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When glassy carbon (GC) ismechanically coveredwithmicrometric layers of graphene, the reduction of primary
alkyl halides (RX) can shift to the catalytic mode due to the fact that cathodically charged graphene may act as a
redox reducing agent triggering a classical redox catalytic process with a moderate gain (b0.2 V) in potential.
Alternatively, the injection of very small amounts of transition metals (not only Pd, but also Au, Ag or Pt) at
zero-valent state into the graphene layermay induce catalytic reduction of RIs and RBrs that allows the formation
of free radicals R• and their concomitant grafting, not only at the GC/graphene interface but also in bulk graphene
that plays the role of a three-dimensional radical scavenger. Therefore, by use of this simpleprocess, GC/graphene
layers could be converted into a 3D active interface. In order to quantify the global grafting/insertion of R•, ferro-
cene and aryl probes (Fc-n-alkyl-I and pyrene-CH2-Br) were used, attesting to significant modification of the
interface. Thus, for the first time, a bulky graphene–ferrocene layer (a redox system fully usable as a 3Dmodified
electrode) was built. This model could quite hopefully be envisaged for electrochemically incorporating many
other redox centers in graphene within the potential range of −2 V to +1 V vs. Ag/AgCl.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The use of carbon electrodes remains quite general in electrochemis-
try. In particular, glassy carbon (GC) is often preferred as cathodematerial
[1] due to its wide possibilities within both the anodic and the cathodic
range. For reductions, it is preferred to metals (Cu, Pd, and Au) because
of its reasonably good hydrogen over-potential value. GC was for long
supposed to be a quite inert material, non-reactive towards the products
of electrode reaction(s) and therefore considered as almost idealmaterial,
especially when used for cathodic scission of carbon–halogen bonds [2].
Very recently, the addition of free aryl [3] and alkyl [4] radicals, issued
from different cathodic scission reactions, onto glassy carbon permitted
to (re)consider that GC was finally a composite material embedding
graphite and fullerene-like nanoparticles. This material should hence be
seen as endowed with dual chemical reactivity and able to act both as a
radical trap and as an electroactive species (permitting the formation of
carbon poly-nucleophiles at E N −2 V vs. Ag/AgCl).

The intensive interest for graphite [5] for the last four decades
was made possible elaborating new reducing materials by potential-
controlled ion insertion, especially when using tetraalkylammonium
salts (TAA+X−), permitting one to reach very negative potentials
(b−3 V vs. Ag/AgCl) in aprotic polar solvents. An easy cathodic process
leading to almost total exfoliation of graphite by electrochemical
imonet).
insertions of bulky TAA+ cations was first described in the late 70s
[6]. Such graphite exfoliation should yield graphene that is consid-
ered as an intriguing poorly soluble redox material. Attempts to pre-
pare single graphene planes via well mastered exfoliation were
recently undertaken [7].

The possibilities for graphene (whose plane represents a two-
dimensional network of sp2 carbon atoms) immobilization may be
found in its π,π-interactions with basic acceptors that are grafted onto
solid (gold) support by conventional means. Recently, a model of inser-
tion of graphene imbedded in the polymer grafted onto GC was pro-
posed [8]. Obviously, the problem of an easy functionalization of solid
surfaces with graphene that would not (strongly) alter the properties
of this material is still open so that any positive results in this field are
of key importance.

A new strategy for fixing graphene (considered as a π-acceptor sys-
tem) onto glassy carbon could be developed exploiting the fact that the
substrate (GC) contains a lot of dispersed graphite and fullerene-like
microparticles [1]. An efficient technique for deposition of graphene
has been already proposed [8] and GC–graphene structures were
successfully used as cathodic interfaces up to rather negative potentials
(−2.5 V) without any remarkable swelling–exfoliation process if small
radii TAA+ saltswere used. Under such conditions, reproducible charge/
discharge processes clearly attributable to deposited graphenewere ob-
served, the first step being assigned to the primary redox process of the
material. Large possibilities offered by chemical and electrochemical re-
actions at such three-dimensional systems are evident but we
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intentionally limit the present project to the generation of free radicals
arising from carbon–halogen scission (from RX compounds) either in
the presence of metal catalysts (e.g., Pd0 or Au0) or through the use of
activated organic halides on the condition that the applied potential is
maintained above −1.5 V to avoid free-radical reduction. As shown
hereafter, graphene is associated with GC surfaces as a surface modifier.
We chose to build a GC/graphene thin layer doped bymetals that are re-
ported to enable electro-catalytic bond scission [9,10] with a large panel
of alkyl iodides and activated bromides. Under these conditions, free
radicals can be formed, not only at the GC surface, but also within the
entire graphene bulk to yield 3D redox materials that may possibly be
used as modified electrodes.

