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Many microbial ecosystems can be seen as microbial 'food chains' where the different reaction steps can be seen as such: the waste products of the organisms at a given reaction step are consumed by organisms at the next reaction step.

In the present paper we study a model of a two-step biological reaction with feedback inhibition, which was recently presented as a reduced and simplified version of the anaerobic digestion model ADM1 of the International Water Association (IWA). It is known that in the absence of maintenance (or decay) the microbial 'food chain' is stable. In a previous study, using a purely numerical approach and ADM1 consensus parameter values, it was shown that the model remains stable when decay terms are added. However, the authors could not prove in full generality that it remains true for other parameter values. In this paper we prove that introducing decay in the model preserves stability whatever its parameters values are and for a wide range of kinetics.

Introduction

Two-step models are commonly used to describe microbial systems, which take the form of a cascade of two biological reactions where one substrate S 0 is consumed by one microorganism X 0 to produce a product S 1 that serves as the main limiting substrate for a second microorganism X 1 as schematically represented by the following reaction scheme:

S 0 f0 -→ X 0 + S 1 , S 1 f1 -→ X 1
where f 0 and f 1 are the growth functions that may depend on several substrates.

The substrate and biomass concentrations in this two-step model evolve according to the four-dimensional dynamical system of ODEs

                     dS 0 dt = D S in 0 -S 0 -f 0 (•) X 0 dX 0 dt = -αDX 0 + Y 0 f 0 (•) X 0 -a 0 X 0 dS 1 dt = D S in 1 -S 1 + Y 2 f 0 (•) X 0 -f 1 (•) X 1 dX 1 dt = -αDX 1 + Y 1 f 1 (•) X 1 -a 1 X 1 (1) 
where Y 0 are the Yield coefficients. Substrate S 0 and S 1 are introduced with an input concentration S in 0 and S in 1 respectively, and at dilution rate D. Depending on the technology used to confine the reactions, the coefficient α ≤ 1 is not necessarily equal to 1 and 1 -α represents the proportion of biomass which is retained in the reactor. This model includes the maintenance (or decay) terms a 0 and a 1 . Maintenance, in its most general assertion, is the consumption of energy for all processes other than growth: it is modelled either by adding a negative term on the substrate dynamic without associating it to growth or by considering a decay term on the biomass dynamics, as in [START_REF] Alcaraz-Gonzalez | Software sensors for highly uncertain WWTPs : a new approach based on interval observers[END_REF]. For more information about the modelling of maintenance, the reader is referred to [START_REF] Ni | Model-based characterization of endogenous maintenance, cell death and predation processes of activated sludge in sequencing batch reactors[END_REF]. These models present the advantage of being complex enough to capture important process properties while being simple enough to be mathematically studied.

When the growth function f 0 depends only on the substrate S 0 and the growth function f 1 depends only on the substrate S 1 , that is

f 0 (•) = f 0 (S 0 ), f 1 (•) = f 1 (S 1 ), ( 2 
)
the system is known as commensalistic: one species grows on the product of another one [START_REF] Reilly | Stability of commensalistic systems[END_REF][START_REF] Stephanopoulos | The dynamics of commensalism[END_REF]. The system has a cascade structure: solve the first and second equations for S 0 , X 0 , and then use this result is the remaining equations to find S 1 , X 1 . Consequently S 0 and X 0 are the same in pure and mixed culture experiments. The number of steady-states and their stability as a function of model inputs and parameters may be investigated [START_REF] Benyahia | Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes[END_REF][START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF][START_REF] Sbarciog | Determination of appropriate operating strategies for anaerobic digestion systems[END_REF].

When f 0 depends on both substrates S 0 and S 1 and f 1 depends only on S 1 , that is

f 0 (•) = f 0 (S 0 , S 1 ), f 1 (•) = f 1 (S 1 ) (3) 
the system is known as syntrophic. For instance if the first organism is inhibited by high concentrations of the product S 1 , the extent to which the substrate S 0 is degraded by the organism X 0 depends on the efficiency of the removal of the product S 1 by the bacteria X 1 . The mathematical analysis of such model is more delicate than commensalistic models, see for instance [START_REF] Burchard | Substrate degradation by a mutualistic association of two species in the chemostat[END_REF][START_REF] Kreikenbohm | A mathematical model of syntrophic cocultures in the chemostat[END_REF][START_REF] Kreikenbohm | Bistability in the Chemostat[END_REF][START_REF] Wilkinson | Interactions in a Mixed Bacterial Population Growing on Methane in Continuous Culture[END_REF] and the more recent papers [START_REF] Hajji | A mathematical study of a syntrophic relationship of a model of anaerobic digestion process[END_REF][START_REF] Harvey | Quantifying the effects of the division of labor in metabolic pathways[END_REF][START_REF] Sari | The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat[END_REF][START_REF] Volcke | Steady-state multiplicity of two-step biological conversion systems with general kinetics[END_REF][START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF].

A model of a two-tiered microbial 'food chain' with feedback inhibition, which encapsulates the essence of the anaerobic digestion process was recently proposed [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF]. Anaerobic digestion is a biological process that converts organic matter into a gaseous mixture composed mainly of methane and carbon dioxide through the action of a complex bacterial and archaeal ecosystem. It is often used for the treatment of concentrated wastewaters or to convert the excess sludge produced in wastewater treatment plants into more stable products [START_REF] Ramirez | Modelling microbial diversity in anaerobic digestion through an extended adm1 model[END_REF][START_REF] Van Lier | Anaerobic wastewater treatment[END_REF]. One of its advantages is that the methane produced can be used profitably as a source of energy. It is usually considered that a number of metabolic groups of microorganisms are involved sequentially in several serial and parallel conversion steps to finally produce methane and carbon dioxide. The Anaerobic Digestion Model No. 1 (ADM1) of the IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes [START_REF] Batstone | The Iwa Anaerobic Digestion Model No 1 (ADM1)[END_REF][START_REF]IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes[END_REF] is too complex to permit mathematical analysis of its nonlinear dynamics and only numerical investigations are available [START_REF] Bornhöft | Steadystate analysis of the Anaerobic Digestion Model No. 1 (ADM1)[END_REF].

The model of Xu et al. [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF] includes maintenance terms and considers the syntrophic associations between propionate degraders and methanogens. It was shown that the non-trivial steady-state is not necessarily stable. In addition simulation results with the ADM1 consensus values indicate that the positive steady-state is always stable whenever it exists. For the operators of anaerobic wastewater treatment systems the results of Xu et al. [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF] show that the syntrophic associations between propionate degraders and methanogens are inherently stable under realistic environmental conditions. However, the possibility of an unstable positive steady-state was not excluded for other parameter values and the title of [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF], Maintenance affects the stability of a two-tiered microbial 'food chain' ? left unanswered the question of the effects of maintenance from a more general viewpoint. In the present paper, we show that for any values of the parameters the positive steady-state is stable as long as it exists, that is to say, maintenance does not affect the stability of the considered two-tiered microbial 'food chain', see [START_REF] Sari | Maintenance does not affect the stability of a two-tiered microbial 'food chain[END_REF].

