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Kneading with weights

H.H. Rugh and Tan Lei

July 20, 2014

Abstract

We generalise Milnor-Thurston’s kneading theory to the setting of piecewise con-
tinuous and monotone interval maps with weights. We define a weighted kneading
determinant D(t) and establish combinatorially two kneading identities, one with
the cutting invariant and one with the dynamical zeta function. For the pressure
log ρ1 of the weighted system, playing the role of entropy, we prove that D(t) is
non-zero when |t| < 1/ρ1 and has a zero at 1/ρ1. Furthermore, our map is semi-
conjugate to an analytic family ht, 0 < t < 1/ρ1 of Cantor PL maps converging to
an interval PL map h1/ρ1 with equal pressure1.

1 Introduction

Let I = [a, b]. Let a = c0 < c1 < · · · < cℓ+1 = b. Set S = {0, 1, · · · , ℓ}. For each i ∈ S,
set Ii =]ci, ci+1[ and let fi : Ii → I be a strictly monotone continuous map extending
continuously to the closure, and finally assign a constant weight gi ∈ C.

We say that (Ii, fi, gi)i∈S is a weighted system. In the particular case that each gi
equals 1, we say also that the system is unweighted.

Milnor-Thurston [MT] developed a widely used kneading theory on unweighted sys-
tems so that the maps fi glue together to a single continuous map f . Let us recall a list
of their results (see also [Ha] for an enlightening introduction to the subject).

Milnor-Thurston introduce a power series matrix N (t), called the kneading matrix,
which records combinatorially the forward orbits of the cutting points. They establish
two identities:

1. The Main Kneading Identity, relating N (t) to the growth of the cutting points
of fn on any subinterval J , and taking the form

γJ(t) · N (t) = terms involving boundaries of J ; (1)
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2. The zeta-function identity, relating N (t) to a dynamical Artin-Mazur zeta
function that counts the global growth of the fn-fixed points, taking the form

ζ(t) · detN (t) = 1. (2)

Using these identities, Milnor-Thurston derive the following important consequences:

3. For log s the topological entropy of the map, the matrix N (t) is invertible when
|t| < 1/s. If s > 1 the matrix N (t) is singular at t = 1/s and the growth rate of the
periodic points is precisely s.

4. If s > 1, the map is semi-conjugate to a simple model dynamical system which is
a continuous PL (i.e. piecewise-linear) map of slope s.

Most of this theory has been extended by Preston [Pr] to the general unweighted setting
without the assumption of global continuity. An advantage to allow discontinuity at the
cutting points is that one can treat tree and graph maps as interval unweighted systems
after edge concatenation. See for example Tiozzo [Ti]. There exist also works that treat
tree maps as they are. See for example Alves-SousaRamos, Baillif and Baillif-deCarvalho
[AS, Ba, BC].

An essential difference in Preston’s approach as compared to Milnor-Thurston’s lies in
the proof of the zeta-function identity. Preston’s method is purely combinatorial whereas
the original proof tests on a concrete example and then studies behaviours under pertur-
bations.

In this work we will generalise all four results above to weighted systems, where the
pressure log ρ1 will play the role of entropy. Points 1-4 will become Theorems 2.1, 2.2,
2.3, 2.5 below.

Our setting is identical to that of Baladi-Ruelle [BR]. In their work they define a
weighted kneading matrix B and a weighted zeta function, and establish a version the
zeta-function identity using a perturbative method similar to that of Milnor-Thurston.
For our purpose we will define a somewhat different kneading matrix R.

We will not rely on previous established results but instead provide self-contained
proofs. In a way our results recover partially results in [BR, MT, Pr].

Our proofs will be fairly elementary, with, as the only background, some basic knowl-
edge of complex analysis. The rest is to play carefully with the combinatorics of iterations,
following mostly Milnor-Thurston.

There is however a notable exception, which is about the proof of the zeta-function
identity. For this we choose to follow the combinatorial method of Preston, along with
several significant differences. Preston cuts off the graph above the diagonal in order
to count the intersections, instead we keep the graph intact but change signs across the
diagonal. Preston’s kneading matrix is similar to that of Milnor-Thurston, by recording
the sequence of visited intervals of a critical orbit. Instead we take the kneading matrix B
of Baladi-Ruelle, which records the orbit’s position relative to every given critical point.
We then add one more dimension to B to obtain our kneading matrix R, by incorporating
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the influence of the boundary cutting points (with a somewhat different choice of sign).
These modifications are designed to simplify, even in the unweighted case, Preston’s proof

of the zeta-function identity. Preston’s idea is to express −
(
log ζ(t)

)′

t
as the trace of a

certain matrix F , and then use repeatedly the Main Kneading Identity to connect F with
the derivative of the kneading matrix. Here, many choices are possible but most give rise
to additional correcting terms. Having tested various possibilities we came up with the
current choice of the kneading matrix R and a matrix F for which we have the simplest
relation possible, i.e. FR = R′ (see Theorem 4.1). Once this relation established, the
zeta-function identity is a one-line computation:

−
d

dt
log ζ(t) = TrF = TrR′R−1 =

d

dt
log detR.

The kneading matrix and its smallest positive zero cost relatively little to evaluate.
This enables a fast and accurate computation of the pressure/entropy as well as the
semi-conjugacy and the PL model map.

While experimenting these ideas we noticed that the system is also semi-conjugate
to a PL map for every 0 < t < ρ1, although the conjugated system acts on a Cantor
set instead of an interval. This numerical observation can easily be proved and has now
become our Theorem 2.4. To the best of our knowledge this statement is new, also in the
unweighted setting, even though its proof does not require any new ideas.

A further justification of our choice of the kneading determinant detR as compared
to detB, is that the latter may have a spurious small zero unrelated to the pressure (in
Appendix C we give an example).

Another originality of this work is the systematic treatment of point-germs relative
to points. Each point x in the interior of the interval generates two point-germs: x+ and
x-. They have often distinct dynamical behaviour and it is convenient to treat the two
germs independently. The idea is certainly present to all the papers in the theory. But
highlighting the notion transforms our computations in more concise forms.

Why adding weights to piecewise continuous and monotone maps? One motivation
is that one can prescribe slope ratios for the PL model maps, the other is that one can
choose to ignore some parts of a dynamical system by assigning zero weights, so to reveal
deeper entropies hidden for example in renormalisation pieces.

A further application, not pursued in the current work, is to construct various invari-
ant measures by playing with weights and following Preston’s construction of measures
maximizing the entropy.

Acknowledgement. This note originates from the second author’s lecture notes for
the ANR LAMBDA meeting in April 2014. organised by R. Dujardin. We would also like
to thank G. Tiozzo for enlightening discussions.
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2 Notation and results

Let I = [a, b]. Let a = c0 < c1 < · · · < cℓ+1 = b. Set Ii =]ci, ci+1[ and let fi : Ii → I be
strictly monotone continuous maps for i = 0, · · · , ℓ. We write f = (f0|I0, · · · , fℓ|Iℓ) and
let si = sign(fi(c

−
i+1) − fi(c

+
u )) = ±1 denote the sign of monotonicity. We consider f as

undefined at the cutting points. On the other hand, each fi extends to a continuous map
from the closed interval [ci, ci+1] to [a, b].

We call C(f) = {ci : 1 ≤ i ≤ ℓ} the interior cutting points of the interval. The set of
cutting points, C∗(f), includes c0 and cℓ+1.

