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ABSTRACT  31 

 32 

In this study, bulge inflation tests were used to characterize the failure response of 15 layers of 33 

human ascending thoracic aortic aneurysms (ATAA). Full field displacement data were collected 34 

during each of the mechanical tests using a digital image stereo-correlation (DIS-C) system. Using the 35 

collected displacement data, the local stress fields at burst were derived and the thickness evolution 36 

was estimated during the inflation tests. It was shown that rupture of the ATAA does not 37 

systematically occur at the location of maximum stress, but in a weakened zone of the tissue where 38 

the measured fields show strain localization and localized thinning of the wall. Our results are the 39 

first to show the existence of weakened zones in the aneurysmal tissue when rupture is imminent. 40 

An understanding these local rupture mechanics is necessary to improve clinical assessments of 41 

aneurysm rupture risk. Further studies must be performed to determine if these weakened zones can 42 

be detected in vivo using non-invasive techniques.  43 

 44 

 45 
 46 
 47 

 48 

  49 
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INTRODUCTION 50 

 51 

Each year thoracic aneurysms are diagnosed in approximately 15,000 people in the United States and 52 

more than 30,000 people in Europe (Clouse 1998).  Of this number 50-60% are ascending thoracic 53 

aortic aneurysms (ATAA) (Isselbacher 2005).  However the rupture of the ATAA remains an almost 54 

unexplored topic. ATAAs are caused by the remodeling of the arterial wall and they rupture when the 55 

stress applied to the aortic wall locally exceeds its capacity to sustain stress (Vorp et al., 2003).  56 

 57 

In an attempt to understand the mechanical behavior of the aortic tissue; different authors have 58 

performed mechanical tests. Uniaxial tensile tests were performed by (Mohan and Melvin, 1982) on 59 

healthy descending aortic specimens; they concluded that the most reasonable failure theory for 60 

aortic tissue was the maximum tensile strain theory. (He and Roach, 1994) also performed uniaxial 61 

tensile tests and showed that aneurysms were less distensible and stiffer than healthy tissues.  Using 62 

uniaxial tensile tests to compare healthy tissues with ATAA specimens (Garcia-Herrera et al., 2011) 63 

concluded that the age, beyond the age of 35, was the cause of significant decrease of rupture load 64 

and elongation at failure. They found no significant differences between the mechanical strength of 65 

aneurysms and healthy tissues. In contrast, (Vorp et al., 2003) found a significant decrease in the 66 

tensile strength of the ATAA specimens and concluded that its formation was associated with the 67 

stiffening and weakening of the aortic wall. Providing data on the mechanical behavior in the 68 

physiological range, (Duprey et al., 2010) found that the aortic wall was significantly anisotropic with 69 

the circumferentially oriented samples being stiffer than the axial ones.  70 

   71 

The biaxial mechanical behavior of the aortic tissue has been investigated with bulge inflation tests.  72 

Dynamic and quasi-static bulge inflation tests (Mohan and Melvin, 1983) were performed on healthy 73 

descending aortas. The failure of the aortic tissue always took place with a tear in the circumferential 74 

direction. Similarly, (Marra et al., 2006) performed inflation tests using porcine healthy aortic tissues, 75 
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showing that the rupture occurs with a crack oriented in the circumferential direction of the artery. 76 

More recently (Kim et al., 2012) performed inflation tests using ATAA specimens. Material 77 

parameters were identified using the virtual fields method (Grédiac et al., 2006; Avril et al., 2010) 78 

and the average Cauchy stress values at which the rupture occurred were derived for all the 79 

specimens.  80 

 81 

None of the studies mentioned above analyzed locally the rupture of the tissue from its first 82 

initiation. Moreover, all these studies derived an average stress estimation across the specimens and 83 

none were able to show if the rupture initiates at the location of maximum stress or if the rupture 84 

was triggered by the existence of weakened parts within the tissue.  Our objective was to address 85 

this issue by carrying out full-field measurements in human ATAA specimens tested in a bulge 86 

inflation test up to failure. In order to determine the cause and location of the rupture, thickness 87 

evolution estimations and local stress distributions were calculated during the inflation of the 88 

specimens.  89 

 90 

  91 
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METHODS  92 

 93 

Sample Preparation and Experimental Protocol 94 

ATAA specimens were obtained from donor patients who underwent surgical replacement of their 95 

