
This document must be cited according to its final version 

which is published in a conference proceeding as:

J. Qian123, P. Dufour1  , M. Nadri1

``Observer and model predictive control for on-line parameter 
identification in nonlinear systems'', 

Proceedings of the 10th IFAC International Symposium 
on Dynamics and Control of Process Systems (DYCOPS), 

Mumbai, India, pp. 571-576, 2013.

All open archive documents of Pascal Dufour are available at: 
http://hal.archives-ouvertes.fr/DUFOUR-PASCAL-C-3926-2008

The professional web page (Fr/En) of Pascal Dufour is: 
http://www.lagep.univ-lyon1.fr/signatures/dufour.pascal

The web page of this research group is: 
http://hal.archives-ouvertes.fr/SNLEP

1
Université de Lyon, Lyon, F-69003, France; Université Lyon 1; 
CNRS UMR 5007 LAGEP (Laboratoire d’Automatique et de GEnie des Procédés), 
43 bd du 11 novembre, 69100 Villeurbanne, France
Tel  +33 (0) 4 72 43 18 45 - Fax +33 (0) 4 72 43 16 99
http://www-lagep.univ-lyon1.fr/    http://www.univ-lyon1.fr   http://www.cnrs.fr

2
Acsysteme
Company Acsystème, 4 rue Ren é Dumont, 35000 Rennes, France.
Emails: jun.qian@acsysteme.com

3 This PhD thesis is between the LAGEP and the french company Acsystème which is 
gratefully  acknowledged for  the funding.  The french ministry of  higher  education and 
research,  for  the  financial  support  of  this  CIFRE  PhD  thesis  2011/0876,  is  also 
acknowledged.

http://hal.archives-ouvertes.fr/DUFOUR-PASCAL-C-3926-2008%0D
mailto:petru-daniel.morosan%7D@acsysteme.com
http://www.cnrs.fr/
http://www.univ-lyon1.fr/
http://www-lagep.univ-lyon1.fr/
http://hal.archives-ouvertes.fr/SNLEP
http://www.lagep.univ-lyon1.fr/signatures/dufour.pascal


Context and motivations
Outline of the proposed approach

Proposed closed-loop optimal identification approach
Case study: Delta Wing

Conclusion
Contacts, acknowledgements and time for discussion

Observer and model predictive control for on-line parameter
identification in nonlinear systems

Jun QIAN1,2, Pascal DUFOUR1,3, Madiha NADRI1
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Context and motivations

All model parameters need to be numerically known for simulation, control
or optimization of dynamic processes.

The optimal experiment design (OED) is a classic technique for parameter
estimation. (Goodwin and Payne [1979], Ljung [1999])

The OED usually separates parameter identification from the optimal
input design (offline identification).

Most applications of OED are reliable on linear or approximated linearized
models.

Recently, the coupled online OED techniques and parameter estimation
has been developed for open loop stable systems without input/output
process constraint. (Jayasankar et al. [2010], Zhu and Huang [2011])
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Outline of the proposed approach

Our proposed approach of closed-loop OED for online parameter
identification has been initially proposed in Flila et al. [2008] for the
mono-variable case (SISOSP).

Synthesize the online OED and online closed-loop parameter identification.

For linear and nonlinear dynamic model based systems.

Online optimal input design which optimizes the sensitivities of the
measurements with respect to the unknown constant model parameters.

Combine observer design theory and an on-line predictive controller
(MPC).

Input and output constraints may be specified to keep the process in a
desired operating zone.

Extend to an open-loop unstable, nonlinear, and multivariable case: a
delta wing.
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The components

Model (linear or nonlinear)

(M)

{
ẋ(t) = f (x(t), θ, u(t))
y(t) = h(x(t), θ, u(t))

(1)

where x ∈ Rn is the state vector, y ∈ Rp is the output vector, u ∈ U ⊂ Rm is
the input vector, θ ∈ Rq is the unknown constant parameters vector. f and h
are nonlinear functions of suitable dimensions.

Assumptions

1 In this study, the unknown model parameters are all constant.

2 In the system (1), f and h are C∞ w.r.t. their arguments.
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The components

Observer design for augmented system

System augmented with the unknown constant model parameters.