The paper is organized as follows. In Section 2, we review the different twostep models that have been proposed in the literature and we recall what useful informations were obtained for applications from their qualitative mathematical analysis. In Section 3 we present the hypothesis on [START_REF] Alcaraz-Gonzalez | Software sensors for highly uncertain WWTPs : a new approach based on interval observers[END_REF][START_REF] Batstone | The Iwa Anaerobic Digestion Model No 1 (ADM1)[END_REF]. In Section 4 we give the description of the steady-state and their stability. In Section 5 we describe the operating diagram. In Section 6 we apply our results to the model of Xu et al. [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF] and we give an answer to open questions on the stability of the positive steady-state of their model. Concluding remarks are given in Section 7. The technical proofs of the results are given in the Appendix.

Commensalism, mutualism and syntrophy

The different analyses of the class of models (1) available in the literature essentially differ on the way the growth rate functions are characterized and whether a specific input for S 1 or a coefficient α in the dilution rate of the biomass is considered or not. In most cases, the models used are not generic in the sense either model parameters are fixed or the growth functions are predefined (Monod, Haldane, etc).

Following Stephanopoulos [START_REF] Stephanopoulos | The dynamics of commensalism[END_REF] we say that 'Two populations of microorganisms which grow in a mixed culture and interact in such a way that one population (the commensal population) depends for its growth on the other population and thus benefits from the interaction while the other population (the host) is not affected by the growth of the commensal population constitutes an example of commensalism'. Reilly [START_REF] Reilly | Stability of commensalistic systems[END_REF] was the first to propose a mathematical study of a pure commensalistic model (1,2) holds and a 0 = a 1 = 0, α = 1. He was interested in explaining surprising oscillations observed within the course of an experiment realized in making Saccharomyces carlsbergensis growing on fructose produced by Acetobacter suboxyduns from mannitol. In particular, he established theoretical conditions involving a feedback from the yeast to the bacteria. In this study, explicit growth functions modelling the proposed feedback were used.

An important contribution on the modelling of anaerobic digestion as a commensalistic system is the model by Bernard et al. [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF]. The authors considered a Monod function for f 0 and a Haldane function for f 1 . Sbarciog et al. [START_REF] Sbarciog | Determination of appropriate operating strategies for anaerobic digestion systems[END_REF] studied this model for α = 1 while the interesting case where 0 < α < 1 and where growth functions were characterized by qualitative properties was studied by Benyahia et al. [START_REF] Benyahia | Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes[END_REF]. Prior to these investigations, and regarding the potential of anaerobic systems to produce renewable energy, the study of these models were particularly important for optimizing anaerobic digestion, notably through the synthesis of state observers and control feedback laws (cf. for instance [START_REF] Alcaraz-Gonzalez | Software sensors for highly uncertain WWTPs : a new approach based on interval observers[END_REF][START_REF] Alcaraz-Gonzalez | Application of a Robust Interval Observer to an Anaerobic Digestion Process[END_REF]).

Another fundamental ecological interactions which can be modelled by two-step reaction models with two microorganisms are mutualism and syntrophy.

Mutualism is defined as a situation where two organisms cooperate typically in producing mutually the substrate necessary to the growth of the other [START_REF] Hajji | Association between competition and obligate mutualism in a chemostat[END_REF].

A syntrophic relationship between two organisms refers to growth functions of the form (3) where the species exhibit mutualism but where, in contrast to what happens in a purely symbiotic relationship, one of the species can grow without the other. Important results of these studies were conditions under which a stable coexistence may occur. Wilkinson et al. [START_REF] Wilkinson | Interactions in a Mixed Bacterial Population Growing on Methane in Continuous Culture[END_REF] considered the case of growth functions of the form

f 0 (S 0 , S 1 ) = m 0 S 0 K 0 + S 0 1 1 + S 1 /L 1 , f 1 (S 1 ) = m 1 S 1 K 1 + S 1 (4) 
Kreikenbohm et al. [START_REF] Kreikenbohm | A mathematical model of syntrophic cocultures in the chemostat[END_REF] considered the case where f 1 is a Monod function and the growth function f 0 takes the form

f 0 (S 0 , S 1 ) =    m0(S0-S1/L) K0+S0+K1S1 if S 0 -S1/L > 0 0 otherwise (5) 
In this case the first organism is unable to grow unless the quotient S 1 /S 0 is small enough, say, S 1 < LS 0 . Burchard [START_REF] Burchard | Substrate degradation by a mutualistic association of two species in the chemostat[END_REF] extended the results of [START_REF] Kreikenbohm | A mathematical model of syntrophic cocultures in the chemostat[END_REF][START_REF] Wilkinson | Interactions in a Mixed Bacterial Population Growing on Methane in Continuous Culture[END_REF] to a large class of more generic growth functions, including the special cases (4) and

(5). He highlighted conditions under which there is persistence or extinction.

El Hajji et al. [START_REF] Hajji | A mathematical study of a syntrophic relationship of a model of anaerobic digestion process[END_REF], motivated by the analysis of the main studied steps of the anaerobic digestion where H 2 -producing acetogens are associated to H 2 -utilizing bacteria, considered the general case where the growth functions (3), satisfy the following properties:

∂f 0 ∂S 0 > 0, ∂f 0 ∂S 1 < 0, df 1 dS 1 > 0 (6) 
Another extension was considered by Kreikenbohm et al. [START_REF] Kreikenbohm | Bistability in the Chemostat[END_REF], which considered the case where S 0 appears also in f 1 (•):

f 1 (S 0 , S 1 ) = m 1 S 1 K 1 + S 1 1 1 + S 0 /L 0
The mathematical analysis of this model showed the occurrence of bistability that cannot be observed when f 1 (•) depends only on S 0 . Sari et al. [START_REF] Sari | The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat[END_REF] considered the general situation of a growth function f 1 (•) = f 1 (S 0 , S 1 ), which is increasing in S 1 and decreasing in S 0 and showed, in contrast with the case where f 1 (•) = f 1 (S 1 ) depends only on S 1 , that a multiplicity of positive equilibria can occur. This work was motivated by the study of the influence of the presence of an input term into the dynamics of S 1 again and by the consideration of more general forms for growth rate functions to investigate the association of H 2 -producing acetogens and H 2 -utilizing bacteria. Other models for which

f 0 (•) = f 0 (S 0 , S 1 ) and f 1 (•) = f 1 (S 0 , S 1 )
, exhibiting the multiplicity of positive equilibria can be found in [START_REF] Volcke | Steady-state multiplicity of two-step biological conversion systems with general kinetics[END_REF].

