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Counting invertible Schrödinger Operators over

Finite Fields for Trees, Cycles and Complete

Graphs.

Roland Bacher∗

December 2, 2015

Abstract1: We count invertible Schrödinger operators (perturbations by
diagonal matrices of the adjacency matrix) over finite fields for trees, cycles
and complete graphs.

1 Introduction

A Schrödinger operator (or perhaps more accurately, an opposite of a Schrödinger
operator) on a graph G (always finite with unoriented edges and no loops or
multiple edges) is a matrix obtained by adding an arbitrary diagonal matrix
to the adjacency matrix of G.

Our first result counts invertible Schrödinger operators over finite fields
for trees (graphs without closed non-trivial paths):

Theorem 1.1 The number of invertible Schrödinger operators of a finite
tree T with n vertices over the finite field Fq is given by

(−√−q)n χT (
√−q + 1/

√−q) (1)

where χT = det(xIdn − A) ∈ Z[x] is the characteristic polynomial of the
adjacency matrix A of T .

Theorem 1.1 is wrong for arbitrary graphs: It fails to yield integral
evaluations at prime-powers for non-bipartite graphs. It is also wrong for
bipartite graphs: Formula (1) amounts to q4 − 2q2 + 1 for the the 4-cycle
C4 which has (q − 1)(q3 − q − 1) = q4 − q3 − q2 + 1 invertible Schrödinger
operators over Fq by Theorem 1.2.

∗This work has been partially supported by the LabEx PERSYVAL-Lab (ANR–11-
LABX-0025). The author is a member of the project-team GALOIS supported by this
LabEx.
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The key-ingredient for proving Theorem 1.1 is the notion of local invari-
ants, a general framework for computing invariants of finite (plane) trees.

Our next result enumerates invertible Schrödinger operators for the n-
cycle Cn defined as the unique connected graph consisting of n ≥ 3 vertices
of degree 2:

Theorem 1.2 The number SCn of invertible Schrödinger operators for the
n-cycle Cn over Fq is given by

SC2n+1
= q2n+1 − 1− q2n+2

1− q2
,

SC4n
= q4n − q2n +

(1− q2n)(1 − q2n+1)

1− q2
,

SC4n+2
= q4n+2 +

(1− q2n+1)(1 − q2n+2)

1− q2
.

if q is odd and by

SC2n+1
= q2n+1 − 1− q2n+2

1− q2
,

SC2n
= q2n − qn +

(1− qn)(1− qn+1)

1− q2
,

if q is even.

Observe that SCn is polynomial in q, except if n ≡ 2 (mod 4) where it
is given by two polynomials, depending on the parity of q.

The proof of Theorem 1.2 is essentially an identity in Z[SL2(Fq)], see
Theorem 8.2. This identity is of independent interest: It yields for example
Bose-Mesner algebras and a good generator of random elements in SL2(Fq).

Invertible Schrödinger operators for the complete graph Kn on n vertices
are invertible matrices of size n× n with arbitrary diagonal coefficients and
with all off-diagonal coefficients equal to 1. The following result gives their
number over finite fields:

Theorem 1.3 The number of invertible Schrödinger operators over Fq as-
sociated to the complete graph on n vertices is given by

(q − 1)n+1 + (−1)n

q
+ n(q − 1)n−1.

The content of the paper is organized as follows:
Section 2 introduces and gives examples of local invariants, the main

tool for proving Theorem 1.1, established in Section 3.
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Section 4 describes a few additional properties of the polynomial ST (q)
enumerating invertible Schrödinger operators over Fq of a finite tree T .

Section 5 extends local invariants to trees having coloured vertices.
Section 6 studies the behaviour of the polynomial ST (q) (defined by

Theorem 1.1) under edge-subdivisions.
Section 7 refines ST in order to count invertible Schrödinger operators

(of trees) over finite fields according to multiplicities of values of the Jacobi
symbol on the diagonal.

In Section 8 we give formulae for the coefficients of





∑

µ∈M

∑

x∈Fq

[(

x µ
−1/µ 0

)]





n

∈ Z[SL2(Fq)] (2)

whereM is a subgroup of the multiplicative group F∗
q of units in Fq. Theorem

1.2 is a rather straightforward consequence of these formulae, as shown in
Section 9.

Section 10 gives an easy proof of Theorem 1.3.
A short last Section 11 contains a few final remarks.

2 Local invariants

2.1 Local construction of trees

We denote by T the set of all finite trees and by R the set of all finite rooted
trees.

Every element of R can be constructed (generally not uniquely) in a
finite number of steps involving the following operations:

(V ) Creating a trivial rooted tree consisting of a unique root-vertex.

(E) Extending a rooted tree by gluing one end of an additional edge to
the root-vertex and by moving the root vertex to the other end of the
newly attached edge.

(M) Merging two rooted trees by gluing their root-vertices into the root-
vertex of the resulting tree.

The operation E increases the number of edges and vertices by 1. The
operation M , applied to two rooted trees having respectively a and b vertices
produces a rooted tree with a+ b− 1 vertices and a+ b− 2 edges.

V is constant (independent of any arguments), E operates on elements
of R. The map M defines a commutative and associative product which
turns R into a commutative monoid with identity V representing the trivial
rooted tree reduced to the root vertex. The monoid (R,M) is N-graded:
The degree of a rooted tree R is the number of non-root vertices in R. The
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sum over all possible contractions of an edge starting at the root vertex
defines a derivation of degree −1 on the graded monoid-ring K[R] (over
a commutative ring or field K). The map E can thus be thought of as
an “integral operator”on R. Algebraically, K[R] is the free commutative
algebra with generators {E(R)}R∈R. Its Hilbert series

∑∞
n=0 αnx

n encoding
the dimension αn of homogeneous polynomials of degree n in K[R] satisfies
the identity

∞
∑

n=0

αnx
n =

∞
∏

n=0

(

1

1− xn+1

)αn

,

appearing already in [1], and starts as 1, 1, 2, 4, 9, 20, 48, 115, 286, see se-
quence A81 of [3].

Finally, the “forget” operator,

(F ) Forgetting the root-structure by turning the root of a rooted tree into
an ordinary vertex,

induces a surjection from R onto T . We have the identity

F (M(A,E(B))) = F (M(E(A), B)) (3)

(for all A,B in R) mirroring the fact that an ordinary tree with n vertices
can be rooted at n different vertices. Identity (3) amounts to requiring
(A,B) 7−→ F (M(A,E(B))) to be symmetric in its arguments A and B.

Figure 1: An example of a tree, rooted at the largest dot.

Figure 1 shows the rooted tree encoded (for example) by

M{E(M{E(M{E(V ), E(V )}), E(E(V ))}), E(V )}

with curly brackets enclosing arguments of M .

2.2 Digression: plane trees

A plane tree is a tree embedded in the oriented plane, up to orientation-
preserving homeomorphisms. Plane trees are abstract trees together with
cyclic orders on sets of edges sharing a common vertex.
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A rooted plane tree is a plane tree having a root together with a refine-
ment into a linear order of the cyclic order on root-edges containing the
root-vertex.

Rooted plane trees can be constructed using the operators V,E,M al-
ready considered, except that the associative product M is no longer com-
mutative. The operator F turning the root-vertex into an ordinary vertex
satisfies (3) and the “trace-identity”

F (M(A,B)) = F (M(B,A)). (4)

The set Π of all finite rooted plane trees is a non-commutative monoid.
It is again graded (by the number of non-root vertices) and K[Π] is a
non-commutative differential algebra. Algebraically, K[Π] is the free non-
commutative algebra with generators {E(R)}R∈Π. Its Hilbert series is the
algebraic function C =

∑∞
n=0 cnx

n = 1
1−xC whose coefficients define the

famous sequence 1, 1, 2, 5, 14, . . . , cn =
(2n
n

)

1
n+1 of Catalan numbers, see se-

quence A108 of [3].

2.3 Local invariants of (rooted) trees

A local invariant of rooted trees with values in a commutative monoid E is
a map i : R −→ E which can be computed by replacing the construction
operators V,E,M by v, e,m where v = 1 is the multiplicative identity of E,
where e : E −→ E is an arbitrary map and where m : E × E −→ E is the
product of the monoid E.

A local invariant of trees is a map f ◦ i from T to a set of values F where
i is a local invariant of rooted trees given by maps v, e,m : E∗ −→ E as
above (with E∗ denoting respectively ∅,E and E2) and where f : E −→ F

satisfies the identity

f(m(A, e(B))) = f(m(e(A), B)) (5)

corresponding to (3) for all A,B in E.
A trivial example with E = F = N is given by v = 0, e(x) = x + 1,

m(x, y) = x + y and f(x) = x. It counts the number of edges (given by
n − 1 for a tree with n vertices) of a tree. Replacing f with f1(x) = x + 1
we count vertices instead of edges.

Remark 2.1 The definition of local invariants for (rooted) trees is tauto-
logical: Every map A : T −→ F is a local invariant on the set T of all finite
trees by taking E = R and v = V, e = E,m = M,f = A ◦ F . We are of
course interested in local invariants where the maps v, e,m and f are simple,
e.g. given by algebraic operations over some commutative monoid E with a
rich algebraic structure.