ATAA with a synthetic graft. The collection of the aortic tissues was done in accordance with the 96 

guidelines of the Institutional Review Board of the University Hospital Center of Saint-Etienne. 97 

Specimens were kept at 4 °C in 0.9% physiological saline solution and testing was completed within 98 

24 hours of tissue harvest (Adham et al. 1996). Table 1 lists the demographic information for the 99 

collected ATAA specimens. 100 

   101 

Each ATAA (Fig. 1-a) was cut into square specimen approximately 45 x 45 mm. Each specimen was 102 

then separated into two layers: intima-media and adventitia (Fig. 1-b). The average thickness of each 103 

layer was measured using digital calipers; the layer of interest was put between two plastic plates 104 

and the thickness of the layer and the plates was measured. Then the thickness of the two plates was 105 

subtracted from the measured value. The ATAA layer was clamped in the inflation device so that the 106 

luminal side of the tissue faced outward and the circumferential direction of the artery coincided 107 

with the horizontal axis of the clamp (Fig. 1-c). Finally a speckle pattern was applied to each sample 108 

using black spray paint (Fig. 1-c). Note that the luminal side of each layer was chosen to face outward 109 

since the adventitial surface was highly irregular making difficult for the speckle pattern to adhere to 110 

the surface. 111 

 112 

A hermetically sealed cavity was formed between the clamped ATAA layer and the inflation device. 113 

During the inflation test, water was injected at a constant rate by pushing a piston pump at 15 114 

mm/min until the tissue ruptured. Simultaneously, the pressure was measured with a digital 115 

manometer (WIKA®, pressure gauge DG-10). Images were recorded using a commercial DIS-C system 116 

(GOM®, ARAMIS 5M LT) at every 3 kPa, until the sample ruptured (Fig. 2). The DIS-C system was 117 
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composed of two 8-bit CCD cameras equipped with 50 mm lenses (resolution: 1624 x 1236 px). In 118 

this study, 15 ATAA layers were successfully tested until rupture. Only the specimens that ruptured in 119 

their central area (without touching the boundaries of the inflation device) were used. 120 

 121 

Data Analysis 122 

Once the experimental procedure was completed, image processing was performed using Aramis® 123 

software. In each of the acquired images (Fig. 2), the area of interest (AOI), which was a circle 124 

measuring 30 mm diameter, was identified. A facet size of 21 px and a facet step of 5 px were chosen 125 

based on the speckle pattern dot size, distribution, and contrast. The selected facet size and step 126 

yielded a resolution of 0.54 µm for in-plane displacements and 1.5 µm for the out-of-plane 127 

displacement.  128 

  129 

To capture the kinematics of the membrane (Naghdi 1972; Green and Adkins 1970; Lu et al., 2008) 130 

we define the position vectors for a material point � in the initial and deformed configurations as 131 

�(�) and �(�), respectively (Fig. 4). The surface is parameterized using a pair of surface coordinates 132 

��(�) = �(�) ∙ 
�	 where 
� are the basis vectors of the global coordinate system GCS (Fig. 3) and 133 

� = 1,2.  The local covariant basis vectors �� and �� for the deformed and initial configurations, 134 

respectively, are found using the following relationships:  135 

 136 

 �� = ��
�ξ�		 �� = ��

�ξ� (1) 

 137 

The local contravariant basis vectors �� and �� are then defined as:  138 

 139 

 �� = �ξ�
��  �� = �ξ�

��  (2) 

 140 
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The two-dimensional deformation gradient, �, is calculated from the current and initial basis vectors: 141 

 142 

 � = 	�� ⊗�� (3) 

 143 

Then, at each material point, the two- dimensional Green-Lagrange strain, 
, is determined:  144 

 145 

 
 = 1
2 (�

�� − �) (4) 

 146 

To define the three-dimensional deformation, we set �� = ℎ ℎ�⁄ , where ℎ and ℎ� are the thicknesses 147 

in the deformed and undeformed configurations, respectively, and required the transverse shear 148 

strains to vanish.  It follows that the three dimensional deformation gradient and Green-Lagrange 149 

strain tensor are given by:  150 

 151 

� = 	�� ⊗�� +	��	"	 ⊗ #		 
 = $
% &��'	�� ⊗�' +	��%	#	 ⊗ #− �(  (5) 