All these studies do not include maintenance terms. This short review of the existing literature shows that under conditions like (6) and without maintenance terms (a 0 = a 1 = 0), the positive steady-state is unique and stable, if its exists [START_REF] Burchard | Substrate degradation by a mutualistic association of two species in the chemostat[END_REF][START_REF] Hajji | A mathematical study of a syntrophic relationship of a model of anaerobic digestion process[END_REF][START_REF] Kreikenbohm | A mathematical model of syntrophic cocultures in the chemostat[END_REF][START_REF] Wilkinson | Interactions in a Mixed Bacterial Population Growing on Methane in Continuous Culture[END_REF]. On the other hand as soon as f 1 (•) = f 1 (S 0 , S 1 ) may depend on S 0 then instability of the positive steady-state can occur [START_REF] Kreikenbohm | Bistability in the Chemostat[END_REF][START_REF] Sari | The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat[END_REF][START_REF] Volcke | Steady-state multiplicity of two-step biological conversion systems with general kinetics[END_REF].

To the best of our knowledge, Xu et al. [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF] were the first to consider the effects of maintenance terms in [START_REF] Alcaraz-Gonzalez | Software sensors for highly uncertain WWTPs : a new approach based on interval observers[END_REF][START_REF] Batstone | The Iwa Anaerobic Digestion Model No 1 (ADM1)[END_REF], in the particular case of the growth functions (4), and S in 1 = 0, α = 1. As mentioned in the introduction these authors were not able to show that the positive steady-state is stable if it exists. In the present paper we will consider the general case [START_REF] Alcaraz-Gonzalez | Software sensors for highly uncertain WWTPs : a new approach based on interval observers[END_REF][START_REF] Batstone | The Iwa Anaerobic Digestion Model No 1 (ADM1)[END_REF] where growth functions satisfy [START_REF] Boer | Food chain dynamics in the chemostat[END_REF] and with maintenance terms (a 0 > 0, a 1 > 0) and S in 1 = 0, α = 1. We will prove that the positive steady-state is stable whenever it exists. Therefore, in this paper we generalize [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF] by allowing a larger class of growth functions, we generalize [START_REF] Wilkinson | Interactions in a Mixed Bacterial Population Growing on Methane in Continuous Culture[END_REF] by allowing a larger class of growth functions and maintenance terms, and we generalize [START_REF] Hajji | A mathematical study of a syntrophic relationship of a model of anaerobic digestion process[END_REF] by allowing maintenance terms. For the applications our results show that that the syntrophic associations between propionate degraders and methanogens are inherently stable for a wide range of kinetics and whatever the parameters values are, not only for the kinetics [START_REF] Benyahia | Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes[END_REF] and with the ADM1 consensus values of parameters as shown in [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF].

An important and interesting extension should be mentioned here: Weedermann et al. [START_REF] Weedermann | Mathematical Model of Anaerobic Digestion in a Chemostat: Effects of Syntrophy and Inhibition[END_REF] proposed an 8-dimensional mathematical model, which includes syntrophy and inhibition, both mechanisms considered by Bernard et al. [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF] and by El Hajji et al. [START_REF] Hajji | A mathematical study of a syntrophic relationship of a model of anaerobic digestion process[END_REF]. The effects of maintenance terms are considered by Weedermann et al. [START_REF] Weedermann | Optimal biogas production in a model for anaerobic digestion[END_REF].

The model

In this paper, we study the model (1,3) with α = 1 and S in 1 = 0. We obtain the following system

                     dS 0 dt = D S in 0 -S 0 -f 0 (S 0 , S 1 ) X 0 dX 0 dt = -DX 0 + Y 0 f 0 (S 0 , S 1 ) X 0 -a 0 X 0 dS 1 dt = -DS 1 + Y 2 f 0 (S 0 , S 1 ) X 0 -f 1 (S 1 ) X 1 dX 1 dt = -DX 1 + Y 1 f 1 (S 1 ) X 1 -a 1 X 1 (7) 
Notice that we do not assume any specific analytical expression for the growth and inhibition functions. Our analysis will use only the following general assumptions for the growth functions f 0 (S 0 , S 1 ) and f 1 (S 1 ) :

A1 For all S 0 > 0 and S 1 ≥ 0, f 0 (S 0 , S 1 ) > 0 and f 0 (0, S 1 ) = 0.

A2 For all S 1 > 0, f 1 (S 1 ) > 0 and f 1 (0) = 0.

A3 For all S 0 > 0 and S 1 > 0, ∂f 0 ∂S 0 (S 0 , S 1 ) > 0 and ∂f 0 ∂S 1 (S 0 , S 1 ) < 0.

A4 For all S 1 > 0, df 1 dS 1 (S 1 ) > 0.

Hypothesis A1 signifies that no growth can take place for species X 0 without the substrate S 0 . Hypothesis A1 means that the intermediate product S 1 is necessary for the growth of species X 1 . Hypothesis A3 means that the growth rate of species X 0 increases with the substrate S 0 but it is self-inhibited by the intermediate product S 1 . Hypothesis A4 means that the growth of species X 1 increases with intermediate product S 1 produced by species X 0 . Note that this defines a syntrophic relationship between the two species.

To ease the mathematical analysis of the system, we can rescale system [START_REF] Bornhöft | Steadystate analysis of the Anaerobic Digestion Model No. 1 (ADM1)[END_REF] using the following change of variables adapted from [START_REF] Sari | The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat[END_REF]:

s 0 = Y 2 S 0 , x 0 = Y 2 Y 0 X 0 , s 1 = S 1 , x 1 = 1 Y 1 X 1 ,
We obtain the following system

                     ds 0 dt = D(s in 0 -s 0 ) -µ 0 (s 0 , s 1 )x 0 dx 0 dt = -Dx 0 + µ 0 (s 0 , s 1 )x 0 -a 0 x 0 ds 1 dt = -Ds 1 + µ 0 (s 0 , s 1 )x 0 -µ 1 (s 1 )x 1 dx 1 dt = -Dx 1 + µ 1 (s 1 )x 1 -a 1 x 1 (8) 
where s in 0 = Y 2 S in 0 and µ 0 and µ 1 are defined by

µ 0 (s 0 , s 1 ) = Y 0 f 0 1 Y 2 s 0 , s 1 and µ 1 (s 2 ) = Y 1 f 1 (s 1 ) (9) 
The functions µ 0 and µ 1 are general functions with their own properties. Since the functions f 0 and f 1 satisfy hypotheses A1-A4, it follows from (9) that functions µ 0 and µ 1 satisfy: H1 For all s 0 > 0 and s 1 ≥ 0, µ 0 (s 0 , s 1 ) > 0 and µ 0 (0, s 1 ) = 0.