The terminology “local” alludes to the fact that local invariants can be
computed algorithmically using “local” operations which modify only neigh-
bourhoods of root-vertices.
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2.4 Examples of local invariants

2.4.1 Enumeration of (maximal) independent sets

A subset I of vertices in a graph G is independent if two distinct elements of
I are never adjacent. The polynomial

∑

j αjx
j encoding the number αj of

independent sets with j vertices in a finite tree can be computed as a local
invariant using

v = (1, x),

e(a, b) = (a+ b, xa),

m((a, b), (α, β)) = (aα,
1

x
bβ),

f(a, b) = a+ b.

We leave the easy details to the reader. (Hint: The first coefficient a of
(a, b) counts independent sets without the root of rooted trees, the second
coefficient b counts independent sets containing the root-vertex.)

For the tree underlying Figure 1 we get

1 + 8x+ 21x2 + 22x3 + 8x4 + x5 .

An independent set I of a graph G is maximal if every vertex of G is
at most at distance 1 to I (i.e. a vertex v is either in I or adjacent to an
element of I).

The polynomial
∑

j βjx
j encoding the number βj of maximal indepen-

dent sets with j vertices in a finite tree can be computed as a local invariant
using

v = (1, 0, x),

e(a, b, c) = (b, c, x(a + b)),

m((a, b, c), (α, β, γ)) = (aα, aβ + bα+ bβ,
1

x
cγ),

f(a, b, c) = b+ c.

(a encodes non-maximal independent sets I not containing the root r of
a rooted tree R such that I ∪ {r} is maximal independent in R and I is
maximal independent in the forest R\{r}, the coefficient b encodes maximal
independent sets I of R such that r 6∈ I and c encodes maximal independent
sets of R containing the root vertex r).

For the tree underlying Figure 1 we get

4x3 + 3x4 + x5 .
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2.4.2 Enumeration of (maximal) matchings

A matching of a graph is a set of disjoint edges. The polynomial
∑

j αjx
j

with αj counting matchings involving j edges can be computed as the local
invariant

v = (1, 0),

e(a, b) = (a+ b, xa),

m((a, b), (α, β)) = (aα, aβ + bα),

f(a, b) = a+ b.

We leave the easy details to the reader. (Hint: The first coefficient a of
(a, b) counts matchings of a rooted tree not involving the root, the second
coefficient b counts matchings involving the root.)

For the tree underlying Figure 1 we get

1 + 7x+ 13x2 + 7x3 .

A matching of a graph G is maximal if it intersects every edge of G. The
polynomial

∑

j βjx
j with βj counting maximal matchings involving j edges

can be computed as the local invariant

v = (0, 1, 0),

e(a, b, c) = (b, c, x(a + b)),

m((a, b, c), (α, β, γ)) = (aα + aβ + bα, bβ, (a + b)γ + c(α + β)),

f(a, b, c) = b+ c

(a counts not maximal matchings of a rooted tree R inducing maximal
matchings on the forest R \ {r} obtained by removing the root r from R,
the coefficient b counts maximal matchings of R not involving the root and
c counts maximal matchings of R involving the root r).

For the tree underlying Figure 1 we get

7x3 .

2.4.3 The characteristic polynomial of the adjacency matrix

We write (a, b) ∈ Z[x] if the characteristic polynomial of a rooted tree is
given by ax − b with ax corresponding to the contribution of the diagonal
entry associated to the root. Elementary matrix-transformations show that
the characteristic polynomial det(x Id− A) of the adjacency matrix A is a
local invariant defined by

v = (1, 0),

e(a, b) = (xa− b, a),

m((a, b), (α, β)) = (aα, aβ + bα),

f(a, b) = xa− b.
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For the tree underlying Figure 1 we get

x8 − 7x6 + 13x4 − 7x2 .

Similarly,

v = (1, 0, 0),

e(a, b, c) = (−(x+ c+ 1)a+ b,−a, 1),

m((a, b, c), (α, β, γ)) = (aα, aβ + bα, c+ γ),

f(a, b, c) = −(x+ c)a+ b

computes the characteristic polynomial of the combinatorial Laplacian (given
by Ddeg−A where A is the adjacency matrix andDdeg is the diagonal matrix
defined by vertex-degrees) of a tree.

For the tree underlying Figure 1 we get

x8 + 14x7 + 76x6 + 204x5 + 286x4 + 204x3 + 67x2 + 8x .

2.5 An example with values in N[z0, z1, . . . ]

Given a formal power series Z =
∑∞

i=0 zit
i ∈ A[[t]] and a polynomial B =

∑N
i=0 bit

i ∈ A[t] with coefficients in a commutative ring A, we denote by

〈Z,B〉 =
N
∑

i=0

zibi

the scalar product of the “coefficient-vectors”(z0 , z1, . . . ) and (b0, . . . , bN , 0, . . . ).

Proposition 2.2 We denote by Z =
∑∞

i=0 zit
i a formal power series in t

with coefficients zi. The formulae

v = 1,

e(A) = 〈Z,A〉 + tA,

m(A,B) = AB,

f(A) = 〈Z,A〉

define a local invariant of trees with values in N[z0, z1, z2, . . . ], respectively
of rooted trees with values in N[z0, z1, z2, . . . ][t].

For the tree underlying Figure 1 we get

z80 + 7z60z1 + 8z50z2 + z40(13z
2
1 + 10z3) + z30(18z1z2 + 11z4)

+z20(7z
3
1 + 12z1z3 + 3z22 + 8z5) + z0(9z

2
1z2 + 8z1z4 + 2z2z3 + 4z6)

+z21z3 + 2z1z
2
2 + 2z1z5 + z2z4 + z7 .
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The specialization z2 = z3 = · · · = 0 of Proposition 2.2 is particularly inter-
esting in the sense that it gives an invariant in N[z0, z1]([t]) of (rooted) trees
which behaves naturally with respect to the differential structure of N[R].
Given a rooted tree R with invariant cR(0) + cR(1)t+ . . . , the constant co-
efficient cR(0) corresponds to R and the linear coefficient cR(1) corresponds
to the derivative (as in Section 2.1) of R. The result (with Z = z0+ z1t) for
the tree underlying Figure 1 is

z20(z
2
0 + z1)(z

4
0 + 6z20z1 + 7z21) .

Proof of Proposition 2.2 The set N[z0, z1, z2, . . . ][t] of all polynomials is
a multiplicative monoid with product m(A,B) = AB and identity 1. The
operator e defines a map from N[z0, z1, z2, . . . ][t] into itself. This shows that
the formulae of Proposition 2.2 define a local invariant of rooted trees.

Symmetry in A,B of

f(m(A, e(B))) = f(A(〈Z,B〉 + tB))

= 〈Z,A〉〈Z,B〉 + 〈Z, tAB〉
implies that identity (5) holds. 2

2.5.1 Examples

Up to a power of x, the example of Section 2.4.2 enumerating matchings
corresponds to Z = 1+t

x with coefficients z0 = z1 = 1/x and z2 = z3 = · · · =
0.

Our next example, stated as a theorem, will be the crucial ingredient for
proving Theorem 1.1:

Theorem 2.3 The characteristic polynomial of Section 2.4.3 corresponds
to Z = x− t with coefficients z0 = x, z1 = −1 and z2 = z3 = · · · = 0.

Proof Follows easily from the formulae given in Section 2.4.3. 2

3 A local invariant enumerating Schrödinger op-
erators

We consider the local invariant S : T −→ Z[q] of trees given by the special-
ization Z = q−1+qt with coefficients z0 = q−1, z1 = q and z2 = z3 = · · · = 0
of the local invariant described by Proposition 2.2.

Since S depends only on the constant and on the linear coefficient of the
corresponding local invariant a+ bt+ . . . of rooted trees, we can also define
S by the formulae

v = (1, 0),
e(a, b) = ((q − 1)a+ qb, a),

m((a, b), (α, β)) = (aα, aβ + bα),
f(a, b) = (q − 1)a+ qb

(6)
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with (a, b) representing the series expansion a+ bt+O(t2).
For the (unrooted) tree underlying Figure 1 we get the polynomial

(q − 1)2(q2 − q + 1)(q4 + 2q3 + q2 + 2q + 1) .

Remark 3.1 As a mnemotechnical device, the formula for m corresponds
also to the addition b

a + β
α = aβ+bα

aα with forbidden simplification and the

formula for e is, up to simplification by a, given by the homography b
a 7−→

(

0 1
q q − 1

)

b
a = 1

q b
a
+q−1

. The formula for f can be recovered from e using

the identity e(a, b) = (f(a, b), a).

We write ST for the local invariant in Z[q] associated to a tree T . Sim-
ilarly, given a rooted tree R, we denote by SR = (a, b) ∈ (Z[q])2 the corre-
sponding pair of polynomials defined by formulae (6).

Proposition 3.2 ST counts the number of invertible Schrödinger operators
for a finite tree T over the finite field Fq.

