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Introduction

The theory of large deviations is concerned with the rate of convergence of a vanishing sequence of probabilities P[A n ] n≥1 , where (A n ) n≥1 is a sequence of rare events. after convenient scaling and normalization, the limit is called rate function, and is typically represented in terms of a control problem.

The pioneering work of Freidlin and Wentzell [START_REF] Freidlin | Random Perturbations of Dynamical Systems[END_REF] considers rare events induced by Markov diffusions. The techniques are based on the Girsanov theorem for equivalent change of measure, and classical convex duality. An important contribution by Fleming [START_REF] Fleming | Exit probabilities and optimal stochastic control[END_REF] is to use the powerful stability property of viscosity solutions in order to obtain a significant simplified approach. We refer to Feng and Kurtz [START_REF] Feng | Large Deviations for Stochastic Processes[END_REF] for a systematic application of this methodology with relevant extensions.

The main objective of this paper is to extend the viscosity solutions approach to some problems of large deviations with rare events induced by non-Markov diffusions

X t = X 0 + t 0 b s (W, X)ds + t 0 σ s (W, X)dW s , t ≥ 0, (1.1) 
where W is a Brownian motion, and b, σ are non-anticipative functions of the paths of (W, X) satisfying convenient conditions for existence and uniqueness of the solution of the last stochastic differential equation (SDE).

We should note that the Large Deviation Principle (LDP) for non-Markovian diffusions of type (1.1) is not new. For example, Gao & Liu [START_REF] Gao | Large Deviations for small perturbations of SDEs with Non-Markovian Coefficients and the Applications[END_REF] studied such a problem via the sample path LDP method by Fredlin-Wentzell, using various norms in infinite dimensional spaces. While the techniques there are quite deep and sophisticated, the methodology is more or less "classical." Our main focus in this work is to extend the PDE approach of Fleming [START_REF] Fleming | Exit probabilities and optimal stochastic control[END_REF] in the present path-dependent framework, with a different set of tools. These include the theories of backward SDEs, stochastic control, and the viscosity solution for path-dependent PDEs (PPDEs), among them the last one has been developed only very recently. Specifically, the theory of backward SDEs, pioneered by Pardoux & Peng [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF], can be effectively used as a substitute to the partial differential equations in the Markovian setting. Indeed, the log-transformation of the vanishing probability solves a semilinear PDE in the Markovian case. However, due to the "functional" nature of the coefficients in (1.1), both backward SDE and PDE involved will become non-Markovian and/or path-dependent.

Several technical points are worth mentioning. First, since the PDE involved in our problem naturally has the nonlinearity in the gradient term (quadratic to be specific), we therefore need the extension by Kobylanski [START_REF] Kobylanski | Backward stochastic differential equations and partial differential equations with quadratic growth[END_REF] on backward SDEs to this context. Second, in order to obtain the rate function, we exploit the stochastic control representation of the log-transformation, and proceed to the asymptotic analysis with crucial use of the BMO properties of the solution of the BSDE. Finally, we use the notion of viscosity solutions of path-dependent Hamilton-Jacobi equations introduced by Lukoyanov [START_REF] Lukoyanov | On Viscosity Solution of Functional Hamilton-Jacobi Type Equations for Hereditary Systems[END_REF] in order to characterize the rate function as unique viscosity solution of a path dependent Eikonal equation.

Another main purpose, in fact the original motivation, of this work is an application in financial mathematics. It has been known that an important problem in the valuation and hedging of exotic options is to characterize the short time asymptotics of the implied volatility surface, given the prices of European options for all maturities and strikes. The need to resort to asymptotics is due to the fact that only a discrete set of maturities and strikes are available. This difficulty is bypassed by practitioners by using the asymptotics in order to extend the volatility surface to the un-observed regimes. We refer to Henry-Labordère [START_REF] Henry-Labordère | Geometry, and Modeling in Finance[END_REF]. The results available in this literature have been restricted to the Markovian case, and our results in a sense opens the door to a general non-Markovian, path-dependent paradigm.

We finally observe that the sequence of vanishing probabilities induced by non-Markov diffusions can be re-formulated in the Markov case by using the Gyöngy's [START_REF] Gyöngy | Mimicking the one-dimensional marginal distributions of processes having an Itô differential[END_REF] result which produces a Markov diffusion with the same marginals. However, the regularity of the coefficients of the resulting Markov diffusion σ X (t, x)

:= E[σ t |X t = x]
are in general not suitable for the application of the classical large deviation results.

The paper is organized as follows. Section 2 contains the general setting, and provides our main results. First, we solve the small noise large deviation problem for the Laplace transform induced by a non-Markov diffusion. Next, we state the small noise large deviation result for the probability of exiting from some bounded open domain before some given maturity. We then state the characterization of the rate function as a unique viscosity solution of the corresponding path-dependent Eikonal equation. Section 3 is devoted to the application to the short maturity asymptotics of the implied volatility surface. Finally, Sections 4, 5 and 6 contain the proofs of our large deviation results, and the viscosity characterization.

Problem formulation and main results

Let Ω d := {ω ∈ C 0 ([0, T ], R d ) : ω 0 = 0} be the canonical space of continuous paths starting from the origin, B the canonical process defined by B t := ω t , t ∈ [0, 1], and

F := {F t , t ∈ [0,
T ]} the corresponding filtration. We shall use the following notation for the supremum norm:

ω t := sup s∈[0,t] |ω s | and ω := ω T for all t ∈ [0, T ], ω ∈ Ω d .
Let P 0 be the Wiener measure on Ω d . For all ε ≥ 0, we denote by

P ε := P 0 • ( √ εB) -1
the probability measure such that

W ε t := 1 √ ε B t , 0 ≤ t ≤ T is a P ε -Brownian motion.
Our main interest in this paper is on the solution of the path-dependent stochastic differential equation:

dX t = b t (B, X)dt + σ t (B, X)dB t , X 0 = x 0 , P ε -a.s. (2.1)
where the process X takes values in R n for some integer n > 1, and its paths are in

Ω n := C 0 ([0, T ], R n ).
The supremum norm on Ω n is also denoted . t , without reference to the dimension of the underlying space. The coefficients b :

[0, T ] × Ω d × Ω n -→ R n and σ : [0, T ] × Ω d × Ω n -→ R n×d
are assumed to satisfy the following conditions which guarantee existence and uniqueness of a strong solution for all ε > 0.