H2 For all s 1 > 0, µ 1 (S 1 ) > 0 and µ 1 (0) = 0.

H3 For all s 0 > 0 and s 1 > 0, ∂µ 0 ∂s 0 (s 0 , s 1 ) > 0 and ∂µ 0 ∂s 1 (s 0 , s 1 ) < 0.

H4 For all s 1 > 0, dµ 1 ds 1 (s 1 ) > 0.

It should be noticed that (8) was studied in [START_REF] Hajji | A mathematical study of a syntrophic relationship of a model of anaerobic digestion process[END_REF][START_REF] Sari | The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat[END_REF] in the case where maintenance effects are not taken into account, i.e. a 0 = a 1 = 0. We can easily prove that that for every non-negative initial condition, the solution of (8) has non-negative components and is positively bounded and thus is defined for every positive t.

Steady-state and stability analysis

A steady-state of ( 8) is a solution of the following nonlinear algebraic system obtained from (8) by setting the right-hand sides equal to zero:

D(s in 0 -s 0 ) -µ 0 (s 0 , s 1 )x 0 = 0 ( 10 
)
-Dx 0 + µ 0 (s 0 , s 1 )x 0 -a 0 x 0 = 0 (11) -Ds 1 + µ 0 (s 0 , s 1 )x 0 -µ 1 (s 1 )x 1 = 0 (12) -Dx 1 + µ 1 (s 1 )x 1 -a 1 x 1 = 0 (13) 
A steady-state exists (or is said to be 'meaningful' [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF]) if and only if all its components are non-negative. From equation [START_REF] Harvey | Quantifying the effects of the division of labor in metabolic pathways[END_REF] we deduce that:

x 0 = 0 or µ 0 (s 0 , s 1 ) = D + a 0 ( 14 
)
and from equation ( 13) we deduce that:

x 1 = 0 or µ 1 (s 1 ) = D + a 1 (15) 
The case x 0 = 0 and x 1 > 0 is excluded. Indeed, as a consequence of (15), we have µ 1 (s 1 ) = D +a 1 and, as a consequence of ( 12), we have Ds 1 +(D +a 1 )x 1 = 0, which is impossible since s 1 ≥ 0 and x 1 > 0. Therefore, three cases must be distinguished: SS0: x 0 = 0, x 1 = 0 where both species are washed out.

SS1: x 0 > 0, x 1 = 0, where species x 1 is washed out while x 0 survives. SS2: x 0 > 0, x 1 > 0, where both species survive.

For the description of the steady-states and their stability, we need the following notations. Since the function s 1 → µ 1 (s 1 ) is increasing, it has an inverse function y → M 1 (y), so that, for all s 1 ≥ 0 and y ∈ [0, sup µ 1 (•))

s 1 = M 1 (y) ⇐⇒ y = µ 1 (s 1 ) (16) 
Let s 1 be fixed. Since the function s 0 → µ 0 (s 0 , s 1 ) is increasing, it has an inverse function y → M 0 (y, s 1 ), so that, for all s 0 , s 1 ≥ 0, and y ∈ [0, sup µ 0 (•, s 1 ))

s 0 = M 0 (y, s 1 ) ⇐⇒ y = µ 0 (s 0 , s 1 ) (17) 
The inverse functions s 1 = M 1 (y) and s 0 = M 0 (y, s 1 ) can be calculated explicitly in the case of the Monod growth functions [START_REF] Stephanopoulos | The dynamics of commensalism[END_REF] considered in Section 6, see formulas (24,(25)). We define the functions:

F 0 (D) = M 0 (D + a 0 , 0) F 1 (D) = M 1 (D + a 1 ) + M 0 (D + a 0 , M 1 (D + a 1 )) (18) 
Steady-state Existence condition Stability condition SS0 Always exists Notice that F 1 (D) > F 0 (D) for all D ≥ 0, as long as they are both defined with the exception F 1 (0) = F 0 (0), which holds if and only if a 0 = a 1 = 0. Now, we can describe the steady-states of (8).

s in 0 < F 0 (D) SS1 s in 0 > F 0 (D) s in 0 < F 1 (D) SS2 s in 0 > F 1 (D) Always Stable
Proposition 1. Assume that assumptions H1-H4 hold. Then (8) has at most three steady-states:

• SS0= s 0 = s in 0 , x 0 = 0, s 1 = 0, x 1 = 0 It always exists. It is stable if and only if s in 0 < F 0 (D).
• SS1= s 0 , x 0 = D D+a0 s in 0 -s 0 , s 1 = s in 0 -s 0 , x 1 = 0 where s 0 is the solution of equation µ 0 (s 0 , s in 0 -s 0 ) = D + a. It exists if and only if s in 0 > F 0 (D). It is stable if and only if s in 0 < F 1 (D).

• SS2= s 0 , x 0 = D D+a0 s in 0 -s 0 , s 1 , x 1 = D D+a1 s in 0 -s 0 -s 1 where s 1 = M 1 (D + a 1 ) and s 0 = M 0 (D + a 0 , M 1 (D + a 1 )). It exists if and only if s in 0 > F 1 (D). It is stable if it exists.
The proof is given in the Appendix.

Notice that SS1 exists as soon as SS0 becomes unstable and SS2 exists as soon as SS1 becomes unstable. One concludes that for any value of the operating parameters, there is always one, and only one, steady-state which is stable. The results are summarized in Table 1. When decay effects are not taken into account, i.e. a 0 = a 1 = 0, the system can be reduced to a planar system and global stability results can be obtained [START_REF] Hajji | A mathematical study of a syntrophic relationship of a model of anaerobic digestion process[END_REF][START_REF] Sari | The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat[END_REF]: for any pair of operating parameters, there is always one, and only one, steady-state which is globally asymptotically stable.

(a 

) (b) s in 0 s in 0 D D J 1 J 0 J 2 Γ 0 Γ 1 u0 u1 J 2 J 1 J 0 Γ 0 Γ 1

Operating diagram

The operating diagram shows how the system behaves when we vary the two control parameters S in 0 and D. Let F 0 (D) and F 1 (D) be the functions defined by [START_REF] Reilly | Stability of commensalistic systems[END_REF]. The curve Γ 0 of equation s in 0 = F 0 (D) is the border which makes SS0 unstable and at the same time SS1 exists (the red curve on Fig. 1). The curve Γ 1 of equation s in 0 = F 1 (D) is the border which makes SS1 unstable and at the same time SS2 exists (the blue curve on Fig. 1).

