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Tewfik Sari † Jérôme Harmand‡

July 19, 2014

Abstract

Microbial food chains are present in anaerobic digestion where the different reaction
steps can be seen as such: the waste products of the organisms on one trophic level
(i.e. one reaction step) are consumed by organisms of the next trophic level (i.e.
the next reaction step). In the present paper we study a model of a two-tiered
microbial ‘food chain’ with feedback inhibition, which was recently presented as a
stripped version of the anaerobic digestion model ADM1 of the International Water
Association (IWA). It is known that in the absence of maintenance (or decay) the
microbial ‘food chain’ is stable while its introduction in a number of models used
in ecology may change their qualitative properties. In [7], using a purely numerical
approach and ADM1 consensus parameter values, it was shown that the model
remains stable when decay terms are added. However, authors could not prove in
full generality it remains true for other parameter values. In this paper we prove that
introducing decay in the model preserves stability whatever its parameters values
are and for a wide range of kinetics.
Keywords: Anaerobic digestion, Syntrophic relationship, Maintenance, Stability

1 Introduction

Anaerobic digestion is a process that converts organic matter into a gaseous mixture
composed mainly of methane and carbon dioxide through the action of a complex
bacterial ecosystem. It is often used for the treatment of concentrated wastewater
or to convert the excess sludge produced in wastewater treatment plants into more
stable products [5]. One of its advantages is that the methane produced can be used
profitably as a source of energy. It is usually considered that a number of metabolic
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groups of bacteria are involved sequentially in several conversion steps to finally
produce methane and carbon dioxide. Typically, the product of one conversion step
is the substrate for the next organism in the chain, each organism consuming the
waste product(s) of its predecessor.

The anaerobic digestion model no. 1 (ADM1) of the IWA Task Group for Math-
ematical Modeling of Anaerobic Digestion Processes [1, 4] is too complex to permit
mathematically analysis of its nonlinear dynamics and only numerical investigations
are available [2]. In order to make the mathematical analysis possible a model with
a two-tiered microbial ‘food chain’ with feedback inhibition, which encapsulates the
essence of methanogenic degradation process was proposed [7]. This model which
is presented by Xu et al. [7] as a stripped down version of ADM1, considers the
syntrophic associations between propionate degraders and methanogens. It includes
option for maintenance (or decay). Maintenance is the consumption of energy for all
processes other than growth: it is modeled either in adding a negative term on the
substrate dynamic without associating it to growth or in considering a decay term
on the biomass dynamics. Considering the latter modeling option and according to
the Routh-Hurwitz criteria, it was shown that the non-trivial steady state is not
necessarily stable. In addition simulation results with the ADM1 consensus values
indicate that the positive equilibrium is always stable whenever it exists. For the
operators of anaerobic wastewater treatment systems the results of [7] show that the
syntrophic associations between propionate degraders and methanogens are inher-
ently stable under realistic environmental conditions. However, the possibility of an
unstable positive equilibrium was not excluded for other parameter values and the
title of [7], Maintenance affects the stability of a two-tiered microbial ‘food chain’?
leaves unanswered the question of the effects of maintenance from a more general
viewpoint. The aim of this paper is to show that for any values of the parameters
the positive steady state is stable as long as it exists, that is to say, maintenance
does not affect the stability of the considered two-tiered microbial ‘food chain’.

