2: Sr ← S
	3: k ← kinit
	4: while (k < kmax)∧(not local TimeOut) do
	5:	Cand ← CompleteCluster(Ci, k)
	6:	Xun ← Hneighborhood(Cand, k, Sr)
	7:	A ← Sr\{(xi, a) | xi ∈ Xun}
	8:	S ′ r ← LDS+CP(A, Xun, δmax, f (Sr), Sr)
	9:	neighbourhoodChange(Sr, S ′ r , k)
	10: end while
	11: Send(0, Sr)
	12: procedure neighbourhoodChange(S, S ′ , k)
	13:	if f (S ′) < f (S) then
	14:	S ← S ′
	15:	k ← kinit
	16:	else
	17:	k ← k + 1
	18:	end if
	19: end procedure

Table 1 .

 1 Comparaison de CPDGVNS, DGVNS et VNS/LDS+CP sur les instances RLFAP.

	5. http://www.costfunction.org/benchmark

 6. Pour DGVNS et VNS/LDS+CP, l'étape de reconstruction est effectuée en utilisant LDS+CP, et VNS/LDS+CP utilise les structures de voisinage N k de dimension k.

	Instance	Method	Succ.	Time	Avg.
	#3792, n = 528, d = 59,	CPDGVNS(nsl = 70) 50/50 19.57	6,359,805
	e = 12, 084, S * = 6, 359, 805 DGVNS	50/50 90.59	6,359,805
		VNS/LDS+CP	16/50 570.20	6,359,842.90
	#4449, n = 464, d = 64,	CPDGVNS(nsl = 56) 50/50 16.61	5,094,256
	e = 12, 540, S * = 5, 094, 256 DGVNS	50/50 36.81	5,094,256
		VNS/LDS+CP	38/50 155.35	5,094,258.18
	#8956, n = 486, d = 106,	CPDGVNS(nsl = 54) 50/50 19.24	6,660,308
	e = 20, 832, S * = 6, 660, 308 DGVNS	48/50 85.99	6,666,309.76
		VNS/LDS+CP	8/50	221.28	6,660,356.80
	#6858, n = 992, d = 260,	CPDGVNS(nsl = 105) 40/50 398.93	20,833,413.20
	e = 103, 056, S * = 20, 162, 249 DGVNS	33/50 2,788.92	20,565,101.90
		VNS/LDS+CP	34/50 2,840.54	20,296,702.96
	#9150, n = 1, 352, d = 121,	CPDGVNS(nsl = 120) 50/50 260.07	43,301,891
	e = 44, 217, S * = 43, 301, 891 DGVNS	27/50 2,660	43,497,252.54
		VNS/LDS+CP	0/50	-	46,343,898.24 (44,696,532)
	#14007, n = 1, 554, d = 195, CPDGVNS(nsl = 31) 50/50 665.54	50,290,563
	e = 54, 753, S * = 50, 290, 563 DGVNS	19/50 2,523.38	50,913,924.36
		VNS/LDS+CP	0/50	-	59,193,679.32 (57,218,493)
	#10442, n = 908, d = 76,	CPDGVNS(nsl = 25) 50/50 168.59	21,591,913
	e = 28, 554, S * = 21, 591, 913 DGVNS	50/50 228.50	21,591,913
		VNS/LDS+CP	19/50 2,551.72	21,645,921.24
	#14226, n = 1, 058, d = 95,	CPDGVNS(nsl = 94) 50/50 159.18	25,665,437
	e = 36, 801, S * = 25, 665, 437 DGVNS	50/50 295.78	25,665,437
		VNS/LDS+CP	8/50 2,958.70	25,665,620.22
	#17034, n = 1, 142, d = 123, CPDGVNS(nsl = 120) 50/50 166.65	38,318,224
	e = 47, 967, S * = 38, 318, 224 DGVNS	50/50 565.06	38,318,224.00
		VNS/LDS+CP	0/50	-	38,380,035.48 (38,318,309)
	7. http ://www.univ-oran.dz/uci/index.html		
	8. http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP	
	9. http ://www.mcs.anl.gov/research/projects/mpi/	

Table 2 .