Assumption 2.1 The coefficients f ∈ {b, σ} are:

• non-anticipative, i.e. f t (ω, x) = f t (ω s ) s≤t , (x s ) s≤t ,
• L-Lipschitz-continuous in (ω, x), uniformly in t, for some L > 0:

f t (ω, x) -f t (ω ′ , x ′ ) ≤ L( ω -ω ′ t + x -x ′ t ); t ∈ [0, T ], (ω, x), (ω ′ , x ′ ) ∈ Ω d × Ω n ,
Under P ε , the stochastic differential equation (2.1) is driven by a small noise, and our objective is to provide some large deviation asymptotics in the present pathdependent case, which extend the corresponding results of Freidlin & Wentzell [START_REF] Freidlin | Random Perturbations of Dynamical Systems[END_REF] in the Markovian case. Our objective is to adapt to our path-dependent case the PDE approach to large deviations of stochastic differential equation as initiated by

Fleming [START_REF] Fleming | Exit probabilities and optimal stochastic control[END_REF] and Evans & Ishii [START_REF] Evans | A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities[END_REF], see also Fleming & Soner [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF], Chapter VII.

Laplace transform near infinity

As a first example, we consider the Laplace transform of some path-dependent random variable ξ (ω s ) s≤T , (x s ) s≤T for some final horizon T > 0:

L ε 0 := -ε ln E P ε e -1 ε ξ(B,X) . (2.2)
In the following statement L 2 d denotes the collection of measurable functions α :

[0, T ] -→ R d such that T 0 [α t | 2 dt < ∞.
Our first main result is: Theorem 2.2 Let ξ be a bounded uniformly continuous F T -measurable r.v. Then, under Assumption 2.1, we have:

L ε 0 -→ L 0 := inf α∈L 2 d ℓ α 0 as ε → 0, where ℓ α 0 := ξ(ω α , x α ) + 1 2 T 0 |α t | 2 dt,
and (ω α , x α ) are defined by the controlled ordinary differential equations:

ω α t = t 0 α s ds, x α t = X 0 + t 0 b s (ω α , x α )ds + t 0 σ s (ω α , x α )dω α s , t ∈ [0, T ].
The proof of this result is reported in Section 4.

Remark 2.3 Theorem 2.2 is still valid in the context where the coefficient b depends also on the parameter ε, so that the process X is replaced by X ε defined by:

dX ε t = b ε t (B, X ε )dt + σ t (B, X ε )dB t , X ε 0 = x 0 , P ε -a.s.
Since this extension will be needed for our application in Section 3, we provide a precise formulation. Let Assumption 2.1 hold uniformly in ε ∈ [0, 1), and assume further that ε -→ b ε is uniformly Lipschitz on [0, 1). Then the statement of Theorem 2.2 holds with x α defined by:

x α t = X 0 + t 0 b 0 s (ω α , x α )ds + t 0 σ s (ω α , x α )dω α s , t ∈ [0, T ].
This slight extension does not induce any additional technical difficulty in the proof.

We shall therefore provide the proof in the context of Theorem 2.2.

Exiting from a given domain before some maturity

As a second example, we consider the asymptotic behavior of the probability of exiting from some given subset of R n before the maturity T :

Q ε 0 := -ε ln P ε [H < T ],
where

H := inf{t > 0 : X t / ∈ O}, (2.3) 
and O is a bounded open set in R n . We also introduce the corresponding subset of paths in Ω n :

O := ω ∈ Ω : ω t ∈ O for all t ≤ T . (2.4)
The analysis of this problem requires additional conditions.

Assumption 2.4 The coefficients b and σ are uniformly bounded, and σ is uniformly elliptic, i.e. a := σσ T is invertible with bounded inverse a -1 .

The present example exhibits a singularity on the boundary ∂O because Q ε 0 vanishes whenever the path ω is started on the boundary ∂O. Our second main result is the following. 

Q ε 0 -→ Q 0 := inf q α 0 : α ∈ L 2 d , x α T ∧• / ∈ O , where q α 0 := 1 2 T 0 |α s | 2 ds,
and x α is defined as in Theorem 2.2.

The proof of this result is reported in Section 5.

Remark 2.6 (i) A similar result of Theorem 2.5 can be found in Gao-Liu [START_REF] Gao | Large Deviations for small perturbations of SDEs with Non-Markovian Coefficients and the Applications[END_REF]. However, our proof has a completely different flavor and, given the preparation of the PPDE theory, seems to be more direct, whence shorter.

(ii) The condition on the boundary ∂O can be slightly weakened. Examining the proof of Lemma 5.1, where this condition is used, we see that it is sufficient to assume that O can be approximated from outside by open bounded sets with C 3 boundary.

Remark 2.7

The result of Theorem 2.5 is still valid in the context of Remark 2.3.

This can be immediately verified by examining the proof of Theorem 2.5.

Path-dependent Eikonal equation

We next provide a characterization of our asymptotics in terms of partial differential equations. We refer to Evans & Ishii [START_REF] Evans | A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities[END_REF], Fleming & Souganidis [START_REF] Fleming | PDE-viscosity solution approach to some problems of large deviations[END_REF], Evans-Souganidis [START_REF] Evans | A PDE approach to geometric optics for semilinear parabolic equations[END_REF], Evans, Souganidis, Fournier & Willem [START_REF] Evans | A PDE approach to certain large deviation problems for systems of parabolic equations[END_REF], Fleming & Soner [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF],

for the corresponding PDE literature with a derivation by means of the powerful theory of viscosity solutions.

Due to the path dependence in the dynamics of our state process X, and the corresponding limiting system x α , our framework is clearly not covered by any of these existing works. Therefore, we shall adapt the notion of viscosity solutions introduced in Lukoyanov [START_REF] Lukoyanov | On Viscosity Solution of Functional Hamilton-Jacobi Type Equations for Hereditary Systems[END_REF].

Consider the truncated Eikonal equation:

-∂ t u -F K 0 ., ∂ ω u, ∂ x u (t, ω, x) = 0 for (t, ω, x) ∈ Θ 0 , (2.5) 
where K 0 is a fixed parameter, and the nonlinearity F K 0 is given by:

F K 0 (θ, p ω , p x ) := b(θ) • p x + inf |a|≤K 0 1 2 a 2 + a p ω + σ(θ) T p x , (2.6) 
for all θ ∈ Θ, p ω ∈ R d and p x ∈ R n . Notice that

F K 0 (θ, p ω , p x ) -→ b(θ) • p x - 1 2 p ω + σ T p x 2 as K 0 → ∞,
the equation (2.5) thus leads to a path-dependent Eikonal equation. We note that the truncated feature of the equation (2.5) is induced by the fact that the corresponding solution will be shown to be Lipschitz under our assumptions.

