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A local Invariant for Trees: Counting Schrödinger

Operators

Roland Bacher∗

August 28, 2014

Abstract1: We define local invariants for trees and illustrate them by

counting invertible Schrödinger operator for trees over finite fields.

1 Introduction

A Schrödinger operator on a simple (no multiple edges or loops) unoriented
graph G is a matrix which coincides with the adjacency matrix of G outside
the diagonal and is arbitrary on the diagonal. (It would in fact be more
accurate to call such matrices opposites of Schrödinger operators.)

We consider the counting-function q 7−→ S(T )(q) enumerating invertible
Schrödinger operators for a finite tree T over the finite field Fq with q ele-
ments. We show that S(T ) is a monic polynomial which is palindromic, up
to a sign depending on the parity of the number of vertices in T . Roots of
S(T ) are either on the unit circle or on the negative halfline. The number
of roots of S(T ) on the negative real halfline is at most equal to twice the
number of vertices of degree at least 3 in T .

We describe also a general framework for similar invariants of trees and
plane trees.

2 Local construction of trees

We denote by T the set of all finite trees and by R the set of all finite rooted
trees. (Rooted) trees will always be finite in the sequel.

Every element of R can be constructed (generally not uniquely) by ap-
plying a finite number of times the following operations:

(V ) Creating a trivial rooted tree consisting of a unique root-vertex.

∗This work has been partially supported by the LabEx PERSYVAL-Lab (ANR–11-
LABX-0025). The author is a member of the project-team GALOIS supported by this
LabEx.
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(E) Extending a rooted tree by gluing (an ordinary vertex of) an edge to
the root-vertex and by marking the new leaf of this extended tree as
the root.

(M) Merging two rooted trees by gluing their root-vertices into the root-
vertex of the resulting tree.

V has no argument, E operates on elements of R, the map M operates
commutatively and associatively on pairs of elements in R and admits V as
a two-sided identity.

Finally, the “forget” operator,

(F ) Forgetting the root-structure by turning the root of a rooted tree into
an ordinary vertex,

yields a surjection from R onto T . We have the identity

F (M(A,E(B))) = F (M(E(A), B)) (1)

(for all A,B in R) encoding the fact that an ordinary tree with n vertices
can be rooted at n different vertices.

Figure 1: An example of a rooted tree.

Figure 1 shows the rooted tree encoded (for example) by

M{E(M{E(M{E(V ), E(V )}), E(E(V ))}), E(V )}

with curly brackets enclosing arguments of M . The root-vertex is shown as
a large black dot. The bipartite black-white colouring of vertices should be
neglected at this stage.

2.1 Local invariants of (rooted) trees

A local invariant of rooted trees with values in a set E is a map i : R −→ E

which can be computed by replacing the construction operators V,E,M by
v, e,m where v ∈ E, e : E −→ E and m : E×E −→ E with m a commutative
and associative binary map.
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A local invariant of trees is a map f ◦ i from T to a set of values F where
i is a local invariant of rooted trees given by maps v, e,m : E∗ −→ E as
above and where f : E −→ F satisfies the identity

f(m(A, e(B))) = f(m(e(A), B))

corresponding to (1) for all A,B in E.
A trivial example with E = F = N is given by c = 0, e(x) = x + 1,

m(x, y) = x + y and f(x) = x. It counts the number of edges (given by
n − 1 for a tree with n vertices) of a tree. Replacing f with f1(x) = x + 1
we count vertices instead of edges.

Remark 2.1 The definition of local invariants for (rooted) trees is tauto-
logical: Every map A : T −→ F is a local invariant (on the set T of all finite
trees) by taking E = R and v = V, e = E,m = M,f = A ◦ F . We are of
course interested in local invariants where the maps v, e,m and f are sim-
ple, eg. given by algebraic operations over some set E with a rich algebraic
structure.

2.2 First examples

2.2.1 Enumerating independent sets

A subset I of vertices in a graph G is independent if I contains no pair
of adjacent (and distinct) elements. The polynomial

∑

j αjx
j encoding the

number αj of independent sets with j vertices in a finite tree can be com-
puted as a local invariant using

v = (1, x),

e(a, b) = (a+ b, xa),

m((a, b), (α, β)) = (aα,
1

x
bβ),

f(a, b) = a+ b.

We leave the easy details to the reader. (Hint: The first coefficient a of
(a, b) counts independent sets without the root of rooted trees, the second
coefficient b counts independent sets containing the root-vertex.)

For the tree underlying Figure 1 we get

1 + 8x+ 21x2 + 22x3 + 8x4 + x5 .

An independent set I of a tree T is maximal if every vertex of T is
adjacent or equal to an element of I. Maximal independent sets can be
enumerated (accordingly to their size) using the local invariant defined by

v = (1, 0, x),
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e(a, b, c) = (b, c, x(a + b)),

m((a, b, c), (α, β, γ)) = (aα, bβ + aβ + bα,
1

x
cγ),

f(a, b, c) = b+ c

(the coordinates b, c of (a, b, c) count maximal independent sets of a rooted
tree R not involving the root for b and involving the root for c, the coordinate
a counts independent sets not involving the root such that adjoining the root
yields maximal independent sets). For the tree underlying Figure 1 we get

4x3 + 3x4 + x5 .

2.2.2 Enumerating matchings

A matching of a graph is a set of disjoint edges. The polynomial
∑

j αjx
j

with αj counting matchings involving j edges can be computed as the local
invariant

v = (1, 0),

e(a, b) = (a+ b, xa),

m((a, b), (α, β)) = (aα, aβ + bα),

f(a, b) = a+ b.

We leave the easy details to the reader. (Hint: The first coefficient a of
(a, b) counts matchings of a rooted tree not involving the root, the second
coefficient b counts matchings involving the root.)

For the tree underlying Figure 1 we get

1 + 7x+ 13x2 + 7x3 .

A matching is maximal if every edge contains a vertex involved in an
edge of the matching. Maximal matchings can be computed using the local
invariant

v = (0, 1, 0),

e(a, b, c) = (b, c, x(a + b)),

m((a, b, c), (α, β, γ)) = (aα+ aβ + bα, bβ, (a + b)γ + c(α+ β)).

f(a, b) = b+ c.

For the tree underlying Figure 1 we get 7x3.