A matrix M with rows and columns indexed by vertices of a graph G is a
G-matrix if non-zero off-diagonal coefficients ms,t of M correspond to edges
{s, t} of G. Diagonal entries of G-matrices are arbitrary. The off-diagonal
support (set of non-zero coefficients) of a G-matrix encodes thus the edge-set
of G. A G-matrix of an unoriented graph G has always a symmetric support
but is not necessarily symmetric. We have:

Proposition 3.3 The number of invertible T -matrices over Fq of a finite
tree T having n vertices is given by (q − 1)2n−2ST .

Proof of Proposition 3.2 We consider the obvious action on T -matrices of
the abelian group

(

F∗
q

)n×
(

F∗
q

)n
of pairs of invertible diagonal matrices (with

coefficients in Fq) by left and right multiplication. An orbit of a T -matrix
without non-zero diagonal coefficients contains exactly one Schrödinger op-
erator stabilized by a subgroup of order (q − 1)2. All other orbits contain
exactly q−1 different Schrödinger operators, each stabilized by a subgroup of
order q−1. The number of (invertible) T -matrices is thus exactly (q−1)2n−2

times larger than the number of (invertible) Schrödinger operators. The re-
sult follows now from Proposition 3.3. 2

Proof of Proposition 3.3 An R-matrix for a rooted tree R ∈ R is a
T -matrix for the underlying unrooted tree T with an unknown x on the
diagonal corresponding to the root of R. The determinant of an R-matrix
over a finite field Fq is an affine function of the form ax+ b ∈ Fq[x].

We consider now a fixed rooted tree R. Given two subsets A,B of Fq,
we denote by ν(A,B) the number of R-matrices of determinant ax+ b with
(a, b) ∈ A×B. We encode the natural integers ν(0, 0), ν(0,F∗

q), ν(F
∗
q , 0), ν(F

∗
q ,F

∗
q)
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(with 0 denoting the singleton subset {0} consisting of the zero-element in
Fq) using the square matrix

(

ν(0, 0) ν(0,F∗
q)

ν(F∗
q, 0) ν(F∗

q,F
∗
q)

)

.

Right and left multiplications by invertible diagonal matrices essentially
preserve the set of R-matrices. More precisely, this holds up to replacement
of the unknown x by a non-zero multiple λx (with λ ∈ F∗

q) of it. Since x can
be thought of as a simple place-holder for an arbitrary element of Fq, such a
scalar λ can be dismissed. It follows that we have ν(λa, µb) = ν(a, b) (using
a slight abuse of notation) if λ and µ belong both to the set F∗

q of invertible
elements in Fq. Elementary linear algebra shows now that the operators
V,E,M,F correspond to the operators

v =

(

0 0
1 0

)

,

e =

(

a b
c d

)

7−→ (q − 1)2
(

qa c+ d
qb (q − 1)(c+ d)

)

,

m = (

(

a b
c d

)

,

(

α β
γ δ

)

) 7−→
(

A B
C D

)

,

f =

(

a b
c d

)

7−→ qb+ (q − 1)(c+ d)

where

A = aα+ aβ + bα+ aγ + cα+

+aδ + dα+ bβ,

B = bγ + cβ + bδ + dβ,

C = cγ +
1

q − 1
dδ,

D = cδ + dγ +
q − 2

q − 1
dδ.

The coefficient ν(0, 0) contributes never to the number of invertible Schrödinger
operators and can be discarded. Inspection of the above formulae shows that
we can lump together ν(F∗

q, 0) and ν(F∗
q,F

∗
q) into a first coordinate with the

second coordinate given by ν(0,F∗
q). This leads to the formulae (6) for ST ,

except for an extra factor of (q − 1)2 for every edge of T . 2

3.1 Proof of Theorem 1.1

Substituting x with
√−q +1/

√−q and multiplying by the correct sign and
power of

√−q, the expression (−√−q)nχT (
√−q + 1/

√−q) (with n denot-
ing the number of vertices of T ) can be computed using Theorem 2.3 as the

11



local invariant given by

v = 1,

e(a+ tb+O(t2)) = −√−q
(√−q + 1/

√−q
)

a−√−q
2
b+ at+O(t2)

= (q − 1)a+ qb+ at+O(t2),

m(A,B) = AB,

f(a+ tb+O(t2)) = −√−q
(√−q + 1/

√−q
)

a−√−q
2
b

= (q − 1)a+ qb

and coincides thus with the local invariant given by formulae (6) which define
the counting function ST for Schrödinger operators by Proposition 3.2. 2

4 A few additional properties of ST

Since Theorem 1.1 links ST closely to the characteristic polynomial (of an
adjacency matrix), many properties of ST mirror properties of characteristic
polynomials for trees. For example, since characteristic polynomials (of
integral matrices) are monic and integral, the polynomial ST is monic and
integral.

A property not linked to the characteristic polynomial but to the formula
(1) defining ST is the fact that the polynomial ST associated to a tree T
with n vertices satisfies the equation

ST (q) = (−q)nST (1/q). (7)

We call this property sign-degree-palindromicity. It implies that a complex
number ρ is a root of ST if and only if 1/ρ is a root.

Another easy fact (left to the reader), is the observation that ST is always
of the form qn − qn−1 + . . . . This is (up to O(qn−2)) the expected number
of non-zero elements among qn (uniformly distributed) random elements of
Fq.

4.1 Root-locus of ST

All roots of the characteristic polynomial of a graph are real. Since a tree
T is bipartite, a real number ρ is a root of χ (the characteristic polynomial
of an adjacency matrix of T ) if and only if −ρ is a root. A pair of non-zero
roots ±ρ of χ gives thus rise to the pair σ, 1/σ of roots of ST satisfying the
equation

0 = (
√
−σ + 1/

√
−σ − ρ)(

√
−σ + 1/

√
−σ + ρ)

= −σ + 2− 1/σ − ρ2.

12



We have thus

σ±1 =
2− ρ2 ±

√

(ρ2 − 2)2 − 4

2
.

For ρ ∈ [−2, 2] we get two conjugate roots σ, σ = 1/σ on the complex unit
circle (except perhaps for ρ = 0 giving sometimes rise to a unique root 1
of ST ), for ρ of absolute value larger than 2 we get two negative real roots
σ, 1/σ.

All roots of ST are thus on the union of the complex unit circle with the
real negative half-line.

Trees with all roots of ST on the unit circle are subtrees of affine Dynkin
diagrams of type D or E, see for example [2] which describes also all trees
such that ST has exactly one real root < −1. (More precisely, [2] deals with
polynomials of the form (1) (up to trivial signs) which give rise to Salem
numbers.)

Our next result shows that “simple” trees give rise to polynomials ST

with few real negative roots:

Proposition 4.1 The number of real negative zeroes of ST ∈ Z[q] associated
to a tree T is at most equal to twice the number of non-root vertices of degree
at least 3 in T .

The proof uses the following auxiliary result:

Lemma 4.2 The numbers of real negative zeroes of the polynomials a, b
associated by SR = (a, b) to a rooted tree R are at most equal to twice the
number of non-root vertices of degree at least 3 in R.

Proof of Proposition 4.1 We turn T into a rooted tree R by choosing a
root vertex at a leaf of T . The result follows now by applying Lemma 4.2
to the first polynomial of SE(R) = (ST , ∗). 2

Proof of Lemma 4.2 Let R be a rooted tree. If the root vertex v∗ of R
is not a leaf, then S(R) = (A,B) = (aα, aβ + bα) where (a, b) and (α, β)
are associated to smaller non-trivial rooted trees R1, R2 such that R =
M(R1, R2). The result holds thus for A = aα by induction on the number
of vertices and it holds for B since roots of A and B interlace in an obvious
sense on S1 ∪ R<0. If the root vertex v∗ is a leaf, the result holds by a
straightforward computation if R is a leaf-rooted path (Dynkin diagram of
type A). Otherwise, the tree R contains a vertex w of degree at least 3.
Working with the rooted tree Rw corresponding to T rooted at w, we see
that aw, bw with S(Rw) = (aw, bw) have at most 2(k−1) real negative zeroes
where k is the number of vertices of degree at least 3 in T . This implies that
ST has at most 2+ 2(k− 1) = 2k real negative zeroes. Since ST has at least
as many real negative zeroes as b involved in S(R) = (a, b) and since roots
of a and b interlace, the polynomials a, b have both at most 2k real zeroes.
2
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4.2 Multiple roots of ST

A vertex w of degree k of a tree T can be considered as the result of gluing k
maximal leaf-rooted subtrees of T along their root-leaf corresponding to w.
This construction is linked to some multiple roots of ST as follows: Given
a leaf-rooted tree R, let w1, . . . , wk be the list of all vertices of T involving
R (i.e. at least one of the maximal leaf-rooted subtrees of T with root wi

is isomorphic to R). Given such a vertex wi, we denote by ri + 1 ≥ 1 the
number of occurrences of R at wi. We have the following result:

Proposition 4.3 The polynomial ST is (at least) divisible by ar where r =
r1 + · · · + rk and where a is defined by SR = (a, b).

