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Abstract: This paper develops an on-line model parameter identification approach for mul-
tivariable systems, which are nonlinear in terms of state representation and/or in terms of
parameters. Combining the observation theory and the model based predictive control theory,
an optimal closed loop experiment design for on-line identification of model parameters is given.
During only one experiment, an optimal time-varying input is computed to optimize a criterion,
while the unknown model parameters are estimated at the same time. The criterion is based
on the sensitivities of the model outputs with respect to the unknown parameters that are
estimated. The approach does not require to measure all the process state. Moreover output
constraints allow to maintain the behaviour into a prescribed region and/or stabilize the process
in closed loop. This approach is illustrated through an unstable rolling delta wing with one input,
two measured states and five unknown constant model parameters.

Keywords: Optimal experiment design, identification, nonlinear systems, observers, predictive
control.

1. INTRODUCTION

The increasing use of numerical techniques leads to con-
sider more complex and more realistic models in process
modelling, where all model parameters need to be numer-
ically known. Therefore, since the 1970’s, optimal experi-
ment design (OED) is an area of considerable interest for
the purpose of identification (see Mehra [1974], Goodwin
and Payne [1979], Zarrop [1979] and the recent review
paper of Franceschini and Macchietto [2008]). In OED,
most of the literature has focused on system approximated
by a linear model, whereas in many areas such as biological
and chemical processes, the models are highly nonlinear.
Moreover, in classical identification techniques, several ex-
periments are usually required. Hence, it does affect the
duration of using of the process for pure identification
and the cost of these particular experiments (for exam-
ple, material fed at the process inlet, energy consumption
during the experiment, output materials with undesired
properties).
Furthermore, model parameters are often estimated after
running new (or collecting past) experiments (Goodwin
and Payne [1979]). These data are then usually fed into a
Fisher Information Matrix (FIM) which is manipulated in

⋆ This PhD thesis is between the LAGEP and the french company
Acsystème which is gratefully acknowledged for the funding. The
french ministry of higher education and research, for the financial
support of this CIFRE PhD thesis 2011/0876, is also acknowledged.

a estimation algorithm based on an optimal cost function.
Hence, one drawback is that these data may not contain
enough information to estimate all parameters. Also, proof
of convergence of the estimator has to be given.
Recently, Biao Huang and his colleagues developed on-
line OED techniques with combined parameter estimation
in the multivariable case but without output constraint
(Jayasankar et al. [2010]). These authors added linear
equality constraints obtained from the steady state anal-
ysis in a constrained extended Kalman filter (Zhu and
Huang [2011]). These developed techniques for closed-loop
control for identification purpose were addressed to open
loop stable systems.During such experiment, it is often
also of interest to account for process constraints (dealing
with safety, maintain process state within bounds, produc-
tion, economic performance, user comfort, ...). Therefore, a
closed loop constrained optimal control approach must be
used. Model Predictive Control (MPC) strategy is widely
used for real-time optimal constrained control in industrial
applications. Over the receding horizon, such a controller
solves on-line an optimization problem, which is based on
a cost function and constraints on manipulated inputs,
estimated states and outputs.
Based on MPC and on nonlinear observer theory, an ap-
proach of closed-loop optimal experiment design for on-
line identification was proposed in Flila et al. [2008]. In
this work, authors considered the mono-variable case (a
single input, a single measured state and a single unknown



constant parameter) for stable nonlinear systems.
The present paper investigates some issues with the con-
strained closed loop optimal design of one experiment used
simultaneously for on-line parameter identification of the
unknown nonlinear model parameters (the non-linearity
is in terms of dynamics and/or in terms of model pa-
rameters). The coupled observer-MPC approach initially
developed in Flila et al. [2008] is extended to a general case
of nonlinear systems. Contrarily to this previous work, the
state may here not be entirely measured and the unknown
parameters to estimate may be time-varying. Moreover
input and also output constraints are specified, such that
this controller may be applied to an open loop stable or
unstable, linear or nonlinear, multivariable system.
Based on the chosen model structure, an observer is de-
signed for the augmented system resulting in a combined
on-line estimation of the unmeasured states and the un-
known parameters. Then, a sensitivity model is used to get
the sensitivity matrices of the states and the outputs of the
model with respect to the unknown model parameters. Fi-
nally, the OED problem is formulated in a MPC strategy:
the optimization aims to maximize on-line, over a receding
horizon, the sensitivities of the model outputs with respect
to the unknown model parameters under input and output
constraints. The outputs of the process, the model, the
observer, and the sensitivity model are used by the control
law. The optimal inputs and the parameter estimations are
both determined on-line.
This paper is structured as follows. Section 2 deals with
the existing requirements and results needed in the section
3, where the proposed approach of constrained closed-loop
optimal design of one experiment for on-line identification
is presented. The different steps of the implementation
of this approach are illustrated in section 4 on a rolling
delta wing, which is a nonlinear unstable system, with one
input, 2 states and 5 unknown constant model parameters
to determine. Hence, time-varying inputs applied during
the experiment have to be designed to both stabilize the
process and to obtain rich data for on-line model parame-
ter identification. The obtained simulation results for this
case study are given and discussed.