2.2.3 The characteristic polynomial of the adjacency matrix

We write (a, b) ∈ Z[x] if the characteristic polynomial of a rooted tree is
given by −ax+ b with ax corresponding to the contribution of the diagonal
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entry associated to the root. The characteristic polynomial det(A − x Id)
(where A is an adjacency matrix) is a local invariant defined by

v = (1, 0),

e(a, b) = (−xa+ b,−a),

m((a, b), (α, β)) = (aα, aβ + bα),

f(a, b) = −xa+ b.

For the tree underlying Figure 1 we get

x8 − 7x6 + 13x4 − 7x2 .

Similarly,

v = (1, 0, 0),

e(a, b, c) = (−(x+ c+ 1)a+ b,−a, 1),

m((a, b, c), (α, β, γ)) = (aα, aβ + bα, c+ γ),

f(a, b, c) = −(x+ c)a+ b

computes the characteristic polynomial of the combinatorial Laplacian of a
tree.

For the tree underlying Figure 1 we get

x8 + 14x7 + 76x6 + 204x5 + 286x4 + 204x3 + 67x2 + 8x .

3 The main example: counting Schrödinger oper-
ators

We consider the local invariant S : T −→ Z[q] of trees defined by

v = (0, 1),

e(a, b) = (b, qa+ (q − 1)b),

m((a, b), (α, β)) = (aβ + bα, bβ),

f(a, b) = qa+ (q − 1)b.

The constant v is obviously an identity for m which is commutative and
associative. Identity (1) amounts to the fact that

f(m((a, b), e(α, β)))

= f(m((a, b), (β, qα + (q − 1)β)))

= f(qaα+ qaβ − aβ + bβ, qbα+ qbβ − bβ)

= q2(a+ b)(α + β)− q(aβ + bα) + bβ

is symmetric in its arguments (a, b) and (α, β).
For the tree underlying Figure 1 we get

(q − 1)2(q2 − q + 1)(q4 + 2q3 + q2 + 2q + 1) .
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Remark 3.1 As a mnemotechnical device, the formula for m corresponds
to the addition a

b + α
β = aβ+bα

bβ with forbidden simplification and the for-
mula for e is, up to simplification by b, given by the homography a

b 7−→
(

0 1
q q − 1

)

a
b = 1

q a
b
+q−1 .

In the sequel we denote similarly by S(R) = (a, b) ∈ (Z[q])2 the pair of
polynomials associated to a rooted tree R.

Theorem 3.2 S(T ) counts the number of invertible Schrödinger operators
for T over the finite field Fq.

Proposition 3.3 (i) S(T ) is monic and palindromic up to a sign (ie. S(T )(q) =
(−q)nS(T )(1/q) where n is the number of vertices of T ).

(ii) The polynomial S(T ) of a tree with n vertices is of the form qn −
qn−1 +O(qn−2).

Assertion (ii) of Proposition 3.3 implies that S(T ) has always roots with
a strictly positive real part. These roots are necessarily on the complex unit
circle, see Theorem 3.4.

Assertion (ii) of Proposition 3.3 tells us that the number of invertible
Schrödinger operators on a tree can be correctly estimated naively assuming
that the determinant is a non-constant affine function of a fixed diagonal
coefficient.

Our next result describes the possible locations of roots:

Theorem 3.4 All zeros of S(T ) are in the set

{z ∈ C | |z| = 1} ∪ {z ∈ R | z < 0}

given by the union of the complex unit circle with the real strictly negative
halfline.

Remark 3.5 We put a complete order on pairs {x, 1/x} of inverse elements
in R∗

− ∪ S1 (where R∗
− = {z ∈ R | z < 0} and S1 = {z ∈ C | z = 1}) by

comparing values of the function

f(z) =

{

| arg(z)| ∈ [0, π] z ∈ S1,
πmax(−z,−1/z) z ∈ R∗

− .

The proof of Theorem 3.4 shows in fact a stronger statement: If T ′ is a
subtree (obtained by erasing edges) of a tree T , then the k-th largest pair of
roots of S(T ′) is at most equal to the k-th largest pair of roots of S(T ) for
k ≤ ⌊n/2⌋ where n is the number of vertices of T ′. (Inequalities are strict
except, perhaps, for multiple roots.) In particular, the number of negative
real roots of S(T ′) cannot exceed the number of negative real roots of S(T ).
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Our last result describes the maximal number of zeroes on the real neg-
ative halfline:

Theorem 3.6 The number of real negative zeroes of S(T ) (counted with
multiplicities) is at most equal to twice the number of vertices of degree at
least 3 in T .

3.1 S-values for a few families

3.1.1 Lines (path-graphs, Dynkin-graphs of type A)

We denote by Rn the rooted tree given by n vertices forming a path of length
n with the root at a leaf. Writing Sr(Rn) = (an, bn), we have

an =
qn−1 − (−1)n−1

q + 1
and bn =

qn − (−1)n

q + 1

by an easy induction using the identity (an+1, bn+1) = e(an, bn) = (bn, qan+
(q − 1)bn). This yields

S(Tn) =
qn+1 − (−1)n−1

q + 1

for the tree Tn underlying Rn.

3.1.2 Dynkin diagrams of type D and D̃

A tree T is a Dynkin diagram of type T if and only if T contains a unique
vertex of degree 3 adjacent to 2 leaves and no vertices of degree > 3. Such
a tree is thus of the form

F (E(E(E(. . . (E(M(E(V ), E(V )))) . . .)))) .

The value of S on such a tree with n vertices is given by

(q − 1)(qn−1 − (−1)n) .

Affine Dynkin diagrams of type D̃ are trees with two vertices of degree 3,
both adjacent to 2 leaves and joined by a path of arbitrary length. The case
of a path of length zero gives rise to central vertex of degree 4 surrounded
by 4 leaves and is also counted as of type D̃. The S-polynomial of such a
tree

T = F (M, (E(V ), E(E(E(. . . (E(M(E(V ), E(V )))) . . .)))))

with n vertices is given by

(q − 1)2(q + 1)(qn−3 + (−1)n) .
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3.1.3 Dynkin diagrams of type E and Ẽ

A Dynkin diagram of type E is a tree with no vertices of degree > 3, a
unique vertex of degree 3 surrounded by three legs of lengths 1, 2 and n− 4
for n = 6, 7, 8. The three corresponding polynomials are

S(E6) = (q4 − q2 + q)(q2 − q + 1),

S(E7) = (q6 + q3 + 1)(q − 1),

S(E8) = q8 − q7 + q6 − q5 + q4 − q3 + q2 − q + 1.