In order to treat monotonicity and discontinuities in a consistent manner it is conve-
nient to extend our base interval I to its unit-tangent bundle, also denoted the space of
point-germs Î: each point x ∈ I r {a, b} generates two point-germs denoted x+ = (x,+1)
and x- = (x,−1) while the boundary points a, b each has only one point-germ a+ and b-.
We write

ε(x+) := 1 and ε(x-) := −1

for the direction of the germ. In order to make some formulae in Section 4 more concise,
we set (artificially) c-0 = b- so that {c+0 , c

-
0} = {a+, b-}. For x ∈ I we denote by x̂ = (x, σ)

the point-germ based at x and in the direction σ ∈ {±1}.

It is notationally convenient to define an order < on the collection of point-germs
together with base points, I ∪ Î, by declaring that for two base points x < y we have
x < x+ < y- < y < y+. Given two point-germs û, v̂ ∈ Î with û < v̂, we define

〈û, v̂〉 :=
{
x ∈ I | û < x < v̂

}

as a sub interval of I. It is then consistent to write e.g. [u, v[= 〈u-, v-〉 and ]u, v[= 〈u+, v-〉.
Note that the boundary points a, b never belong to an interval of the form 〈û, v̂〉. When

J =]u, v[ is an open interval we set Ĵ = {x̂ : u < x < v} ∪ {u+} ∪ {v−}. In particular,

Îi = {x̂ : ci < x < ci+1} ∪ {c+i } ∪ {c−i+1}, 0 ≤ i ≤ ℓ. We observe that the Îi’s are disjoint

and their union is Î.

Our original map f induces a well-defined map f̂ : Î → Î. When x̂ = (x, σ) ∈ Îi
then f(x̂) = (y, σ′) is simply the germ based at y = limt→0+ fi(x+ σt) whose direction is

σ′ = siσ. Note that on each Îi, f̂ is monotone because f is strictly monotone. We will
usually write f also for the extended map f̂ .

For each 0 ≤ i ≤ ℓ we let gi ∈ C be a weight associated with the interval Ii. Both gi
and si gives rise to functions on Îi by declaring s(x̂) = si and g(x̂) = gi whenever x̂ ∈ Îi.
We may define products along orbits, sn, gn, [sg]n by setting s0 = g0 = 1, and

∀n ≥ 1, sn(x̂) :=

n−1∏

k=0

s(fk(x̂)), gn(x̂) :=

n−1∏

k=0

g(fk(x̂)), [sg]n := sngn.

Note that sn(x̂) is the sense of monotonicity of fn at x̂.
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We define a half-sign function:

∀ x̂ ∈ Î , y ∈ I, σ(x̂, y) :=
1

2
sgn(x̂− y) =

{
+1/2 if x̂ > y
−1/2 if x̂ < y

.

Concerning forward orbits of point-germs we set for j, k = 0, · · · , ℓ :

θ(x̂, t; ck) =
∑

m≥0

tm[sg]m(x̂) · σ(fmx̂, ck), so in particular (3)

θ(x̂, t; c0) =
∑

m≥0

tm[sg]m(x̂) · σ(fmx̂, c0) =
1

2

∑

m≥0

tm[sg]m(x̂) (4)

ε∗(ĉ) = ε(ĉ) if ĉ 6= c±0 and ε∗(ĉ) = +1 if ĉ = c±0 (5)

Rjk(t) =
∑

ĉj=c+j ,c−j

ε∗(ĉj) · θ(ĉj , t; ck), (6)

R(t) = (Rjk(t))0≤j,k≤ℓ (the kneading matrix) (7)

B(t) = (Rjk(t))1≤j,k≤ℓ (the reduced kneading matrix) (8)

In particular, one has (note the signs):

Rjk(t) = θ(c+j , t; ck)−θ(c-j, t; ck) =: ∆cjθ(·, t; ck) (j > 0) while (9)

R0k(t) = θ(a+, t; ck)+θ(b-, t; ck) (10)

(this choice of signs is designed to absorb boundary correcting terms in later calculations).

Regarding ’backward’-orbits we define Z1 as the set of level-1 cylinders (j) := Ij =
]cj , cj+1[, j = 0, 1, · · · , ℓ. Define then recursively Zn as the set of non-empty level-n
cylinders of the form : (i0i1 · · · in−1) := Ii0 ∩ f−1

i0
(i1 · · · in−1). Each α = (i0i1 · · · in−1) is an

open interval ]u, v[= 〈u+, v-〉. We set ∂̂α = {u+, v-}. For 0 ≤ j < n, f j(α) ⊂ Iij . So fn

maps α homeomorphically onto its image, in particular each of the functions sj and gj,
0 ≤ j < n, is constant on α.

Definition 2.1. We call (Ii, fi)0≤i≤ℓ expansive if lim
n→∞

sup
α∈Zn

diam (α) = 0.

For any y ∈ I, set Γ0,y = {y}, and for p > 0,

Γp,y =
{
x ∈

⋃

α∈Zp

α
∣∣ f p(x) = y

}
.

Note that x ∈ Γp,y implies that gp(x-) = gp(x+), for which we simply write gp(x). This is
because g0(x) ≡ 1 and every j-iterate (0 ≤ j < p) of a p-cylinder α ∈ Zp belongs to some
level-1 cylinder. Define

γy(t) =
∑

p≥0

∑

x∈Γp,y

tpgp(x) and, for J ⊂]a, b[, γy,J(t) =
∑

p≥0

∑

x∈Γp,y

tpgp(x)χJ(x).
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This function counts the (weighted) number2 of preimages of y.

Clearly when J and J ′ are disjoint subsets we have

γy,J(t) + γy,J ′(t) = γy,J∪J ′(t).

Theorem 2.1. (Main Kneading Identity, or MKI in short) For any interval J = 〈û, v̂〉
in I,

∀ k ∈ {0, · · · , ℓ},
ℓ∑

j=1

γcj,J(t)Rjk(t) = θ(v̂, t; ck)− θ(û, t; ck) =: ∆Jθ(·, t; ck) (11)

(the term j = 0 is not included in the sum, but we do allow k = 0).

We also need a particular way to count the fixed points of fn. Fix n ≥ 1 and an
n-cylinder α. The value of gn(x) is a constant on α, denoted by gn|α. We define the (fixed

point counting) weight ω(α) by

ω(α) = −gn|α
∑

x̂∈∂̂α

σ(fnx̂, x) · ε(fnx̂).

We refer to Appendix A for an account of the geometric meaning of this weight. We then
introduce the following weighted counting of fixed points of fn:

Nn :=
∑

α∈Zn

ω(α).

Set Z(t) := exp
(∑

n≥1

1

n
Nnt

n
)
, Nf(t) :=

∑

n≥1

Nnt
n−1 = (logZ)′.

Theorem 2.2. (zeta-function identity) Let D(t) = detR(t). We then have Z(t)·D(t) = 1,
or equivalently

Nf(t) +
D′(t)

D(t)
= 0.

Definition 2.2. For every n ≥ 0 we write
∥∥gn

∥∥
∞

= sup
α∈Zn

∣∣gn|α
∣∣ and

∥∥gn
∥∥
1
=

∑

α∈Zn

∣∣gn|α
∣∣.

We then set
ρ∞ := lim sup

n→∞

∥∥gn
∥∥1/n

∞
≤ ρ1 := lim sup

n→∞

∥∥gn
∥∥1/n

1
. (12)

We also call log ρ1 the pressure3 of the weighted system (Ii, fi, gi)i∈S. This is consistent
with usual ”thermodynamic formalism” for dynamical systems.

2In the case gi ≡ 1, we have γy,J(t) =
∑

p≥0

#(Γp,y ∩ J) tp.