Proof Gluing ki + 1 copies of R along their root gives a rooted tree with
invariant (aki+1, (ki+1)akib). Linearity of the formulae for e, f andm implies
now the result. 2

Proposition 4.3 explains the factor q2− q+1 and one of the factors q−1
of the polynomial ST = (q − 1)2(q2 − q + 1)(q4 + 2q3 + q2 + 2q + 1) with
T given by Figure 1. Since ST is palindromic, the factor q − 1 divides ST

with even multiplicity. All cyclotomic factors in this example have thus easy
explanations.

5 Trees with coloured vertices

A rooted tree with ordinary (non-root) vertices coloured (not necessarily
properly, i.e. adjacent vertices might have identical colours) by a set C
can be constructed using the construction-operators V (creation of a root-
vertex), M (merging of two rooted trees along their root) and replacing
E by operators Ec (for c ∈ C) depending on the final colour of the initial
root-vertex. For ordinary trees, one works with operators Fc indexed by
all possibilities of colouring the root-vertex after turning it into an ordinary
vertex.

Identity (5) has to be replaced by

Fs(M(A,Et(B)) = Ft(M(Es(A), B)) (8)

for all s, t ∈ C and for all A,B ∈ R.
Local invariants for coloured (rooted or plane) trees are defined in the

obvious way.

5.1 A few examples of coloured invariants

5.1.1 Colourings defined by (virtual) rooted trees

Every local invariant gives rise to a coloured local invariant by chosing
colour-constants uc ∈ E for all colours c ∈ C and by replacing e with
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ec(A) = e(m(A, uc)) and f with fc(A) = f(m(A, uc)). These invariants
amount to attaching “virtual trees” Uc corresponding to uc and represent-
ing colours to all ordinary vertices.

A particular case, closely related to ST , will be discussed in Section 6.2.

5.1.2 A coloured local invariant with values in N[z0(c), z1, z2, z3, . . . ]

The example of Proposition 2.2 in Section 2.5 can easily be generalized to a
coloured local invariant by considering formal power-series Z(s) = z0(s) +
∑∞

i=1 zit
i with constant terms (with respect to t) depending on colours.

Identity (8), corresponding to

〈Z(s1), A〉〈Z(s2), B〉+ 〈Z(s1), tAB〉 = 〈Z(s1), A〉〈Z(s2), B〉+ 〈Z(s2), tAB〉,
holds since 〈Z(s), tC〉 does not depend on the colour s.

As an example, we can consider the invariant given by Z(v) = xv + qt
generalizing the invariant counting invertible Schrödinger obtained by the
specialization xv = q − 1 for all v, see Section 3.

5.1.3 Bicoloured characteristic polynomial

Trees are connected bipartite graphs and have thus a canonical proper 2-
colouring or bi-colouring, well-defined up to colour-exchange. The corre-
sponding bi-coloured variation of the characteristic polynomial of the ad-
jacency matrix is given by computing the determinant of the matrix coin-
ciding with the adjacency matrix outside the diagonal and with diagonal
coefficients −x or −y according to the bipartite class of the corresponding
vertex. The resulting determinant is well-defined in Z[x, y] up to exchanging
x with y and can be computed as a local invariant. This construction works
of course also for the combinatorial Laplacian of a tree.

5.1.4 Coloured Schrödinger operators

The enumeration of Schrödinger operators according to coloured diagonal
zeros leads to a local invariant of coloured trees. It takes its values in Z[q, C]
with the coefficient (in Z[q]) of a monomial

∏

j c
ej
j ∈ C∗ counting the number

of Schrödinger operators with ej zero terms on diagonal elements associated
to vertices of colour cj.

The corresponding operators are given by

v = (0, 1, 0),

es(a, b, c) = (sb+ c, (q − 1 + s)a, (q − 1)b+ (q − 2 + s)c),

m((a, b, c), (α, β, γ))

= (aβ + bα+ aγ + cα, bβ +
cγ

q − 1
, bγ + cβ +

q − 2

q − 1
cγ)

fs(a, b, c) = (q − 1 + s)a+ (q − 1)b+ (q − 2 + s)c.
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(with (a, b, c) standing for a = N(0,F∗
q), b = N(F∗

q, 0) and c = N(F∗
q,F

∗
q)

where N(∗, ∗) is as in the proof of Proposition 3.3).
Skeptical readers are invited to check the identity

fs(m((a, b, c), et(α, β, γ))) = ft(m(es(a, b, c), (α, β, γ)))

corresponding to (8).

5.2 A further generalization: working with coloured monoids

Rooted vertex-coloured trees with colours at all vertices including the root
do not form a natural monoid. However the subset of rooted trees with a
given root colour is obviously a monoid (by gluing, as before, all root-vertices
into a root-vertex of the same colour).

A local invariant for such rooted coloured trees is given by monoids Mc

with identities vc and products mc and by edge-maps eci,cf : Mci −→ Mcf

(depending on the root-colour ci of the initial argument-tree and on the
colour cf of the final, added root-vertex) among all coloured monoids.

Adding maps fc : Mc −→ F into some set F such that we have for all
pairs of colours c1, c2 the identity

fc1(mc1(A1, ec2,c1(A2))) = fc2(mc2(ec1,c2(A1), A2)) (9)

(with A1 ∈ Mc1 , A2 ∈ Mc2), we get an invariant of coloured trees.
Section 7 contains an example of this construction.

6 Edge-subdivisions

6.1 Properties of S

Proposition 6.1 Let Ti be a sequence of trees obtained by subdividing all
edges around a fixed vertex w of degree d ≥ 3 of a finite tree T into a larger
and larger number of edges (by insertion of additional vertices of degree 2).
Then there exists a sequence of roots ρi of STi

converging to 1− d.

The proof follows easily from the discussions in Section 6.2.
Applying Proposition 6.1 at all vertices we get:

Corollary 6.2 Subdividing all edges of a fixed finite tree T leads to a se-
quence of polynomials with k strictly negative roots converging to 1−di where
d1, . . . , dk are the degrees of all k vertices of T with degrees > 2.

The density of roots on S1 under edge-subdivisions can be shown to
behave as expected:
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Proposition 6.3 Given a sequence Ti of finite trees obtained by subdividing
some edges of a given fixed tree T into more and more sub-edges, the density
of roots of STi

on the unit circle S1 converges to the Lebesgue measure of S1.
Otherwise stated, the proportion of roots of STi

in a given sub-interval I of
S1 tends to 1

2π length(I).

We omit the proof.

6.2 Essentially finite trees and limits of real negative roots
of ST under edge-subdivisions

A perhaps infinite tree is essentially finite if it is obtained by subdiving edges
of a finite tree at most countably many times. Essentially finite trees can
be considered as trees with edges weighted by elements of {1, 2, . . . }∪ {∞}.
Edge-weights encode the final number of edges after subdivision. Forbidding
vertices of degree 2 leads to unique representations of this form.

Essentially finite trees with an infinite number of vertices have no longer
an S-polynomial. They define however a finite set ρ1, . . . , ρk of k real num-
bers < −1 where k is at most equal to the number of vertices of degree ≥ 3
in the following way: Approximate such a tree T by a sequence Ti of finite
trees in the obvious way (by replacing all infinite edge-weights by large finite
edge-weights) and consider the limits (which exist by Theorem 6.4) of all
real roots < −1 of the polynomials STi

, taking into account multiplicities.
The aim of this section is to compute these numbers and to study a few of
their properties.

An essentially finite tree is arc-connected if all non-leaves are at finite
distance. Equivalently, a finite tree is arc-connected if all its edges with
infinite weight contain a leaf. An arc-connected component of an essentially
finite tree is a subtree defined by all vertices at finite distance of a non-
leaf. An arc-connected essentially finite tree is a finite tree together with
attachements of finitely many infinite rays (ending at an “ideal”leaf-vertex)
at vertices. An essentially finite arc-connected tree can be encoded by a
finite tree with N-weighted vertices. Vertex-weights indicate numbers of
attached infinite rays.

Arbitrary essentially finite trees can be decomposed into essentially finite
arc-connected trees with two arc-connected components intersecting at most
in a unique “ideal midpoint”of an infinitely subdivised edge.

The data

v = (1, 0),
ek(a, b) = (q(−ka+ b) + (q − 1)a, a),
m((a, b), (α, β)) = (aα, aβ + bα),
fk(a, b) = q(−ka+ b) + (q − 1)a

(10)

defines a local invariant for coloured trees with colour-values in some ring.
We leave it to the reader to check that (8) holds. This local invariant
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corresponds to a coloured invariant where a vertex v of weight k is dec-
orated by a non-existent ideal rooted tree with S-polynomial (1,−k), see
also Section 5.1.1. It can also be considered as the specialization given by
Z(k) = (q − 1− qk) + qt of the invariant described in Section 5.1.2.

We denote by QT ∈ Z[q] the polynomial defined by (10) for a finite tree
T with Z−coloured vertices.