An affine Dynkin diagram of type Ẽ is a tree with no vertices of degree
> 3, a unique vertex of degree 3 surrounded by three legs of length, each of
length 2 for Ẽ6, one of lenght 1 and 2 of length 3 for Ẽ7, of lengths 1, 2 and
4 for Ẽ8. The corresponding polynomials are

S(Ẽ6) = (q − 1)(q + 1)2(q2 − q + 1),

S(Ẽ7) = (q − 1)2(q + 1)2(q2 + 1)(q2 − q + 1),

S(Ẽ8) = (q − 1)(q + 1)2(q2 − q + 1)(q4 − q3 + q2 − q + 1).

3.1.4 Stars

We denote by Rn the rooted graph consisting of a central root adjacent to
n− 1 leaves. Writing again Sr(Rn) = (an, bn) we have

an = (n− 1)(q − 1)n−2 and bn = (q − 1)n−1

as can be checked using

(an+1, bn+1) = m((an, bn), e(v)) = m((an, bn), (1, q − 1))

= ((q − 1)an + bn, (q − 1)bn) .

We have thus

S(Tn) = f(an, bn) =
(

q2 + (n− 3)q + 1
)

(q − 1)n−1

for the non-rooted star Tn underlying Rn.

3.2 Multiple roots of S(T )

A vertex of degree k of a tree T can be considered as the result of gluing
k trees rooted at a leaf along their root-leaves. This construction is linked
to some multiple roots of S(T ) as follows: Given a leaf-rooted tree R, let
v1, . . . , vn be all vertices of T involving R (ie. at least one of the rooted trees
attached to the root vi by a single edge is isomorphic to R). Given such a
vertex vi, we denote by ri + 1 ≥ 1 the multiplicity of the tree R at vi. Let
Sr(R) = (a, b) ∈ Z[q]2 be the corresponding local invariant of the rooted
tree R. We have then the following result:
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Proposition 3.7 The polynomial S(T ) is (at least) divisible by br where
r = r1 + · · ·+ rk.

Proof Gluing ki+1 copies of R together along their root gives a rooted tree
with invariant ((ki+1)abki , bki+1). Linearity and bilinearity of the formulae
for e, f and m imply now the result. ✷

Proposition 3.7 explains the factor q2− q+1 and one of the factors q−1
of the polynomial S(T ) = (q − 1)2(q2 − q + 1)(q4 + 2q3 + q2 + 2q + 1) with
T given by Figure 1. Since S(T ) is palindromic, the factor q − 1 divides
S(T ) with even multiplicity. All cyclotomic factors in this examples have
thus easy explanations.

3.3 Proofs

A matrix M with rows and columns indexed by vertices of a simple graph
G is a G-matrix if a non-diagonal coefficient ms,t of M is zero if and only
if {s, t} is not an edge of G. Diagonal entries of a G-matrix are arbitrary.
Equivalently, a G-matrix is a matrix whose non-diagonal support (set of non-
zero coefficients) encodes the edge-set of G. A G-matrix has a symmetric
support but is not necessarily symmetric. We have:

Theorem 3.8 The number of invertible T -matrices over Fq of a finite tree
T having n vertices is given by (q − 1)2n−2S(T ) with S(T ) defined at the
beginning of this Section.

Proof of Theorem 3.2 Follows from the obvious action on T -matrices of
the abelian group

(

F∗
q

)n
×
(

F∗
q

)n
of pairs of invertible diagonal matrices (with

coefficients in Fq) by left and right multiplication. ✷

Proof of Theorem 3.8 An R-matrix for a rooted tree R ∈ R is a T -matrix
for the underlying unrooted tree T with an unknown x on the diagonal
corresponding to the root of R. The determinant of a R-matrix for R ∈ R
over a finite field Fq is thus an affine function of the form ax+ b ∈ Fq[x].

We consider now a fixed rooted tree R. Given two subsets A,B of Fq we
denote by N(A,B) the number of R-matrices of determinant ax + b with
(a, b) ∈ A×B. We encode the natural integersN(0, 0), N(0,F∗

q ), N(F∗
q , 0), N(F∗

q ,F
∗
q)

(with 0 denoting the singleton {0}) using the square matrix
(

N(0, 0) N(0,F∗
q)

N(F∗
q , 0) N(F∗

q,F
∗
q)

)

.

Since right and left multiplications by invertible diagonal matrices preserve
the set of R-matrices, we have N(λa, µb) = N(a, b) for invertible elements λ
and µ. Elementary linear algebra shows now that the operators V,E,M,F
correspond to the operators

v =

(

0 0
1 0

)

,
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e =

(

a b
c d

)

7−→ (q − 1)2
(

qa c+ d
qb (q − 1)(c+ d)

)

,

m = (

(

a b
c d

)

,

(

α β
γ δ

)

) 7−→

(

A B
C D

)

,

f =

(

a b
c d

)

7−→ qb+ (q − 1)(c+ d)

where

A = aα+ aβ + bα+ aγ + cα+

+aδ + dα+ bβ,

B = bγ + cβ + bδ + dβ,

C = cγ +
1

q − 1
dδ,

D = cδ + dγ +
q − 2

q − 1
dδ.

We can neglect the valuesN(0, 0) and lump together N(F∗
q, 0) andN(F∗

q ,F
∗
q).

This leads to the formulae for S(T ) except for an extra factor of (q− 1)2 for
every edge of T . ✷

The following result will be used in the proof of Proposition 3.3:

Proposition 3.9 Let (a, b) = S(R) ∈ Z[q]2 be the pair of polynomials as-
sociated to a rooted tree R with n vertices and a root of degree d. The
polynomial a has then degree n−2 and is of the form dqn−2+O(qn−3). The
polynomial b has degree n− 1 and is of the form qn−1 − dqn−2 +O(qn−3).

The proof of Proposition 3.9 is an easy induction based on the formulae
for v, e and m. We leave the details to the reader. ✷

Proof of Proposition 3.3 An easy induction on the number n of vertices
shows that the polynomials a and b of a rooted trees are palindromic, up to
signs (given by (−1)n−2 and (−1)n−1). The polynomial b is moreover always
monic by Proposition 3.9. This implies assertion(i).