2 A two-tiered microbial ‘food chain’ [7]

The model considered in [7] involves a two-tiered microbial ‘food chain’ with feedback
inhibition, consisting of a propionate degrader and a hydrogenotrophic methanogen.
The propionate degradation produces hydrogen which inhibits its own growth. Using
the notations of ADM1 the model can be written as







































dSpro
dt

= D (Spro,in − Spro)− f0 (Spro, SH2)Xpro

dXpro

dt
= −DXpro + Yprof0 (Spro, SH2)Xpro − kdec,proXpro

dSH2

dt
= −DSH2 + 0.43 (1− Ypro) f0 (Spro, SH2)Xpro − f1 (SH2)XH2

dXH2

dt
= −DXH2 + YH2f1 (SH2)XH2 − kdec,H2XH2

(1)

where Spro and Xpro are propionate substrate and biomass concentrations; SH2 and
XH2 are those for hydrogen; Ypro and YH2 are the Yield coefficients and 0.43 (1− Ypro)
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represents the part which goes to hydrogen substrate. Both growth functions take
Monod form with an hydrogen inhibition for the first one

f0 (Spro, SH2) =
km,proSpro
Ks,pro + Spro

1

1 + SH2

KI,H2

, f1 (SH2) =
km,H2SH2

Ks,H2 + SH2

(2)

Here apart from the two operating (or control) parameters, which are the inflowing
propionate concentration Spro,in and the dilution rate D, that can vary, all others
have biological meanings and are fixed depending on the organisms and substrate
considered, see [7], Table 1. After applying the following rescaling of substrate and
biomass concentrations

s0 =
Spro
Ks,pro

, x0 =
Xpro

Ks,proYH2

, s1 =
SH2

Ks,H2

, x1 =
XH2

Ks,H2YH2

(3)

and for time and operating parameters

τ = km,proYprot, α =
D

km,proYpro
, uf =

Spro,in
Ks,pro

(4)

we have the following dimensionless system







































ds0
dτ

= α(uf − s0)− µ0(s0, s1)x0

dx0
dτ

= −αx0 + µ0(s0, s1)x0 − Ax0

ds1
dτ

= −αs1 + ωµ0(s0, s1)x0 − µ1(s1)x1

dx1
dτ

= −αx1 + µ1(s1)x1 − Bx1

(5)

where

µ0 (s0, s1) =
s0

1 + s0

1

1 + s1
KI

, µ1 (s1) =
φs1

1 + s1
(6)

and A, B, ω, φ and KI are constant which are calculated explicitly with respect to
the biological parameters of the original model (1), see [7] for the details.

The aim of [7] was to to study the stability of the steady states of the model
(5) while varying the two operating (or control) parameters uf and α. The system
(5) can have at most three steady state: a trivial solution where both populations
are washed out (SS0: x0 = 0, x1 = 0), a solution where x1 is washed out while
x0 survives (SS1: x0 > 0, x1 = 0) and a positive solution where both populations
survive (SS2: x0 > 0, x1 > 0). The local stability of each steady state was tested by
linearization around the steady state values of the variables.

The basic results of the analysis of [7] are: for any pair of values of operating
parameters, at most one steady state is stable. When one of the decay effect is not
taken into account, i.e. A = 0 or B = 0 in (5), there is always one and only one
steady state which is stable and SS2 is stable as long as it exists. When both decay
effects are taken into account, i.e. A > 0 and B > 0 in (5), the authors were note
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able to check all the Routh-Hurwitz criteria for SS2. They claimed that SS2 can
be unstable when it exists and they established numerically that with the ADM1
parameters values, SS2 is stable as long as it exists. However they did not give any
values for the biological parameters for which, under some operating parameters,
SS2 becomes unstable. Actually, we prove in this paper that, for all values of the
parameters, and for a general class of growth functions, as long as they keep the
signs of their derivatives, the positive SS is stable whenever it exits, which actually
gives an answer for the title of [7].