2. PRELIMINARIES

2.1 Process considered

This approach is dedicated to processes that feature some
dynamic behaviour. Meanwhile, at least one on-line mea-
sure yp(t) must be available in output and at least one
exogenous input u(t) must be manipulated on-line by
a controller. Some constraints may be specified on the
magnitude and velocity of the manipulated input. Other
constraints may be specified on the measured outputs or
estimation of the process states (dealing with safety, sta-
bility, set-point tracking within bounds, production, eco-
nomic performance, user comfort, ...). Hence, this covers
a very large number of potential applications.

2.2 Class of models considered

A large class of industrial processes can be modelled by a
linear or nonlinear dynamic system. The non-linearity is
viewed in terms of state representation and/or in terms

of model parameters. All over the paper the model under
consideration will be described by a general state-space
representation of the following form

(M)

{

ẋ(t) = f(x(t), θ, u(t))
y(t) = h(x(t), θ, u(t)),

(1)

where x ∈ Rn is the state vector, y is the vector of
measured outputs taking values in some open subset of
Rn,u denotes the vector of known manipulated inputs
taking values in some open subset U ⊂ Rm, θ ∈ Rq is the
unknown model parameters vector (which are all constant
in this study), f and h are nonlinear functions of suitable
dimensions which will be assumed to be C∞ w.r.t. their
arguments.

2.3 Standard observer design

In terms of parameter identification, observer techniques
are interesting tools to estimate on-line unmeasured states
and unknown model parameters for nonlinear systems.
It can be an high gain observer, an extended Kalman
filter or an adaptive-gain observer (see Besançon [2007],
Boizot et al. [2010], Zhou et al. [2009], Nadri et al. [2004,
2013] ). The choice of the observer type depends on
the model structure, the observability conditions and the
persistency of excitation. Based on the model (1) and on
the available on-line measures of inputs u(t) and outputs
yp(t), an observer is constructed. It gives an estimation of
the process state x(t) and the process parameters θ. The
observer design is based on the augmented model given by

(Ma)







ẋ(t) = f(x(t), θ, u(t))

θ̇ = 0
y(t) = h(x(t), θ, u(t)),

(2)

In the follows, we denote the augmented state vector by

xa = [x θ]
T
and fa = [f 0]T .

Definition 1. : A global observer for system (2) can be
given by a dynamical system on the form:

(O)







˙̂xa(t) = fa(x̂a(t), u(t)) + ...
...ga(t, h(x̂a(t), u(t))− yp(t))

with: ga(t, 0) = 0,
(3)

such that
i) if x̂a(0) = xa(0), then x̂a(t) = xa(t), ∀t ≥ 0;
ii) if ∀xa(0), ∀x̂a(0), then lim

t→+∞
‖x̂a(t) − xa(t)‖ = 0,

where ga is a function of the output estimation error to
be designed and yp is the process output vector (real
measures).

Our estimation problem consists in determining a gain
ga such that the estimation error e(t) = xa(t) − x̂a(t)
converges asymptotically to zero.

2.4 MPC techniques

MPC is widely used in the industry (Richalet and
O’Donovan [2009]) since the first implementations in the
1970’s. The idea of the MPC strategy is to solve on-line, at
each time k, a constrained optimization problem based on
a criterion J . The controller aims to determine a sequence
of inputs over the prediction horizon Np, at the current
time k (e.g. {u(k), u(k + 1), . . . , u(k + Np)})