3In the case gi ≡ 1, we have ρ∞ = 1 and ρ1 is the growth rate of the n-cylinders. By Misiurewicz-Szlenk
([MS]) log ρ1 is equal to the topological entropy of the unweighted system.
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Theorem 2.3. We have

1. The power series for θ(x̂, t; ck), Rjk(t) define analytic functions of t on the disc
{|t| < 1/ρ∞}.

2. The kneading matrix R(t) is invertible when |t| < 1/ρ1.

3. Suppose that ρ1 > ρ∞ and all gi ≥ 0. Then R(t) is non-invertible at t = 1/ρ1 and
1/ρ1 coincides with the radius of convergence of Z(t).

Theorem 2.4. Assume ρ1 > ρ∞ and all gi > 0. For each 0 < t < 1/ρ1 there is a

monotone (non-continuous) map φt : Î → [0, 1] with the following properties

A. For 0 ≤ i ≤ ℓ, let Ĩt,i = [φt(c
+
i ), φt(c

−
i+1)] (this is an interval or a point). The

collection Ĩt,i, 0 ≤ i ≤ ℓ is pairwise disjoint.

B. For each i there is an affine map f̃t,i : Ĩt,i → [0, 1] of slope si/(tgi) such that

φt ◦ f | Îi
= f̃t,i ◦ φt | Îi

(13)

C. The partially defined dynamical system (Ĩt,i, f̃t,i)0≤i≤ℓ is uniformly expanding and its

maximal invariant domain is precisely Ωt = φt(Î).

Remark. Thus, φt is semi-conjugating the dynamical system (Î , f) to a uniformly ex-

panding dynamical system (Ωt,i, f̃t,i)0≤i≤ℓ. In general, Ωt is a Cantor set. The subset

Ωt,i = φt(Îi) is trivial, i.e. reduced to a point, precisely when the forward orbit of Ii never
encounters a cutting point. This can not happen if the original system is expansive.

The proof will show that the semi-conjugacy φt can be explicitly expressed as

h(x̂)− h(a+)

h(b-)− h(a+)
with h(x̂) =

(
θ(x̂, t; ck)

)
k=0,···ℓ

· R−1 ·




0
G(c1, t)

...
G(cℓ, t)


 ,

where G(x, t) is the average of the generating functions for gn(x-) and gn(x+) (see (15) ,
(21) and (25) ). If ℓ = 1, one can replace h(x̂) by θ(x̂, t; c1), which is particularly simple
to implement numerically.

When taking the limit as t ր 1/ρ1 we obtain a different type of semi-conjugacy:

Theorem 2.5. Assume ρ1 > ρ∞ and all gi ≥ 0. There is a monotone continuous surjec-
tive map φ : I → [0, 1] with the following properties: Denote by S̃ ⊂ S := {0, · · · , ℓ} the

subset of i’s for which Ĩi = Int φ(Ii) is non-empty. Then
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A. For every i ∈ S̃, there is an affine map f̃i of slope siρ1/gi such that

f̃i(φ(x)) = φ(fi(x)), x ∈ Ii.

B. The two weighted systems (Ii, fi, gi)i∈S and (Ĩi, f̃i, gi)i∈S̃ have equal pressures.

C. If the sytem f = (Ii, fi)i∈S extends continuously to a map on [a, b] then so does

f̃ = (Ĩi, f̃i)i∈S̃ on [0, 1] and φ gives a genuine topological semi-conjugacy. We have
in this case for every x ∈ [a, b]:

f̃(φ(x)) = φ(f(x)).

For the last theorem, some intervals may disappear under the semi-conjugacy, i.e. the
set S̃ becomes a strict subset of S. This happens in particular, when the original system
is not transitive and contains sub-systems of a smaller pressure. The set S̃ may even
depend on the choice of the weights gi. In particular, intervals for which gi = 0 disappear
under the conjugacy.

3 The Main Kneading Identity

Lemma 3.1. We have R(0) = id.

Proof. Note that

Rjk(t) =
∑

ĉj=c+j ,c-j

ε∗(ĉj) · θ(ĉj, t; ck) =
∑

n≥0

tn
∑

ĉj=c+j ,c-j

ε∗(ĉj)[sg]
n(ĉj) · σ(f

nĉj , ck)

By convention f 0 = id. Recall that ε∗(ĉj) = ε(ĉj) if j 6= 0 and ε∗(ĉ0) = 1.

Assume first j > 0. Then, for all k = 0, · · · , ℓ,

Rjk(0) =
∑

ĉj=c+j ,c-j

ε∗(ĉj) · [sg]
0(ĉj) · σ(f

0ĉj, ck) =
∑

ĉj=c+j ,c-j

ε(ĉj) · σ(ĉj , ck) = δjk.

Also, R0k(0) = θ(a+, 0; ck) + θ(b-, 0; ck) = σ(a+, ck) + σ(b-, ck) = δ0k.

3.1 Proof of Theorem 2.1.

Consider first an open interval J =]u, v[⊂]a, b[, and a ck for some k ∈ {0, · · · , ℓ}. For

each n ≥ 0 and each (n+1)-cylinder α ∈ Zn+1, the functions [sg]
n(x̂) =

n−1∏

j=0

s(f jx̂)g(f jx̂)

8



and σ(fnx̂, ck), x̂ ∈ α̂ are constants. When α ∈ Zn+1 and α ∩ J 6= ∅, then obviously

∑

x̂∈∂̂(J∩α)

ε(x̂) = 1 + (−1) = 0.

So the following power series vanishes identically:

∑

n≥0

tn
∑

α∈Zn+1,x̂∈∂̂(J∩α)

ε(x̂) · [sg]n(x̂) · σ(fnx̂, ck) = 0.

In this sum, x̂ = u+, v- appears for every n ≥ 0. Extracting their contributions we write:

∑

x̂∈∂̂J

θ(x̂, t; ck) · ε(x̂) +
∑

n≥0

tn
∑

α∈Zn+1,x̂∈∂̂α

χJ(x) · ε(x̂) · [sg]
n(x̂) · σ(fnx̂, ck) = 0. (14)

Now when α ∈ Zn+1, x̂ ∈ ∂̂(J ∩α), there is a unique minimal integer 0 ≤ p ≤ n for which
f p(x̂) = ĉ for some c ∈ {c1, · · · , cℓ} =: C(f) and ĉ = c+ or c- (note that the boundary
points a, b are excluded here, since for an interior point to be mapped to them, it has to
pass an interior cutting point just before). Recall that Γp,c = {x ∈

⋃
α∈Zp

α | f px = c}

and Γ0,c = {c}. When x ∈ Γp,c and f px̂ = ĉ, then gp(x̂) = gp(x), σ(f px̂, ck) = σ(fn−pĉ, ck)
and also (the essential point here is that the sign sp(x̂) is absorbed in ε(ĉ))

ε(x̂) · [sg]n(x̂) = gp(x)
(
ε(x̂)sp(x̂)

)
[sg]n−p(ĉ) = gp(x) · ε(ĉ) · [sg]n−p(ĉ).

So we obtain, for the second term in (14) (writing tn = tptq),

∑

c∈C(f)

[(∑

p≥0

tp
∑

x∈Γp,c

gp(x)χJ(x)
)
·

∑

ĉ=c±,q≥0

tq · ε(ĉ) · [sg]q(ĉ)σ(f q ĉ, ck)
]

=
∑

c∈C(f)

γJ,c(t) ·∆cθ(·, t; ck).

Combining with (14) we get the Main kneading Identity when J is an open interval.