For values in N encoding numbers of “limit rays” of an arc- connected
essentially finite tree, the polynomial QT has the inverse limit values 1/ρi ∈
(−1, 0) (taking multiplicities into account) among its roots. In particular,
the limit-values ρi are algebraic numbers (in fact algebraic integers since
QT (0) ∈ {±1}) of degrees bounded by the number of vertices in a N-vertex-
coloured finite tree representation. Indeed, given a sequence Ri of increasing
leaf-rooted paths (Dynkin diagrams of type A), the evaluation of SRi

at a
complex number ρ of norm < 1 tends to ± 1

1+ρ(1,−1) (with a sign depending
on the parity of the number of vertices). Linearity of the maps e,m and f
implies now that the limit values ρi are algebraic numbers.

Given a sequence Ti of finite trees obtained by subdividing increasingly
often a unique edge of an (essentially finite) tree, the argument above shows
that a real limit-root ρ “belongs”to one of the two arc-connected components
of the essentially finite limit-tree.
Proof of Proposition 6.1 Follows from the fact that the essentially finite
arc-connected tree T represented by an isolated vertex of weight d ≥ 3 gives
rise to QT = f(1,−d) = (1− d)q − 1. 2

We have:

Theorem 6.4 All non-limit roots of QT have norm ≥ 1 if T encodes an
essentially finite arc-connected tree (i.e. if all vertex-colours are in N).

Proof Let σ be a root of QT in the open complex unit disc. The root σ
can be approximated with arbitrary accuracy by a root of ST ′ where T ′ is
a finite tree approximating the essentially finite tree T . This implies that σ
has to be a real negative number, see Section 4.1. 2

We call the sum of vertex-weights the weight-degree of a N-coloured
connected essential tree T .

Trees of degree 0 are ordinary trees. Their S-polynomials define in
some sense “generalized Salem numbers”. Trees of degree 1 define “general-
ized Pisot numbers”as accumulation points of “generalized Salem numbers”.
Trees of degree ≥ 2 lead to iterated accumulation points.

7 Counting Schrödinger operators according to val-
ues of the Jacobi symbol

We describe a local invariant for computing the number of Schrödinger op-
erators of a tree over a field Fq of odd characteristic according to values of
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the Jacobi-symbol (corresponding to coefficients which are zero, non-zero
squares or non-squares) at diagonal entries indexed by vertices.

Our formulae define in fact a coloured local invariant as defined in Sec-
tion 5.2 with five free parameters ǫv, qv, sv, xv, yv for each vertex v and an
additional global parameter q. The parameters ǫv, qv (and the global pa-
rameter q) are involved in the monoid-product which depends thus on the
root-colour, see Section 5.2.

Some specializations of this invariant count invertible Schrödinger oper-
ators with various restrictions (having for example only non-zero squares on
the diagonal, or zeros, non-zero squares, respectively non-squares on selected
subsets of diagonal entries).

Verifications are straightforward but tedious and are omitted.
We denote by O either the zero element of Fq or the element [0] of the

group-algebra Q[Fq] of the additive group Fq. Similarly, S is either the set
of all non-zero squares of the field Fq or the weighted sum 2

q−1

∑

s∈S [s] of all
non-zero squares in Q[Fq], with equal weights summing up to 1. We define
N analogously using non-squares.

Addition-rules for the elements S,N (corresponding to the product in
the group-algebra Q[Fq] of the additive group (Fq,+)) are given by

S N
S 1+ǫ

q−1O + q−4−ǫ
2(q−1)S + q−ǫ

2(q−1)N 1−ǫ
q−1O + q−2+ǫ

2(q−1)(S +N )

N 1−ǫ
q−1O + q−2+ǫ

2(q−1)(S +N ) 1+ǫ
q−1O + q−ǫ

2(q−1)S + q−4−ǫ
2(q−1)N

where ǫ ∈ ±1 satisfies q ≡ ǫ (mod 4).
Addition-rules in Q[Fq] with O are of course given by O + X = X for

X ∈ {O, S,N}.
Multiplication-rules are given by O2 = O,O·S = O·N = O, S2 = N 2 =

S and SN = N . In particular, the element S is a multiplicative unity.
Given a rooted tree R and two subsets A,B of a finite field Fq, we use the

conventions of Section 3 and we denote by ν(A,B) the number of Schrödinger
operators with diagonals in Fq of the rooted tree R having determinants of
the form αx + β with α ∈ A and β ∈ B. We denote by O = {0} the
zero element of Fq and by S, respectively N the set of squares, respectively
non-squares in Fq where we assume that q is a power of an odd prime. We
display all possible numbers ν(A,B) with A,B ∈ {O,S,N} of a rooted tree
R as a square-matrix with rows and columns indexed by O,S and N by
writing





ν(O,O) ν(O,S) ν(O,N )
ν(S,O) ν(S,S) ν(S,N )
ν(N ,O) ν(N ,S) ν(N ,N )



 .

The number ν(O,O) is in fact useless from our point of view but it allows
for some numerical consistency checks.
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The element

v =





0 0 0
1 0 0
0 0 0





is the identity of monoid structures with products given by

mv(





a1 b1 c1
d1 e1 f1
g1 h1 i1



 ,





a2 b2 c2
d2 e2 f2
g2 h2 i2



) =





A B C
D E F
G H I





where

A = a1a2 + a1(b2 + c2 + d2 + e2 + f2 + g2 + h2 + i2)

+(b1 + c1 + d1 + e1 + f1 + g1 + h1 + i1)a2 + (b1 + c1)(b2 + c2)

B = b1(d2 + e2 + f2) + c1(g2 + h2 + i2)

+(d1 + e1 + f1)b2 + (g1 + h1 + i1)c2

C = c1(d2 + e2 + f2) + b1(g2 + h2 + i2)

+(d1 + e1 + f1)c2 + (g1 + h1 + i1)b2

D = d1d2 + g1g2 +
1 + ǫv
q − 1

(e1e2 + i1i2 + f1f2 + h1h2)

+
1− ǫv
q − 1

(e1f2 + f1e2 + h1i2 + i1h2)

E = d1e2 + e1d2 + g1i2 + i1g2 +
qv − 4− ǫv
2(q − 1)

(e1e2 + i1i2)

+
q̃v − 2 + ǫv
2(q − 1)

(e1f2 + f1e2 + h1i2 + i1h2) +
qv − ǫv
2(q − 1)

(f1f2 + h1h2)

F = d1f2 + f1d2 + g1h2 + h1g2 +
q̃v − 4− ǫv
2(q − 1)

(f1f2 + h1h2)

+
qv − 2 + ǫv
2(q − 1)

(e1f2 + f1e2 + h1i2 + i1h2) +
q̃v − ǫv
2(q − 1)

(e1e2 + i1i2)

G = d1g2 + g1d2 +
1− ǫv
q − 1

(e1h2 + h1e2 + f1i2 + i1f2)

+
1 + ǫv
q − 1

(e1i2 + i1e2 + f1h2 + h1f2)

H = d1h2 + h1d2 + f1g2 + g1f2 +
q̃v − 4− ǫv
2(q − 1)

(f1h2 + h1f2)

+
qv − 2 + ǫv
2(q − 1)

(e1h2 + h1e2 + f1i2 + i1f2) +
q̃v − ǫv
2(q − 1)

(e1i2 + i1e2)

I = d1i2 + i1d2 + e1g2 + g1e2 +
qv − 4− ǫv
2(q − 1)

(e1i2 + i1e2)

+
q̃v − 2 + ǫv
2(q − 1)

(e1h2 + h1e2 + f1i2 + i1f2) +
qv − ǫv
2(q − 1)

(f1h2 + h1f2)
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and where qv, q̃v satisfy
qv + q̃v = 2q

and have thus only one degree of freedom at a given vertex since q is global
(i.e. independent of vertices).

ǫv are also local variables.
It can be checked that mv defines for all q, qv, ǫv (with q̃v = 2q − qv) a

commutative and associative product with identity v.
The reader should be aware that we use the same letter v for a vertex, its

colour and the identity of colour v with respect to the monoid with product
mv.