 152 

where " and # are outward unit normals to the surface in the current and initial configurations, 153 

respectively.  154 

 155 

Determination of the Local Stress Fields 156 

The aneurysm wall is modeled as a nonlinear elastic membrane.  A unique feature of modeling the 157 

aneurysm wall as a nonlinear elastic membrane is that the tension in the vessel wall can be 158 

determined without the use of a constitutive model to describe the elastic properties of the wall (Lu 159 

et al., 2008).  The local equilibrium equations for the elastostatic problem may be written as (Lu et 160 

al., 2008; Zhao 2009):   161 

 162 
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1
)� &)�ℎ*

�'��(,' + +" = , (6) 

 163 

where � = det	(��. �') is the determinant of the metric tensor, ℎ is the current thickness, + is the 164 

internal pressure applied for the inflation and *�' are the unknown components of the Cauchy 165 

stress tensor 1 in the local covariant basis.  Note that Eq. (6) is in tensorial form and the Einstein 166 

summation convention is used.  Then, we approximate the spatial variations of all the quantities of 167 

Eq. (6) using linear shape functions of the surface coordinates which take on a null value at all nodes 168 

of the mesh except at node 2 where it is 1. The shape functions are defined on a triangular finite 169 

element mesh having 3 elements and 4 nodes (Fig. 5).  170 

 171 

Using this approximation scheme, Eq. (6) is written at the centroid of each element, which yields: 172 

 173 

1
1
3∑ )�(�7)�78$

	9 :)�(�7)ℎ(;7)*�'(�7)��(�7) <=7
<�' >

�

78$
+ + 139"(�?)

�

78$
= , (7) 

 174 

where 
@AB
@CD  are the shape function derivatives at the centroid of the element and where the Einstein 175 

summation convention still applies for indexes � and E. Eq. (7) is then projected into the GCS and the 176 

procedure is repeated for each triangular element. A linear system of 33 equations is produced. It 177 

contains 34 unknowns which are the 3 components of the Cauchy stress tensor in the local covariant 178 

basis at the 4 nodes of the mesh. A convergence study showed that a mesh with 3=1203 elements 179 

and 4=644 nodes was a good compromise between precision and time of calculation. 180 

 181 

The system was completed by a set of equations on the boundaries of the tested area, where it was 182 

assumed:  183 

 184 
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 (1 ∙ F) ∙ " = 0 (8) 

   

 (1 ∙ F) ∙ H = 0 (9) 

 185 

where H,	F, " defines a local basis at the boundaries (Fig. 5-b) with I is tangent to the boundary, " is 186 

an outward unit normal vector to the surface and 	F = "⊗ H is chosen to make the local coordinate 187 

system right-handed. Along the boundaries, Eq. (8) sets the traction vector perpendicular to  , 188 

allowing in-plane tractions only and Eq. (9) sets the traction vector perpendicular to I , allowing no 189 

shear on the boundary. The resultant boundary traction automatically balances the total pressure 190 

applied on the wall due to the local equilibrium equation (Eq. (6)) written for each element. The final 191 

over-determined linear system of equations was solved in the least-squares sense. 192 

 193 

The calculated components of the stress tensor are finally projected in the orthonormal local 194 

coordinate system (LCS) ( JK, JL, JM ) defined such that: 195 

 196 

 J� = "  

 J% = �%
‖�%‖ (10) 

 J$ = J% 	⊗ 	 J�	  

 197 

where " is again the outward unit normal to the surface.  198 

 199 

The stress was analyzed at three locations:  200 

 201 

•  NodeMAX: node with the largest stress eigenvalue 202 

•  NodeTOP: node at the top of the inflated membrane 203 

•  NodeRUP: node where rupture initiates 204 
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 205 

At NodeMAX and NodeTOP locations, the largest eigenvalue of the Cauchy stress tensor (largest 206 

principal stress) were found and denoted *OPQ and *�RS, respectively. At NodeRUP, the stress in the 207 

direction perpendicular to the crack that occurs at rupture was computed:  208 

 209 

 *TUS = (1 ∙ VW) ∙ VW	 (11) 

 210 

where VW	is the unit vector perpendicular to the rupture (Fig. 8c). It is derived for each specimen 211 

using the images obtained from the DIS-C system at the moment of the rupture. Using a custom 212 

MatLab® code, a series of points were manually placed on an image of the ruptured edge. A linear 213 

regression was then performed using those points and the angle between the fit line and the 214 

horizontal axis was calculated.  215 

 216 

Finite Element Validation Study 217 

Using a mesh size of 3=1203 elements and 4=644 nodes, a validation analysis was performed (see 218 