The curves Γ 0 and Γ 1 separate the operating plane (s in 0 , D) in three regions, as shown in Fig. 1, labelled J 0 , J 1 and J 2 . The results of Prop. 1 are summarized in Table 2 which shows the existence and stability of the steady-states SS0, SS1 and SS2 in the regions J 0 , J 1 and J 2 of the operating diagram.

The values u 0 and u 1 plotted on the figure are obtained as follows:

u 0 = F 0 (0) = M 0 (a 0 , 0), u 1 = F 1 (0) = β + M 0 (a 0 , β) , β = M 1 (a 1 ) (19)
If a 0 ≥ sup s0>0 µ 0 (s 0 , 0), F 0 (0) is not defined and we let u 0 = +∞. In this case the regions J 1 and J 2 are empty. If a 1 < sup s1>0 µ 1 (s 1 ) or a 0 ≥ sup s0>0 µ 0 (s 0β, β), F 1 (0) is not defined and we let u 1 = +∞. In this case the region J 2 is empty. When maintenance effects are not taken into consideration, then u 0 = u 1 = 0 and we have 

F 0 (D) = M 0 (D, 0), F 1 (D) = M 1 (D) + M 0 (D, M 1 (D)) Condition Region SS0 SS1 SS2 s in 0 < F 0 (D) (s in 0 , D) ∈ J 0 S F 0 (D) < s in 0 < F 1 (D) (s in 0 , D) ∈ J 1 U S F 1 (D) < s in 0 (s in 0 , D) ∈ J 2 U U S

A two-tiered microbial 'food chain'

The model considered in [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF] involves a two-tiered microbial 'food chain' with feedback inhibition, consisting of a propionate degrader and a hydrogenotrophic methanogen. The propionate degrader produces hydrogen which inhibits its own growth. Using the notations of ADM1 the model can be written as

                     dS pro dt = D (S pro,in -S pro ) -f 0 (S pro , S H2 ) X pro dX pro dt = -DX pro + Y pro f 0 (S pro , S H2 ) X pro -k dec,pro X pro dS H2 dt = -DS H2 + 0.43 (1 -Y pro ) f 0 (S pro , S H2 ) X pro -f 1 (S H2 ) X H2 dX H2 dt = -DX H2 + Y H2 f 1 (S H2 ) X H2 -k dec,H2 X H2 (20) 
where S pro and X pro are propionate substrate and biomass concentrations; S H2 and X H2 are those for hydrogen; Y pro and Y H2 are the Yield coefficients and 0.43 (1 -Y pro ) represents the part which goes to hydrogen substrate. Both growth functions take Monod form with an hydrogen inhibition for the first one

f 0 (S pro , S H2 ) = k m,pro S pro K s,pro + S pro 1 1 + S H 2 K I,H 2 , f 1 (S H2 ) = k m,H2 S H2 K s,H2 + S H2 (21) 
Here, apart from the two operating (or control) parameters, which are the inflowing propionate concentration S pro,in and the dilution rate D, that can vary, all others have biological meaning and are fixed depending on the organisms and substrate considered [see 30, Table 1]. The aim of Xu et al. The basic results of the analysis of [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF] are: for any pair of values of operating parameters, at most one steady-state is stable. When one of the decay terms is not taken into account, i.e. k dec,pro = 0 or k dec,H2 = 0 in [START_REF] Sari | Maintenance does not affect the stability of a two-tiered microbial 'food chain[END_REF], there is always one and only one steady-state which is stable and SS2 is stable as long as it exists. When both decay effects are present, i.e. k dec,pro > 0 and k dec,H2 > 0 in [START_REF] Sari | Maintenance does not affect the stability of a two-tiered microbial 'food chain[END_REF], the authors were not able to check all the Routh-Hurwitz criteria for SS2. They claimed that SS2 is not necessarily stable in theory when it exists and they established numerically that with the ADM1 parameters values, SS2 is stable as long as it exists. However they did not give any values for the biological parameters for which, under some operating parameters, SS2 becomes unstable. As a consequence of Proposition 1, we can say that, for all values of the parameters, SS2 is stable whenever it exits, which actually gives an answer to the questions asked by [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF] in their paper.

More precisely, using the following simplified notations in ( 20)

S 0 = S pro , S in 0 = S pro,in , S 1 = S H2 , X 0 = X pro , X 1 = X H2 Y 0 = Y pro , Y 1 = Y H2 , Y 2 = 0.43 (1 -Y pro ) , a 0 = k dec,pro , a 1 = k dec,H2
and using the rescaling ( 9) and the biological parameters in ( 21) we obtain the model ( 8) with the following growth function:

µ 0 (s 0 , s 1 ) = m 0 s 0 K 0 + s 0 1 1 + s 1 /K i , µ 1 (s 1 ) = m 1 s 1 K 1 + s 1 ( 22 
)
where

m 0 = Y 0 k m,pro , K 0 = Y 2 K s,pro , K i = K I,H2 m 1 = Y 1 k m,H2 , K 1 = K s,H2 (23) 
Let us describe our results in the particular case [START_REF] Burchard | Substrate degradation by a mutualistic association of two species in the chemostat[END_REF][START_REF] Stephanopoulos | The dynamics of commensalism[END_REF]. Notice that the growth functions [START_REF] Stephanopoulos | The dynamics of commensalism[END_REF] satisfy Assumptions H1-H4, so that Proposition 1 holds. In this case the inverse functions M 1 (y) and y → M 0 (y, s 1 ) of the functions µ 1 (s 1 ) and s 0 → µ 0 (s 0 , s 1 ) can be calculated explicitly: we have

y ∈ [0, m 1 ) → M 1 (y) = K 1 y m 1 -y , ( 24 
)
y ∈ 0, m 1 1 + s 1 /K i → M 0 (y, s 1 ) = K 0 y m0 1+s1/Ki -y (25) 
Therefore, the functions F 1 (D) and F 2 (D) defined by ( 18) are given explicitly by

F 0 (D) = K 0 (D + a 0 ) m 1 -D -a 0 F 1 (D) = K 1 (D + a 1 ) m 1 -D -a 1 + K 0 (D + a 0 ) m 0 1 + K1(D+a1) (m1-D-a1)Ki -D -a 0 (26) 
Notice that F 0 is defined on [0, m 1 -a 0 ) and F 1 is defined on [0, D + ) with D + < m 1 -a 0 . On the other hand, the solution s 0 of equation µ 0 (s 0 , s in 0 -s 0 ) = D+a 0 , which is used in SS1, is simply the positive solution of the quadratic equation:

m 0 s 0 = (D + a 0 )(K 0 + s 0 ) 1 + s in 0 -s 0 K i ( 27 
)
As a corollary of Proposition 1 we have the following result.