Edge-operators do not depend on the final root-colour which is thus
omitted. The index v in our formulae denotes the root-vertex (or its colour)
of the rooted tree given as the argument. The edge-operator ev is given by

ev(





a b c
d e f
g h i



) =





A 1+ǫv
2 B+ + 1−ǫv

2 B−
1+ǫv
2 C+ + 1−ǫv

2 C−

D 1+ǫv
2 E+ + 1−ǫv

2 E−
1+ǫv
2 F+ + 1−ǫv

2 F−

G 1+ǫv
2 H+ + 1−ǫv

2 H−
1+ǫv
2 I+ + 1−ǫv

2 I−





(using the conventions of Section 3, except for a factor ((q − 1)/2)2 corre-
sponding to arbitrary non-zero square values on oriented edges, when work-
ing with the specialization qv = q an odd prime power and ǫv ∈ {±1} given
by q ≡ ǫv (mod 4)) where

A =

(

sv +
q∗ − 1

2
(xv + yv)

)

a

B+ = svd+ xve+ yvf

B− = svg + xvh+ yvi

C+ = svg + xvi+ yvh

C− = svd+ xvf + yve
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D =

(

sv +
q − 1

2
(xv + yv)

)

b

E+ = sve+
q − 1

2
xvd+

qv − 4− ǫv
4

xve+
q̃v − 2 + ǫv

4
(xvf + yve) +

qv − ǫv
4

yvf

E− = svh+
q − 1

2
yvg +

q̃v − 4− ǫv
4

yvh+
qv − 2 + ǫv

4
(xvh+ yvi) +

q̃v − ǫv
4

xvi

F+ = svh+
q − 1

2
yvg +

q̃v − 4− ǫv
4

yvh+
qv − 2 + ǫv

4
(xvh+ yvi) +

q̃v − ǫv
4

xvi

F− = sve+
q − 1

2
xvd+

qv − 4− ǫv
4

xve+
q̃v − 2 + ǫv

4
(xvf + yve) +

qv − ǫv
4

yvf

G =

(

sv +
q − 1

2
(xv + yv)

)

c

H+ = svf +
q − 1

2
yvd+

q̃v − 4− ǫv
4

yvf +
qv − 2 + ǫv

4
(xvf + yve) +

q̃v − ǫv
4

xve

H− = svi+
q − 1

2
xvg +

qv − 4− ǫv
4

xvi+
q̃v − 2 + ǫv

4
(xvh+ yvi) +

qv − ǫv
4

yvh

I+ = svi+
q − 1

2
xvg +

qv − 4− ǫv
4

xvi+
q̃v − 2 + ǫv

4
(xvh+ yvi) +

qv − ǫv
4

yvh

I− = svf +
q − 1

2
yvd+

q̃v − 4− ǫv
4

yvf +
qv − 2 + ǫv

4
(xvf + yve) +

q̃v − ǫv
4

xve

where we have qv + q̃v = 2q, as above.
We consider moreover

f s
v = D +

1 + ǫv
2

E+ +
1− ǫv

2
E− +

1 + ǫv
2

F+ +
1− ǫv

2
F−

fn
v = G+

1 + ǫv
2

H+ +
1− ǫv

2
H− +

1 + ǫv
2

I+ +
1− ǫv

2
I−

with D,E±, F±, G,H±, I± as in the definition of Ev and we set

fv = f s
v + fn

v .

We have then for arbitrary q, qv, ǫv, sv, xv , yv, qw, ǫw, sw, xw, yw with q̃v =
2q − qv, q̃w = 2q − qw the identity

fv(mv(A, ew(B))) = fw(mw(ev(A), B)) (11)

which holds for all A,B and which corresponds to (9). We get thus a coloured
local invariant. Observe that this identity is surprisingly general: The con-
struction of the invariant (enumeration of invertible Schrödinger operators
according to values of the Jacobi symbol on the diagonal) ensures it only for
ǫv = ǫ with ǫ ∈ {±1} such that q ≡ ǫ (mod 4) for q = qv = q̃v = qw = q̃w an
odd prime-power.

Choosing an odd prime-power q and setting qv = q and ǫv = ǫ where
ǫ ∈ {±1} is given by q ≡ ǫ (mod 4), the coefficient of a monomial

∏

v∈V (T )

uv
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with uv ∈ {sv, xv, yv} of the final result is a natural integer counting the
number of invertible Schrödinger operators with diagonal coefficient at a
vertex v equal 0 if uv = sv, respectively in the set of non-zero squares or
non-squares if uv = xv or uv = yv. Contributions from f s correspond to
operators with determinant a non-zero square and contributions from fn

correspond to non-square determinants.
Replacing fv either by f s

v or by fn
v we lose in general identity (11). It

remains however valid for a few specializations. Example are:

• ǫv = ǫ for ǫ ∈ {±1}, qv = q (and sv, xv, yv arbitrary at each vertex).
This case, with ǫ ≡ q (mod 4), counts of course Schrödinger operators
with determinant a non-zero square, respectively a non-square, of Fq.

• ǫv = ǫ, qv = q, sv = 1−q
2 (xv + yv).

• ǫv = ǫ, qv = q, xv = yv = x.

• ǫv = ǫ, qv = q and yv = −xv at each vertex v of T .

8 An identity in Z[SL2(Fq)]

We compute the coefficients of





∑

µ∈M

∑

x∈Fq

[(

x µ
−1/µ 0

)]





n

∈ Z[SL2(Fq)] (12)

where M is a subgroup of the multiplicative group of units F∗
q. This allows

to compute the sum over all coefficients corresponding to elements of trace
2 or of trace −2. For M = {1} the trivial group, these sums encode the
number of Schrödinger operators of determinant zero over Fq for the n-cycle
Cn.

Remark 8.1 The factorizations

∑

µ∈M

∑

x∈Fq

[(

x µ
−1/µ 0

)]

= A(M)U = UA(M) (13)

where

A(M) =
∑

µ∈M

[(

µ−1 0
0 µ

)]

and U =
∑

x∈Fq

[(

x 1
−1 0

)]

show that M plays only a minor role in (12).
The element A(M) satisfies A(M)2 = mA(M) where m is the number of

elements of M . The element 1
mA(M) is thus a non-central idempotent (of
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rank q3−q
m ) in Q[SL2(Fq)]. The spectrum (with multiplicities) of the linear

endomorphism of Q[SL2] defined by X 7−→ UX can also easily be recovered
from our data. It consists of a subset of {−1, 0,±√

q,±√−q, q}, with ±√−q
only occurring if −1 6∈ M .

For n ≥ 1 we consider the three sequences

αn =
(

q(n−1) (mod 2)
) q2⌊(n−1)/2⌋ − 1

q2 − 1
− q⌊(n−1)/2⌋ − 1

q − 1

βn =
(

q(n−1) (mod 2)
) q2⌊(n−1)/2⌋ − 1

q2 − 1

γn =
(

q(n−1) (mod 2)
) q2⌊(n−1)/2⌋ − 1

q2 − 1
− q⌊(n−1)/2⌋ − 1

q − 1
+

q⌊(n−1)/2⌋

m

(with γn depending on m, considered as a fixed constant) with (n − 1)
(mod 2) ∈ {0, 1} equal 1 if n is even and zero otherwise and with ⌊(n −
1)/2⌋ = n−2

2 for even n and ⌊(n − 1)/2⌋ = n−1
2 for odd n.

For q ≥ 2 a prime-power and for m a natural integer dividing q − 1 we
have αn ≤ βn < γn for all n ≥ 1 with equality occurring only for α1 = β1 = 0
and α2 = β2 = 0.

Given a multiplicative subgroup M of m elements in the unit group F∗
q,

we set M = F∗
q\M if −1 ∈ M , respectively M = F∗

q\(+M∪−M) if −1 6∈ M .
Observe that −1 6∈ M if and only if mq is odd. Given two subsets B,D of

Fq, we denote by

(

B
D

)

the subset of all column-vectors of F2
q with first

coordinate in B and second coordinate in D. We consider now the partition
of all non-zero elements of F2

q given by the four disjoint subsets

(

M
0

)

,

(

M
0

)

,

(

Fq

M

)

,

(

Fq

M

)

if −1 ∈ M (i.e. if mq is even), respectively by the six disjoint subsets

(

+M
0

)

,

(

−M
0

)

,

(

M
0

)

,

(

Fq

+M

)

,

(

Fq

−M

)

,

(

Fq

M

)

if −1 6∈ M (i.e. if mq is odd) where 0 denotes of course the singleton
{0} ⊂ Fq.

For a fixed multiplicative subgroupM of m elements in F∗
q and n ≥ 1, we

consider the four, respectively six, rational sequences, named by the parts
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of the above partition of non-zero column-vectors in F2
q, given by table (14).

n (mod 4) : 0 1 2 3
(

M
0

)

n

βn γn βn γn
(

+M
0

)

n

βn γn βn αn

(

−M
0

)

n

βn αn βn γn
(

M
0

)

n

βn αn βn αn

(

Fq

M

)

n

γn βn γn βn
(

Fq

+M

)

n

γn βn αn βn
(

Fq

−M

)

n

αn βn γn βn
(

Fq

M

)

n

αn βn αn βn

(14)

Values for

(

M
0

)

n

and

(

Fq

M

)

n

apply only if −1 ∈ M and depend only

on the parity of n. Values for

(

M
0

)

n

and

(

Fq

M

)

n

apply whether or not

−1 is in M and depend also only on the parity of n. The remaining values
involving +M or −M apply only if −1 6∈ M and depend on n modulo 4.

For a non-zero vector

(

b
d

)

and for n ≥ 1 (and for a given fixed sub-

group M ⊂ F∗
q of m elements) we set

(

b
d

)

n

=

(

B
D

)

n

if b ∈ B and

d ∈ D with B,D ∈ {M,M, 0,Fq} in the case where −1 ∈ M , respectively
with B,D ∈ {+M,−M,M, 0,Fq} in the case where −1 6∈ M . Observe that
(

b
d

)

n

∈ {αn, βn, γn} for all n ≥ 1. We have now the following result:

Theorem 8.2 For all integers n ≥ 1 we have the identity





∑

µ∈M

∑

x∈Fq

[(

x µ
−1/µ 0

)]





n

= mn
∑

SL2(Fq)

(

b
d

)

n

[(

a b
c d

)]

in the group ring Z[SL2(Fq)] where m is the number of elements in a subgroup

M of F∗
q and where

(

b
d

)

n

are as above (the last sum is of course over all
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q3 − q elements

(

a b
c d

)

of SL2(Fq)).