(Ma)


ẋ(t) = f (x(t), θ(t), u(t))

θ̇ = 0
y(t) = h(x(t), θ(t), u(t))

(2)

The augmented state vector xa = [x θ]T and the vector function fa = [f 0]T

Observer definition

A general form for an observer for system (2) can be given by

(O)

{
˙̂xa(t) = fa(x̂a(t), u(t)) + ga(t, h(x̂a(t), u(t))− yp(t))
with: ga(t, 0) = 0,

(3)

such that
i) if x̂a(0) = xa(0), then x̂a(t) = xa(t), ∀t ≥ 0;
ii) if ∀xa(0), ∀x̂a(0), then lim

t→+∞
‖x̂a(t)− xa(t)‖ = 0,

where ga is a function of the output estimation error to be designed.
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ẋ(t) = f (x(t), θ(t), u(t))

θ̇ = 0
y(t) = h(x(t), θ(t), u(t))

(2)

The augmented state vector xa = [x θ]T and the vector function fa = [f 0]T

Observer definition

A general form for an observer for system (2) can be given by

(O)

{
˙̂xa(t) = fa(x̂a(t), u(t)) + ga(t, h(x̂a(t), u(t))− yp(t))
with: ga(t, 0) = 0,

(3)

such that
i) if x̂a(0) = xa(0), then x̂a(t) = xa(t), ∀t ≥ 0;
ii) if ∀xa(0), ∀x̂a(0), then lim

t→+∞
‖x̂a(t)− xa(t)‖ = 0,

where ga is a function of the output estimation error to be designed.

8/24 odoe4ope@univ-lyon1.fr Qian et al., DYCOPS 2013 paper 42



Context and motivations
Outline of the proposed approach

Proposed closed-loop optimal identification approach
Case study: Delta Wing

Conclusion
Contacts, acknowledgements and time for discussion

Closed loop control structure
The components
Model Predictive Control (MPC): general framework
Optimal control law design

Closed loop control structure

9/24 odoe4ope@univ-lyon1.fr Qian et al., DYCOPS 2013 paper 42



Context and motivations
Outline of the proposed approach

Proposed closed-loop optimal identification approach
Case study: Delta Wing

Conclusion
Contacts, acknowledgements and time for discussion

Closed loop control structure
The components
Model Predictive Control (MPC): general framework
Optimal control law design

The components

Sensitivity model

Using the definition of the sensitivity function (·)θ = ∂(·)
∂θ

of a variable (·) with
respect to the parameters θ, and the dynamical model (M), we give the
sensitivity model as follows

(Mθ)

{
ẋθ(t) =

∂f (x(t), θ, u(t))

∂x
xθ+

∂f (x(t), θ, u(t))

∂θ
yθ(t) =xθ(t),

(4)

where xθ ∈ Rn×q and yθ ∈ Rn×q are the matrices of sensitivities of the states
(the outputs) with respect to the parameters.

The relative-sensitivity function
x̄θ(i , j) =

θj

xi
xθ(i , j); i = 1, · · · , n; j = 1, · · · , q

ȳθ(i , j) =
θj

yi
yθ(i , j); i = 1, · · · , r ; j = 1, · · · , q.

(5)
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ẋθ(t) =

∂f (x(t), θ, u(t))

∂x
xθ+

∂f (x(t), θ, u(t))

∂θ
yθ(t) =xθ(t),

(4)

where xθ ∈ Rn×q and yθ ∈ Rn×q are the matrices of sensitivities of the states
(the outputs) with respect to the parameters.

The relative-sensitivity function
x̄θ(i , j) =

θj

xi
xθ(i , j); i = 1, · · · , n; j = 1, · · · , q
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Model Predictive Control (MPC): general framework

Advantages:
many theoretical papers published
+4000 applications in the world (Qin and Badgwell [2003])

Idea:
use the model to predict the future process behavior
optimize any specified criteria
take account for constrains on measures/estimations
closed loop control approach
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Optimal control law design

Time discretization: t = k × Ts (k =current time index)

At each k, over the prediction horizon Np: maximize the norm of the

sensitivity
∂yp

∂θ
to get ”rich” data for parameter identification.

Sensitivity matrix

ȳθl|k =


ȳθ(1, 1)|l|k ȳθ(1, 2)|l|k . . . ȳθ(1, q)|l|k

ȳθ(2, 1)|l|k

. . .
.
.
.

.

.