Proposition 2. Assume that µ 0 and µ 1 are given by [START_REF] Stephanopoulos | The dynamics of commensalism[END_REF]. Let F 0 (D) and F 1 (D) be defined by [START_REF] Volcke | Steady-state multiplicity of two-step biological conversion systems with general kinetics[END_REF]. Then (8) has at most three steady-states

• SS0= s 0 = s in 0 , x 0 = 0, s 1 = 0, x 1 = 0 It always exists. It is stable if and only if s in 0 < F 0 (D). • SS1= s 0 , x 0 = D D+a0 s in 0 -s 0 , s 1 = s in 0 -s 0 , x 1 =
0 where s 0 is the positive solution of the quadratic equation [START_REF] Weedermann | Mathematical Model of Anaerobic Digestion in a Chemostat: Effects of Syntrophy and Inhibition[END_REF]. It exists if and only if s in 0 > F 0 (D). If it exists then it is stable if and only if

s in 0 < F 1 (D). • SS2= s 0 , x 0 = D D+a0 s in 0 -s 0 , s 1 , x 1 = D D+a1 s in 0 -s 0 -s 1 where s 1 = K 1 (D + a 1 ) m 1 -D -a 1 , s 0 = K 0 (D + a 0 ) m 0 1 + s1 Ki -D -a 0 It exists if and only if s in 0 > F 1 (D). It is stable if it exists.
As a consequence of this result we obtain the results of [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF]. To make the comparison possible the reader is advised on the main difference between our approach and [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF]: we use the rescaling ( 9) and hence work with the growth functions [START_REF] Stephanopoulos | The dynamics of commensalism[END_REF], while Xu et al. For the numerical simulations we will use the nominal values of Table 3 obtained from Table 1 of [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF] by using the formulas [START_REF] Van Lier | Anaerobic wastewater treatment[END_REF] and a 0 = k dec,pro ,

m 0 d -1 0.52 K 0 kg COD/m 3 0.124 m 1 d -1 2.10 K 1 kg COD/m 3 2.5 10 -5 K i kg COD/m 3 3.5 10 -6 a 0 d -1 0.02 a 1 d -1 0.02
a 1 = k dec,H2
. For these values of the parameters, the values u 0 and u 1 are very small, see Fig. 2. Notice that the scaling on the two coordinates in Fig. 2 are different from those of Fig. 2 of [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF], since these authors used another rescaling.

Discussion

Following [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF], we considered a two-tiered 'food chain' with feedback inhibition, which is a generalized model describing the syntrophic interaction of a propionate degrader and a hydrogenotropic methanogen. In the absence of (a)

(b) s in 0 s in 0 D D J 1 J 0 J 2 Γ 0 Γ 1 J 2 J 1 J 0 Γ 0 Γ 1 u0 u1
Figure 2: Operating diagram of the model ( 8)-( 22). (a) The model was parametrised with the ADM1 consensus values listed in Table 3. (b) A magnification showing the values u 0 = 49.6 10 -4 , u 1 = 53.1 10 -4 defined by [START_REF] Sari | The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat[END_REF].

maintenance these authors proved that this two-tiered 'food chain' is always stable. When maintenance is included in the model they were not able to check the Routh-Hurwitz criteria, and since the possibility of having at least one pair of complex eigenvalues with positive real parts is not theoretically excluded, they concluded that Hopf bifurcation can originate from SS2 [see 30, Appendix B].

However, using the consensus parameters of ADM1 and numerical simulations, they have shown that the model of the methanogenic two-tiered propionatehydrogen food chain is always stable [see 30, Section 6.2]. In this work we have generalized the model of the two-tiered 'food chain' of [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF] by considering generic growth functions and we established the stability of the generalized model with maintenance terms.

In [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF], the authors point out that introducing decay or maintenance in the classical predator-prey models results in instability and chaos [START_REF] Kooi | Chaotic behaviour of a predator-prey system in the chemostat[END_REF]. For more details on food-chains in the chemostat the reader may consult [START_REF] Boer | Food chain dynamics in the chemostat[END_REF][START_REF] Van Voorn | Ecological consequences of global bifurcations in some food chain models[END_REF][START_REF] Vayenas | Chaotic dynamics of a food web in a chemostat[END_REF].

Therefore, they observed that, in spite of the fundamental differences between their 'food chain' and the classical predator-prey models, the same intrinsic effect of maintenance on the stability of the food chain is observed [see 30,

Section 7]: When maintenance is included in its description, the two-tiered generalized 'food chain' is not necessarily stable in theory. The results obtained in the present paper indicate that the two-tiered generalized 'food chain' is always stable, so that it is fundamentally different from the classical predatorprey model.

It should be noticed that the rescaling used by [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF] gives a dimensionless model. However, our present rescaling [START_REF] Hajji | Association between competition and obligate mutualism in a chemostat[END_REF] does not yield a dimensionless model.

The new variables s 0 , x 0 , s 1 and x 1 have the same dimensions as the original variables S 0 , X 0 , S 1 and X 1 . The original growth functions [START_REF] Sbarciog | Determination of appropriate operating strategies for anaerobic digestion systems[END_REF] are transformed by our rescaling [START_REF] Hajji | Association between competition and obligate mutualism in a chemostat[END_REF] in the growth functions [START_REF] Stephanopoulos | The dynamics of commensalism[END_REF] with the same scale imbalance in the half-saturation rates, see Table 3. We cannot benefit from the dimensionless rescaling used by Xu et al. [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF], because this rescaling uses some kinetics parameters of the specific growth functions (21) while we work with general unspecified growth functions. The benefit of our rescaling ( 9) is that it permits to fix the constant yields parameters Y 0 , Y 1 and Y 2 in (7) to 1, as shown by the rescaled model [START_REF] Burchard | Substrate degradation by a mutualistic association of two species in the chemostat[END_REF].

We were successful in checking the Routh-Hurwitz criteria because we work with general growth functions (defined by their qualitative properties given in assumptions A1-A4) and our computations are not encumbered by the specific form of the growth functions considered by Xu et al. [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF]. These authors noticed [see 30, Section 7] that direct application of symbolic analysis programs, such as Maple or Mathematica, did not provide adequate solutions for the stability of the system. Actually we used the symbolic analysis program Maple to verify that the coefficients β i in the expression of the term

f 1 f 2 f 3 -f 2 1 f 4 -f 2 3
given in Appendix D are correct. It should be noticed that [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF] have claimed [see 30,

Remark 1] that their method is still effective for other growth functions. Our main contribution was to believe them and to try to solve the problem with general growth functions.