1 . The first

1 To simplify the notation, here, s(k) (resp. s(l)) represents the value
of the signal s at the current (resp. future) discrete time k × Ts



component of this control sequence is then applied at the
next sampling time k + 1 where the new measurement
yp(k + 1) will be used to update the current estimation
from x̂a(k) to x̂a(k + 1). The procedure is then iterated.
In terms of optimal control, the classical MPC framework
aims to drive the process state to a initial target desired
value (i.e. set-point or trajectory tracking). Since a few
years, economic MPC (Rawlings et al. [2012]) aims to
maintain the process state into a particular steady-state or
time-varying state (that is initially unknown), but which
optimizes the defined economic cost function while keeping
process operations in a specified zone (defined by output
constraints) like in building heating, ventilating, and air
conditioning (Ma et al. [2012]) or chemical reactors (Hei-
darinejad et al. [2013]). With some kind of economic cost
function based on the Fisher Information Matrix, MPC
has also been used in on-line input design for identification
purpose in the linear case in Genceli and Nikolaou [1996]
and since a few years in the nonlinear case (Flila et al.
[2008], Jayasankar et al. [2010], Zhu and Huang [2011]). In
these cases, the cost function is derived from a sensitivity
model.
Techniques for closed-loop identification of unstable sys-
tems exist, but mostly in the linear case (e.g. Forssell
and Ljung [1998]). In nonlinear MPC, instability is often
tackled in terms of control of the process as close as
possible to an open-loop unstable steady state (which is of
production interest), like in (Biagiola and Figueroa [2004]).
In Heidarinejad et al. [2013], a Lyapunov based approach
is used in an economic MPC with a two-mode operation
controller that helps to stabilize the system state in closed
loop in a prescribed relatively large region.

2.5 Sensitivity model

As we can see in the previous section, the measurement
of the complete state x(t) is not necessary for the devel-
opment of the proposed approach. Indeed, it is sufficient
to measure a combination of some states which allows
to design an observer for the estimation of the unknown
states and unknown parameters. However, in this case, the
development of the sensitivity matrix is very fastidious and
reduces the paper readability. So to better illustrate the
different steps, and without loss of generality, we can now
assume that the whole state is measured.
Using the definition of the sensitivity function (·)θ = ∂(·)

∂θ
of a variable (·) with respect to the parameters θ, and the
dynamical model (M), we give the sensitivity model as
follows

(Mθ)

{

ẋθ(t) =
∂f(x(t), θ, u(t))

∂x
xθ+

∂f(x(t), θ, u(t))

∂θ
yθ(t) =xθ(t),

(4)

where xθ ∈ Rn×q and yθ ∈ Rn×q are the matrices of
sensitivities of the states (the outputs) with respect to
the parameters. Therefore, the resolution of the dynamic

(resp. l×Ts), where Ts is the constant sampling time. For the input,
a zero order hold is used between two consecutive sampling times.
The various models are still formulated in a continuous framework
and are solved numerically. Hence, sampled values may be taken
at any discrete time. The initial value of the model state at k is
obtained from the real measurements or from the state estimated by
the observer. It is assumed that process data may also be sampled
at the same rate.

model (Mθ) is coupled to the resolution of the dynamic
model (M). Physical values involved in the sensitivities
have usually different scales and units. So, in order to
rescale the effects of different parameters on the different
outputs of the model, each sensitivity is normalized with
the relative-sensitivity function














x̄θ(i, j) =
θj

xi

xθ(i, j); i = 1, · · · , n; j = 1, · · · , q

ȳθ(i, j) =
θj

yi
yθ(i, j); i = 1, · · · , r; j = 1, · · · , q.

(5)

3. PROPOSED APPROACH

The approach aims to optimally design on-line, under some
specified constraints, one experiment (i.e. to compute on-
line the time-varying inputs to apply). The input/output
process data are fed on-line into an observer to estimate
also on-line the model parameter values and the unmea-
sured states. MPC is used to get the optimal control, where
particular output constraints can be specified to stabilize
the system (if it is open-loop unstable) or to maintain the
state in a desired region. The MPC cost function is based
on the sensitivity matrix.

3.1 Structure for combined control and estimation

As depicted in Fig. 1, the structure of this closed loop iden-
tification algorithm is based on five principal components:
a process, a model, an observer, a sensitivity model and a
controller.

Fig. 1. Proposed closed loop control structure for on-line
identification.

3.2 Control law

Here, based on the on-line measurements of the process
output yp(k), the observer (O), the model (M) and the
sensitivity model (Mθ), the control law is designed to
maximize, over the prediction horizon Np and under some
input-output constraints, the sensitivity of the model
outputs with respect to the model parameters at each
current time k. First, we define a sensitivity matrix ȳθl|k,
which gives at the current instant k the prediction at a
future time l ≥ k of the normalized outputs sensitivity yθ
as



ȳθl|k =













ȳθ(1, 1)|l|k ȳθ(1, 2)|l|k . . . ȳθ(1, q)|l|k

ȳθ(2, 1)|l|k
. . .

...
...

. . .
...