3 The model

Since we want to study the model (1) with general growth functions, we will first
use the following simplified notations in this model

S0 = Spro, Sin0 = Spro,in, S1 = SH2, X0 = Xpro, X1 = XH2

Y0 = Ypro, Y1 = YH2, Y2 = 0.43 (1− Ypro) , A = kdec,pro, B = kdec,H2

We obtain the following system







































dS0

dt
= D (Sin0 − S0)− f0 (S0, S1)X0

dX0

dt
= −DX0 + Y0f0 (S0, S1)X0 − AX0

dS1

dt
= −DS1 + Y2f0 (S0, S1)X0 − f1 (S1)X1

dX1

dt
= −DX1 + Y1f1 (S1)X1 − BX1

(7)

Notice that we do not assume any specific analytical expression for the growth func-
tions and inhibition (2). Our analysis will use only the following general assumptions
on the growth functions f0 (S0, S1) and f1 (S1) :

A1 For all S0 > 0 and S1 ≥ 0, f0 (S0, S1) > 0 and f0 (0, S1) = 0.

A2 For all S1 > 0, f1 (S1) > 0 and f1(0) = 0.

A3 For all S0 > 0 and S1 > 0,
∂f0
∂S0

(S0, S1) > 0 and
∂f0
∂S1

(S0, S1) < 0.

A4 For all S1 > 0,
df1
dS1

(S1) > 0.

Hypothesis A1 signifies that no growth can take place for species X0 without the
substrate S0. Hypothesis A1 means that the intermediate product S1 is necessary
for the growth of species X1. Hypothesis A3 means that the growth rate of species
X0 increases with the substrate S0 but it is self-inhibited by the intermediate product
S1. Hypothesis A4 means that the growth of species X1 increases with intermediate
product S1 produced by species X0. Note that this defines a syntrophic relationship
between the two species.
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The dimensionless rescaling (3,4) of [7] uses the biological parameters Ks,pro,
Ks,H2 and km,pro in the growth functions (2). Since we deal with general growth
functions, we cannot benefit from this dimensionless rescaling. However, to ease the
mathematical analysis of the system, we can rescale system (7) using the following
change of variables adapted from [6]:

s0 = Y2S0, x0 =
Y2
Y0
X0, s1 = S1, x1 =

1

Y1
X1, sin0 = Y2S

in
0

We obtain the following system







































ds0
dt

= D(sin0 − s0)− µ0(s0, s1)x0

dx0
dt

= −Dx0 + µ0(s0, s1)x0 − Ax0

ds1
dt

= −Ds1 + µ0(s0, s1)x0 − µ1(s1)x1

dx1
dt

= −Dx1 + µ1(s1)x1 − Bx1

(8)

where µ0 and µ1 are defined by

µ0(s0, s1) = Y0f0

(

1

Y2
s0, s1

)

and µ1(s2) = Y1f1(s1) (9)

This system has the same structure as the model (5) of [7] except that it runs for the
original time t and that the coefficient ω of Xu’s model is equal to 1 in our model
(8). Moreover the functions µ0 and µ1 do not follow Monod kinetics (6), but are
general functions with their own properties. Since the functions f0 and f1 satisfy
hypotheses A1–A3, it follows from (9) that functions µ0 and µ1 satisfy :

H1 For all s0 > 0 and s1 ≥ 0, µ0 (s0, s1) > 0 and µ0 (0, s1) = 0.

H2 For all s1 > 0, µ1 (S1) > 0 and µ1(0) = 0.

H3 For all s0 > 0 and s1 > 0,
∂µ0

∂s0
(s0, s1) > 0 and

∂µ0

∂s1
(s0, s1) < 0.

H4 For all s1 > 0,
dµ1

ds1
(s1) > 0.

It should be noticed that the model (8) was studied in [3, 6] in the case where
maintenance effects are not taken into account, i.e. A = 0 and B = 0. We can easily
prove that that for every non-negative initial conditions, the solution of system (8)
has non-negative components and is positively bounded and thus is defined for every
positive t.
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4 Steady state and stability analysis

A steady state of (8) is a solution of the following nonlinear algebraic system obtained
from (8) by setting the right-hand sides equal to zero:

D(sin0 − s0)− µ0(s0, s1)x0 = 0 (10)

−Dx0 + µ0(s0, s1)x0 − Ax0 = 0 (11)