.
. . .

.

.

.
ȳθ(r , 1)|l|k . . . . . . ȳθ(r , q)l|k

 . (6)

which gives at the current instant k the prediction at a future time l ≤ k
(l ∈ [k k + Np ]) of the normalized outputs sensitivity ȳθ .

Fisher Information Matrix (FIM)

Ml|k = ‖ȳθl|k‖
2 (7)
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Optimal control law design

Cost function{
F (ȳθl|k , ul|k , yp(k), x̂a(k)) = 1

Np

∑k+Np

l=k+1 Ml|k

ul|k = {u(k) . . . u(l) . . . u(k + Np)}, l ∈ [k k + Np].
(8)

E-optimality{
u∗l|k = arg maxul|k

(
J(ul|k ) = λmin(F )

λmax (F )

)
ul|k = {u(k) . . . u(l) . . . u(k + Np)}, l ∈ [k k + Np].

(9)

Handling specified constraints:
Constraints on the inputs (physical limitations of the actuator):

umin ≤ u(k) ≤ umax , ∀k (10)

Velocity constraints may also be added.
Constraints on the estimated states and/or the measured outputs (dealing
with safety, operating zone, production, ...):

gmin ≤ g(x̂(k), yp(k), u(k)) ≤ gmax , ∀k (11)
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The unstable nonlinear model of delta wing

The unstable nonlinear model of the system is:
ẋ1(t) = x2(t)
ẋ2(t) = α1θ1x1(t) + (α1θ2 − α2)x2(t) + α1θ3x3

1 (t)...
...+ α1θ4x2

1 x2(t) + α1θ5x1x2
2 (t) + α3u(t)

y(t) = [x1(t) x2(t)],

(12)

where:

u is the control input to the model

α is the known constant parameter vector

θ is the vector of five unknown constant parameters

input constraints: −0.01 6 u 6 0.01 (unstable zone in open loop)

output constraints: −0.5 6 yp1 6 0.5 (defined by trial and error)

Objective: based on (12) online identify the 5 unknowns parameters.
(more development details on appendix)
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Review of Jain et al. [2005]

Method used in Jain et al. [2005]1:
A feedback linearizing control is used to cancel the nonlinear terms in the
plant model and to alter the linear terms such that the closed-loop behavior
matches with a specified linear reference model.
The reference model is taken to be a second-order linear system.
An external forcing signal is chosen to be a damped sinusoidal input in the
adaptive control law.
Both designs of the reference model and the forcing input are not really
discussed.

Simulation results:
Two linear parameters (θ1 and θ2) converge to their targets at t > 1000s.
The convergence of the tree nonlinear parameter estimations(θ3, θ4 and θ5)
to their targets is not achieved.

1Jain, H., Kaul, V., and Ananthkrishnan, N. (2005). Parameter estimation of unstable, limit cycling systems using

adaptive feedback linearization: example of delta wing roll dynamics. Journal of Sound and Vibration, 939-960.

16/24 odoe4ope@univ-lyon1.fr Qian et al., DYCOPS 2013 paper 42



Context and motivations
Outline of the proposed approach

Proposed closed-loop optimal identification approach
Case study: Delta Wing

Conclusion
Contacts, acknowledgements and time for discussion

The unstable nonlinear model of delta wing
Review of Jain et al. [2005]
Simulation results

Review of Jain et al. [2005]

Method used in Jain et al. [2005]1:
A feedback linearizing control is used to cancel the nonlinear terms in the
plant model and to alter the linear terms such that the closed-loop behavior
matches with a specified linear reference model.
The reference model is taken to be a second-order linear system.
An external forcing signal is chosen to be a damped sinusoidal input in the
adaptive control law.
Both designs of the reference model and the forcing input are not really
discussed.

Simulation results:
Two linear parameters (θ1 and θ2) converge to their targets at t > 1000s.
The convergence of the tree nonlinear parameter estimations(θ3, θ4 and θ5)
to their targets is not achieved.

1Jain, H., Kaul, V., and Ananthkrishnan, N. (2005). Parameter estimation of unstable, limit cycling systems using

adaptive feedback linearization: example of delta wing roll dynamics. Journal of Sound and Vibration, 939-960.