ȳθ(r, 1)|l|k . . . . . . ȳθ(r, q)l|k













. (6)

In order to compute this prediction, x̂(k) obtained from
the observer is the initial state in (M) at k. x(t) itself is

required to solve xθ(t), while the last estimation θ̂(k) is
also used in both models (it is assumed to be constant
over the receding horizon). Then, we can write the FIM as

Ml|k = ‖ȳθl|k‖
2, (7)

which contains the information of the experiment, at the
current time k, at a future time l ≥ k. The cost function
involved in the MPC strategy is then stated as










F (ȳθl|k, ul|k, yp(k), x̂a(k)) =
1

Np

k+Np
∑

l=k+1

Ml|k

ul|k = {u(k) . . . u(l) . . . u(k +Np)}, l ∈ [k k +Np].
(8)

Then, the E-optimality criterion is defined to maximize
the smallest eigenvalue of the matrix F . Geometrically, it
minimizes the size of the major axis of the join confidence
region:







u∗
l|k = argmax

ul|k

(

J(ul|k) =
λmin(F )

λmax(F )

)

ul|k = {u(k) . . . u(l) . . . u(k +Np)}, l ∈ [k k +Np].
(9)

Another interest of a MPC is its ability to handle some
constraints:

(1) The inputs must have a physical sense, therefore, they
must be bounded in magnitude:

umin ≤ u(k) ≤ umax, ∀k (10)

Velocity constraints may also be added.
(2) The process must be kept into a specified zone.

Therefore, constraints on the estimated states and the
measured outputs may be build:

gmin ≤ g(x̂(k), yp(k), u(k)) ≤ gmax, ∀k (11)

Since the process is open loop unstable, in order to
maintain the closed loop behavior in a stable region, we
advocate to specify additional output constraints (11).
Since these constraints are fictitious, the practical issue
is dealing with the design of g and the bounds gmin and
gmax: a priori physical knowledge and trial and error with
simulations may be used before developing a theoretical
proof. However, this method lacks theoretical proof to
show that such constrained optimal controller designed
for identification purpose renders the closed loop stable,
in the sense that the state vector stays within a prescribed
(possibly not small) region.

4. CASE STUDY: ROLLING DELTA WING

To illustrate the proposed approach, we consider an unsta-
ble process which consists of a rolling delta wing system.

4.1 Step 1: Modelling

A rolling delta wing is an unstable system where the non-
linear model features a single input u(t), a two component

state x(t) and a five unknown constant parameter vector
θ (Jain et al. [2005])



























ẋ1(t) = x2(t)
ẋ2(t) = α1θ1x1(t) + (α1θ2 − α2)x2(t)...

...+ α1θ3x
3
1(t)...

...+ α1θ4x
2
1x2(t)...

...+ α1θ5x1x
2
2(t)...

...+ α3u(t),

(12)

where α is the known constant parameter vector. The
closed loop identification of the vector θ in this model (12)
is discussed in Jain et al. [2005]. A feedback linearizing
control is used such that the closed-loop behavior matches
with a specified second order linear reference model one
with damped sinusoidal input reference. Both designs of
this model and its reference input are not really discussed.
With their approach, the convergence of the two linear pa-
rameter estimations (θ1 and θ2) to their target is reported,
while the convergence of the three nonlinear parameter
estimations (θ3, θ4 and θ5) to their target is not possible.

4.2 Step 2: Observer design

Similarly to the work of Jain et al. [2005], both states
are here measured on-line. Hence, the purpose of the
observer to be designed is to estimate on-line the vector of
unknown parameters θi(i = 1, · · · , 5). To do so, according

to (2), system (12) is augmented by the equation θ̇ = 0.
Consequently, the obtained augmented model is a state
affine system up to output nonlinear injection in the
following form

{

ẋa(t) = Aa(y(t))xa(t) +Ba(u(t))
y(t) = Caxa(t),

(13)

where

xa(t)=

















x1(t)
x2(t)
θ1
θ2
θ3
θ4
θ5

















;Ba(u(t))=

















0
−α3u(t)

0
0
0
0
0

















;CT
a =

[

I2×2

05×2

]

;

Aa(y(t))=

[

02×1 A(y(t))
05×1 05×6

]

;AT (y(t))=















1 −α2

0 α1y1(t)
0 α1y2(t)
0 α1y

3
1(t)

0 α1y
2
1(t)y2(t)

0 α1y1(t)y
2
2(t)















,

where I2×2 is the 2 × 2 identity matrix, 0a×b is the a × b
matrix of zeros. It is clear that system (13) is observable in
the sense of the rank condition in the application domain
(x1 6= 0 and x2 6= 0). So that, an high gain observer based
on the augmented state xa(t) can be designed as follows
(see Hammouri and Morales [1990] and Besançon [2007]
for more details).