Remark 8.3 Theorem 8.2 can easily be adapted to PSL2(Fq).

The following Lemma is the main ingredient for proving Theorem 8.2:

Lemma 8.4 The three sequences αn, βn, γn, n ≥ 1 satisfy the identities

α2n = α2n−1 + (q − 1)β2n−1,

α2n+1 = qα2n,

βn = qβn−1 + (n (mod 2)) ,

= (q − 1−m)αn−1 + βn−1 +mγn−1 − ((n− 1) (mod 2)) ,

γ2n = (q − 1)β2n−1 + γ2n−1,

γ2n+1 = qγ2n.

We leave the straightforward but tedious verifications to the reader. 2

Remark 8.5 The two recursive identities for βn yield

(q − 1−m)αn +mγn = (q − 1)βn + 1

which shows linear dependency of the constant sequence 1, 1, 1, . . . from the
three sequences αn, βn, γn.

Proof of Theorem 8.2 The result holds by (14) for n = 1 since α1 = β1 = 0
and γ1 =

1
m .

For n ≥ 2, we have the recursive formula

mn

(

b
d

)

n

= mn−1
∑

µ∈M

∑

x∈Fq

(

0 −µ
1/µ x

)(

b
d

)

n−1

and induction implies

m

(

b
d

)

n

=
∑

µ∈M

∑

x∈Fq

(

−µd
b/µ + xd

)

n−1

. (15)

Elementary properties of finite fields imply now the recursive formulae
(

M
0

)

n

= q

(

Fq

M

)

n−1
(

M
0

)

n

= q

(

Fq

M

)

n−1
(

Fq

M

)

n

=

(

M
0

)

n−1

+m

(

Fq

M

)

n−1

+ (q − 1−m)

(

Fq

M

)

n−1
(

Fq

M

)

n

=

(

M
0

)

n−1

+m

(

Fq

M

)

n−1

+ (q − 1−m)

(

Fq

M

)

n−1
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if −1 ∈ M and the recursive identities
(

±M
0

)

n

= q

(

Fq

±M

)

n−1
(

M
0

)

n

= q

(

Fq

M

)

n−1
(

Fq

±M

)

n

=

(

∓M
0

)

n−1

+ Tn−1

(

Fq

M

)

n

=

(

M
0

)

n−1

+ Tn−1

where

Tn−1 = m

(

Fq

+M

)

n−1

+m

(

Fq

−M

)

n−1

+ (q − 1− 2m)

(

Fq

M

)

n−1

if −1 6∈ M . Replacing all expressions by their values given by (14) we check
that all these expressions boil down to equalities of Lemma 8.4. 2

Remark 8.6 Spectral calculus gives a different proof of Theorem 8.2.

8.1 Traces

We denote by mnSτ (n) the sum of all coefficients in (12) corresponding to
elements of trace τ ∈ Fq. We are only interested in the values of S2(n) and
S−2(n). Observe that SL2(Fq) contains exactly q2 elements of trace 2: The
identity and all (other) q2 − 1 unipotent elements. Multiplication by −1
induces of course a bijection between elements of trace τ and elements of
trace −τ .

We have the following result:

Proposition 8.7 If n is even we have

S±2(n) = q3
qn−2 − 1

q2 − 1
− (q2 − q + 1)

q(n−2)/2 − 1

q − 1
(16)

+
m(q − 1) + qκ(±2, n)

m
q(n−2)/2

with κ(±2, n) = 1 if −1 ∈ M and with κ(±2, n) given by

n ≡ 0 (mod 4) n ≡ 2 (mod 4)

κ(2, n) 1 0

κ(−2, n) 0 1

if −1 6∈ M .
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If n is odd, we have

S2(n) = S−2(n) =
qn+1 − 1

q2 − 1
, (17)

independently of M .

Proof Counting the number of matrices of trace 2, respectively −2, in every
possible class we get

S±2(n) = m

(

M
0

)

n

+ (q − 1−m)

(

M
0

)

n

+(m(q − 1) + q)

(

Fq

M

)

n

+ (q − 1−m)(q − 1)

(

Fq

M

)

n

.

if −1 ∈ M and

S±2(n) = m

(

+M
0

)

n

+m

(

−M
0

)

n

+ (q − 1− 2m)

(

M
0

)

n

+(m(q − 1) + q)

(

Fq

±M

)

n

+m(q − 1)

(

Fq

∓M

)

n

+(q − 1− 2m)(q − 1)

(

Fq

M

)

n

.

if −1 6∈ M .
If −1 ∈ M , the above expression for S±2(n) amounts to

(q − 1)βn + (m(q − 1) + q)γn + (q − 1−m)(q − 1)αn

= q3
qn−2 − 1

q2 − 1
− (q2 − q + 1)

q(n−2)/2 − 1

q − 1
+ (m(q − 1) + q)

q(n−2)/2

m

if n is even and to

mγn + (q − 1−m)αn + (q2 − q + 1)βn =
qn+1 − 1

q2 − 1

if n is odd.
If −1 6∈ M and n even the value of Sτ (n) with τ ∈ {±2} equals

(q − 1)βn + (q − 1−m)(q − 1)αn +m(q − 1)γn + qηn(τ)

with ηn(τ) given by

n ≡ 0 (mod 4) n ≡ 2 (mod 4)

ηn(2) = γn αn

ηn(−2) = αn γn.
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For ηn(τ) = αn we have

q3
qn−2 − 1

q2 − 1
− (q2 − q + 1)

q(n−2)/2 − 1

q − 1
+ (q − 1)q(n−2)/2

and for ηn(τ) = γn we get

q3
qn−2 − 1

q2 − 1
− (q2 − q + 1)

q(n−2)/2 − 1

q − 1
+ (m(q − 1) + q)

q(n−2)/2

m
.

For −1 6∈ M and n odd, the common value S2(n) = S−2(n) is given by

m(αn + γn) + (q − 1− 2m)αn + (q2 − q + 1)βn =
qn+1 − 1

q2 − 1
.

This ends the proof. 2

9 Proof of Theorem 1.2

We denote by In the graph having vertices 1, . . . , n. Consecutive integers
represent adjacent vertices. For q a fixed prime-power and n ≥ 1, we write

ν

(

a b
c d

)

n

for the number of Schrödinger operators M over Fq for In such

that
a = det(M) b = det(M(n;n))
c = − det(M(1; 1)) d = − det(M(1, n; 1, n))

where M(i; j) respectively M(i1, i2; j1, j2) denotes the submatrix of M ob-
tained by deleting line(s) i∗ and row(s) j∗.

Initial values for ν

(

a b
c d

)

1

are given by ν

(

x 1
−1 0

)

1

= 1 and

ν

(

a b
c d

)

1

= 0 if (b, c, d) 6= (1,−1, 0). Expanding the determinant of

a Schrödinger operator for In+1 with a first diagonal coefficient x along the
first row shows the recursion

ν

(

a b
c d

)

n+1

=
∑

x∈Fq

ν

(

−c −d
a+ xc b+ xd

)

n

.

The matrix identity
(

a b
c d

)

=

(

x 1
−1 0

)(

−c −d
a+ xc b+ xd

)

implies now the identity




∑

x∈Fq

[(

x 1
−1 0

)]





n

=
∑

SL2(Fq)

ν

(

a b
c d

)

n

[(

a b
c d

)]
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in the group-ring Z[SL2(Fq)]. This correspond of course to the case M = 1
in (12) or in Theorem 8.2, with −1 6∈ M except if Fq is of characteristic 2.

Given a Schrödinger operator M for In we denote by M̃ the Schrödinger
operator of the n-cycle (obtained by joining the first and last vertex of In
with an additional edge) with the same diagonal coefficients. Thus, M̃ is
obtained from M by adding two non-zero coefficients 1 at the upper-right
and lower-left corner of M . Denoting by x1 the first diagonal coefficient
of M or M̃ and expanding the determinant of M̃ along the first row and
perhaps subsequently along the first column, we get

det(M̃) = x1 det(M(1; 1)) − det(M(1, 2; 1, 2))

−(−1)n
(

det(M(1, n; 1, 2)) + det(M(1, 2; 1, n))
)

− det(M(1, n; 1, n)).

The identities

x1 det(M(1; 1)) − det(M(1, 2; 1, 2)) = det(M) = a,

det(M(1, n; 1, 2)) = det(M(1, 2; 1, n)) = 1,

− det(M(1, n; 1, n)) = c

with

(

a b
c d

)

the matrix associated to M as above yield

det(M̃ ) = a+ c− 2(−1)n.

The number of non-invertible Schrödinger operators for Cn is thus the total
sum S2(−1)n(n) of coefficients associated to matrices of trace 2(−1)n in





∑

x∈Fq

[(

x 1
−1 0

)]





n

.