−Ds1 + µ0(s0, s1)x0 − µ1(s1)x1 = 0 (12)

−Dx1 + µ1(s1)x1 − Bx1 = 0 (13)

A steady state exists (or is said to be ‘meaningful’ [7]) if and only if all its components
are non-negative. From equation (11) we deduce that

x0 = 0 or µ0(s0, s1) = D + A (14)

and from equation (13) we deduce that

x1 = 0 or µ1(s1) = D +B (15)

The case x0 = 0 and x1 6= 0 is excluded. Indeed, as a consequence of (15), µ1(s1) =
D+ b and, as a consequence of (12), Ds1+(D+B)x1 = 0. Thus s1 = −D+B

D
x1 < 0,

which is impossible. Therefore three cases must be distinguished
SS0: x0 = 0, x1 = 0 where both species are washed out.
SS1: x0 > 0, x1 = 0, where species x1 is washed out while x0 survives.
SS2: x0 > 0, x1 > 0, where both species survives.
For the description of the steady states and their stability, we need the following

notations. Since the function s1 7→ µ1(s1) is increasing, it has an inverse function
y 7→M1(y), so that

s1 =M1(y) ⇐⇒ y = µ1(s1) for all s1 and y (16)

Let s1 be fixed. Since the function s0 7→ µ0(s0, s1) is increasing, it has an inverse
function y 7→M0(y, s1), so that

s0 =M0(y, s1) ⇐⇒ y = µ0(s0, s1) for all s0, s1 and y (17)

We define the functions

F0 (D) =M0(D+A, 0), F1(D) =M1(D+B)+M0 (D + A,M0(D +B)) (18)

Notice that F1(D) > F0(D) for all D ≥ 0, as long as they are both defined with
the exception F1(0) = F0(0), which holds if and only if A = B = 0. Now, we can
describe the steady states of (8).

Proposition 1. Assume that assumptions H1-H4 hold. Then (8) has at most three
steady states:

• SS0=(s0 = sin0 , x0 = 0, s1 = 0, x1 = 0)
It always exists. It is stable if and only if sin0 < F0(D).
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Steady state Existence condition Stability condition
SS0 Always exists sin0 < F0(D)
SS1 sin0 > F0(D) sin0 < F1(D)
SS2 sin0 > F1(D) Always Stable

Table 1: Existence and local stability of steady states.

• SS1=

(

s0, x0 =
D(sin0 −s0)

D+A
, s1 = sin0 − s0, x1 = 0

)

where s0 is the solution of equation µ0(s0, s
in
0 − s0) = D + A. It exists if and

only if sin0 > F0(D). It is stable if and only if sin0 < F1(D).

• SS2=

(

s0, x0 =
D(sin0 −s0)

D+A
, s1, x1 =

D(sin0 −s0−s1)
D+B

)

where s1 = M1(B + D) and s0 = M0 (D + A,M1(B +D)). It exists if and
only if sin0 > s0 + s1 = F2(D). It is stable if it exists.

The proof is given in Appendix A.

Notice that SS1 exists as soon as SS0 becomes unstable and SS2 exists as soon as
SS1 becomes unstable. One concludes that for any value of the operating parameters,
there is always one, and only one, steady state which is stable. The results are
summarized in Table 1. When decay effects are not taken into account, i.e. A = 0
and B = 0, the system can be reduced to a planar system and global stability results
can be obtained, see [3] and [6], Section 5.1: for any pair of operating parameters,
there is always one, and only one, steady state which is globally asymptotically
stable.

(a) (b)sin0 sin0

D D

J1

J0

J2

Γ0

Γ1

u0 u1

J2

J1

J0

Γ0

Γ1

Figure 1: Operating diagram without (a) and with (b) maintenance effects.