It remains to prove the case that J is half closed or closed. Consider for example
J = 〈u-, v-〉 with a < u < v ≤ b. We have 〈a+, v-〉 = 〈a+, u-〉 ⊔ J and the additivity
γc,〈a+,v-〉 = γc,〈a+,u-〉 + γc,J . The result then follows by applying the identity to the two
intervals 〈a+, u-〉 and 〈a+, v-〉 and subtracting.

4 Zeta functions and kneading determinants

In this section we prove Theorems 2.2 and 2.3.
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4.1 Relating Nf(t) to R′(t)

Set Ĉ(f) := {a+ = c+0 , c
-
1, c

+

1 , · · · , c
-
ℓ, c

+

ℓ , b
- = c−0 }. For all ĉ ∈ Ĉ(f), set Γ0,ĉ = {ĉ} and, for

p ≥ 1,
Γp,ĉ = {x̂ ∈ Î | f px̂ = ĉ, , f jx̂ /∈ Ĉ(f) for 0 ≤ j < p}.

If ĉ 6= c±0 , then for any x̂ ∈ Γp,ĉ we have x ∈ Γp,c. Conversely for any x ∈ Γp,c exactly
one of x± belongs to Γp,ĉ.

Notice that if ĉ = c±0 then Γp,ĉ = ∅ when p ≥ 1: due to the forward invariance of I
we have f−1({a, b}) ⊂ {a, b, c1, · · · , cℓ}, so every orbit passing though {a, b} must pass
through {c1, · · · , cℓ} just before.

Fix n ≥ 1 and an n-cylinder α. Note that for each x̂ ∈ ∂̂α, we have gn|α · ε(fnx̂) =

[sg]n(x̂) · ε(x̂), so

−ω(α) := gn|α
∑

x̂∈∂̂α

σ(fnx̂, x) · ε(fnx̂) =
∑

x̂∈∂̂α

σ(fnx̂, x)[sg]n(x̂) · ε(x̂).

To each x̂ ∈ ∂̂α, there is a unique ĉ ∈ Ĉ(f) and 0 ≤ p < n such that x ∈ Γp.ĉ. Schemati-
cally,

x̂
fp

−−−−−→
p minimal

ĉ
fq+1

−−→ fnx̂ = f q+1ĉ

Setting q such that p+ q = n− 1, we have the “co-cycle” properties:

sn(x̂)ε(x̂) = sq+1(ĉ)ε(ĉ), g0(x̂) = 1, gn(x̂) = gq+1(ĉ)gp(x̂).

Now

−
∑

n≥1

tn−1Nn = −
∑

n≥1

tn−1
∑

α∈Zn

ω(α)

=
∑

n≥1

tn−1
∑

α∈Zn,x̂∈∂̂α

σ(fnx̂, x)[sg]n(x̂) · ε(x̂)

=
∑

ĉ∈Ĉ(f)

∑

q≥0

tq[sg]q+1(ĉ) · ε(ĉ)
∑

p≥0, x̂∈Γp,ĉ

tpgp(x̂)σ(f q+1ĉ, x)

=
∑

ĉ∈Ĉ(f)r{c±
0
}

∑

q≥0

tq[sg]q+1(ĉ) · ε(ĉ)
( ∑

p≥0, x̂∈Γp,ĉ

tpgp(x̂)σ(f q+1ĉ, x)
)

+
∑

ĉ=c±
0

∑

q≥0

tq[sg]q+1(ĉ) ·
(
ε(ĉ)

∑

p≥0, x̂∈Γp,ĉ

tpgp(x̂)σ(f q+1ĉ, x)
)

Note that the ε(ĉ) factor in the last expression is treated differently for ĉ = c±1 , · · · , c
±
ℓ

and ĉ = c±0 . The reason for this is that we want the two expressions in the parenthesis to

be independent of the direction of ĉ. Indeed, for any û ∈ Î,

for ĉ = c±1 , · · · , c
±
ℓ , mĉ(û, t) :=

∑

p≥0, x̂∈Γp,ĉ

tpgp(x̂)σ(û, x) =
∑

p≥0, x∈Γp,c

tpgp(x)σ(û, x)
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and for ĉ = c±0 , mĉ(û, t) := ε(ĉ)
∑

p≥0, x̂∈Γp,ĉ

tpgp(x̂)σ(û, x) = ε(ĉ)σ(û, c) ≡
1

2

where we have used the facts that Γp,c±
0
= ∅ for p > 0, g0(x̂) ≡ 1 and gp(x+) = gp(x-) =:

gp(x) for x ∈ Γp,cj , j > 0.

In both cases mĉ(û, t) is independent of ε(ĉ) = + or −, so we may safely write mc(û, t)
for this quantity. To compactify the two cases we set C∗(f) = {c0, c1, · · · , cℓ}. Recall that
c+0 = a+, c-0 = b- and ε∗(ĉ) := ε(ĉ) if ĉ 6= c±0 and ε∗(ĉ) = 1 otherwise. Then

−
∑

n≥1

tn−1Nn =
∑

c∈C∗(f)

∑

ĉ=c±, q≥0

tq[sg]q+1(ĉ) · ε∗(ĉ) ·mc(f
q+1ĉ, t)

A central idea (due to Preston) is to consider the right hand side as the trace of
an (ℓ + 1) × (ℓ + 1) matrix F , and to define F in a way so that FR becomes related
to R′. There are many choices suitable for this purpose with most choices giving rise
to additional correcting terms. There is, however, a choice for which the relationship
becomes particularly simple (note the ∗ in the epsilon factor):

For i, j ∈ {0, 1, · · · , ℓ}, define

Fij(t) =
∑

q≥0, ĉi=c±i

tq[sg]q+1(ĉi) · ε
∗(ĉi) ·mcj(f

q+1ĉi, t).

We then have:

Theorem 4.1. FR = R′.

Proof. We establish at first a consequence of the Main Kneading Identity:

Claim. For every ŵ ∈ Î, k = 0, 1, · · · , ℓ,

ℓ∑

j=0

mcj(ŵ, t)Rjk(t) = θ(ŵ, t; ck).

Proof. By the Main Kneading Identity, we sum first over interior cutting points:

ℓ∑

j=1

mcj(ŵ, t)Rjk(t) =
ℓ∑

j=1

∑

p≥0, x∈Γp,cj

tpgp(x)σ(ŵ, x) · Rjk(t)

=
ℓ∑

j=1

∑

p≥0, x∈Γp,cj

tpgp(x)
1

2

(
χ(a+,ŵ)(x)− χ(ŵ,b-)(x)

)
Rjk(t)

=
1

2

(
2θ(ŵ, t; ck)− θ(a+, t; ck)− θ(b-, t; ck)

)

Adding the boundary term mc0(ŵ, t)R0k(t) =
1

2

(
θ(a+, t; ck) + θ(b-, t; ck)

)
we get the de-

sired result and end the proof of the claim.
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Now, for i, k ∈ {0, · · · , ℓ},

ℓ∑

j=0

FijRjk =
∑

q≥0, ĉi=c±i

tq[sg]q+1(ĉi) · ε
∗(ĉi) ·

ℓ∑

j=0

(
mcj (f

q+1ĉi, t)Rjk

)

=
∑

q≥0, ĉi=c±i

tq[sg]q+1(ĉi) · ε
∗(ĉi) · θ(f

q+1(ĉi), t; ck)

=
∑

q≥0, ĉi=c±i

tq[sg]q+1(ĉi) · ε
∗(ĉi)

∑

p≥0

tp[sg]p(f q+1ĉi)σ(f
p(f q+1ĉi), ck)

=
∑

ĉi=c±
i

∑

p,q≥0

tp+q[sg]p+q+1(ĉi) · σ(f
p+q+1ĉi, ck) · ε

∗(ĉi)

=
∑

ĉi=c±i

(∑

n≥1

n · tn−1[sg]n(ĉi) · σ(f
nĉi, ck)

)
ε∗(ĉi)

=
∑

ĉi=c±i

( d

dt
θ(ĉj , t; ck)

)
ε∗(ĉi) =

d

dt
Rik(t)

in which we recall that Rjk(t) =
∑

ĉj=c±j

θ(ĉj , t; ck) · ε
∗(ĉj).