Assertion (ii) follows from Proposition 3.9 and the easy computation

S(T ) = f(a, b) = qa+ (q − 1)b = dqn−1 + qn − qn−1 − dqn−1 +O(qn−2)

for (a, b) = S(R) with R obtained from T by choosing a root-vertex (of
degree d) among the vertices of T . ✷

A pair (P,Q) of real relatively prime polynomials of degrees n − 1 and
n are interlacing on an interval I of real numbers, if P and Q have strictly
positive coefficients of largest degree and if P , respectively Q, has n − 1
distinct roots ρ′1, . . . , ρ

′
n−1 in I, respectively n distinct roots ρ1, . . . , ρn in I

such that ρ1 < ρ′1 < ρ2 < ρ′2 < . . . < ρn−1 < ρ′n−1 < ρn. If R is a polynomial
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with all roots in I and with a strictly positive coefficient of largest degree
and if (P,Q) are I-interlacing we call (RP,RQ) also I-interlacing.

In the sequel, we will generally no longer mention I which is always the
closed real interval (−∞, 2]. Interlacing polynomials will always be interlac-
ing polynomials on (−∞, 2].

We say that a polynomial P in C[q] of degree n is sign-degree-palindromic
if (−q)nP (1/q) = P (q). Sign-degree-palindromic polynomials of odd degree
are always divisible by q − 1.

We say that a pair (a, b) ∈ R[q] of sign-degree-palindromic polynomials
has the interlacing property if a is of degree n− 1, the second polynomial b
is of degree n and the pair (A,B) with A,B defined by

a = (q − 1)n−1 (mod 2)q⌊(n−1)/2)⌋A(q + 1/q),

(q − 1)n (mod 2)b = q⌊(n+1)/2⌋B(q + 1/q),
(2)

(with k (mod 2) in {0, 1}), is interlacing (on the interval I = (−∞, 2]).

Lemma 3.10 The polynomial qa + (q − 1)b has all its roots on the union
of the unit circle with the strictly negative real half-line if the sign-degree-
palindromic pair (a, b) has the interlacing property.

The proof is straightforward and left to the reader. ✷

Proposition 3.11 The pair (a, b) of polynomials associated to a rooted tree
has the interlacing property.

Lemma 3.12 If (a, b) ∈ Z[q] has the interlacing property, then so does
(b, qa+ (q − 1)b).

Proof Since common divisors of a and b can be handled easily, we suppose
henceforth a and b coprime for simplicity.

We consider the interlacing pair (A,B) ∈ Z[X] associated by formula (2)
to (a, b).

We consider first the case where a is of even degree n − 1 and b of odd
degree n. We have

(ã, b̃)

= (b, qa+ (q − 1)b)

= (q(n+1)/2B(q + 1/q)/(q − 1), q1+(n−1)/2A(q + 1/q) + q(n+1)/2B(q + 1/q))

= ((q − 1)q(n−1)/2Ã(q + 1/q), q(n+1)/2B̃(q + 1/q))

where we have used a = q(n−1)/2A(q + 1/q), (q − 1)b = q(n+1)/2B(q + 1/q)
and ã = (q − 1)q(n−1)/2Ã(q + 1/q), b̃ = q(n+1)/2)B̃(q + 1/q). We get thus

Ã =
1

X − 2
B and B̃ = A+B .
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The polynomial B has degree (n + 1)/2 and zeros

ρ1 < ρ2 < . . . < ρ(n+1)/2 = 2 .

The interlacing property of (A,B) implies that the (n − 1)/2 simple zeros
ρ′1, . . . , ρ

′
(n−1)/2 of A satisfy

ρ1 < ρ′1 < ρ2 < · · · < ρ′(n−1)/2 < ρ(n+1)/2 = 2 .

The polynomials A and B have opposite signs on the interval (−∞, ρ1) and
on the (n−1)/2 intervals (ρ′i, ρi+1). Boundary values and growth-properties
imply that A+B has least one root in each of these (n+1)/2 open intervals.
Since A + B is of degree (n + 1)/2 all these roots are simple and there are
no others. This establishes the interlacing property for (Ã, B̃) in the case
where n is odd.

In the case where a is of odd degree n− 1 and b of even degree n we get

(ã, b̃)

= (b, qa+ (q − 1)b)

= (qn/2B(q + 1/q), (q − 1)qn/2A(q + 1/q) + (q − 1)qn/2B(q + 1/q))

= (qn/2Ã(q + 1/q), q(n+2)/2B̃(q + 1/q)/(q − 1))

where we have used a = (q − 1)q(n−2)/2A(q + 1/q), b = qn/2B(q + 1/q) and
ã = qn/2Ã(q + 1/q), (q − 1)b̃ = q(n+2)/2)B̃(q + 1/q). We get thus

Ã = B and B̃ = (X − 2)(A +B) .

The polynomial B has degree n/2 and we have

ρ1 < ρ′1 < ρ2 < · · · < ρ′n/2−1 < ρn/2 ≤ 2

where ρi are the zeros of B and ρ′i are the zeros of A. Arguments as above
imply again the interlacing property for (ã, b̃) = (b, qa+ (q − 1)b). ✷

Lemma 3.13 If (a1, b1) and (a2, b2) have the interlacing property, then so
does (a1b2 + a2b1, b1b2).

Remark 3.14 Lemmata 3.12 and 3.13 can be strenghtened to the statement
that (b, αqa+(q−1)b), respectively (αa1b2+βa2b1, b1b2), have the interlacing
property for all α, β > 0. The proofs remain (essentially) the same.

Proof of Lemma 3.13 We can again suppose, without loss of generality,
that ai, bi are coprime for i = 1, 2. We denote by ni the degree of bi and we
define the two interlacing pairs (A1, B1) and (A2, B2) with Bi in the obvious
way.
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We consider first the case where n1 and n2 are both odd. We have then

ai = q(ni−1)/2Ai(q + 1/q)

(q − 1)bi = q(ni+1)/2Bi(q + 1/q) .