5 Operating diagram

The operating diagram shows how the system behaves when we vary the two control
parameters Sin0 and D. Let F0(D) and F1(D) be the functions defined by (18).
The curve Γ0 of equation sin0 = F0(D) is the border which makes SS0 unstable and
at the same time SS1 exists (the red curve on Fig. 1). The curve Γ1 of equation
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Condition Region SS0 SS1 SS2
sin0 < F0(D) (sin0 , D) ∈ J0 S

F0(D) < sin0 < F1(D) (sin0 , D) ∈ J1 U S
F1(D) < sin0 (sin0 , D) ∈ J2 U U S

Table 2: Existence and local stability of steady states. The letter S (resp. U) means
stable (resp. unstable). No letter means that the steady state does not exist.

sin0 = F1(D) is the border which makes SS1 unstable and at the same time SS2
exists (the blue curve on Fig. 1). The curves Γ0 and Γ1 separate the operating plane
(sin0 , D) in three regions, as shown in Fig. 1, labeled J0, J1 and J2. The results
of Prop. 1 are summarized in Table 2 which shows the existence and stability of
the steady states SS0, SS1 and SS2 in the regions J0, J1 and J2 of the operating
diagram.

The values u0 and u1 plotted on the figure are obtained as follows:

u0 = F0(0) =M(A, 0), u1 = F1(0) = β +M (A, β) , where β =M1(B)

If A ≥ sups0>0 µ0(s0, 0), F0(0) is not defined and we let u0 = +∞. In this case the
regions J1 and J2 are empty. If B < sups1>0 µ1(s1) or A ≥ sups0>0 µ0(s0 − β, β),
F1(0) is not defined and we let u1 = +∞. In this case the region J2 is empty.
When maintenance effects are not taken into consideration (i.e. A = B = 0), then
u0 = u1 = 0 and we have

F0(D) =M(D, 0), F1(D) =M1(D) +M0 (D,M1(D))

6 An example

We illustrate our results for the two-tiered microbial ‘food chain’ (1)-(2) considered
in Section 2: we consider our general model (8) with Monod growth function

µ0 (s0, s1) =
m0s0
K0 + s0

1

1 + s1/Ki

, µ1 (s1) =
m1s1
K1 + s1

(19)

In this case the inverse functions M1(y) and y 7→ M0(y, s1) of the functions µ1(s1)
and s0 7→ µ0(s0, s1) can be calculated explicitly:

M1(y) =
K1y

m1 − y
, M0(y, s1) =

K0y
m0

1+s1/Ki
− y

Therefore, the functions F1(D) and F2(D) defined by (18) are given explicitly by

F0(D) =
K0(D + A)

m1 −D − A
, F1(D) =

K1(D +B)

m1 −D − B
+

K0(D + A)
m0

1+
K1(D+B)

(m1−D−B)Ki

−D − A
(20)
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On the other hand, the solution s0 of equation µ0(s0, s
in
0 − s0) = D + A which is

used in SS1 is simply the positive solution of the quadratic equation

m0s0 = (D + A)(K0 + s0)

(

1 +
sin0 − s0
Ki

)

(21)

As a corollary of Proposition 1 we have the following result.

Proposition 2. Let F0(D) and F1(D) be defined by (20). The system (8-19) has at
most three steady states

• SS0=(s0 = sin0 , x0 = 0, s1 = 0, x1 = 0)
It always exists. It is stable if and only if sin0 < F0(D).

• SS1=

(

s0, x0 =
D(sin0 −s0)

D+A
, s1 = sin0 − s0, x1 = 0

)

where s0 is the positive solution of the quadratic equation (21). It exists if and
only if sin0 > F0(D). If it exists then it is stable if and only if sin0 < F1(D).

• SS2=

(

s0, x0 =
D(sin0 −s0)

D+A
, s1, x1 =

D(sin0 −s0−s1)
D+B

)

where

s1 =
K1(D +B)

m1 −D − B
, s0 =

K0(D + A)
m0

1+
K1(D+B)

(m1−D−B)Ki

−D − A

It exists if and only if sin0 > s0 + s1 = F1(D). It is stable if it exists.