Proof of Theorem 2.2. We have

0 = Nf (t) + TrF = Nf(t) + TrR′R−1 = Nf(t) +
D′

D
.

4.2 Weighted lap function and proof of Theorem 2.3

Let us consider the generating function of gn(x̂):

G(x̂, t) =
∑

n≥0

tngn(x̂) for x̂ ∈ Î and then

G(x, t) =
1

2

(
G(x-, t) +G(x+, t)

)
when a < x < b.

(15)

Let J = 〈û, v̂〉 ⊂]a, b[ be an (open, closed or half-closed) interval or a point. We define
the weighted lap function4

L(J, t) :=
1

2

∑

n≥0

tn
∑

α∈Zn+1

∑

x̂∈∂̂α

gn(x̂)χJ(x). (16)

4If gi ≡ 1 the G-functions are
1

1− t
and the function L(J, t) is the generating function for the numbers

of (n+ 1)-cylinders in J , and L(]a, b[, t) has radius of convergence equal to 1/ρ1.
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Repeating the calculation in our proof of the Main Kneading Identity without the sign
factors s, ε and σ, it follows easily that

L(J, t) =

ℓ∑

j=1

( ∑

p≥0, x∈Γp,cj

tpgp(x)χJ (x)
)( ∑

ĉ=c±j

1

2

∑

q≥0

tq · gq(ĉ)
)

(17)

=

ℓ∑

j=1

γcj ,J(t) ·G(cj, t) (18)

In particular, for a one-point set J = {x} we have simply

L({x}, t) =

{
tpgp(x) ·G(ci, t) for x ∈ Γp,ci, p ≥ 0, 1 ≤ i ≤ ℓ

0 otherwise.
(19)

Lemma 4.2. Fix any subinterval J = 〈û, v̂〉. The functions G, θ, ∆Jθ, Rjk are all
analytic functions of t on the disc {|t| < 1/ρ∞}. The kneading matrix is invertible when
|t| < 1/ρ1. The function L(J, t) is meromorphic on {|t| < 1/ρ∞} and analytic on {|t| <
1/ρ1}.

Proof. The first claim follows from the definition of ρ∞ and the following estimates:

∀ x̂ ∈ Î , |G(x̂, t)| ≤
∑

n≥0

|t|n‖gn‖∞ < ∞ for |t| < 1/ρ∞

Similarly ∀ k,

|∆Jθ(·, t; ck)| ≤
∑

n≥0

|t|n‖gn‖∞ < ∞ for |t| < 1/ρ∞.

To see that the kneading matrix is invertible when |t| < 1/ρ1 we use the relationship
to the zeta function. By Theorem 2.2 we have Z(t) · detR(t) = 1, where

Z(t) = exp
(∑

n≥1

Nn

n
tn
)

and each |Nn| ≤
∥∥gn

∥∥
1
. So Z(t) is analytic and non-zero for |t| < 1/ρ1 whence R(t) is

invertible for |t| < 1/ρ1.

We have

|L(J, t)| ≤
∑

n≥0

|t|n
∑

α∈Zn+1

∣∣gn|α
∣∣ ≤

∑

n≥0

|t|n
∑

α∈Zn

∣∣gn|α
∣∣(ℓ+ 1) = (ℓ+ 1)

∑

n≥0

|t|n‖gn‖1 (20)

which shows that L(J, t) has radius of convergence at least 1/ρ1.
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Using the MKI itself for the γ factor in (18) we get:

L(J, t) =
ℓ∑

k=0

∆Jθ(·, t; ck)
( ℓ∑

j=1

R−1(t)kj ·G(cj, t)
)

(21)

The above identities are valid as formal power series but also when the functions involved
are analytic and R(t) is invertible. As 1/ρ1 ≤ 1/ρ∞, so when |t| < 1/ρ1, the identity (21)
is valid.

Proof of Theorem 2.3

The first two claims have already been proved in Lemma 4.2.

We proceed to prove the last claim. When all gi’s are positive and t ≥ 0 we have

L(]a, b[, t) +G(a+, t) +G(b−, t) =
∑

n≥0

tn
∑

α∈Zn+1

gn|α ≥
∑

n≥0

tn‖gn‖1.

By definition the RHS has radius of convergence equal to 1/ρ1. Being a power-series with
positive coefficients it follows that the RHS diverges as t ր 1/ρ1.

Under the further assumption 1/ρ1 < 1/ρ∞, the functions t 7→ G(x̂, t), in particular
G(a+, t) and G(b−, t), remain bounded at t = 1/ρ1. So L(]a, b[, t) must diverge as t ր
1/ρ1. Combining with (20) we know that the radius of convergence of L(]a, b[, t) is equal
to 1/ρ1. Now, the functions ∆Jθ and G involved in (21) remain bounded on |t| ≤ 1/ρ1.
Letting t ր 1/ρ1 in (21) we conclude that R(t) must be non-invertible at t = 1/ρ1.

5 Semi-conjugacies to piecewise linear models

In this section we prove Theorems 2.4 and 2.5.

Lemma 5.1. Fix J = 〈û, v̂〉 ⊂ Ij =]c+j , c
-

j+1[. We have for k = 0, · · · , ℓ and |t| < 1/ρ∞:

θ(v̂, t; ck)− θ(û, t; ck) = t · sjgj
(
θ(f v̂, t; ck)− θ(fû, t; ck)

)
(22)

When also |t| < 1/ρ1 we have for the weighted lap function :

L(J, t) = t gj · L(fjJ, t) (23)

Proof. Let us fix k ∈ {0, · · · , ℓ}. By definition, we have the following relation for θ(·, t; ck)
when applied to x̂ and fx̂:

∀ x̂ ∈ Î , θ(x̂, t; ck) =
∑

m≥0

tm[sg]m(x̂) · σ(fmx̂, ck) = σ(x̂, ck) + t · [sg](x̂) · θ(fx̂, t; ck).
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Figure 1: Left: Example of a discontinuous map f and the graph restricted to Ωt of its
conjugated map f̃t. Right: The graph of φt. Here, t = 0.2 < 1/ρ1 = 0.2684. The ratio of
slopes of the two branches is 3 : 2 (coming from the choice of weights).

This implies (22) when restricting to Îj. Now, ∆Jθ(·, t; ck) = θ(v̂, t; ck)− θ(û, t; ck) and

(as f may reverse the orientation) ∆fjJθ(·, t; ck),= sj

(
θ(f v̂, t; ck)− θ(fû, t; ck)

)
, so

∆Jθ(·, t; ck) = tgj∆fjJθ(·, t; ck). (24)

The result for L(J, t) now follows by linearity in equation (21) which is valid when
|t| < 1/ρ1.

Proof of Theorem 2.4.

We assume here that all gi > 0 and that ρ1 > ρ∞. Fix 0 < t < 1/ρ1 < 1/ρ∞. Noting

that 0 < L(]a, b[, t) < +∞ we define our conjugating map φt : Î → R by setting

φt(x̂) =
L(〈a+, x̂〉, t)

L(]a, b[, t)
, x̂ ∈ Î .‘ (25)

Notice that φt maps point-germs to genuine real numbers.