16/24 odoe4ope@univ-lyon1.fr Qian et al., DYCOPS 2013 paper 42



Context and motivations
Outline of the proposed approach

Proposed closed-loop optimal identification approach
Case study: Delta Wing

Conclusion
Contacts, acknowledgements and time for discussion

The unstable nonlinear model of delta wing
Review of Jain et al. [2005]
Simulation results

Review of Jain et al. [2005]

Method used in Jain et al. [2005]1:
A feedback linearizing control is used to cancel the nonlinear terms in the
plant model and to alter the linear terms such that the closed-loop behavior
matches with a specified linear reference model.
The reference model is taken to be a second-order linear system.
An external forcing signal is chosen to be a damped sinusoidal input in the
adaptive control law.
Both designs of the reference model and the forcing input are not really
discussed.

Simulation results:
Two linear parameters (θ1 and θ2) converge to their targets at t > 1000s.
The convergence of the tree nonlinear parameter estimations(θ3, θ4 and θ5)
to their targets is not achieved.

1Jain, H., Kaul, V., and Ananthkrishnan, N. (2005). Parameter estimation of unstable, limit cycling systems using

adaptive feedback linearization: example of delta wing roll dynamics. Journal of Sound and Vibration, 939-960.

16/24 odoe4ope@univ-lyon1.fr Qian et al., DYCOPS 2013 paper 42



Context and motivations
Outline of the proposed approach

Proposed closed-loop optimal identification approach
Case study: Delta Wing

Conclusion
Contacts, acknowledgements and time for discussion

The unstable nonlinear model of delta wing
Review of Jain et al. [2005]
Simulation results

Simulation results

Input applied: u(t)

Process outputs: yp1(t) and
yp2(t)

Parameter estimation: θ1, θ2,
and θ3

Parameter estimation: θ4 and
θ5

Initial and final estimation
errors:
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Input applied: u(t)
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and θ3

Parameter estimation: θ4 and
θ5

Initial and final estimation
errors:

θ 1 2 3 4 5
Initial
error 80 -200 200 80 -200
(%)
Final
error 0.1 0.4 0.8 -0.26 -2.88
(%)
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Conclusion

The proposed approach is able to
+ design online the optimal experiment under constraints;
+ identify online model parameters at the same time.

The combination of an observer and a predictive control in closed loop
improves the speed of the parameter estimation.

The sensitivity criteria improve the accuracy of parameter estimation and
leads to an optimal control at the same time.

The input and output constraints specify the physical limitations imposed
by the system and ensure the efficiency of the OED.

The proposed approach may be adapted and tuned for any user defined
dynamic model.
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Contacts, acknowledgements and time for discussion

Software

ODOE4OPE (Optimal Design Of Experiments for Online Parameter Estimation)
Email: odoe4ope@univ-lyon1.fr; Website: http://odoe4ope.univ-lyon1.fr

People

Acsystème company: Expertise in automation, process control, signal processing,
optimization, software development, ...
Website: http://www.acsysteme.com/en

LAGEP: Laboratory of Process Control and Chemical Engineering, UMR 5007 CNRS-UCBL1
Website: http://www-lagep.univ-lyon1.fr
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Annex A: Delta Wing

Simulation condition

α = [0.354 0.001 1]
θTarget = [−0.05686 0.03254 0.07334 − 0.3597 1.46681]
initial values of model states: [xm1(0) xm2(0)] = [0 0]
initial estimate of state 2: x̂2(0) = −0.01;
prediction horizon: Np = 5
time of the simulation: Tfin = 1200s
sampling time: Ts = 1s.

(13)
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Annex A: Delta Wing

Observer design for system delta wing
System augmented{

ẋa(t) = Aa(y(t))xa(t) + Ba(u(t))
y(t) = Caxa(t),

(14)

which is a state affine system up to output nonlinear injection with:

xa(t)=



x1(t)
x2(t)
θ1

θ2

θ3

θ4

θ5


; Ba(u(t))=



0
−α3u(t)

0
0
0
0
0


; C T

a =

[
I2×2

05×2

]
;

Aa(y(t))=

[
02×1 A(y(t))
05×1 05×6

]
; AT (y(t))=


1 −α2

0 α1y1(t)
0 α1y2(t)
0 α1y3

1 (t)
0 α1y2

1 (t)y2(t)
0 α1y1(t)y2

2 (t)