Classical derivatives

Denote Ω := Ω d × Ω n and ω = (ω, x) a generic element of Ω, Θ := [0, T ] × Ω, and

Θ 0 := [0, T ) × Ω. The set Θ is endowed with the pseudo-distance d(θ, θ ′ ) := |t -t ′ | + ωt∧ -ω′ t ′ ∧ for all θ = (t, ω), θ ′ = (t ′ , ω′ ) ∈ Θ.
For any integer k > 0, we denote by C 0 (Θ, R k ) the collection of all continuous function

u : Θ -→ R k . Notice, in particular, that any u ∈ C 0 (Θ, R k ) is non-anticipative, i.e. u(t, ω) = u(t, (ω s ) s≤t ) for all (t, ω) ∈ Θ.
We denote ΩK as the set of all K-Lipschitz paths. For θ = (t, ω) ∈ Θ 0 , we denote Θ(θ) := ∪ K≥0 Θ K (θ), where:

Θ K (θ) := (t ′ , ω′ ) ∈ Θ : t ′ ≥ t, ω′ t∧ = ωt∧ , and ω′ | [t,T ] is K-Lipschitz . Definition 2.8 A function ϕ : Θ -→ R is said to be C 1,1 (Θ) if ϕ ∈ C 0 (Θ, R), and
we may find

∂ t ϕ ∈ C 0 (Θ, R), ∂ ω ϕ ∈ C 0 (Θ, R d+n ), such that for all θ = (t, ω) ∈ Θ: ϕ(θ ′ ) = ϕ(θ) + ∂ t ϕ(θ)(t ′ -t) + ∂ ω ϕ(θ)(ω ′ t ′ -ωt ) + • ω′ (t ′ -t) for all θ ′ ∈ Θ(θ),
where

• ω′ (h)/h -→ 0 as h ց 0.
The derivatives ∂ ω and ∂ x are defined by the natural

decomposition ∂ ω ϕ = (∂ ω ϕ, ∂ x ϕ) T .
The last collection of smooth functions will be used for our subsequent definition of viscosity solutions.

Viscosity solutions of the path-dependent Eikonal equation

Let Θ 0 K := [0, T ) × ΩK .
The set of test functions is defined for all K > 0 and θ ∈ Θ 0 K by:

A K u(θ) := ϕ ∈ C 1,1 (Θ) : (ϕ -u)(θ) = min θ ′ ∈Θ K (ϕ -u)(θ ′ ) , (2.7) 
A K u(θ) := ϕ ∈ C 1,1 (Θ) : (ϕ -u)(θ) = max θ ′ ∈Θ K (ϕ -u)(θ ′ ) . (2.8)
Definition 2.9 Let u : Θ -→ R be a continuous function.

(i) u is a K-viscosity subsolution of (2.5), if for all θ ∈ Θ 0 K , we have

-∂ t ϕ -F K 0 (., ∂ ωϕ) (θ) ≤ 0 for all ϕ ∈ A K u(θ).
(ii) u is a K-viscosity supersolution of (2.5), if for all θ ∈ Θ 0 K , we have

-∂ t ϕ -F K 0 (., ∂ ωϕ) (θ) ≥ 0 for all ϕ ∈ A K u(θ).
(iii) u is a K-viscosity solution of (2.5) if it is both K-viscosity subsolution and supersolution.

Wellposedness of the path-dependent Eikonal equation

We only focus on the asymptotics of Laplace transform. For simplicity, we adopt the following strengthened version of Assumption 2.1.

Assumption 2.10 The coefficients b and σ are bounded and satisfy Assumption 2.1.

A natural candidate solution of equation (2.5) is the dynamic version of the limit L 0 introduced in Theorem 2.2:

u(t, ω) := inf α∈L 2 d ([t,T ]) ξ t,ω (ω α,t,ω ) + 1 2 T t |α s | 2 ds , (t, ω) ∈ Θ, (2.9) 
where ωα,t,ω := (ω α,t,ω , x α,t,ω ) is defined by:

ω α,t,ω s = s 0 α t+r dr, x α,t,ω s = s 0 b t+r (ω ⊗ t ωα,t,ω )dr + s 0 σ t+r (ω ⊗ t ωα,t,ω )dω α,t,ω r ,
with the notation (ω ⊗ t ω′ ) s := 1 {s≤t} ωs + 1 {s>t} ωt + ω′ s-t , and

ξ t,ω (ω ′ ) := ξ (ω ⊗ t ω′ ) T ∧• for all ω, ω′ ∈ Ω.
Theorem 2.11 Let Assumption 2.10 hold true, and let ξ be a bounded Lipschitz function on Ω. Then, for K and K 0 sufficiently large, the function u defined in (2.9)

is the unique bounded K-viscosity solution of the path-dependent PDE (2.5).

The proof of this result is reported in Section 6.

3 Application to implied volatility asymptotics

Implied volatility surface

The Black-Scholes formula BS(K, σ 2 T ) expresses the price of a European call option with time to maturity T and strike K in the context of a geometric Brownian motion model for the underlying stock, with volatility parameter σ ≥ 0:

BS(k, v) := BS(K, v) S 0 := (1 -e k ) + for v = 0, N d + (k, v) -e k N d -(k, v) , for v > 0,
where S 0 denotes the spot price of the underlying asset, v := σ 2 T is the total variance, k := ln(K/S 0 ) is the log-moneyness of the call option, N(x) := (2π) -1/2 x -∞ e -y 2 /2 dy,

d ± (k, v) := -k √ v ± √ v 2 ,
and the interest rate is reduced to zero.

We assume that the underlying asset price process is defined by the following dynamics under the risk-neutral measure P 0 :

dS t = S t σ t (B, S)dB t , P 0 -a.s.
so that the price of the T -maturity European call option with strike K is given by

E P 0 (S T -K) + .
The implied volatility surface (T, k) -→ Σ(T, k) is then defined as the unique non-negative solution of the equation

N d + (k, Σ 2 T ) -e k N d -(k, Σ 2 T ) = Ĉ(T, k) := E P 0 e X T -e k + ,
where X t := ln (S t /S 0 ), t ≥ 0.

Our interest in this section is on the short maturity asymptotics T ց 0 of the implied volatility surface Σ(T, k) for k > 0. This is a relevant practical problem Our starting point is the following limiting result which follows from standard calculus:

lim v→0 v ln BS(k, v) = - k 2 2
, for all k > 0.

We also compute directly that, for k > 0, we have Ĉ(T, k) -→ 0 as T ց 0. Then T Σ(T, k) 2 -→ 0 as T ց 0, and it follows from the previous limiting result that lim

T →0 T Σ(T, k) 2 ln Ĉ(T, k) = - k 2 2
, for all k > 0.