Part A: Using (23) we get for any x̂1, x̂2 ∈ Îj (the sign enters again) :

φt(x̂2)− φt(x̂1) = tsjgj

(
φt(fx̂2)− φt(fx̂1)

)
. (26)

Similarly, we get by iterating this argument for x̂1, x̂2 ∈ α̂ with α ∈ Zn :

φt(x̂2)− φt(x̂1) = tn sn|α gn|α

(
φt(f

nx̂2)− φt(f
nx̂1)

)
. (27)
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When the gi’s are non-negative, we clearly have L(J, t) ≥ 0 for any interval J so by
set-additivity with respect to J it follows that φt is monotone increasing and takes values
in [0, 1]. Let Ωt = φt(Î) ⊂ [0, 1] and set Ωt,i = φt(Îi). By monotonicity of φt the convex

hull of Ωt,i is precisely Ĩt,i = [φt(c
+
i ), φt(c

−
i+1)]

Let now a < x < b. As all gi > 0, by (19)

φt(x
+)− φt(x

−) =
L({x}, t)

L(]a, b[, t)
> 0 (28)

precisely when x is an interior cutting point or a pre-image of such. We have in particular
L({ci}, t) ≥ 1 so that supΩt,i < inf Ωt,i+1 and also sup Ĩt,i < inf Ĩt,i+1, proving claim A.

Part B: Given y ∈ Ωt suppose that y = φt(x̂1) = φt(x̂2) with x̂1 < x̂2. By the previous

paragraph x̂1 and x̂2 must belong to the same Îj . (In fact they even belong to the same
n-cylinder for all n). So by the identity (26) we must have φt(fx̂2) − φt(fx̂1) = 0. This

implies that there is a well-defined map f̃t : Ωt → Ωt given by:

f̃t(y) := φt(fx̂), y = φt(x̂) ∈ Ωt (29)

(since the value is independent of the choice of x̂ in the pre-image of y).

Equation (26) shows that the conjugated map has (finite) slope (tsjgj)
−1 = sj/tgj on

each Ωt,j = φ(Ij) (if it is not reduced to a point). The map f̃t,i is defined to be this affine

map extended to Ĩt,i = [φt(c
+
i ), φt(c

−
i+1)].

Part C: The last part of the theorem is tricky due to the fact that φt is neither continuous
nor injective. For an open interval J =]u, v[⊂]a, b[ we will in the following use the short-
hand notation:

Ξt(J) := [φt(u
+), φt(v

−)] (30)

For 0 ≤ i ≤ ℓ we define Ĩt(i) = Ĩt,i = Ξt(Ii) and then recursively Ĩt(i0, . . . , in−1) =

Ĩt,i0 ∩ f̃−1
t Ĩt(i1, . . . , in−1) which is either empty, a point or a closed interval. We write

Z̃t,n for the collection of non-empty sets of this form. They form a partition for the

domain of definition of (f̃t)
n. The maximal invariant domain for f̃t is the compact set

Ωt =
⋂

n≥1

(⋃
Z̃t,n

)
⊂ [0, 1]. Our first goal is to exhibit a simple relationship between

cylinders and the above sets.

Lemma 5.2. There is a bijection between α ∈ Zn and α̃ ∈ Z̃t,n given by α̃ = Ξt(α).

Proof: For n = 1 this is the very definition: Z1 consists of the intervals {Ii : 0 ≤ i ≤ ℓ}

and Ĩt(i) = Ξt(Ii) = [φt(c
+
i ), φt(c

−
i+1)].

When J =]u, v[⊂ Ii the definition of f̃t shows that f̃t Ξt(J) = f̃t,i[φt(u
+), φt(v

−)] =

[φt(fiu
+);φt(fiv

−)] = Ξt(fJ). For α ∈ Zn this implies (f̃t)
k Ξt(α) = Ξt(f

kα) ⊂ Ξt(Iik).

It follows by recursion that Ξt(α) ⊂ α̃ = Ĩt(i0, . . . , in).
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In order to show equality we proceed by induction in n. Let β = (i1 . . . in) =]u1, u2[∈

Zn (with a ≤ u1 < u2 ≤ b). Our induction hypothesis is that Ĩt(i1, . . . , in) = Ξt(β) =
[φt(u

+
1 ), φt(u

−
2 )]. Here, u1 and u2 are necessarily (eventual) cutting points so by (28) we

have when a < u1 and u2 < b, respectively :

φt(u
−
1 ) < φt(u

+
1 ) and φt(u

−
2 ) < φt(u

+
2 ). (31)

Suppose that f̃t Ĩt,i0 = Ξt(fIi0) intersects Ξt(β) non-trivially and write α̃ = Ĩt(i0, . . . , in) =
[ξ1, ξ2]. We claim that also ]v1, v2[≡ fIi0 intersects β. If this were not the case, then
e.g. v1 < v2 ≤ u1 < u2 in which case the first strict inequality in (31) shows that
φt(v

−
2 ) ≤ φt(u

−
1 ) < φt(u

+
1 ) so that α̃ was empty in the first place.

Assume si0 = +1. We have α̃ = [ξ1, ξ2] = Ĩt,i0 ∩ f̃−1
t Ξt(β) (using the induction

hypothesis) and we write α = Ii0 ∩ f−1β =]w1, w2[ (which is non-empty as just shown).
We will calculate the left end points of α and α̃. We consider the two possibilities: Either
u1 ≤ v1(< u2, v2) or v1 < u1(< u2, v2).

In the first case w+
1 = f−1

i0
max{u+

1 , fc
+
i0
} = c+i0 and since φt(u

+
1 ) ≤ φt(v

+
1 ) = f̃tφt(c

+
i0
)

we get ξ1 = (f̃t,i0)
−1max{φt(u

+
1 ), f̃tφt(c

+
i0
)} = φt(c

+
i0
) = φt(w

+
1 ). In the second case,

continuity and strict monotonicity of fi yields a unique value w1 ∈]ci0 , ci0+1[ for which

fw1 = u1. We have f̃tφt(w
+
1 ) = φt(u

+
1 ) ≤ φt(fc

+
i0
) ≤ f̃tφt(c

+
i0
) so again ξ1 = φt(w

+
1 ).

Thus in either case ξ1 = φt(w
+
1 ). Similarly, ξ2 = φt(w

−
2 ) thus implying α̃ = Ξt(α) as

we wanted to show. If si = −1 some intervals change direction but the conclusion remains
the same.

Returning now to the proof of Part C: Clearly φt(Î) ⊂ Ωt. In order to show surjectivity

consider ξ ∈ Ωt. Assume that f̃k
t ∈ Ĩt,ik , k ≥ 0. Then ξ ∈ α̃k = Ĩt(i0, . . . , ik−1) = Ξt(αk)

for all k (a nested sequence of intervals). First, if ξ is a boundary point of such an interval
for some k then it is in the image of φt by the previous lemma. So assume that ξ is
in the interior of α̃k = Ξt(αk) for all k. Let αk =]uk, vk[. Then uk ր u∗ and vk ց v∗
with u∗ ≤ v∗. None of the sequences are eventually constant. Now, φt(u

+
k ) ≤ ξ ≤ φt(v

−
k )

and 0 ≤ φt(v
−
k ) − φt(u

+
k ) ≤ tkgk|αk

/L(]a, b[, t) → 0 as k → ∞. For any x ∈ [u∗, v∗] we

conclude by monotonicity of φt that φt(x
+) = φt(x

−) = ξ. So φt : Ĩ → Ωt is surjective.