Using the rescaling (9) and the biological parameters in (2) we obtain

m0 = Y0km,pro, K0 = Y2Ks,pro, Ki = KI,H2, m1 = Y1km,H2, K1 = Ks,H2 (22)

For the numerical simulations we will use the nominal values of Table 3 obtained
from Table 1 of [7] by using the formulas (22). For these values of the parameters,

Parameters Units Nominal Value
m0 d−1 0.52
K0 kgCOD/m3 0.124
m1 d−1 2.10
K1 kgCOD/m3 2.5 10−5

Ki kgCOD/m3 3.5 10−6

A d−1 0.02
B d−1 0.02

Table 3: Nominal parameters values.

the values u0 and u1 are very small, see Fig. 2. Notice that the scaling on the two
coordinates in Fig. 2 are different from those of Fig. 2 of [7], since the authors used
the dimensionless rescaling (4).
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(a) (b)sin0 sin0

D D

J1

J0

J2

Γ0

Γ1

J2

J1

J0
Γ0

Γ1

Figure 2: Operating diagram of the model (8)-(19). (a) The model was parametrized
with the ADM1 consensus values listed in Table 3. (b) A zoom showing the values
u0 = 49.6 10−4, u1 = 53.1 10−4.

7 Discussion

Following [7], we considered a two-tiered food chain with feedback inhibition, which
is a generalized model describing the syntrophic interaction of a propionate degrader
and a hydrogenotropic methagogen. In the absence of maintenance [7] proved that
their two-tiered food chain is always stable, but suggested that when maintenance is
included in the model the two-tiered generalized food chain is not necessarily stable.
However, using the consensus parameters of ADM1 and numerical simulations, they
have shown that the model of the methanogenic two-tiered propionate-hydrogen food
chain is always stable. They noticed that direct application of symbolic analysis
programs, such as Maple or Mathematica, turned out fruitless. In this work we have
generalized the model of the two-tiered food chain of [7] by considered generic growth
functions and we established the stability of the generalized model with maintenance
terms.

In this two-tiered ‘food chain’, the first species x0 uses the substrate s0 for its
growth and produces a substrate s1 consumed by the second species x1 for its growth.
The substrate s1 produced by the first species inhibits its own growth, that is, the
growth function µ0(s0, s1) is decreasing with respect to s1. In practice, the second
species is also inhibited by the excess of the first substrate. Thus it is interesting
to consider the case where the second species is inhibited by the substrate s0, that
is in considering that µ1(s0, s1) also depends on s0 and is decreasing with respect
to s0. It has been recently shown in [6] that the introduction of this last inhibiting
relationship in the model completely changes the model properties while mainte-
nance was not considered. In particular, the modified model exhibits multiplicity
of positive steady state. However it should be stressed that these results were very
general: whether this instability occurs for realistic environmental conditions or not
is under investigation.

A Steady states

We give the proof of Prop. 1. A steady state (s0, x0, s1, x1) of (8) is a solution of the
set of algebraic equations (10-13). The local stability of each steady state depends
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on the sign of the real parts of the eigenvalues of the corresponding Jacobian matrix
for the system (8). This is the matrix of the partial derivatives of the right hand side
with respect to the state variables evaluated at the given steady state (s0, x0, s1, x1),
that is

J =









−D − Ex0 −µ0 Fx0 0
Ex0 µ0 −D − A −Fx0 0
Ex0 µ0 −D − Fx0 −Gx1 −µ1

0 0 Gx1 µ1 −D − B









(23)

where

E =
∂µ0

∂s0
(s0, s1) > 0, F = −

∂µ0

∂s1
(s0, s1) > 0, G =

dµ1

ds1
(s1) > 0

The eigenvalues of J are the roots of its characteristic polynomial det(J−λI). Notice
that we have used the opposite sign for the partial derivative F = −∂µ0

∂s1
(s0, s1), so

that all constants involved in the computations become positive, which will simplify
the analysis of the characteristic polynomial of J .