 2 Comparaison de CPDGVNS, DGVNS et VNS/LDS+CP sur les instances tagSNP.5.2 La contribution de la ParallélisationPour quantifier la contribution de la parallélisation de DGVNS, nous commençons par comparer CPDGVNS, DGVNS et VNS/LDS+CP sur plusieurs instances de RLFAP et tagSNP décrites dans la section 4. Par la suite, nous synthétisons les résultats obtenus.InstancesRLFAP. En premier, CPDGVNS est clairement meilleur que DGVNS et VNS/LDS+CP sur les instances RLFAP (voir Table 1). CPDGVNS atteint l'optimum avec un taux de succès de 100% sur toutes les instances RLFAP. DGVNS a un taux de succès de 90%, 100% et 30% sur Scen06, Scen07 et Scen08 respectivement. VNS/LDS+CP est moins performante : il obtient un taux de succès de 60% et 44% sur Scen06, Scen07 respectivement, et n'atteint pas l'optimum au niveau de l'instance Scen08. Deuxièmement, le temps moyen d'exécution de CPDGVNS est nettement meilleur que le temps obtenu par DGVNS et VNS/LDS+CP, tout particulièrement sur l'instance Scen08, où CPDGVNS est 2.22 plus rapide que DGVNS. Instances tagSNP. La table 2 compare CPDGVNS, DGVNS et VNS/LDS+CP sur les instances tagSNP. La table est décomposée en deux parties. La première partie contient des instances de taille moyenne, et la seconde partie contient des instances de grande taille. Au niveau des instances de taille moyenne, CPDGVNS est nettement plus performant que DGVNS et VNS/LDS+CP. L'optimum est atteint au niveau de toutes les 50 exécutions. CPDGVNS améliore le taux de succès d'environ 4% sur l'instance #8956, et obtient le même taux de succès sur le reste des instances par rapport à DGVNS. En plus, CPDGVNS est approximativement 3.77 fois plus rapide que DGVNS. VNS/LDS+CP montre un faible taux de succès sur toutes les instances par rapport à CPDGVNS et DGVNS, et prend nettement plus de temps pour atteindre l'optimum. Sur les grandes instances, CPDGVNS domine VNS/LDS+CP et DGVNS en termes de taux de succès et de temps d'exécution, particulièrement sur les trois instances #6858, #9150 et #14007. CPDGVNS améliore le taux de succès d'environ 14% sur l'instance #6858, 50% sur l'instance #9150, et 38% sur l'instance #14007 comparativement à DGVNS. Nous observons que VNS/LDS+CP a un meilleur taux de succès que DGVNS sur l'instance #6858. Ceci peut être expliqué par la décomposition arborescente utilisée par DGVNS. En ce qui concerne CPDGVNS et DGVNS, les résultats de la recherche dépendent essentiellement de la qualité de la décomposition arborescente. Si une décomposition arborescente de moins bonne qualité est utilisée, alors DGVNS aura le même comportement que VNS/LDS+CP (pour plus de détails, voir [8]), menant souvent au même résultat. Toutefois, CPDGVNS améliore le taux de succès de VNS/LDS+CP d'environ 12% sur l'instance #6858. Nous notons aussi que CPDGVNS est approximativement 4.60 fois plus rapide que DGVNS. Synthèse. Les expérimentations montrent clairement l'efficacité deCPDGVNS par rapport à DGVNS et VNS/LDS+CP sur les problèmes structurés comme RLFAP et tagSNP. Sur les instances RLFAP et tagSNP, CPDGVNS est plus performant que les deux stratégies DGVNS et VNS/LDS+CP au niveau du taux de succès et du temps d'exécution.

si i < p alors succ(i) = i + 1 sinon succ(p) = 1.

Conceptuellement, le nombre de processus esclaves est égal au nombre de clusters. En pratique, si le nombre de coeurs est inférieur au nombre de clusters, un même coeur sera utilisé pour traiter différents clusters.

Remerciements. Nous remercions l'Unité de Calcul Intensif de l'Université d'Oran et du CERIST pour avoir mis à notre disposition des ressources de calcul pour mener à bien nos expérimentations.

⋆⋆. Ce travail a été soutenu