In order to prove Theorem 2.5 we consider the limit t ր 1/ρ1. As the function
L(]a, b[, t) diverges the situation is a bit different. By Lemma 4.2 the lap-function L(]a, b[, t)
is meromorphic in the disc {|t| < 1/ρ∞} and has a pole of some order m ≥ 1 at t = 1/ρ1.
By positivity of L(]a, b[, t) for t > 0 there is c > 0 so that

L(]a, b[, t) =
c

(1− ρ1t)m
+ l.o.t.

For any interval J ⊂]a, b[ we have 0 ≤ L(J, t) ≤ L(]a, b[, t). An eventual pole of L(J, t) at

1/ρ1 is therefore of order at most m so
L(J, t)

L(]a, b[, t)
extends analytically to t = 1/ρ1 (the
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Figure 2: The same example as before but at the critical value: t = 1/ρ1 = 0.2684. Note
that Ωt is no longer a Cantor set and that φt is continuous.

singularity is removable here). We denote the limit

Λ(J) := lim
tր1/ρ1

L(J, t)

L(]a, b[, t)
∈ [0, 1]. (32)

Lemma 5.3. We have the following properties for Λ:

1. For any x ∈ I : Λ({x}) = 0.

2. For all α ∈ Zn : Λ(α) =
1

ρn1
gn|α Λ(fnα) .

3. δn = sup
α∈Zn

Λ(α) −−−→
n→∞

0.

Proof. The expression (19) shows that the function L({x}, t) is analytic on {|t| < 1/ρ∞}
in particular remains bounded on {|t| ≤ 1/ρ1}. As t ր 1/ρ1, the denominator L(]a, b[, t)
diverges, the first claim follows.

For J ⊂ Ij for some j we divide (23) by L(]a, b[, t) and take the limit t ր 1/ρ1 to
obtain:

Λ(J) =
1

ρ1
gjΛ(fjJ). (33)

In particular, for α = (i0i1 · · · in−1) ∈ Zn we have α ∈ Ii0 so that Λ(α) =
1

ρ1
gi0 · Λ(fα).

Iterating this we get the formula.
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The last claim follows from

Λ(α) =
1

ρn1
gn|α Λ(fnα) ≤

ρn∞
ρn1

ρ1>ρ∞
−−−−→
n→∞

0.

Lemma 5.4. The map φ : [a, b] → [0, 1] defined by

φ(x) = Λ(]a, x[), x ∈ [a, b]

is non-decreasing, continuous and surjective. One has for x ∈]a, b[:

φ(x) = lim
tր1/ρ1

φt(x
−) = lim

tր1/ρ1
φt(x

+) (34)

Proof. Monotonicity follows from positivity and additivity of Λ(J), J ⊂]a, b[. Let x ∈ [a, b]
and ε > 0. Choose n so that δn < ε/2 (δn from the previous lemma). Either x is inside
some n-cylinder or on the boundary of two such cylinders. In any case, we may find at
most two n-cylinders α1, α2 with α1 ∩ α2 = {x′} so that J = α1 ∪ {x′} ∪ α2 is an open
neighborhood of x and Λ(J) < ε. For δ > 0 small enough φ(x+ δ)−φ(x− δ) ≤ Λ(J) < ε.
As φ(a) = Λ(∅) = 0 and φ(b) = 1 the map is surjective. The first equality in (34) is
essentially the definition of φ and the second follows from the continuity just shown.

We write c̃i = φ(ci), i = 0, · · · , ℓ+ 1 and let S̃ ⊂ S := {0, · · · , ℓ} denote the (possibly

strict) subset of indices i for which 0 < c̃i+1 − c̃i = Λ(]ci, ci+1[). For i ∈ S̃ we set

Ĩi =]c̃i, c̃i+1[.

Proof of Theorem 2.5.

Part A: For x̂1, x̂2 ∈ Ij, taking the limit t ր 1/ρ1 in the identity (26) yields

φ(x̂2)− φ(x̂1) = tsjgj

(
φ(fjx̂2)− φ(fjx̂1)

)
. (35)

Continuity of φ and fj shows that this identity is independent of the direction of the

point-germs. The affine map f̃j(y) = ĉj +
sj
tgj

(y − ĉj) then satisfies the required identity.

Part B: Recall that Zn consists of the non-empty n-cylinder for (Ii, fi)i∈S. Let Z̃n be the
collection of non-empty open intervals of the form α̃ = Int φ(α) where α = (i0 · · · in−1) ∈

Zn. Here each ik ∈ S̃, 0 ≤ k < n (or else α̃ à fortiori empty) and f̃kα̃ ⊂ Ĩik . Therefore

α̃ is contained in an n-cylinder for the dynamical system (Ĩi, f̃i)i∈S̃. We claim that α̃ is

actually equal to an n-cylinder for that system and Z̃n is precisely the set of non-empty
n-cylinders for the same system. To see this note that

1 =
∑

α∈Zn

Λ(α) =
∑

α̃∈Z̃n

|α̃|, (36)
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where | · | denotes the length of intervals. There is no room for any other or any larger
open cylinder.

Now, by Lemma 5.3 we have |α̃| = Λ(α) =
gn|α
ρn1

Λ(fnα) ≤
gn|α
ρn1

. So using (36) we get

ρn1 =
∑

α̃∈Z̃n

|α̃|ρn1 =
∑

α̃∈Z̃n

Λ(α)ρn1 =
∑

α̃∈Z̃n

gn|αΛ(f
nα) ≤

∑

α̃∈Z̃n

gn|α ≤
∑

α∈Zn

gn|α = ‖gn‖1.

So ρ1 = lim sup
n→∞

( ∑

α̃∈Z̃n

gn|α

)1/n

. The pressures of (Ii, fi, gi)i∈S and (Ĩi, f̃i, gi)i∈S̃ are therefore

the same.

Part C: We assume here that f extends to a continuous map of [a, b]. When J ⊂ [a, b] is
an interval then fJ \

⋃
i f(J ∩Ii) consists of a finite number of points. By Lemma 5.3 this

set difference has zero mass. By the same lemma we get: Λ(J) =
ℓ∑

i=0

1

ρ1
giΛ(fi(J ∩ Ii)).

Thus, (
min

i
gi

1

ρ1

)
Λ(fJ) ≤ Λ(J) ≤

(∑

i

gi
1

ρ1

)
Λ(fJ).

In particular Λ(J) = 0 ⇐⇒ Λ(fJ) = 0. (Note, however, that Λ(J) > 0 does not imply
Λ(f−1J) > 0 as the latter set might be empty).

Let us write x ∼ x′ if φ(x) = φ(x′),

When x, x′ ∈ I and x ∼ x′ then Λ([x, x′]) = 0 so also Λ(f [x, x′]) = 0. As we
have assumed f continuous, f([x, x′]) is connected and contains f(x), f(x′). Therefore,

φ(f(x)) = φ(f(x′)), i.e. f(x) ∼ f(x′). For y ∈ [0, 1], we may thus define f̃(y) = φ(f(x))
with x ∈ φ−1(y) (independent of the choice of x). Then for every x ∈ [a, b] we have:

f̃(φ(x)) = φ(f(x))

The same argument also shows that for any two x, x′ ∈ I we have

∣∣∣f̃(φ(x))− f̃(φ(x′))
∣∣∣ ≤ max

i∈S̃

ρ1
gi
|φ(x)− φ(x′)|

so f̃ is a continuous endomorphism of [0, 1].