The preliminary results reported here show that these conditions
can be fulfilled (use of primary alkyl iodides on one hand and of
2-(bromomethyl)pyrene (BMP) on the other hand) allowing deep
chemical modification of graphene and building the conducting layers
attached to glassy carbon surfaces; thus produced 3D redox material,
exhibiting intense electrocatalytic capacity, that may have a great po-
tential for the use in redox catalysis, analysis, and energy-related fields.
2. Experimental section

Electrochemical experiments were carried out in 0.1 M solutions of
tetra-n-butylammonium tetrafluoroborate (TBABF4), in reagent-grade
dimethylformamide (DMF). Experiments described in thiswork needed
no special treatment of electrolytic solutions.

Potentials are referred to the aqueous Ag/AgCl/KCl(sat) system.
Voltammetric and coulometric measurements were performed in
three-electrode cells separated with a fritted glass. The electrochemical
instrumentation has been previously reported [4].

Glassy carbon (GC) electrodes used as substrates for graphene depo-
sition had geometric areas of 0.8 (GC1) and 7mm2 (GC3). All glassy car-
bon samples used as substrates were purchased from Tokai Carbon Co.
(code: GC Rod). Graphene was purchased from XG Sciences as XGnP
Graphene Nanoplatelets Grade C that typically consist of submicron
platelets (particle diameter b 2 μm, with thickness of a few nm). The
Fig. 1. Voltammetry of RIs at GC and GC–GR electrodes. Scan rate: 50mV s−1. GC3 electrode. Elect
responses of 1-iodopropyl-3-benzene (8.7 mmol L−1) at a GC–GR electrode without (B1) and
(11.3 mmol L−1) at smooth GC (a) and at a GC–GR electrode (b) doped in volume by Pd0 (2 ×
and (b: −1.1 V); resulting from these graftings, the voltammograms (below, DMF/TBABF
average surface is of the order of 750 m2/g and TEM images reveal al-
most transparent platelets. Oxygen content was reported to be
b2 wt.% and that of carbon was N98.0 wt.%. Galvanostatic deposition
of transition metals (Pd, Au, Pt and Cu) from the corresponding chlo-
rides (10% aqueous solution) was carried out in 0.1 M HCl passing ap-
proximately 10−6C per mm2 as previously reported [9]. Such a
procedure provides ca. 0.5 × 10−9 mol of themetal per square centime-
ter (apparent geometrical area).

Organic halides (primary alkyl iodides) and BMP were purchased
from Aldrich. The synthesis of Fc-(CH2)6-I was already described [4].

Prior to being modified by deposition of graphene, the electrodes
were carefully polished, first with silicon carbide paper {Struers 500}
and then with {Struers 1200}. Then, graphene was mechanically dis-
posed on the GC surface by strong pressure rubbing onto a planar sur-
face (glassy cardboard or polished agate) until shiny surfaces were
obtained. After these GC–graphene (eventually metallized) structures
were used as electrodes for halide reduction (potentiostatic reductions),
they were rinsed with water and then with acetone with final drying
under a hot air stream (60 °C).
3. Results

Before the voltammetric results specific to RIs at GC/graphene (GC–
GR) electrodes are discussed, we show a blank response in Fig. 1, curve
A. One observes a reversible first step at −1.75 V, followed by several
reproducible steps (specific to the TAAX used) assigned to further
charging processes. In the course of the backward scan, several
discharge steps are noticed. In the presence of RIs, multi-scan voltamm-
etry (shown for 1-iodopropylbenzene in Fig. 1, curve B) shows a pro-
gressive shift (see B1) towards negative potentials, which could
suggest progressive alkylation of deposited graphene via its poly-
nucleophilic transient form (Scheme 1, reactions 1 and 2) in a process
occurring at the potentials b−1.7 V similar to that already established
for GC and graphite [4].

In contrast, when one dopes graphene with very small amounts of
metals (Pd, Au, Cu, Ag), a large potential shift towards less negative
rolyte: DMF+ TBABF4. (A) Electrochemical response of a GC/graphene electrode. Multi-scan
with (B2) a Pd0 doping (2 × 10−10 mol cm−2). (C) Voltammetry of 1-iodobutylferrocene
10−10 mol cm−2). Potential was held for 1 min at the level of arrows (a: −1.9 V)
4 free of RI) of ferrocene were immobilized within the bulk of graphene layer.



Scheme 1. Nucleophilic (1–2) and radical (3–4) alkylation of graphene and of GC-deposited graphene. Bottom: SEM images of GC–GR interface: (A) Smooth surface with a mechanical
scratch on the right, (B) splintered surface, and (C) flank of the graphene layer.