(3.10)

Consequently, in order to study the asymptotic behavior of the implied volatility surface Σ(T, k) for small maturity T , we are reduced to the asymptotics of T ln Ĉ(T, k)

for small T , which will be shown in the next subsection to be closely related to the large deviation problem of Subsection 2.2. Hence, our path-dependent large deviation results enable us to obtain the short maturity asymptotics of the implied volatility surface in the context where the underlying asset is a non-Markovian martingale under the risk-neutral measure.

Short maturity asymptotics

Recall the process X t := ln(S t /S 0 ). By Itô's formula, we deduce the dynamic for process X:

dX t = - 1 2 σ X t (B, X) 2 d B t + σ X t (B, X)dB t , (3.11) 
where σ X (ω, x) := σ ω, S 0 e x• . For the purpose of the application in this section, we need to convert the short maturity asymptotics into a small noise problem, so as to apply the main results from the previous section. In the present path-dependent case, this requires to impose a special structure on the coefficients of the stochastic differential equation (3.11).

For a random variable Y and a probability measure P, we denote by L P (Y ) the

P-distribution of Y . Assumption 3.1 The diffusion coefficient σ X : [0, T ] × Ω d × Ω n -→ R is non-
anticipative, Lipschitz-continuous, takes values in [σ, σ] for some σ ≥ σ > 0, and satisfies the following small-maturity small-noise correspondence:

L P 0 (X ε ) = L P ε (X 1 ) for all ε ∈ [0, 1).
Remark 3.2 Assume that σ is independent of ω and satisfies the following timeindifference property:

σ X ct (x) = σ X t (x c
) for all c > 0, where

x c s := x cs , s ∈ [0, T ].
Then, L P 0 (X s ) s≤ε = L P ε (X s ) s≤1 for all ε ∈ [0, 1), which implies that the smallmaturity small-noise correspondence holds true. In particular, the time-indifference property holds in the homogeneous Markovian case σ t (x) = σ(x t ).

In view of (3.10) and the small-maturity small-noise correspondence of Assumption 3.1, we are reduced to the asymptotics of

ε ln E P ε [(e X 1 -e k ) + ] as ε → 0.
Under P ε the dynamics of X is given by the stochastic differential equation:

dX t = - ε 2 σ X t (B, X) 2 dt + σ X t (B, X)dB t , P ε -a.s.
whose coefficients satisfy the conditions given in Remarks 2.3 and 2.7. Consider the stopping time

H a,b := inf{t : X t ∈ (a, b)} for -∞ < a < b < +∞.
Then, it follows from Theorem 2.5 and Remark 2.7 that

Q ε 0 := -ε ln P ε H a,b ≤ 1 -→ Q 0 (a, b) as ε ց 0,
where Q 0 (a, b) is defined as in Theorem 2.5 in terms of the controlled function x α of Theorem 2.2:

Q 0 (a, b) := inf 1 2 1 0 |α s | 2 ds : α ∈ L 2 d , x α 1∧• / ∈ O a,b ,
where O a,b := x : x t ∈ (a, b) for all t ∈ [0, 1] . The rest of this section is devoted to the following result.

Proposition 3.3 lim ε→0 -ε ln E P ε [(e X 1 -e k ) + ] = Q 0 (k) := lim a→-∞ Q 0 (a, k).
Proof 1. We first show that lim

ε→0 ε ln E P ε [(e X 1 -e k ) + ] ≤ -Q 0 (k). (3.12) 
Fix some p > 1 and the corresponding conjugate q > 1 defined by 1 p + 1 q = 1. By the Hölder inequality, we estimate that

E P ε (e X 1 -e k ) + ≤ E P ε e X 1 1 {X 1 ≥k} ≤ E P ε e qX 1 1/q P ε [H a,k ≤ 1] 1/p , for all a < k.
By standard estimates, we may find a constant C p such that E P ε e qX 1 ≤ C p for all ε ∈ (0, 1). Then,

ε ln E P ε (e X 1 -e k ) + ≤ ε q ln C p + ε p ln P ε [H a,k ≤ 1],
which provides (3.12) by sending ε → 0 and then p → 1.

2.

We next prove the following inequality:

lim ε→0 ε ln E P ε [(e X 1 -e k ) + ] ≥ -Q 0 (k). (3.13)
For n ∈ N, denote f n (x) := (e -n -x) + + (x -e k ) + for x ∈ R. Since f n is convex and e X is P ε -martingale, the process f e X is a non-negative P ε -submartingale. For a sufficiently small δ > 0, set a n,δ := ln(e -n -δ) and k δ := ln(e k + δ). Then, it follows from the Doob inequality that

P ε [H a n,δ ,k δ ≤ 1] = P ε max t≤1 f n e Xt ≥ δ ≤ 1 δ E P ε f n e X 1 . (3.14) 
We shall prove in Step 3 below that lim ε→0

E P ε [(e -n -e X 1 ) + ] E P ε [(e X 1 -e k ) + ] = 0 for large n. (3.15)
Then, it follows from (3.14), by sending ε → 0, that

-Q 0 (a n,δ , k δ ) ≤ lim ε→0 ε ln E P ε [(e X 1 -e k ) + ].
Finally, sending δ → 0 and then n → ∞, we obtain (3.13).

3.

It remains to prove (3.15). Since σ ≤ σ ≤ σ, by Assumption 3.1, it follows from the convexity of s -→ (e -n -s) + and s -→ (s -e k ) + that

E P ε [(e -n -e X 1 ) + ] E P ε [(e X 1 -e k ) + ] ≤ E P ε [(e -n -e -1 2 εσ 2 +σB 1 ) + ] E P ε [(e -1 2 εσ 2 +σB 1 -e k ) + ]
.

Further, we have

E P ε e -n -e -1 2 εσ 2 +σB 1 + ≤ e -n N 1 2 σ √ ε - n σ √ ε ,
and, by the Chebyshev inequality,

E P ε [(e -1 2 εσ 2 +σB 1 -e k ) + ] ≥ λP ε [e -1 2 εσ 2 +σB 1 ≥ e k + λ] = λN - 1 2 σ √ ε - ln(e k + λ) σ √ ε . Using the estimate N(-x) ∼ 1 √ 2π x -1 e -x 2 2
, we obtain that lim ε→0

E P ε [(e -n -e X 1 ) + ] E P ε [(e X 1 -e k ) + ] ≤ C exp -lim ε→0 1 2ε n 2 σ 2 - (ln(e k + λ)) 2 σ 2 = 0, whenever n 2 > σ 2 σ 2 (ln(e k + λ)) 2 .