In the model [START_REF] Bornhöft | Steadystate analysis of the Anaerobic Digestion Model No. 1 (ADM1)[END_REF] considered in this work, the first species X 0 uses the substrate S 0 for its growth and produces a substrate S 1 consumed by the second species X 1 for its growth. The substrate S 1 produced by the first species inhibits its own growth, that is, the growth function f 0 (S 0 , S 1 ) is decreasing with respect to S 1 . In practice, and in many complex models as the ADM1, it hap-pens that the second species is also inhibited by the first substrate. Thus, it is interesting to consider the case where the second species is inhibited by the substrate S 0 , namely that f 1 (S 0 , S 1 ) also depends on S 0 and is decreasing with respect to S 0 . It has been shown by Sari et al. [19] that the introduction of this last inhibiting relationship in the model completely changes the model properties while maintenance was not considered. In particular, the modified model exhibits multiplicity of positive steady-states. However, it should be stressed that these results were very general: whether this instability occurs for realistic environmental conditions or not is under investigation.

Another interesting question, which is the object of a future work, is to consider an input term S in 1 in (7), as well as a coefficient α < 1 in the dilution rate of the biomass, as it was the case in the general setting of (1). For instance if S in 1 > 0 then there exists an additional steady-state where X 0 = 0 is washed out and X 1 > 0 does not go to extinction.

Appendix A. Stability analysis

We give the proof of Prop. 1. A steady-state (s 0 , x 0 , s 1 , x 1 ) of ( 8) is a solution of the set of algebraic equations [START_REF] Hajji | A mathematical study of a syntrophic relationship of a model of anaerobic digestion process[END_REF][START_REF] Harvey | Quantifying the effects of the division of labor in metabolic pathways[END_REF][START_REF]IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes[END_REF][START_REF] Kooi | Chaotic behaviour of a predator-prey system in the chemostat[END_REF]. The local stability of each steady-state depends on the sign of the real parts of the eigenvalues of the corresponding Jacobian matrix for the system (8). This is the matrix of the partial derivatives of the right hand side with respect to the state variables evaluated at the given steady-state (s 0 , x 0 , s 1 , x 1 ), that is:

J =         -D -Ex 0 -µ 0 F x 0 0 Ex 0 µ 0 -D -a 0 -F x 0 0 Ex 0 µ 0 -D -F x 0 -Gx 1 -µ 1 0 0 Gx 1 µ 1 -D -a 1         (A.1)
where

E = ∂µ 0 ∂s 0 (s 0 , s 1 ) > 0, F = - ∂µ 0 ∂s 1 (s 0 , s 1 ) > 0, G = dµ 1 ds 1 (s 1 ) > 0
The eigenvalues of J are the roots of its characteristic polynomial det(J -λI).

Notice that we have used the opposite sign for the partial derivative F = SS1 exists if and only if this equation has a solution in the interval (0, s in 0 ). The function s 0 → ψ(s 0 ) = µ 0 (s 0 , s in 0 -s 0 ) is increasing since its derivative dψ ds0 = ∂µ0 ∂s0 -∂µ0 ∂s1 > is positive. Using ψ(0) = 0 and ψ(s in 0 ) = µ(s in 0 , 0) we conclude that equation (C.1) has a solution in the interval (0, s in 0 ) if and only if ψ(s in 0 ) = µ(s in 0 , 0) > D + a 0 , that is to say condition (B.1) holds. The condition of existence of SS1 is then equivalent to the condition of instability of SS0. Evaluated at SS1, the Jacobian matrix (A.1) becomes:

J =         -D -Ex 0 -D -a 0 F x 0 0 Ex 0 0 -F x 0 0 Ex 0 D + a 0 -D -F x 0 -µ 1 0 0 0 µ 1 -D -a 1         Its characteristic polynomial is: det(J-λI) = (λ-µ 1 +D+a 1 )(λ+D) λ 2 + [D + (E + F )x 0 ] λ + (D + a 0 )(E + F )x 0
Its eigenvalues are λ 1 = µ 1 -D -a 1 , λ 2 = -D and λ 3 and λ 4 are the roots of the following quadratic equation:

λ 2 + [D + (E + F )x 0 ] λ + (D + a 0 )(E + F )x 0 = 0 Since λ 3 λ 4 = (D + a 0 )(E + F )x 0 > 0 and λ 3 + λ 4 = -[D + (E + F )x 0 ] < 0,
the real parts of λ 3 and λ 4 are negative. So for being stable it must be λ 1 < 0.

Therefore SS1 is stable if and only if

µ 1 (s in 0 -s 0 ) < D + a 1 , where s 0 is the solution of (C.1) (C.2)
Since the function s 1 → µ 1 (s 1 ) is increasing, we have the following equivalence

µ 1 (s in 0 -s 0 ) < D + a 1 ⇐⇒ s 0 < s in 0 -M 1 (D + a 1 )
Since the function s 0 → ψ(s 0 ) = µ 0 s 0 , s in 0 -s 0 is decreasing, we deduce that ψ (s 0 ) > ψ s in 0 -M 1 (D + a 1 ) . Since s 0 be the solution of (C. Using [START_REF] Ramirez | Modelling microbial diversity in anaerobic digestion through an extended adm1 model[END_REF] we obtain s 0 = M 0 (D + a 0 , M 1 (D + a 1 )). As a result of ( 10) and ( 12)

x 0 = D D + a 0 s in 0 -s 0 , x 1 = D D + a 1 s in 0 -s 0 -s 1
SS2 exists if and only if s in 0 > s 0 + s 1 , that is β 4 = 4(Hx 0 + Gx 1 ) 2 + 2a 0 Hx 0 + 2a 1 Gx 1 β 3 = 2(Hx 0 + Gx 1 ) 3 + 4EG(Hx 0 + Gx 1 )x 0 x 1 +5a 0 H 2 x 2 0 + (a 0 + a 1 )(3E + 5F )Gx 0 x 1 + 5a 1 G 2 x 2 1 β 2 = 4EG(Hx 0 + Gx 1 ) 2 x 0 x 1 +3a 0 H 3 x 3 0 + (a 0 E + 2a 1 E + 6a 0 H + 3a 1 F )GHx 2 0 x 1 +(2a 0 E + a 1 E + 3a 0 F + 6a 1 H)G 2 x 0 x 2 1 + 3a 1 G 3 x 3 1 +a 2 0 F (F + 2E)x 2 0 + (a 0 Ex 0 -a 1 Gx 1 ) 2 + 2a 0 a 1 GF x 0 x 1 β 1 = 2E 2 G 2 (Hx 0 + Gx 1 )x 2 0 x 2 1 + (4a 0 + a 1 )EGH 2 x 3 0 x 1 +(a 0 + a 1 )(3E + 5F )EG 2 x 2 0 x 2 1 + (a 0 + 4a 1 )EG 3 x 0 x 3 1 +a 2 0 (3E 2 + 3EF + F 2 )F x 3 0 + a 0 (2a 0 E + a 0 F + 2a 1 F )GF x 2 0 x 1 +(Ex 0 + Gx 1 )(a 0 Ex 0 -a 1 Gx 1 ) 2 + (2a 0 a 1 + a 2 1 )G 2 F x 0 x 2 1 β 0 = (a 0 + a 1 )E 2 G 2 (Hx 0 + Gx 1 )x 2 0 x 2 1 + a 2 0 (2E + F )EF Gx Therefore, SS2 is stable as long as it exists.
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 1 Figure 1: Operating diagram without (a) and with (b) maintenance effects. The values u 0and u 1 are defined by[START_REF] Sari | The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat[END_REF] 
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 30 was to study the stability of the steady-states of the model[START_REF] Sari | Maintenance does not affect the stability of a two-tiered microbial 'food chain[END_REF][START_REF] Sbarciog | Determination of appropriate operating strategies for anaerobic digestion systems[END_REF] while varying the two operating (or control) parameters D and S pro,in . The system[START_REF] Sari | Maintenance does not affect the stability of a two-tiered microbial 'food chain[END_REF][START_REF] Sbarciog | Determination of appropriate operating strategies for anaerobic digestion systems[END_REF] can have at most three steady-states: a trivial solution where both populations are washed out (SS0), a solution where X H2 is washed out while X pro survives (SS1) and a positive solution where both populations survive (SS2). The local stability of each steady-state was tested by linearisation around the steady-state values of the variables.