Remark: The set S̃ may depend upon the weights gi. If, however, f is transitive then
S̃ = S for any choice of non-zero weights and Z̃n = Zn for all n. We leave the exercise to
the reader.
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b b

π(α) = +1π(α) = −1

π(α) = 0

Figure 3: fixed points counting

A Geometry of the weight function ω(α)

Fix n ≥ 1 and an n-cylinder α ∈ Zn. Recall that we have associated a weight

ω(α) = − gn|α
∑

x̂∈∂̂α

σ(fnx̂, x) · ε(fnx̂).

Set
π(α) := −

∑

x̂∈∂̂α

σ(fnx̂, x) · ε(fnx̂).

This quantity depends only on the boundary values and their positions relative to the
diagonal. Let h be an affine map on α coinciding with fn on the boundary.

Lemma A.1. π(α) = −
∑

x̂∈∂̂α

σ(h(x̂), x) · ε(h(x̂)). And,

• π(α) = −1 if 0 < slope(h) ≤ 1 and h(α) touches the diagonal
• π(α) = 1 if h(α) transverses the diagonal with slope either > 1 or < 0.
• π(α) = 0 in all other cases, namely

either h(α) does not touch the diagonal
or h(α) touches the diagonal at one end only, with slope > 1 or < 0.

Proof. Since fn|α is a continuous strictly monotone map, we have σ(fnx̂, x) = σ(h(x̂), x)
and ε(fnx̂) = ε(h(x̂)) at the two ends of α. So we can replace fn by h in π(α).

Extend h continuously to the boundary points. For x̂ a boundary germ. We check
case by case the value of −σ(h(x̂), x) · ε(h(x̂))

is
1

2
if h(x) < x and h(x̂) > h(x), or if h(x) > x and h(x̂) < h(x)

is −
1

2
if h(x) = x, or h(x) > x and h(x̂) > h(x), or if h(x) < x and h(x̂) < h(x).

Adding the values at the two ends, we get the lemma.

21



Notice that if f is expanding then π(α) ≥ 0 for all n and all α ∈ Zn. So in that case
Nn ≥ 0 for all n.

B Relation between detR, detB and Milnor-Thurston’s

kneading determinant

We relate here our definition of the kneading determinant to that of Milnor-Thurston,
modified by adding weights. Set θ(x̂, t; cℓ+1) := −θ(x̂, t; c0)

Lemma B.1. (Minor-Thurston) We have
ℓ∑

k=0

(1− tskgk)(θ(x̂, t; ck)− θ(x̂, t; ck+1)) ≡ 1.

For k = 0, · · · , ℓ, set Ik =]ck, ck+1[. Note that σ(x̂, ck)− σ(x̂, ck+1) = χIk(x̂). Set

η(x̂, t; Ik) := θ(x̂, t; ck)− θ(x̂, t; ck+1) =
∑

m≥0

tm[sg]m(x̂)χIk(x̂).

∆ciη(·, t; Ik) := η(c+i , t; , Ik)− η(c-i , t; Ik), i = 1, · · · , ℓ

And define the Milnor-Thurston kneading matrix ℓ× (ℓ+ 1) matrix

N (t) =
(
∆ciη(·, t; Ik)

)
i=1,··· ,ℓ, k=0,1,··· ,ℓ

.

Denote by Dj the determinant of N (t) after deleting the j-th column.

Lemma B.2. (Milnor-Thurston) The quantity
(−1)jDj

1− sjgjt
=: DMT (t) is independent of j

and is called the Milnor-Thurston kneading determinant.

Proof. Let v =



1− s0g0t

...
1− sℓgℓt


. By Lemma B.1,

(
η(x̂, t; I0), · · · , η(x̂, t; Iℓ)

)
v = 1. So v is a

kernel vector of N (t). Define an augmented kneading matrix A(t) by adding a line vector

(
1

1− s0g0t
, · · · ,

1

1− sℓgℓt
) on top of N (t).

Then Av =




ℓ+ 1
0
...
0


 . By Cramer’s solution form 1 − sjgjt = (ℓ + 1)

(−1)ijDj

detA
and

therefore
detA

ℓ+ 1
=

(−1)jDj

1− sjgjt
for all j = 0, · · · , ℓ.
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Lemma B.3. Setting H(t) := 1− t
s0g0 + sℓgℓ

2
we have

DMT (t) = det(R(t)) and H(t) · detR(t) = detB(t).

Proof. Set κi(t) =
t

2
(si−1gi−1 − sigi), i = 1, · · · , ℓ. Grouping the terms about c0 and cℓ+1

in Lemma B.1 we get

2H(t) · θ(x̂, t; c0) +
ℓ∑

i=1

2κi · θ(x̂, t; ci) ≡ 1

It follows that



H(t) κ1(t) κ2(t) · · · κℓ(t)
0
0
... Id
0




· R(t) =




1 0 0 · · · 0
1
1
... B
1




Therefore H(t) · detR(t) = detB(t). For the matrix A defined above,

A(t) ·
1

2




1− s0g0t −1 −1 · · · −1
1− s1g1t 1 −1 · · · −1
1− s2g2t 1 1 · · · −1

...
1− sℓgℓt 1 1 · · · 1




=




ℓ+1
2

∗ ∗ · · · ∗
0
0
... B
0




In the second matrix on the left hand side add the last line to every other line one gets
ℓ+ 1

2
DMT (t) ·H(t) =

detA

2
·H(t) =

ℓ+ 1

2
detB.

Combining with Lemma B.3 we get DMT (t) ·H(t) = detB = detR ·H(t). Therefore
detR(t) = DMT (t).

Corollary B.4. If all the weights gi are equal to 1, all three determinants DMT , detR,
detB have the same zeros in D.

Proof. In this case H(t) = 1 −
t

2
(s0 + sℓ) = 1 or 1 − t so H(t) has no zeros in {|t| <

1/ρ∞} = D.

C The first zero of detB may not correspond to the

pressure

We have shown in Theorem 2.3, Point 3, that the first zero of detR corresponds to the
pressure. And in case all the weights gi are 1, one can also use the first zero of detB
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(Corollary B.4). This need not, however, be true with more general weights. Here is a
counter example.

Let I = [a, b] = [0, 3], I0 =]0, 1[, I1 =]1, 2[, I2 =]2, 3[.

f(x) =





2x 0 ≤ x ≤ 1
2− 2(x− 1) 1 ≤ x ≤ 2
2(x− 2) 2 ≤ x ≤ 3

Let us assign weights g0 = g1 = 1 and g2 = M .

Note that f(I2) = [0, 2] and f : [0, 2] → [0, 2] is the full tent map. There is no periodic
points in I2. Using Lemma A.1 and the definition one obtains

Z(t) = exp
(∑

n≥1

tn

n
2n
)
= (1− 2t)−1.

So by Lemma B.3 and Theorem 2.2 we have DMT (t) = detR(t) =
1

Z(t)
= 1−2t. The first

zero being 1/2 one obtains that the pressure is log 2 (this pressure can also be computed
directly). It is easily seen that the topological entropy is also log 2.

On the other hand, H(t) = 1 −
t

2
(s0g0 + s2g2) = 1 −

t

2
(1 + M). So by Lemma B.3

again

detB(t) = H(t) detR(t) =
(
1−

t

2
(1 +M)

)
(1− 2t).

If M > 3, then detB(t) has a ’spurious’ zero at
2

1 +M
smaller than

1

2
.

So the first positive zero of B(t) does not correspond to the pressure in this case. By
increasing M , one can make this first zero arbitrarily small without changing the pressure.
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