This shows that qn − S2(−1)n(n) is the number of invertible Schrödinger
operators for Cn. Proposition 8.7 with m = 1 and M = {1} the trivial
subgroup of Fq gives the values for S2(−1)n . Observe that −1 ∈ M if q is a
power of 2 and −1 6∈ M if q is an odd prime-power. The easy identities

q2n − (1− q2n)(1 − q2n+1)

1− q2

= q3
q4n−2 − 1

q2 − 1
− (q2 − q + 1)

q2n−1 − 1

q − 1
+ (2q − 1)q2n−1

and

−(1− q2n+1)(1− q2n+2)

1− q2

= q3
q4n − 1

q2 − 1
− (q2 − q + 1)

q2n − 1

q − 1
+ (q − 1)q2n
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end the proof. 2

Remark 9.1 Since S2(n) = S−2(n) for odd n, the number of invertible
Schrödinger operators for Cn is also given by qn − S2(n).

10 Proof for complete graphs

10.1 Simple stars

The number of invertible Schrödinger operators of simple stars (finite graphs
with at most one non-leaf) is a crucial ingredient for proving Theorem 1.3.

We denote in this subsection by Rn the rooted graph consisting of a
central root adjacent to n−1 leaves. Writing Sr(Rn) = (an, bn) with Sr(Rn)
defined as in Section 3, we have

SRn =
(

(q − 1)n−1, (n− 1)(q − 1)n−2
)

as can be checked using

(an+1, bn+1) = m((an, bn), e(v)) = m((an, bn), (q − 1, 1))

= ((q − 1)an, an + (q − 1)bn) .

We have thus

S∗n = f(an, bn) =
(

q2 + (n− 3)q + 1
)

(q − 1)n−2 (18)

for the non-rooted star ∗n underlying Rn given by a central vertex of degree
n− 1 surrounded by n− 1 leaves.

10.2 Proof of Theorem 1.3

We consider an invertible Schrödinger operator M for the star ∗n with a
central vertex of degree n − 1 surrounded by n − 1 leaves. If the diagonal
coefficient λ of the central vertex is different from −1, we get an invertible
Schrödinger operator of the complete graph Kn on n vertices by adding the
first row, corresponding to the central vertex of ∗n, of M to all other rows
and by dividing the first column of the resulting matrix by 1 + λ. This
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construction can be reversed, as easily seen on the following illustration:



















λ 1 1 . . . 1
1 a2 0 . . . 0
1 0 a3 . . . 0
...

. . .
...

1 0 0 . . . 0
1 0 0 . . . an



















↔















λ 1 1 . . . 1
1 + λ 1 + a2 1 . . . 1
1 + λ 1 1 + a3 . . . 1

...
. . .

...
1 + λ 1 1 . . . 1 + an















↔



















µ 1 1 . . . 1 1
1 1 + a2 1 . . . 1 1
1 1 1 + a3 . . . 1 1
...

. . .
...

1 1 1 . . . an−1 1
1 1 1 . . . 1 1 + an



















.

Every invertible Schrödinger operator of Kn with first diagonal coefficient
µ = λ/(1 + λ) different from 1 is of this form by taking λ = µ

1−µ .
Schrödinger operators of Kn with first coefficient 1 are invertible if and

only if they have a first diagonal coefficient equal to 1 and all n− 1 remain-
ing diagonal coefficients different from 1. There are thus (q − 1)n−1 such
matrices.

The number κn of invertible Schrödinger operators for the complete
graph Kn (over a fixed finite field Fq) is thus given by

κn = S∗n(q) + (q − 1)n−1 − sn (19)

where S∗n is given by (18) and where sn denotes the number of invertible
Schrödinger operators of ∗n with −1 as the diagonal entry corresponding
to the central vertex of the simple star ∗n consisting of a central vertex of
degree n− 1 adjacent to n− 1 leaves.

The number sn can be computed as follows: First observe that an in-
vertible Schrödinger operator of ∗n has at most a unique diagonal coefficient
which is zero. The contribution of such matrices to sn, given by

(n− 1)(q − 1)n−2, (20)

is easy to establish.
Matrices contributing to sn having only non-zero diagonal entries are in

bijection with solutions (b2, . . . , bn) ∈ (F∗
q)

n−1 of

−b2 · · · bn(1 +
1

b2
+ · · · + 1

bn
) 6= 0 .

We denote by s̃n the number of such solutions (b2, . . . , bn) ∈ (F∗
q)

n−1.
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Choosing an arbitrary non-zero element x1 ∈ F∗
q and setting x2 =

x1

b2
, . . . , xn = x1

bn
we have (q − 1)s̃n = βn where βn counts the number of

solutions (x1, . . . , xn) ∈ (F∗
q)

n of the inequality
∑n

i=1 xi 6= 0. We denote
similarily by αn the number of solutions (x1, . . . , xn) ∈ (F∗

q)
n of the equality

∑n
i=1 xi = 0.
We have α0 = 1, β0 = 0 and the recursive formulae

αn = βn−1,

βn = (q − 1)αn−1 + (q − 2)βn−1.

Lemma 10.1 We have

βn =
(q − 1)n+1 + (−1)n+1(q − 1)

q
.

Proof The sequence βn has the recursive definition β0 = 0, β1 = q − 1 and
βn = (q − 2)βn−1 + (q − 1)βn−2 for n ≥ 2. An induction on n based on the
trivial identity

(q − 1)n+1 + (−1)n+1(q − 1)

= (q − 2) ((q − 1)n + (−1)n(q − 1))

+(q − 1)
(

(q − 1)n−1 + (−1)n−1(q − 1)
)

ends the proof. 2

Remark 10.2 Lemma 10.1 follows also easily from the fact that the char-
acteristic polynomial X2 − (q − 2)X − (q − 1) of the recursion defining βn
has roots q − 1 and −1.

(20) and the equality (q − 1)s̃n = βn already mentionned imply sn = (n −
1)(q − 1)n−2 + 1

q−1βn. Lemma 10.1 shows thus that

sn = (n− 1)(q − 1)n−2 +
(q − 1)n − (−1)n

q
. (21)

Identities (18), (19) and (21), taken together, show that Kn has

(q2 + (n− 3)q + 1)(q − 1)n−2 + (q − 1)n−1

−
(

(n− 1)(q − 1)n−2 +
(q − 1)n − (−1)n

q

)

= n(q − 1)n−1 +
(q − 1)n−2

(

q3 − 2q2 + q − (q − 1)2
)

+ (−1)n

q

= n(q − 1)n−1 +
(q − 1)n+1 + (−1)n

q

invertible Schrödinger operators over Fq. 2
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11 Final remarks

11.1 Generalizations

It is of course possible to define Schrödinger operators for arbitrary (per-
haps oriented) simple graphs and to count invertible Schrödinger operators
over finite fields. I ignore if there is an efficient way for computing the
corresponding numbers.

Enumerating for example all Schrödinger operators over F3 and F5 for the
Petersen graph (obtained by identifying opposite points of the 1−skeleton
of the dodecahedron) we get q10 − q9 + q8 invertible Schrödinger operators
in both cases. This formula fails however for F2 for which no invertible
Schrödinger operators exists.

A second notion, closely related to Schrödinger operators and used for
example in Proposition 3.3, is to look at the set of all invertible matrices
with off-diagonal support defining a given graph (diagonal elements are arbi-
trary). In the case of unoriented graphs, one can moreover require matrices
to be symmetric.

For trees, both definitions are essentially identical (up to a factor (q −
1)∗).

11.2 Counting points over finite fields for algebraic varieties
over Q

Our main problem, counting invertible Schrödinger operators, is of course
a particular case of counting points over finite fields on algebraic varieties
defined over Z (or more generally over Q). Such problems are in general
difficult, see e.g. the monograph [4] devoted to such questions.

The main problem is of course the question if the behaviour of invertible
(or equivalently, non-invertible) Schrödinger operators of graphs is simpler.
All our examples give rise to polynomials (depending perhaps on the par-
ity of the characteristic) enumerating invertible Schrödinger operators over
finite fields. Does this fail for some finite graph G or do there always exist
polynomials depending on q (mod NG) for some natural integer NG evalu-
ating to the number of invertible Schrödinger operators over Fq for G?

11.3 Acknowledgements

I thank E. Peyre and P. De la Harpe for interesting discussions and remarks.

References

[1] A. Cayley, On the Theory of the Analytical Forms called Trees, Philo-
sophical Magazine, XIII (1857), 172–176.

34



[2] J. McKee, C. Smyth, “Salem numbers, Pisot numbers, Mahler measure,
and graphs”, Experiment. Math. 14 (2005), no. 2, 211–229.

[3] OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer
Sequences, http://oeis.org.

[4] J-P. Serre, Lectures on Nx(p), CRC Press, London-New York, 2012.

Roland BACHER, Univ. Grenoble Alpes, Institut Fourier (CNRS UMR
5582), 38000 Grenoble, France.
e-mail: Roland.Bacher@ujf-grenoble.fr

35