Asymptotics of Laplace transforms

Our starting point is a characterization of Y ε 0 in terms of a quadratic backward stochastic differential equation. Let

Y ε t := -ε ln E P ε t e -1 ε ξ(B,X) , t ∈ [0, T ]. (4.16)
where E P ε t denotes expectation operator under P ε , conditional to F t .

Proposition 4.1

The processes Y ε is bounded by ξ ∞ , and is uniquely defined as the bounded solution of the quadratic backward stochastic differential equation

Y ε t = ξ - 1 2 T t Z ε s 2 ds + T t Z ε s • dB s , P ε -a.s.
Moreover, the process Z ε satisfies the BMO estimate

Z H 2 bmo (P ε ) := sup t∈[0,T ] E P ε t T t Z ε s 2 ds L ∞ (P ε ) ≤ 4 ξ ∞ . (4.17) Proof Since ξ is bounded, we see immediately that Y ε t ≤ -ε ln e -1 ε ξ ∞ = ξ ∞ and, similarly Y ε t ≥ -ξ ∞ .
Consequently, the process

p ε := e -1 ε Y ε = E P ε t [e -1 ε ξ(B,X) ]
is a bounded martingale. By martingale representation, there exists a process q ε , with

E P ε T 0 |q ε t | 2 dt < ∞, such that p ε t = p ε 0 + t 0 q ε s • dB s , for all t ∈ [0, T ].
Then, Y ε solves the quadratic backward SDE by Itô's formula. The estimate Z H 2 bmo (P ε ) follows immediately by taking expectations in the quadratic backward SDE, and using the boundedness of Y ε by ξ ∞ .

We next provide a stochastic control representation for the process Y ε . For all α ∈ H 2 bmo , we introduce

M ε,α T := e 1 ε T 0 αt•dBt-1 2ε T 0 |αt| 2 dt.
Then E P ε M ε,α T = 1, and we may introduce an equivalent probability measure P ε,α by the density dP ε,α := M ε,α T dP ε . Define:

Y ε,α t = E P ε,α ξ + 1 2 T t |α s | 2 ds , P ε -a.s. Lemma 4.2 We have Y ε 0 = Y ε,Z ε 0 = inf α∈H 2 bmo (P ε ) Y ε,α 0 .
Proof Notice that Y ε,α solves the linear backward SDE

dY ε,α t = -Z ε,α t • dB t -Z ε,α t • α t - 1 2 |α t | 2 dt, P ε -a.s. Since -1 2 z 2 = inf a∈R d -a • z + 1 2 a 2
, it follows from the comparison of BSDEs that Y ε,α ≥ Y ε . The required result follows from the observation that the last supremum is attained by a * = z, and that

Y ε,Z ε = Y ε . Proof of Theorem 2.2. First, it is clear that L 2 d ⊂ ∩ ε>0 H 2 bmo (P ε ). Let α ∈ L 2 d and any ε > 0 be fixed. Since α is deterministic, it follows from the Girsanov Theorem that Y ε,α 0 = E P 0 ξ(W ε,α , X ε,α ) + 1 2 T 0 |α t | 2 dt ,
where

W ε,α t := √ εB t + t 0 α s ds, X ε,α t = X 0 + t 0 b s (W ε,α , X ε,α s )ds + t 0 σ s (W ε,α , X ε,α s )dW ε,α s , P 0 -a.s.
By the given regularities, it is clear that lim ε→0 Y ε,α

0 = l α 0 . Then it follows from Lemma 4.2 that lim ε→0 Y ε 0 ≤ lim ε→0 Y ε,α 0 = ℓ α 0 .
By the arbitrariness of α ∈ L 2 d , this shows that lim ε→0 Y ε 0 ≤ L 0 . To prove the reverse inequality, we use the minimizer from Lemma 4.2. Note that

P ε is equivalent to P ε,Z ε and for P ε -a.e. ω, α ε,ω := Z ε • (ω) ∈ L 2 d .
Then we compute that

Y ε 0 = Y ε,Z ε 0 = E P ε,Z ε ξ(B, X) + 1 2 T 0 Z ε t 2 dt ≥ L 0 + E P ε,Z ε ξ(B, X) -ξ ω Z ε (ω) , x Z ε (ω) (ω) ≥ L 0 -E P ε,Z ε ρ B -ω Z ε (ω) T + X -x Z ε (ω) (ω) T . By definition of ω α , notice that ω -→ W ε (ω) := ε -1/2 B(ω) -ω Z ε (ω) defines a Brownian motion under P ε,Z ε . Then it is clear that lim ε→0 E P ε,Z ε B -ω Z ε (ω) T = lim ε→0 E P ε,Z ε √ ε W ε T = 0.
Furthermore, recall that σ and b are Lipschitz-continuous, it follows from the comparison of SDEs that δ t ≤ X -x Z ε ≤ δ t , where δ 0 = δ 0 = 0, and

dδ t = σ t (B, X) √ εdW ε t -L √ ε W ε t + δ t (|Z ε t | + 1) dt, dδ t = σ t (B, X) √ εdW ε t + L √ ε W ε t + δ t (|Z ε t | + 1)) dt.
We now estimate δ. The estimation of δ follows the same line of argument. Denote

K t := t 0 σ s (B, X)dW ε s
. By Gronwall's inequality, we obtain

ε -1/2 δ T = L W ε T T 0 e L T t (|Z ε s |+1)ds (|Z ε t | + 1) dt + T 0 e L T t (|Z ε s |+1)ds d K t ≤ e L T 0 (|Z ε s |+1)ds ( W ε T + K T ) .
Then,

ε -1/2 e -LT E P ε,Z ε [ δ T ] ≤ E P ε,Z ε e L T 0 |Z ε s |ds [ W ε T + K T ≤ E P ε,Z ε e 2L T 0 |Z ε s |ds 1 2 E P ε,Z ε W ε 2 T + K 2 T 1 2 .
Recall that σ t (0, x) is bounded. One may easily check that, for some constant C independent of ε,

E P ε,Z ε W ε 2 T + K 2 T ≤ C.
Moreover, note that

Y ε t = ξ + 1 2 T t |Z ε s | 2 ds - √ ε T t Z ε t dW ε t .
Then, it follows that Z H 2 bmo (P ε,Z ε ) ≤ 4 ξ ∞ , and

E P ε,Z ε e η T 0 |Z ε s | 2 ds
≤ C for all ε > 0, for some η > 0 and C > 0 independent of ε, see e.g. [START_REF] Cvitanić | Contract Theory in Continuous-Time Models[END_REF]. This implies

E P ε,Z ε e 2L T 0 |Z ε s |ds ≤ C and thus E P ε,Z ε [ δ T ] ≤ C √ ε, ∀ε.
Similarly,

E P ε,Z ε [ δ T ] ≤ C
√ ε, and we may conclude that

E P ε,Z ε ρ B -ω Z ε T + X -x Z ε
T -→ 0, as ε ց 0, completing the proof.