Comparision of

ã = a1b2 + a2b1

=
1

q − 1
q(n1+n2)/2(A1B2 +B1A2)

b̃ = b1b2

=
1

(q − 1)2
q(n1+n2+2)/2B1B2

(where Ai, Bi stand for Ai(q + 1/q), Bi(q + 1/q)) with

ã = (q − 1)q(n1+n2−2)/2Ã(q + 1/q)

b̃ = q(n1+n2)/2B̃(q + 1/q)

shows

Ã(X) =
1

X − 2
(A1(X)B2(X) +B1(X)A2(X)),

B̃(X) =
1

X − 2
B1(X)B2(X) .

Observe that both B1(X) and B2(X) have a root at X = 2.
Analogous computations show

Ã(X) = A1(X)B2(X) +B1(X)A2(X),

B̃(X) = B1(X)B2(X)

in all remaining cases, ie. if at least one of b1, b2 is of even degree.
It is now enough to show that (Ã, B̃) are interlacing in order to finish

the proof. We set Fi = Ãi

B̃i
. The pair (Ã, B̃) is interlacing if and only if

every open interval defined by two distinct consecutive zeroes of B̃ contains
a zero of the meromorphic function F = F1 + F2. Indeed, common zeros of
B1, B2 other than X = 2 (with X = 2 occuring as a common zero only in
the case where n1 and n2 are both odd) give rise to a zero of Ã and can thus
be neglected.

Consecutive zeroes of B̃ correspond to consecutive poles of F .
Since F1, F2 are quotients of interlacing polynomials, we have Fi(x) ≥ 0

if and only if the largest pole π ≤ x of Fi is larger than the largest zero
ρ ≤ x of Fi. The set of poles and zeroes of Fi defines thus 2ni open intervals
of R with Fi having alternating signs (starting with a negative sign at the
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smallest unbounded interval and ending with a positive sign at the final
largest unbounded interval) on these intervals.

We consider first two consecutive poles π, π′ of F which belong both,
say to F1. This implies that F1 restricted to I defines a surjection onto
R and boundedness of F2 restricted to I shows that I contains a zero of
F = F1 + F2 (the case where π or π′ is also a pole of F2 can be handled
similarly by remarking that such a double pole gives rise to a common root
of Ã and B̃).

We are now left with the case of two distinct consecutive poles π1 < π2
of F with πi a pole of Fi (the case π2 < π1 is of course analogous). This
case splits into four subcases according to the possible presence of zeros of
F1, F2 in the interval I. If I contains no zero of F1 and of F2, the function
F1 is positive on I, has a pole at π1 and has a finite limit at π2 while F2 is
negative on I, has a finite limit at π1 and a pole at π2. This implies again
the F restricted to I is continouos and surjective onto R. The interval I
contains thus a zero of F .

If the interval I contains exactly one zero ρ of F1F2, the function F has
a zero in (π1, ρ) if F1(ρ) = 0 and F has a zero in (ρ, π2) otherwise.

If I contains two distinct zeros ρ, ρ′ of F1F2, they cannot be zeroes of,
say, only the first factor F1 by the fact that (A1, B1) are interlacing. A
similar analysis as above shows then that F changes sign on the interval
J = (ρ, ρ′) and continuity of F on J implies the existence of a root for F .
The case of a common zero ρ of F1 and F2 is even simpler since it gives
directly rise to a zero of F .

A counting argument (together with a discussion of common zeros of
B1, B2) shows now that (Ã, B̃) is interlacing. ✷

Proof of Proposition 3.11 Follows by induction from Lemma 3.12 and
Lemma 3.13. ✷

Proof of Theorem 3.4 Follows from Proposition 3.11 and Lemma 3.10.✷
The main ingredient for proving Theorem 3.6 is the following result:

Proposition 3.15 The numbers of real negative zeroes of the polynomials
a, b associated by S(R) = (a, b) to a rooted tree R are at most equal to twice
the number of non-root vertices of degree at least 3 in R.

Proof of Theorem 3.6 We turn a given tree T into a rooted tree R by
choosing one of the leaves of T as its root. We have then S(E(R)) =
(b, qa+ (q − 1)b) = (b, S(T )). Proposition 3.15 ends the proof. ✷

Proof of Proposition 3.15 Let R be a rooted tree. If the root vertex
v∗ of R is not a leaf, then S(R) = (A,B) = (aβ + bα, bβ) where (a, b)
and (α, β) are associated to smaller non-trivial rooted trees R1, R2 such
that R = M(R1, R2). The result holds thus by induction on the number
of vertices for B = bβ and it holds for A by the interlacing property of
(A,B). If the root vertex v∗ is a leaf, the result holds by Section 3.1.1 if R
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is a rooted path, ie. a Dynkin diagram of type A. Otherwise, the tree R
contains a vertex w of degree at least 3. Working with the rooted tree Rw

corresponding to T rooted at w, we see that aw, bw with S(Rw) = (aw, bw)
have at most 2(k− 1) real negative zeroes where k is the number of vertices
of degree at least 3 in T . This implies that S(T ) has at most 2+2(k−1) = 2k
real negative zeroes. Since S(T ) has at least as many real negative zeroes
as b involved in S(R) = (a, b) and since (a, b) has the interlacing property,
the polynomials a, b have both at most 2k real zeroes. ✷

3.3.1 Digression

Partial attempts to prove Theorem 3.6 yielded the following results which
are perhaps of some independent interest:

Proposition 3.16 Given a strictly positive natural number k, a complex
number λ of norm at most 1 and non-negative real constants c1, c2, . . . such
that 0 <

∑

j cj < ∞, the holomorphic function defined by

∞
∑

j=1

cj
1 + λzj

1 + λzj+k

has no roots in the open complex unit disc.

The same result holds for
∑∞

j=1 cj
1+λzj+k

1+λzj
.

Corollary 3.17 Let C(x) ∈ Q[x] be a rational polynomial having only
strictly positive real roots and let L(x) ∈ Q[x] be a polynomial having all
its roots on the complex unit circle (ie. of norm 1). Given an integer k ≥ 1
and n integers j1, . . . , jn ≥ 0, the polynomials

∏

c∈R,C(c)=0

∏

λ∈C,L(λ)=0

(

n
∏

h=1

(

1 + λzjh+k
)

)(

n
∑

h=1

c
1 + λzjh

1 + λzjh+k

)

and
∏

c∈R,C(c)=0

∏

λ∈C,L(λ)=0

(

n
∏

h=1

(

1 + λzjh
)

)(

n
∑

h=1

c
1 + λzjh+k

1 + λzjh

)

are rational polynomials having all their roots on the complex unit circle.