SS0: x0 = 0, x1 = 0. As a result of (10) and (12), s0 = sin0 and s1 = 0. SS0
always exists. Evaluated at SS0, the Jacobian matrix (23) becomes

J =









−D −µ0(s
in
0 , 0) 0 0

0 µ0(s
in
0 , 0)−D − A 0 0

0 µ0(s
in
0 , 0) −D 0

0 0 0 −D − B









Its eigenvalues are λ1 = µ0(s
in
0 , 0)−D − A, λ2 = −D − B and λ3 = λ4 = −D. For

being stable we need λ1 < 0. Therefore SS0 is unstable if and only if

µ0(s
in
0 , 0) > D + A (24)

that is sin0 > M0(D + A, 0) = F0(D).
SS1: x0 6= 0, x1 = 0. As a consequence of (14) µ0(s0, s1) = D + A. As a result

of (10) and (12)

D(sin0 − s0) = µ0(s0, s1)x0 and Ds1 = µ0(s0, s1)x0

Hence x0 =
D(sin0 −s0)

D+A
and D(sin0 − s0) = Ds1, so that s0 + s1 = sin0 . Therefore s0 is

a solution of equation

µ0(s0, s
in
0 − s0) = D + A (25)

SS1 exists if and only if this equation has a solution in the interval (0, sin0 ). The
function s0 7→ ψ(s0) = µ0(s0, s

in
0 − s0) is increasing since its derivative dψ

ds0
= ∂µ0

∂s0
−

∂µ0
∂s1

> is positive. Using ψ(0) = 0 and ψ(sin0 ) = µ(sin0 , 0) we conclude that equation

(25) has a solution in the interval (0, sin0 ) if and only if ψ(sin0 ) = µ(sin0 , 0) > D +
A, that is to say condition (24) holds. The condition of existence of SS1 is then
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equivalent to the condition of instability of SS0.
Evaluated at SS1, the Jacobian matrix (23) becomes

J =









−D − Ex0 −D − A Fx0 0
Ex0 0 −Fx0 0
Ex0 −D − A −D − Fx0 −µ1

0 0 0 µ1 −D − B









Its characteristic polynomial is

det(J−λI) = (λ−µ1+D+B)(λ+D)
(

λ2 + [D + (E + F )x0]λ+ (D + A)(E + F )x0
)

Its eigenvalues are λ1 = µ1 −D − B, λ2 = −D and λ3 and λ4 are the roots of the
following quadratic equation

λ2 + [D + (E + F )x0]λ+ (D + A)(E + F )x0 = 0

Since λ3λ4 = (D+A)(E +F )x0 > 0 and λ3 + λ4 = − [D + (E + F )x0] < 0, the real
parts of λ3 and λ4 are negative. So for being stable it must be λ1 < 0. Therefore
SS1 is stable if and only if

µ1(s
in
0 − s0) < D +B, where s0 is the solution of (25) (26)

Since the function s1 7→ µ1(s1) is increasing, we have the following equivalence

µ1(s
in
0 − s− 0) < D +B ⇐⇒ s0 < sin0 −M1(D +B)

Since the function s0 7→ ψ(s0) = µ0 (s0, s
in
0 − s0) is decreasing, we deduce that

ψ (s0) > ψ (sin0 −M1(D +B)). Since s0 be the solution of (25),

ψ((s0) = µ0

(

s0, s
in
0 − s0

)

= D + A

Therefore, the condition (26) of stability of SS1 is equivalent to

D + A < µ0

(

sin0 −M1(D +B),M1(D +B)
)

that is sin0 −M1(D +B) < M0 (D + A,M1(D +B)) which is equivalent to

sin0 < M1(D + A, 0) +M0 (D + A,M1(D +B)) = F1(D)