Asymptotics of the exiting probability

This section is dedicated to the proof of Theorem 2.5. As before, we introduce the processes:

Y ε t := -ε ln p ε t , p ε t := P ε t [H < T ] for all t ≤ T.
Unlike the previous problem, the present example features an additional difficulty due to the singularity of the terminal condition:

lim t→T Y ε t = ∞ on {H ≥ T }.
We shall first show that lim ε↓0 Y ε 0 ≤ Q 0 . Adapting the argument of Fleming & Soner [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF], this will follow from the following estimate.

Lemma 5.1 There exists a constant K such that for any ε > 0 we have

Y ε t ≤ Kd(X t , ∂O) T -t for all t < T and t ≤ H, P ε -a.e.
Proof First, fix T 1 < T . For x ∈ R d , we denote by x 1 its first component. Since O is bounded, there exists constant m such that x 1 + µ > 0 for all x ∈ O. Define a function:

g ε (t, x) := exp - λ(x 1 + µ) ε(T 1 -t) , for t < T 1 , x ∈ cl(O),
where λ is some constant to be chosen later. By Itô's formula, we have P ε -a.s.,

dg ε (t, X t ) = g ε (t, X t ) ε(T 1 -t) 2 1 2 a 1,1 t (B, X)λ 2 -λ(X 1 t + µ) -(T 1 -t)λb 1 t (B, X) dt + dM t ,
for some P ε -martingale M. Since a 1,1 is uniformly bounded away from zero and b 1 is uniformly bounded, the dt-term of the above expression is positive for a sufficiently

large λ = λ * . Hence, g ε (t, X t ) is a submartingale on [0, T 1 ∧ H]. Also, note that g ε (T 1 , X T 1 ) = 0 ≤ p ε T 1 and g ε (H, X H ) ≤ 1 = p ε H . Since p ε is a martingale, we conclude that g ε (t, X t ) ≤ p ε t for all t ≤ T 1 ∧ H, P ε -a.s. Denote d(x) := d(x, ∂O). Since ∂O is C 3 , there exists a constant η such that on {x ∈ O : d(x) < η}, the function d is C 2 . Now, define gε (t, x) := exp - Kd(x) ε(T 1 -t) , for t < T 1 , x ∈ cl(O), for some K ≥ λ * (C+µ) η . Clearly, for t ≤ T 1 ∧ H and d(X t ) ≥ η, we have gε (t, X t ) ≤ g ε (t, X t ) ≤ p ε t , P ε -a.s.
In the remaining case t ≤ T 1 ∧ H and d(X t ) < η, we will now verify that gε (s,

X s )1 {d(Xt)<η} , s ∈ [t, H η ∧ H ∧ T ] is a P ε -submartingale,
where H η := inf{s : d(X s ) ≥ η}. By Itô's formula, together with the fact that

|Dd(x)| = 1, dg ε (s, X s ) = K gε (s, X s ) ε(T 1 -s) 2 K 2 a s Dd(X s ) • Dd(X s ) -ε T 1 -s 2 tr a s D 2 d(X s ) -(T 1 -s)b s • Dd(X s ) -d(X s ) ds + dM s ≥ K gε (s, X s ) ε(T 1 -s) 2 K 2 δ -ε T 1 -s 2 |a s | D 2 d(X s ) -(T 1 -s) b s ds + dM s .
Hence, for sufficiently large K = K * , the dt-term is positive, and gε (s, X s )1 {d(Xt)<η} is a submartingale for s ∈ [t, H η ∧ H ∧ T ]. We also verify directly that gε (H η ∧ H ∧ T, X Hη∧H∧T )1 {d(Xt)<η} ≤ p ε Hη∧H∧T , P ε -a.s.

Since p ε is a P ε -martingale, we deduce that gε (t, X t ) ≤ p ε t for t ≤ T 1 ∧ H and d(X t ) < η. Thus, we may conclude that gε (t, X t ) ≤ p ε t for all t ≤ T 1 ∧ H, P ε -a.s.

Let T 1 → T , we finally get

Y ε t ≤ Kd(X t )
T -t for all t < T and t ≤ H, P ε -a.s.

Proposition 5.2 lim ε↓0 Y ε 0 ≤ Q 0 .
Proof As in Proposition 4.1, we may show that there exists a process Z ε such that for any T 1 < T :

Y ε t = Y ε T 1 - 1 2 T 1 t |Z ε s | 2 ds + T 1 t Z ε s • dB s , P ε -a.s.
Define a sequence of BSDEs:

Y ε,T 1 t = Kd(X T 1 , O c ) T -T 1 - 1 2 T 1 t |Z ε,T 1 s | 2 ds + T 1 t Z ε,T 1 t • dB s , P ε -a.s. Note that Y ε T 1 ∧H ≤ Kd(X T 1 ∧H ,O c ) T -T 1 ∧H ≤ Kd(X T 1 ,O c ) T -T 1
. By Lemma 5.1 and the comparison principle of BSDE, we deduce that

Y ε 0 ≤ Y ε,T 1 0
for all T 1 < T.

Since ξ(x) :=

Kd(x T 1 ,O c ) T -T 1
is bounded and uniformly continuous, it follows from Theorem

2.2 that lim ε→0 Y ε,T 1 0 = y T 1 0 := inf α∈L 2 1 2 T 1 0 α 2 t dt + Kd(x α T 1 , O c ) T -T 1 .
Thus, we have

lim ε↓0 Y ε 0 ≤ inf α∈L 2 1 2 T 1 0 α 2 t dt + Kd(x α T 1 , O c ) T -T 1 ≤ inf α∈L 2 ,x α T 1 / ∈O 1 2 T 0 α 2 t dt .
Finally, observe that inf

α∈L 2 ,x α T 1 / ∈O 1 2 T 0 α 2 t dt = inf α∈L 2 ,x α T 1 ∧• / ∈O 1 2 T 0 α 2 t dt -→ Q 0 , as T 1 → T.
To complete the proof of Theorem 2.5, we next complement the result of Proposition 5.2 by the opposite inequality.

Proposition 5.3 lim ε↓0 Y ε 0 ≥ Q 0 .
Proof We organize the proof in three steps.