Corollary 3.17 is mainly an illustration and is not stated in the most
general case.
Proof of Corollary 3.17 These polynomials are clearly rational polyno-
mials. The have a leading coefficient of the same size as their constant
coefficient. The product of all their roots is thus on the unit circle. Hence
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it is enough to prove that they have no root in the open unit disc. This
follows from Proposition 3.16. ✷

Proof of Proposition 3.16 We set µ = λzk for z in the open complex unit
disc. The image of the map

N \ {0} ∋ n 7−→
1 + λzn

1 + λzn+k
=

1 + λzn

1 + µzn

belongs then to the open disc or halfplane S given by the image of the open
unit disc under the homography

z 7−→
1 + λz

1 + µz

which does not contain the origin. Non-trivial positive linear combinations
of elements in S are thus never zero. ✷

3.4 S-cyclotomic trees

We call a tree T an S-cyclotomic tree if S(T ) is a product of cyclotomic
polynomials, ie. if all roots of S(T ) are on the unit circle S1.

Theorem 3.18 A tree T is S-cyclotomic if and only if T is contained in
an affine Dynkin diagram of type D̃ or Ẽ.

Moreover, the polynomial S(T ) of an S-cyclotomic tree is divisible by
(q + 1)2 if and only if T is an affine Dynkin diagram. Otherwise, T is an
ordinary simply laced root system (of type A,D or E) and q + 1 does not
divide S(T ).

Sketch of proof The examples computed in Section 3.1 show that S-
polynomials of (Dynkin graphs of) affine root-systems of type D̃ or Ẽ have a
double root at −1. By Remark 3.5, we have S(T )(ρ) = 0 for some real root
ρ < −1 if T is a tree containing such an affine root system strictly. Such a
tree T is thus not cyclotomic. The union of all affine or ordinary simply laced
root systems of type A,D, D̃,E, Ẽ given by trees (affine Dynkin diagrams
of type Ã are cycles) is closed by taking connected subtrees. This shows the
first part of Theorem 3.18. The second part follows from the observation
that S-polynomials of ordinary simply laced root-systems are non-zero at
x = −1. ✷

Remark 3.19 A conceptual (less computational) proof of Theorem 3.18
would be interesting since it would perhaps point to a connection between
S-polynomials and simply laced (affine) root systems.
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3.5 Salem numbers

A Salem number is a real algebraic integer ρ of absolute value > 1 having
all its conjugates in the closed complex unit disc and having at least one
conjugate on the unit circle. We denote by ζ a complex conjugate on the
unit circle of ρ. Since the complex conjugate ζ = 1/ζ of ζ belongs also to
the unit circle, a minimal polynomial of a Salem number is palindromic. It
has thus exactly two real conjugates ρ and 1/ρ. The remaining conjugates
are all on the complex unit circle.

A generalized star is a tree having at most one vertex of degree > 2. We
show in this Section that most generalized stars define Salem numbers.

Theorem 3.20 Let T be a generalized star. The polynomial S(T ) of a gen-
eralized star is a product of a minimal polynomial defining a Salem number
and of cyclotomic factors except in the case where T is S-cyclotomic.

In the case where T is S-cyclotomic, there is of course no Salem-factor
and T is a Dynkin diagram of type A,D,E or an affine Dynkin diagram of
type D̃, Ẽ.
Proof of Theorem 3.20 Follows from Theorem 3.6 and Theorem 3.18. ✷

3.5.1 The smallest Salem number

Intriguingly, the Salem number −1.176 . . . of smallest absolute value is a
root of

S(T ) = q10 − q9 + q7 − q6 + q5 − q4 + q3 − q + 1

where
T = F (E(E(E(E(E(E(M(E(V ), E(E(V ))))))))))

is the generalized star having a vertex of degree 3 surrounded by three
paths of length 1, 2 and 6. Observe that T is the unique generalized star not
containing any D̃ nor D̃6 or D̃7. It is thus canonically associated to Ẽ8 (or
E8) emphasizing the special role played by the exceptional root lattice E8.

3.6 Experimental properties of edge-subdivisions

Subdividing an edge into more edges by insertion of intermediary vertices of
degree 2 adds only vertices of degree 2. Theorem 3.6 implies thus that this
can only moderately increase the number of real negative roots of the polyno-
mial S associated to a sequence of subdivisions of a given edge into more and
more edges. Moreover, real negative roots do seemingly converge to some
algebraic “limit-roots” in a sequence of graphs with a larger and larger num-
ber of subdivisions of an edge. Subdividing all edges by insertion of more
and more intermediary vertices around a given vertex of degree α + 1 ≥ 3
leads to limit-roots −α,−1/α. This can be done at several vertices. In par-
ticular, subdivision of all edges by insertion of more and more intermediate
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vertices leads seemingly to real limit-roots −α1, . . . ,−αk,−1/α1, . . . ,−1/αk

where α1 + 1, . . . , αk + 1 are the degrees of all vertices of degree at least 3.
It would be interesting to understand the behaviour of roots on the unit-

circle under larger and larger edge-subdivisions. The number of these roots
increases and the simplest possible behaviour would be convergency of the
relative root density on the unit-circle to some continuous limit given, up to
a constant, by the Lebesgue measure.

4 Trees with coloured vertices

A rooted tree with non-rooted vertices coloured (not necessarily properly,
ie. adjacent vertices have not necessarily distinct colours) by a set C can be
constructed using the construction-operators V (creation of a root-vertex),
M (merging of two rooted trees along their root) and replacing E by oper-
ators Ec (for c ∈ C) depending on the final colour of the initial root-vertex.
For ordinary trees, one replaces F by operators Fc indexed by all possible
colours of the last vertex.

Identity (1) is replaced by

Fs(M(A,Et(B)) = Ft(M(Es(A), B))

for all s, t ∈ C and A,B ∈ R.
Denoting by Eb, Ew and Fb, Fw the coloured operators for trees with

black and white vertices, the black-white coloured tree underlying Figure 1
is given by

Fb(M{Ew(M{Eb(M{Ew(V ), Ew(V )}), Eb(Ew(V ))}), Ew(V )}).