Theorem 1. Assuming that v(t) := CaXa(t, xa(0)) is
regularly persistent 2 for

{

ẋa(t) = Aa(v(t))xa(t) +Ba(u(t))
y(t) = Caxa(t),

(14)

2 Regularly persistent inputs for state affine systems are those
making the system an LTV system uniformly completely observable
in the sense of Kalman.



for any xa(0), then the system admits an exponential
observer of the form














˙̂xa(t) = Aa(y(t))x̂a(t) +Ba(u(t))
...−RSµ(t)

−1CT
a (Cax̂a(t)− yp(t))

Ṡµ(t) = −µSµ(t)−Aa(y(t))
TSµ(t)− Sµ(t)Aa(y(t))

...+ CT
a RCa,

(15)
where Sµ is a symmetric positive definite 7×7 matrix, the
positive constant µ > 0 and R > 1 are the observer tuning
parameters.

4.3 Step 3: Sensitivity model

Based on the model (12), the sensitivity model is simply
obtained using the definition (4).

4.4 Step 4: Control design

Following section 3, the MPC is designed based on the
2 previous models and the observer. In order to stabilize
the closed loop behaviour, and based on the analysis of
the simulations of the unstable open-loop behaviour, two
additional output constraints (11) are imposed

yp1min ≤ yp1(l) ≤ yp1max. (16)

The tuning of the upper and lower bounds in (16) are
then tuned by trial and error with simulations: if these two
bounds are too close to each other, finding a control value
is not easy and does not allow to get sufficiently excited
outputs. Hence, parameter estimation is not correct and
the constrained optimization problem may not be feasible.
On the other side, if these two bounds are too far to each
other, closed loop stability is not obtained.

4.5 Numerical conditions

The simulation runs are performed under the following
conditions where all values are dimensionless 3



























α = [0.354 0.001 1]
input constraints: − 0.01 ≤ u(t) ≤ 0.01
output constraints: − 0.5 ≤ yp1(t) ≤ 0.5
prediction horizon: Np = 5
sampling time: Ts = 1
observer tuning parameters: µ = 0.03 and R = 2.

(17)
Target values and initial estimation errors for θi are listed
in table 1: in order to see the robustness of the approach,
large initial errors in the estimation of θi are introduced,
even with sign errors. The simulation runs are performed

Table 1. θ: Target values and initial estimation
errors.

θ 1 2 3 4 5

Target
(absolute -0.05686 0.03254 0.07334 -0.3597 1.46681
values)

Initial
error 80 -200 200 80 -200
(%)

based on our odoe4ope 4 software based on fmincon in
Matlab.
3 The time, the input and the states are also dimensionless.
4 To use this software, please visit http://odoe4ope.univ-lyon1.fr

Fig. 2. Closed loop optimal input.

Fig. 3. Closed loop outputs (top: yp1, bottom: yp2).

Fig. 4. Closed loop estimation (from the top to the bottom:
3 first model parameters).

4.6 Numerical results and analysis

As it can be seen, both objectives are fulfilled: the closed
loop control determined (Fig. 2) allows to stabilize the
rolling delta wing behaviour (see both outputs in Fig. 3)
while all 5 parameters θi almost reach their target values
between 300 and 600: in Fig. 4 and Fig. 5, the five target
parameters and their estimations are normalized (hence, 1
is the target). Based on the mean value of the 60 last time
values, the final error of estimation of the θi has decreased
(see table 2) from initially few tens or few hundreds %
to about 1 %. Hence, all model parameters are finally
estimated with a high accuracy.



Fig. 5. Closed loop estimation (from the top to the bottom:
2 last model parameters)

Table 2. θ: Final estimation error.

θ 1 2 3 4 5

Final
error 0.1 0.4 0.8 -0.26 -2.88
(%)

5. CONCLUSION

This paper presents a new approach for the on-line closed
loop identification of unknown parameters of nonlinear
multivariable systems (in terms of state dynamics and/or
in terms of parameters) in one experiment. Based on
the observer design theory, on the sensitivity model and
on the predictive control approach, a closed-loop optimal
experiment design has been developed. The efficiency of
the proposed algorithm has been demonstrated in a step-
by-step description for a open loop unstable delta wing
process. To guaranty the stability of the closed loop,
output constraints were imposed, where the bounds are
for the moment designed by trial and error. The correct
estimation of all five constant model parameters and the
closed loop stabilization has been shown. Compared to a
previous work, this method helps to estimate with a very
good accuracy all initially unknown model parameters. In
future works, we will provide the mathematical conditions
for the method which guaranty the stability of the closed
loop by carrying out a Lyapunov analysis. Also, the cases
where the process state is not fully measured or where the
model parameters are time-varying will be tackled.
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