1. Define another sequence of BSDEs:

Y ε,T 1 ,m t = md(X T 1 , O c ) ∧ Y ε T 1 - 1 2 T 1 t |Z ε,T 1 ,m s | 2 ds + T 1 t Z ε,T 1 ,m t • dB s , P ε -a.s.
By comparison of BSDEs, we have that Y ε,T 1 ,m t ≤ Y ε t for all t ≤ T 1 . Then, by the stability of BSDEs, we know that Y ε,T 1 ,m converge to the solution of the following BSDE as T 1 → T :

Y ε,m t = md(X T , O c ) - 1 2 T t |Z ε,m s | 2 ds + T t Z ε,m t • dB s , P ε -a.s.
Again, we may apply Theorem 2.2 and get that

lim ε↓0 Y ε 0 ≥ lim ε↓0 Y ε,m 0 = y m 0 := inf α∈L 2 1 2 T 0 α 2 s ds + md(x α T , O c ) .
(5.18)

2. We now prove that the sequence y m 0 m is bounded. Take α t ≡ C • 1. Then

x α T = x 0 + T 0 (b t + Cσ t • 1)dt.
Since b is bounded and σ is positive, when C = C 0 is sufficiently large, we will have

x α T / ∈ O. Hence, y m 0 ≤ 1 2 C 2 0 T d. 3.
In view of (5.18), we now conclude the proof of the proposition by verifying that

y m 0 -→ Q 0 , as m → ∞. Let ρ > 0.
By the definition of y m 0 , there is a ρ-optimal α ρ :

y m 0 + ρ > 1 2 T 0 |α ρ t | 2 dt + md(x ρ T , O c ),
where we denoted x ρ := x α ρ . By the boundedness of (y m 0 ) m in Step 2, we have d(x ρ T , O c ) ≤ C m . So, there exists a point

x 0 ∈ ∂O such that |x ρ T -x 0 | ≤ C m . Define: αt := α ρ t + σ -1 t x 0 -x ρ T T .
Then, x α T = x 0 / ∈ O. Also, note that σ -1

t x 0 -x ρ T T = o( 1 m ) when m → ∞. Hence, 1 2 T 0 |α ρ t | 2 dt = 1 2 T 0 | αt -σ -1 t x 0 -x ρ T T | 2 dt ≥ inf α∈L 2 ,x α T / ∈O 1 2 T 0 |α t | 2 dt + o( 1 m ).
Finally, sending m → ∞, we see that lim m→∞ y m 0 + ρ ≥ Q 0 . Since ρ is arbitrary, the proof is complete.

Viscosity property of the candidate solution

This section is devoted to prove Theorem (2.11). Lemma 6.1 Fix K ≥ 0. There exists a constant C such that for any t ∈ [0, T ] and

ω1 , ω2 ∈ Ω, sup α: T t |α| 2 s ds≤K ωα,t,ω 1 -ωα,t,ω 2 ≤ C ω1 -ω2 t
Proof By the definition of ωα,t,ω i (i = 1, 2), we know that the components ω α,t,ω i are equal. The difference comes from the component x α,t,ω i . Denote δx t := x α,t,ω 1 -

x α,t,ω 2 2 t . Then, by the definition of x α,t,ω i and the Lipschitz continuity of b and σ, we obtain that

δx s ≤ s 0 C( ω1 -ω2 2 t + δx r )dr + C s 0 ( ω1 -ω2 t + δx r )|α r |dr 2 ≤ s 0 C( ω1 -ω2 2 t + δx r )dr + 2KC( s 0 ( ω1 -ω2 2 t + δx r )dr)
Finally, the claim results from the Gronwall's inequality.

By standard argument, one may easily show the following dynamic programming for the optimal control problem (2.9). Lemma 6.2 (Dynamic programming) Let u be the value function defined in (2.9).

Then, for all 0 ≤ t ≤ s ≤ T and ω ∈ Ω, we have

u(t, ω) = inf α∈L 2 d 1 2 s t |α s | 2 ds + u t,ω (s -t, ωα,t,ω ) ,
where u t,ω (t ′ , ω′ ) := u(t + t ′ , ω ⊗ t ω′ ).

Lemma 6.3 The function u defined in (2.9) is bounded and Lipschitz-continuous.

Proof

Clearly, u inherits the bound of ξ. For t ∈ [0, T ], ω1 , ω2 ∈ Ω, since ξ is bounded, there exists constant K such that

u t (ω i ) = inf α∈L 2 d 1 2 T t |α s | 2 ds + ξ t,ω i (ω α,t,ω i ) = inf α: T t |α| 2 s ds≤K 1 2 T t |α s | 2 ds + ξ t,ω i (ω α,t,ω i ) .
It follows from Lemma 6.1 that: 

u(t, ω1 ) -u(t, ω2 ) ≤ sup α: T t |α| 2 s ds≤K ξ t,ω 1 (ω α ) -ξ t,ω 2 (ω α ) ≤ C ω1 t∧• -ω2 t∧• . ( 6 
u(t + h, ω1 ) -u(t, ω2 ) ≤ u(t + h, ω1 ) -u(t + h, ω1 t∧• ) + u(t + h, ω1 t∧• ) -u(t, ω1 ) + u(t, ω1 ) -u(t, ω2 ) ≤ C ′ ( ω1 t+h t + h + ω1 t∧• -ω2 t∧• ) ≤ 3C ′ (h + ω1 (t+h)∧• -ω2 t∧• ).
Now, consider a functional u K :

u K (t, ω) := inf α ∞ ≤K ξ(ω ⊗ t ωα,t,ω ) + 1 2 T t |α s | 2 ds ; Notice that u K ≥ u K-1 ≥ u.
Proposition 6.4 For K sufficiently large, we have u = u K .

Proof Similar to Lemma 6.3, for each K, one may easily see that u K (t, •) is uniformly Lipschitz in ω with the same Lipschitz constant denoted as L. We first claim that there exists α K such that

u K (0, 0) = ξ(ω α K ) + 1 2 T 0 |α K t | 2 dt. (6.22) 
Then for any t and h, one can easily show that

u K (t, ωα K ) = u K (t + h, ωα K ) + 1 2 t+h t |α K s | 2 ds.
On the other hand, by the dynamic programming,

u K (t, ωα K ) ≤ u K (t + h, ωα K t∧• ). Then 1 2 t+h t |α K s | 2 ds ≤ u K (t + h, ωα K t∧• ) -u K (t + h, ωα K ) ≤ L ωα K -ωα K t∧• t+h ≤ CL t+h t (1 + |α K s |)ds,
where C is a common bound for the coefficients b and σ. Since t and h are arbitrary,

we get α K ∞ ≤ C ′ for some constant C ′ independent of K. Then u K = u C ′ for any K ≥ C ′ , and thus u = u C ′ .
We now prove the existence claim (6.22). Let α K,n be a minimum sequence of controls for u K (0, 0), namely

u K (0, 0) = lim n→∞ ξ(ω α K,n ) + 1 2 T 0 |α K,n t | 2 dt . (6.23) 
By compactness of Ω K , the sequence {ω α K,n , n ≥ 1} has a limit ω K ∈ Ω K , after possibly passing to a subsequence: This implies that ω K = ω α K . Further, by Gronwall's inequality, we obtain that lim n→∞ x α K,n -x α K T = 0. (6.25)

Now by Mazur's lemma, there exist convex combinations αK,n = i c n i α K,m n i , where m n i ≥ n, such that { αK,n , n ≥ 1} converges to α K strongly in L 2 ([0, T ]). Then by Jensen's inequality we see that On the other hand, by (6.24), (6.25) and since ξ is continuous, we have ξ(ω α K ) = lim n→∞ i c n i ξ(ω α K,m n i ).