Local invariants for coloured trees are now defined in the obvious way.
A somewhat trivial method for creating coloured local invariants is given

by chosing colour-constants Vc ∈ E and by replacing e with ec(A) = e(m(A,Vc))
and f with fc(A) = f(m(A,Vc)). These invariants amount to attachements
of “virtual trees” depending on the colour at all vertices of a tree.

A coloured variation of the characteristic polynomial of the adjacency
matrix is given by computing the determinant of the matrix coinciding with
the adjacency matrix outside the diagonal and with diagonal coefficients
−x or −y according to the bipartite class of the corresponding vertex. The
resulting determinant is well-defined in Z[x, y] up to exchanging x with y
and can be computed as a local invariant. This construction works of course
also for the combinatorial Laplacian of a tree.

4.1 Coloured Schrödinger operators

The enumeration of Schrödinger operators according to coloured diagonal
zeros leads to a local invariant of coloured trees. It takes its values in Z[q, C]
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with the coefficient (in Z[q]) of a monomial
∏

j c
ej
j ∈ C∗ counting the number

of Schrödinger operators with ej zero terms on diagonal elements associated
to vertices of colour cj.

The corresponding operators are given by

v = (0, 1, 0),

es(a, b, c) = (sb+ c, (q − 1 + s)a, (q − 1)b+ (q − 2 + s)c),

m((a, b, c), (α, β, γ))

= (aβ + bα+ aγ + cα, bβ +
cγ

q − 1
, bγ + cβ +

q − 2

q − 1
cγ)

fs(a, b, c) = (q − 1 + s)a+ (q − 1)b+ (q − 2 + s)c.

(with (a, b, c) standing for a = N(0,F∗
q), b = N(F∗

q, 0) and c = N(F∗
q,F

∗
q)

using the notation of the Proof of Theorem 3.8).
Skeptical readers are invited to check the identity

fs(m((a, b, c), et(α, β, γ))) = ft(m(es(a, b, c), (α, β, γ))).

4.2 A few examples of colourings for trees

Since trees are bipartite graphs, they have a unique proper colouring (up to
colour permutation) with two colours, see Figure 1 for an example. More
generally, given a symmetric subset M of N × N, colour the two endpoints
s, t of an edge e with the same colour if (deg(s),deg(t)) ∈ M and with both
colours (of a colour set with 2 elements) otherwise. The proper bipartite
colouring corresponds to the case of two colours with M = ∅.

A canonical proper colouring (up to colour permutations) with 3 colours
is defined by requiring that a vertex of degree 2 and its two neighbours have
all different colours. All other vertices have neighbours of the same colour
(distinct from the colour of the central vertex).

An improper canonical colouring of trees with 3 colours appears in [3]
and [1]. We describe it following [2]: Call a subset S of vertices of a tree
a vertex cover if S intersects every edge. Minimal vertex covers have a
minimal number of elements. Colour a vertex in green if it is contained in
every minimal vertex cover, in orange if it is contained in some minimal
vertex cover and in red if it is contained in no minimal vertex cover. See the
references cited above for more properties of this colouring.

Trees with an odd number of vertices have a canonical orientation of
edges: Removal of an edge e joining two vertices s and t in such a tree T
determines two subtrees Ts, respectively Tt, containing s, respectively t. We
orient e from s to t if the subtree Ts contains an even number of vertices.
This leads to a proper Z-colouring of T , well defined up to addition of a
constant, by the requirement c(t) = c(s) + 1 if s and t are as above. This
colouring is compatible with reduction modulo N for any natural integer N .
Reduction modulo 2 gives the proper bipartite colouring.
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In the case of a tree T with an even number of vertices, we get a partition
of the edges of T into two classes E and O according to the parity of the
number of vertices in the two subtrees Ts and Tt. This leads to a proper
”dihedral” Z-colouring of T , well defined up to the action of the infinite
dihedral group: c(t) = c(s) + (−1)c(s) if the edge joining s to t is in E and
c(t) = c(s) − (−1)c(s) otherwise. The dihedral colouring is compatible with
reduction modulo N for any even natural number N . The case N = 2
corresponds to the bipartite colouring.

One can also consider colourings where the colours of two adjacent ver-
tices s, t depend not only on the parities of the two subtrees obtained by
removing the edge {s, t} but also on their sizes (and perhaps also on the
degrees of s and t). More generally, a vertex v of a tree T with n vertices
determines a partition of n − 1 by considering the number of vertices in
connected components of the forest obtained by removing v from T . We
can now colour v with the (colour of the) corresponding partition.

5 Plane trees

A plane tree is a tree embedded in the oriented plane, up to orientation-
preserving homeomorphisms. Plane trees are abstract trees together with
cyclic orders on edge sets incident at a common vertex.

A rooted plane tree is a rooted plane tree together with a refinement into
a linear order of the cyclic order on edges incident at the root.

Rooted plane trees can be constructed using the operators V,E,M al-
ready considered, except that M is no longer commutative (but remains of
course associative). When dealing with ordinary plane trees, we need more-
over the operator F together with the identity F (M(A,B)) = F (M(B,A)).

Figure 2: Two non-isomorphic plane trees.

Figure 2 shows two non-ismorphic plane trees, given for example by

F (M(M(E(E(E(V ))), E(V )),M(E(E(E(V ))), E(V ))))

and
F (M(M(E(V ), E(V )),M(E(E(E(V ))), E(E(E(V ))))))

with the same underlying abstract tree.
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5.1 An example of a local invariant for plane trees coming
from 2-coloured edges

A 2−colouring into black and red of all edges in a plane tree T is admissible
if two red edges are never cyclically consecutive (ie. all letters b in the cyclic
word in {b, r}∗ encoding the colours around a vertex are isolated). We want
to compute the polynomial

∑

αjx
j counting the number aj of admissible

colourings with j red edges of a plane tree.
We consider six coefficients a1, . . . , a6 ∈ N[x]: where v = (1, 0, 0, 0, 0, 0)

and a1 = 0 whenever R is not a trivial rooted tree, a2 counts situations with
neither first nor last (not necessarily distinct) red edge issued from the root,
a3 first edge red but not last, a4 last edge red but not first, a5 first and last
edge both red and distinct, a6 root is the leaf of a red edge. We resume this
information in the table

a1 a2 a3 a4 a5 a6
∅ b . . . b or b r . . . b b . . . r r . . . r r

.