SS2: x0 6= 0, x1 6= 0. As a consequence of (14) and (15) s0 and s1 are solutions
of the set of equations

µ0(s0, s1) = D + A, µ1(s1) = D +B

Using (16) we obtain s1 =M1(D +B) and s0 is a solution of equation

µ0 (s0,M1(D +B)) = D + A (27)

Using (17) we obtain s0 =M0 (D + A,M1(D +B)). As a result of (10) and (12)

x0 =
D (sin0 − s0)

D + A
, x1 =

D (sin0 − s0 − s1)

D +B

12



SS2 exists if and only if sin0 > s0 + s1, that is

sin0 > M1(D +B) +M0 (D + A,M1(D +B)) = F1(D)

Evaluated at SS2, the Jacobian matrix (23) becomes

J =









−D − Ex0 −D − A Fx0 0
Ex0 0 −Fx0 0
Ex0 D + A −D − Fx0 −Gx1 −D − B
0 0 Gx1 0









Its characteristic polynomial is

det(J − λI) = λ4 + f1λ
3 + f2λ

2 + f3λ+ f4

where

f1 = Gx1 + (E + F )x0 + 2D > 0

f2 = EGx0x1 + (2D + A)(E + F )x0 + (2D +B)Gx1 +D2 > 0

f3 = (2D + A+B)EGx0x1 +D(D + A)(E + F )x0 +D(D +B)Gx1 > 0

f4 = (D + A)(D +B)EGx0x1 > 0

Since the quantity E + F occurs so often in the computations, we use the notation
H = E + F . Straightforward calculations show that

f1f2 − f3 = 2D3 + α2D
2 + α1D + α0

where

α2 = 4(Hx0 +Gx1), α1 = AHx0 + 2(Hx0 +Gx1)
2 +BGx1

α0 = EGHx20x1 + EG2x0x
2

1 + AH2x20 + (A+B)FGx0x1 +BG2x21

Thus f1f2 − f3 > 0. On the other hand we have

f1f2f3 − f 2

1 f4 − f 2

3 = β5D
5 + β4D

4 + β3D
3 + β2D

2 + β1D + β0

where

β5 = 2Hx0 + 2Gx1, β4 = 4(Hx0 +Gx1)
2 + 2AHx0 + 2BGx1

β3 = 2(Hx0 +Gx1)
3 + 4EGHx20x1 + 4EG2x0x

2

1

+5AH2x20 + (A+B)(3E + 5F )Gx0x1 + 5BG2x21

β2 = 4EGH2x30x1 + 8EG2Hx20x
2

1 + 4EG3x0x
3

1

+3AH3x30 + (AE + 2BE + 6AH + 3BF )GHx20x1

+(2AE +BE + 3AF + 6BH)G2x0x
2

1 + 3BG3x31
+A2F (F + 2E)x20 + (AEx0 − BGx1)

2 + 2ABGFx0x1

13



β1 = 2E2G2Hx30x
2

1 + 2E2G3x20x
3

1 + (4A+B)EGH2x30x1

+(A+B)(3E + 5F )EG2x20x
2

1 + (A+ 4B)EG3x0x
3

1

+A2(3E2 + 3EF + F 2)Fx30 + A(2AE + AF + 2BF )GFx20x1

+(Ex0 +Gx1)(AEx0 − BGx1)
2 + (2AB +B2)G2Fx0x

2

1

β0 = (A+B)E2G2Hx30x
2

1 + (A+B)E2G3x20x
3

1 + A2(2E + F )EFGx30x1

+(A2 +B2)EFG2x20x
2

1 + (AEx0 − BGx1)
2EGx0x1

Thus f1f2f3 − f 2
1 f4 − f 2

3 > 0. Therefore the Routh-Hurwitz criteria are satisfied.
SS3 is stable as long as it exists.
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