  [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial chain' ?[END_REF] use a dimensionless rescaling. Despite this difference, both approaches are equivalent and hence must give the same results. Our quadratic equation (27) used in the description of SS1 is the same as their quadratic equation (A.1), or the quadratic equation without numbering preceding equation (B.1) [see 30, Appendix A and B]. Parameters Units Nominal Value

1 Using ( 16 )

 116 1), ψ (s 0 ) = µ 0 s 0 , s in 0 -s 0 = D + a 0 Therefore, the condition (C.2) of stability of SS1 is equivalent to:D + a 0 < µ 0 s in 0 -M 1 (D + a 1 ), M 1 (D + a 1 ) (C.3) Since the function s 0 → µ 0 (s 0 , M 1 (D + a 1 )) is increasing, and using (17), the condition (C.3) is equivalent tos in 0 -M 1 (D + a 1 ) < M 0 (D + a 0 , M 1 (D + a 1 ))which is, according to (18), equivalent tos in 0 < M 1 (D + a 1 ) + M 0 (D + a 0 , M 1 (D + a 1 )) =: F 1 (D) Appendix D. SS2At SS2, x 0 = 0, x 1 = 0. As a consequence of (14) and (15) s 0 and s 1 are solutions of the set of equations µ 0 (s 0 , s 1 ) = D + a 0 , µ 1 (s 1 ) = D + a we obtain s 1 = M 1 (D + a 1 ) and s 0 is a solution of equation µ 0 (s 0 , M 1 (D + a 1 )) = D + a 0 (D.1)

s in 0 > M 1 ( 4 where f 1 =f 2 = 2 f 3 =f 1 f 2 -f 3 = 2D 3 + α 2 D 2 + α 1 D + α 0 where α 2 = 4 ( 1 Thus f 1 f 2 -f 3 On the other hand we have f 1 f 2 f 3 -f 2 1 f 4 -f 2 3 = β 5 D 5 + β 4 D 4 + β 3 D 3 + β 2 D 2 + β 1 D + β 0 where β 5 = 2 (

 14122323322124123355443322152 D + a 1 ) + M 0 (D + a 0 , M 1 (D + a 1 )) =: F 1 (D) Evaluated at SS2, the Jacobian matrix (A.1) becomes:Ex 0 D + a 0 -D -F x 0 -Gx 1 -D -a 1Its characteristic polynomial is:det(J -λI) = λ 4 + f 1 λ 3 + f 2 λ 2 + f 3 λ + f Gx 1 + (E + F )x 0 + 2D EGx 0 x 1 + (2D + a 0 )(E + F )x 0 + (2D + a 1 )Gx 1 + D (2D + a 0 + a 1 )EGx 0 x 1 + D(D + a 0 )(E + F )x 0 + D(D + a 1 )Gx 1 f 4 = (D + a 0 )(D + a 1 )EGx 0 x 1 Hence f i > 0 for i = 1 • • • 4 (D.2)Since the quantity E+F occurs so often in the computations, we use the notationH = E + F . Straightforward calculations show that: Hx 0 + Gx 1 ) α 1 = 2(Hx 0 + Gx 1 ) 2 + a 0 Hx 0 + a 1 Gx 1 α 0 = EG(Hx 0 + Gx 1 )x 0 x 1 + a 0 H 2 x 2 0 + (a 0 + a 1 )F Gx 0 x 1 + a 1 G 2 x 2 Hx 0 + Gx 1 )

3 0 x 1 +(a 2 0 + a 2 1 )EF G 2 x 2 0 x 2 1 + (a 0 1 Thus f 1 f 2 f 3 -f 2 1 f 4 -f 2 3 > 0 (D. 4 )

 121101404 Ex 0 -a 1 Gx 1 ) 2 EGx 0 xAccording to (D.2), (D.3) and (D.4) the Routh-Hurwitz criteria are satisfied.

Table 1 :

 1 Existence and local stability of steady-states.

Table 2 :

 2 Existence and local stability of steady-states. The letter S (resp. U) means stable (resp. unstable). No letter means that the steady-state does not exist.

Table 3 :

 3 Nominal parameters values.
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Appendix B. SS0

At SS0, x 0 = 0, x 1 = 0. As a result of [START_REF] Hajji | A mathematical study of a syntrophic relationship of a model of anaerobic digestion process[END_REF] and [START_REF]IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes[END_REF], s 0 = s in 0 and s 1 = 0. SS0 always exists. Evaluated at SS0, the Jacobian matrix (A.1) becomes

For being stable we need λ 1 < 0. Therefore SS0 is unstable if and only if

Since the function s 0 → µ 0 (s 0 , 0) is increasing, and using [START_REF] Ramirez | Modelling microbial diversity in anaerobic digestion through an extended adm1 model[END_REF] we have the following equivalence

Therefore, according to ( 18), (B.1) is equivalent to s in 0 > F 0 (D).

Appendix C. SS1

At SS1, x 0 = 0, x 1 = 0. As a consequence of ( 14) µ 0 (s 0 , s 1 ) = D + a 0 . As a result of ( 10) and ( 12) D(s in 0 -s 0 ) = µ 0 (s 0 , s 1 )x 0 and Ds 1 = µ 0 (s 0 , s 1 )x 0 Hence x 0 = D D+a0 s in 0 -s 0 and D(s in 0 -s 0 ) = Ds 1 , so that s 0 + s 1 = s in 0 . Therefore s 0 is a solution of equation µ 0 (s 0 , s in 0 -s 0 ) = D + a 0 (C.1)