We have
v = (1, 0, 0, 0, 0, 0),

e(a1, a2, a3, a4, a5, a6) = (0, a1 + a2 + a3 + a4 + a5 + a6, 0, 0, 0, x(a1 + a2)),

m((a1, . . . , a6), (b1, . . . , b6))

= (a1b1, c2, c3, c4, c5, a1b6 + a6b1)

where

c2 = a2b2 + a2b3 + a4b2 + a1b2 + a2b1

c3 = a3b2 + a3b3 + a5b2 + a6b2 + a1b3 + a3b1

c4 = a2b4 + a2b5 + a2b6 + a4b4 + a1b4 + a4b1

c5 = a3b4 + a3b5 + a3b6 + a5b4 + a6b4 + a1b5 + a5b1

and f(a1, a2, a3, a4, a5, a6) = a1 + a2 + a3 + a4 + a6.
For the plane rooted tree underlying Figure 1, we get the polynomial

7x3+13x2+7x+1 enumerating also matchings. This is not surprising since
all solutions for plane trees involving only vertices of degree ≤ 3 correspond
to matchings of the underlying tree.

For the two plane trees of Figure 2 we get

5x4 + 18x3 + 20x2 + 8x+ 1 and 4x4 + 18x3 + 20x2 + 8x+ 1

showing that they are indeed non-isomorphic plane trees.
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5.2 Generalizing the 2-edge-coloured example

The previous example just discussed has of course many variations giving
rise to similar formulae. The next simple example is perhaps given by edge-
colourings with three colours such that two cyclically consecutive edges have
nether the same colour (weighting such colourings with xαyβzγ where α, β, γ
are the multiplicities of the colours (identified with) x, y, z, we get a sym-
metric polynomial in x, y, z). A set of values E of the corresponding local
invariant can be chosen as given by elements

(a, ax, ay, az, axx, axy, axz, ayx, ayy, ayz , azx, azy, azz)

of N[x, y, z]13 with a = 1 if R is an isolated vertex and a = 0 otherwise,
with au = 0 except if the root of R is a leaf attached to an edge of colour u,
and with au,v counting the number of admissible colourings as above where
the root has a first edge of colour u and a distinct last edge of colour v.
We have then v = (1, 0, 0, . . . , 0). Formulae for the remaining operators are
straightforward but tedious to write down.

5.3 Another family of examples

We consider a (multiplicative) group Γ together with a (generally non-
symmetric) generating set S. We consider edge-colourings with colours in Γ
of trees such that α−1β is always in S for an edge of colour α followed cycli-
cally (say in the trigonometric sense) around a non-leaf by an edge of colour
β. The first interesting example is given by Γ = Z/3Z with S = {0, 1}.
Colours of cyclically consecutive edges remain either the same or increase
only by 1.

5.4 Vertex-colourings

The previous examples can be modified to deal with suitable (perhaps im-
proper) vertex-colourings.

6 The language associated to V, E and M

Associativity of M and the fact that V,E,M have different numbers of ar-
guments imply that parentheses are not necessary when constructing rooted
trees in terms of the operators V,E and M . Elements of R correspond
thus (not uniquely) to a subset L of words in {V,E,M}∗. Final non-empty
factors of words in L contain strictly more occurences of V than of M . In
particular, all words of L end with V . Moreover, L is closed under the op-
erations L ∋ A 7−→ EA and L2 ∋ (A,B) 7−→ MAB. The language L is the
smallest language containing V which is closed under these two operations.
We denote by L′ the subset of reduced words in L, defined as those elements
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of L which involve no trivial constructions of the form M(V,A) or M(A,V ).
We have L′ = L∩ ({V } ∪ {EV,E,M}∗). The number e of occurences of the
letter E in an element of L counts the number of edges in the correspond-
ing rooted tree. The numbers v and m of occurences of V and M satisfy
v = m + 1. The set L′ of reduced words gives thus minimal constructions
for rooted trees.

An element of L can always be considered as a construction of a plane
rooted tree. Reduced words are in bijection with plane rooted trees dec-
orated by splittings of non-root vertices of (total) degree at least 4 into
vertices of degree 3. The root vertex is either of degree at most 2 or is
splitted into a root vertex of degree 2 and remaining vertices of degree 3.
The number of such splittings at a vertex is given by Catalan numbers: A
non-root vertex of degree d ≥ 3 can be splitted in cd−2 different ways with
cn = 1

n+1

(2n
n

)

(and a root vertex of degree d ≥ 2 can be split in cd−1 different
ways).

7 Variations

7.1 A definition of local operators reminiscent of operads

Rooted trees can also be constructed using the local operators V andMk, k ≥
1 where Mk : Rk −→ R is symmetric in its arguments. It takes k rooted
trees, attaches an additional edge at each root, glues the k new trees to-
gether at the new root corresponding to the k recently attached leaves. The
operators Mk are defined recursively as M1 = E and

Mk = M(E(A1),Mk−1(A2, . . . , Ak))

in terms of the operators E and M considered above. The operators Mk are
associative in the obvious sense and satisfy the identity

F (Mk+1(A1, . . . , Ak,Ml(B1, . . . , Bl)))

= F (Ml+1(Mk(A1, . . . , Ak), B1, . . . , Bl)) .

Except for the absence of an identity, the operators Mk form an operade.
When working with plane trees, the operators Mk are no longer symmet-

ric and we have to add invariance of cyclic permutations of the arguments
for F ◦Mk.

Local invariants are defined in an obvious way in this context.

7.2 Arbitrary graphs

It is of course possible to define Schrödinger operators for arbitrary (per-
haps oriented) simple graphs and to count invertible Schrödinger operators
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over finite fields. I ignore if there is an efficient way for computing the
corresponding numbers.

In a few very small examples, the resulting functions seem also to be
polynomial in q. I ignore if this holds in general.

There are two variations on this theme: One can count all invertible ma-
trices with off-diagonal support defining the corresponding graph (diagonal
elements are arbitrary). In the case of unoriented graphs, one can moreover
require symmetry of all matrices.

Polynomiality gets lost for non-simple graphs: Doubling every edge of
a tree we get Schrödinger operators which are diagonal matrices in char-
acteristic 2 and which are, up to a factor 2, Schrödinger operators of the
underlying simple trees otherwise. Since S(T )(2) is in general different from
1, the number of such Schrödinger operators over Fq is no longer polynomial
in q.
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