Then

ξ(ω α K ) + 1 2 T 0 |α K t | 2 dt ≤ lim n→∞ i c n i ξ(ω α K,m n i ) + 1 2 T 0 |α K,m n i t | 2 dt = u K (0, 0),
where the last equality follows from (6.23). This proves the claim.

Clearly our equation (2.5) satisfies the conditions of Lukoyanov [START_REF] Lukoyanov | On Viscosity Solution of Functional Hamilton-Jacobi Type Equations for Hereditary Systems[END_REF], so that a comparison result for bounded viscosity super and subsolutions holds true. Conseuently, uniqueness holds for (2.5) within the class of bounded functions and, in order to prove Theorem 2.11 it remains to verify that u satisfies the viscosity properties.

Proof of Theorem 2.11 Fix K 0 such that u = u K 0 . Recall that b and σ are bounded by C. Then, define K := C(1 + K 0 ), so that for all α ∞ ≤ K 0 and ω ∈ ΩK , we have ωα,t,ω ∈ ΩK .

We first prove the viscosity subsolution property. Let (t, ω) ∈ Θ K , and ϕ ∈ A K u(t, ω). By the dynamic programming principle, we have: By sending h → 0, we obtain

u(t, ω) = inf
-∂ t ϕ + b • ∂ x ϕ + inf |α|≤K 0 1 2 |α| 2 + α • (∂ ω ϕ + σ T ∂ x ϕ) (t, ω) ≤ 0.
We next prove the viscosity supersubsolution property. Assume not, then there exists ϕ ∈ A K u(t, ω) such that

c := -∂ t ϕ + b • ∂ x ϕ + inf |α|≤K 0 1 2 |α| 2 + α • (∂ ω ϕ + σ T ∂ x ϕ) (t, ω) > 0.
Without loss of generality, we may assume that ϕ(t, ω) = u(t, ω). Recall that u = u K 0 . Now for any h > 0, by the dynamic programming, ϕ(t, ω) = u(t, ω) = inf α ∞ ≤K 0 u t,ω h (ω α,tω ) + 
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 25 Let O be a bounded open set in R n with C 3 boundary. Then, under Assumptions 2.1 and 2.4, we have:

  which is widely used by derivatives traders, and has induced an extensive literature initiated by Berestycki, Busca & Florent[START_REF] Berestycki | Asymptotics and calibration of local volatility models[END_REF][START_REF] Berestycki | Computing the implied volatility in stochastic volatility models[END_REF]. See e.g. Henry-Labordère[START_REF] Henry-Labordère | Geometry, and Modeling in Finance[END_REF], Hagan, Lesniewski, & Woodward[START_REF] Hagan | Probability distribution in the SABR model of stochastic volatility[END_REF], Ford and Jacquier[START_REF] Ford | Small-time asymptotics for implied volatility under the Heston model[END_REF], Gatheral, Hsu, Laurence, Ouyang & Wang[START_REF] Gatheral | Asymptotic of implied volatility in local volatility models[END_REF], Deuschel, Friz, Jacquier & Violante[START_REF] Deuschel | Marginal density expansions for diffusions and stochastic volatility, Part I: Theoretical foundations[END_REF][START_REF] Deuschel | Marginal density expansions for diffusions and stochastic volatility, Part II: Applications[END_REF], and Demarco & Friz[START_REF] Demarco | s estimates, projected diffusions, and local volatilities[END_REF].
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 2 [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF]) and since ξ is bounded, it is clear that sup n T 0 |α K,n t dt < ∞. Then without loss of generality we may assume {α K,n , n ≥ 1} converges to certain α K weakly in L 2 ([0, T ]). Then for any t and h,ω K t+h -ω K t = lim n→∞ [ω α K,n t+h -ω α K,n t

α∈L 2

 2 

  .[START_REF] Gao | Large Deviations for small perturbations of SDEs with Non-Markovian Coefficients and the Applications[END_REF] On the other hand, fixing ω, it follows from the dynamic programming principle thatu(t + h, ωt∧• ) -u(t, ω) = sup

	α∈L 2	-	1 2	t	t+h	α 2 s ds -u t,ω (h, ωα,t,ω ) + u(t + h, ωt∧• ) ≥ 0,
									(6.20)
	where the last inequality is induced by the constant control α = 0. Moreover, since b
	and σ are bounded, note that (ω ⊗ t using again the dynamic programming principle together with (6.19), we obtain ωα,t,ω ) (t+h)∧• -ωt∧• ≤ C t+h t (1 + |α s |)ds. Then,
	u(t + h, ωt∧• ) -u(t, ω) ≤ sup α∈L 2	t	t+h		-	1 2	α 2 s + C|α s | + C ds ≤	C 2 2	+ C h. (6.21)
	Combining this with (6.19), we see that			

  ∂ t ϕ + b • ∂ x ϕ + 1 2 |α| 2 + α • (∂ ω ϕ + σ T ∂ x ϕ) |∂ t ϕ t,ω (s, ωα,t,ω ) -∂ t ϕ(t, ω)| + |∂ ω ϕ t,ω (s, ωα,t,ω ) -∂

										1 2	t	t+h	|α s | 2 ds
				≥	inf α ∞ ≤K 0		ϕ t,ω h (ω α,t,ω ) +	1 2	t	t+h	|α s | 2 ds .
	Then,								
	0 ≥ =	inf α ∞ ≤K 0 inf α ∞ ≤K 0	ϕ t,ω h (ω α,t,ω ) -ϕ t (ω) + h 0 h	1 2	t	t+h	|α s | 2 ds	t,ω	(s, ωα,t,ω )ds
	≥	inf α ∞ ≤K 0	0	c -C					

ω ϕ(t, ω)| ds ≥ c -ρ d ∞ ((1 + K)h h,

which leads to a contradiction by choosing h sufficiently small.
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