36 V. Jouikov, J. Simonet / Electrochemistry Communications 42 (2014) 34–37
potentials (ΔE≈ 0.8 V)was observed concomitantlywith current decay
by half in the second scan, suggesting that the reactivity of graphene has
fundamentally changed. In fact, free alkyl radicals are now involved in
the process because the concerned potential range (around−1 V) cor-
responds to the zone of relative stability of these species (Scheme 1,
reactions 3 and 4). Under these conditions, graphene would appear to
be an efficient radical scavenger.

In order to check this, 1-iodopropyl-3-ferrocene (Fc-C3-I) was investi-
gated both as an electrophile and as a source of free radicals (catalytic
one-electron scission in the presence of Pd0 or Au0). This proposal was
fully verified: without graphenization, smooth GC shows an average
coverage by Fc equal to (3 ± 2) × 10−9 mol cm−2, the value rather
compatible with the supposed roughness of the substrate and the nature
of the alkylation process [4]. On the contrary, immobilization of ferrocene
under the conditions defined in the caption for Fig. 1 is much larger, 2.5
× 10−8 mol cm−2, i.e. 10 times higher. It was checked with Fc-C6-I that
fixed potential electrolyses (at −1 V) with 1.5 × 10−4C cm−2 led to a
huge filling of the graphene layer (5 × 10−7 mol cm−2). No attempts,
however, were done to test the limit of alkylation.

Benzyl bromides, already reported to generate transient benzyl
radicals [11], were also reduced under the conditions developed
above. We focus here on the generation of 2-methylpyrene radical
from BMP either at GC or at GC–graphene electrodes, eventually in
the presence of metal catalysts (Fig. 2). These latter, via oxidative inser-
tion into C\Br bonds promoted in polar solvents, form metalloorganic
intermediates whose first reduction step occurs as a one-electron process
resulting in C-centered radicals [9].

Thus, BMP is reduced (Fig. 2, curve A) in two steps at a GC–
graphene–Pd0 electrode; the first step corresponds to one-electron
cleavage of the C\Br bond in the presence of Pd (reduction of the C–
Pd–Br intermediate), and the second shows the one-electron uptake
by the pyrene moiety. Amazingly, in the course of the second scan, the
first step has vanished. After a potential hold at the level of the first
step (generation of free radicals) as depicted in Fig. 2, curve B, an in-
tense reversible step corresponding to the attached pyrene anion
radical is obtained. The secondary sharp peak behind the step of embed-
ded pyrene arises from the charge of graphene. The amount of
immobilized pyrene within the graphene layers is quite large: 5.4
× 10−8 mol cm−2, which is approximately 10 times the grafting level
obtained at a smooth GC electrode (Fig. 2C, curve b), for which this
value is (3 ± 0.5) × 10−9 mol cm−2. A first attempt to implement
redox catalysis, with the immobilized pyrene radical anion as a surface
reducing reagent, is exemplified by curve b, Fig. 2. Bromobenzene
(curve a) is totally indirectly reduced.

4. Conclusion

The generation of free radicals within thin graphene layers deposit-
ed onto GC surfaces allows chemicalmodification of graphene bymeans
of electrophilic reagents, limited here to alkyl halides bearing redox

image of Scheme�1


Fig. 2. Voltammetry of BMP at different carbon electrodes (DMF/TBABF4, scan rate: 50 mV s−1). A) Response of BMP at GC–GR doped by Pd0 (2.1 × 10−1C cm−2). First and second scans.
B) For comparison, voltammetry of BMP (6.6 × 10−3 mol L−1) was drawn at GC1 electrode (curve a). In b, the response after a potential hold at−1.1 V during 1 min. C) Response after a
fixed potential electrolysis (conditions as in A) at −1.0 V (total amount of electricity: 2 × 10−2C). D) Same electrode as in (C) used as redox electrode for the reduction (a) of
bromobenzene (11.2 mmol L−1).
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functions. This simple method permits one to build three-dimensional
redox interfaces using graphenewhich, at E N−1.8 V, is essentially per-
ceived as a radical scavenger. The grafting levels are astonishingly high,
for the thickness of graphene layers is about 1 μm.Moreover, the stabil-
ity of suchmodified electrodes during the successive scans is quite good,
presumably because their structure is being held together by π,π-inter-
actions and is quite certainly reinforced by the insertion of poly-
aromatic molecules such as pyrene. A proper choice of the function to
embed from a very large panel of chemical and organo-metallic func-
tions available allows an (easy) building of a very wide variety of effi-
cient 3D electrodes. The present contribution specifically exemplifies
the immobilization of ferrocene and of poly-aromatic groups for build-
ing the three-dimensional redox electrodes certainly useful for redox
and chemical catalysis. Lastly, intense redox signals produced by such
systems appear of great interest for analytical chemistry.
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