 ,
where I2×2 is the 2× 2 identity matrix, 0a×b is the a× b matrix of zeros.
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Annex A: Delta Wing

Exponential observer for (14)

Theorem

Assuming that v(t) := Caχa(t, xa(0)) is regularly persistent for{
ẋa(t) = Aa(v(t))xa(t) + Ba(u(t))
y(t) = Caxa(t),

(15)

for any xa(0), then the system admits an exponential observer of the form
˙̂xa(t) = Aa(y(t))x̂a(t) + Ba(u(t))

...− RSµ(t)−1C T
a (Cax̂a(t)− yp(t))

Ṡµ(t) = −µSµ(t)− Aa(y(t))T Sµ(t)− Sµ(t)Aa(y(t))
...+ C T

a RCa,

(16)

where Sµ is a symmetric positive definite 7× 7 matrix, the positive constant
µ > 0 and R > 1 are the observer tuning parameters.
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Annex A: Delta Wing

Sensitivity model of the delta wing

ẋ1θ1 = x2θ1

ẋ1θ2 = x2θ2

ẋ1θ3 = x2θ3

ẋ1θ4 = x2θ4

ẋ1θ5 = x2θ5

ẋ2θ1 = α1(x1 + θ1x1θ1 ) + (α1θ2 − α2)x2θ1 + 3α1θ3x2
1 x1θ1 ...

...+ α1θ4(2x1x1θ1 x2 + x2
1 x2θ1 ) + α1θ5(x1θ1 x2

2 + 2x1x2x2θ1 )
ẋ2θ2 = α1θ1x1θ2 + (α1(x2 + (θ2x2θ2 )− α2x2θ2 )) + 3α1θ3x2

1 x1θ2 ...
...+ α1θ4(2x1x1θ2 x2 + x2

1 x2θ2 ) + α1θ5(x1θ2 x2
2 + 2x1x2x2θ2 )

ẋ2θ3 = α1θ1x1θ3 + (α1θ2 − α2)x2θ3 + α1(x3
1 + 3θ3x2

1 x1θ3 )...
...+ α1θ4(2x1x1θ3 x2 + x2

1 x2θ3 ) + α1θ5(x1θ3 x2
2 + 2x1x2x2θ3 )

ẋ2θ4 = α1θ1x1θ4 + (α1θ2 − α2)x2θ4 + 3α1θ3x2
1 x1θ4 ...

...+ α1(x2
1 x2 + θ4(2x1θ4 x1x2 + x2

1 x2θ4 )) + α1θ5(x1θ4 x2
2 + 2x1x2x2θ4 )

ẋ2θ5 = α1θ1x1θ5 + (α1θ2 − α2)x2θ5 + 3α1θ3x2
1 x1θ5 + ...

...α1θ4(2x1θ5 x1x2 + x2
1 x2θ5 ) + α1(x1x2

2 + θ5(x1θ5 x2
2 + 2x1x2x2θ5 )).

(17)
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Perspective: Economic Model Predictive Control (EMPC)

EMPC optimizes directly in real time the economic performance of the
process, rather than tracking to setpoint.

Closed-loop stability analysis based on the Lyapunov function.

Bibliography:

[1] Rawlings, J.B. and Angeli, D. and Bates, C.N. (2012), Fundamentals
of Economic Model Predictive Control, 51st IEEE Conference on
Decision and Control, 3851-3861, Maui, Hawaii, USA.

[2] Amrit, R. and Rawlings, J.B. and Angeli, D. (2011), Economic
optimization using model predictive control with a terminal cost,
Annual Reviews in Control, 35, 178-186.

[3] Christofides, P.D. and Liu, J.F. and Heidarinejad, M. (2013),
Algorithms for improved fixed-time performance of Lyapunov-based
economic model predictive control of nonlinear systems, Journal of
Process Control, 23, 404-414.

24/24 odoe4ope@univ-lyon1.fr Qian et al., DYCOPS 2013 paper 42


	Context and motivations
	Outline of the proposed approach
	Proposed closed-loop optimal identification approach
	Closed loop control structure
	The components
	Model Predictive Control (MPC): general framework
	Optimal control law design

	Case study: Delta Wing
	The unstable nonlinear model of delta wing
	Review of Jain et al. [2005]
	Simulation results

	Conclusion
	Contacts, acknowledgements and time for discussion