Appendix A for details). The stress distributions obtained from a finite element analysis (FEA) were 219 

defined as reference values and compared with the stress distributions obtained using the present 220 

approach.  221 

 222 

Thickness Evolution 223 

At every pressure step, the current thickness of each element was calculated. The aneurysmal tissue 224 

was modeled as incompressible membrane therefore the following relationship holds between the 225 

initial thickness, ℎ�, and the current thickness, ℎ.  226 

 227 
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 ℎ = ℎ�
X$$X%% − X%$X$% (12) 

 228 

We note that the ex vivo thickness, ℎ�, was assumed to be initially homogeneous and that X$$, X%%, 229 

X%$ and X$% are the components of the deformation gradient tensor (Eq. (3)).  230 

 231 

Laplace’s Law 232 

Laplace’s Law (Peterson et al., 1960; Humphrey 2002) was used to calculate a global estimate of the 233 

ultimate stress for each ATAA layer by assuming the sample was a hemisphere 234 

 235 

 *YPS = +Z
2ℎ (13) 

 236 

where + was the inflation pressure,	Z was the radius of curvature estimated using a least-squares 237 

surface fitting of the inflated shape, and ℎ was the average current thickness of the elements in the 238 

mesh.  239 

 240 

 241 

RESULTS  242 

 243 

The stress distributions obtained from the FEA simulation (Fig. 6-a) were compared with the stress 244 

distributions obtained using the present approach (Fig. 6-b). The mean absolute error (Fig. 6-c) was 245 

calculated revealing that the largest errors occurred at the boundaries. Ignoring the elements at the 246 

boundaries, the average error was significantly reduced to 0.8%, 1.4%, and 0.8% for *$$, *%%, and 247 

*$%, respectively (Fig. 6-d). This showed that the stress estimates contain some errors along the 248 

border due to the assumed boundary conditions but these errors vanish rapidly away from the 249 

border. For this reason, only the tests where the rupture occurred at a distance of more than three 250 
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elements away from the border were included in this study. 251 

 252 

Using the approach we have presented, the components of the Cauchy stress tensor were calculated 253 

at every node for each 3 kPa pressure step until the sample ruptured (Fig. 7-a). The displacement 254 

(Fig. 7-b) and strain fields (Fig. 7-c) used to calculate the stress and thickness evolution are also 255 

shown. 256 

 257 

In Table 2 we report the three components of the Cauchy stress tensor. Our results (mean ± std) for 258 

*$$ were 1.18 ±0.64 MPa at NodeMAX, 1.12 ±0.64 MPa at NodeTOP and 1.06 ±0.59 MPa at 259 

NodeRUP. The values for *%% were 1.21 ±0.80 MPa at NodeMAX, 1.17 ±0.79 MPa at NodeTOP and 260 

1.05 ±0.71 MPa at NodeRUP. 261 

 262 

In Fig. 8-a, we show the thickness distribution (Eq. (12)) one pressure step before rupture for five 263 

tests. For each of the samples thick (dark red) and thin (dark blue) regions can be identified. The 264 

locations of NodeMAX, NodeTOP, and NodeRUP for these five tests are also shown in Fig. 8-b. 265 

Contrary to the generally accepted theory that the rupture occurs at the location of the maximum 266 

stress, the experimental results show that rupture often initiates at a different location (NodeRUP), 267 

possibly due to the non-homogeneous strength of the tissue. An image of the ruptured layer is 268 

shown in Fig. 8-c, where the magenta points and the blue regression line were used to determine the 269 

rupture angle, [. 270 

 271 

Table 3 and Fig. 9 summarize the three ultimate stress values (*OPQ, *�RS, and *TUS) calculated at 272 

their corresponding locations (NodeMAX, NodeTOP and NodeRUP) compared with *YPS (Eq. (13)). 273 

For the six adventitia layers, the average stress values (mean ± std) were 1.49 ±1.06 MPa, 1.76 ±1.07 274 

MPa, 1.69 ±1.10 MPa, and 1.46 ±1.03 MPa for *YPS, *OPQ, 	*�RS, and *TUS, respectively. For the 275 

remaining nine media layers, the average stress values were found to be 0.78 ±0.26 MPa, 1.01 ±0.36 276 
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MPa, 0.95 ±0.31 MPa, and 0.78 ±0.20 MPa for *YPS, *OPQ, 	*�RS, and *TUS, respectively. The four 277 

calculated ultimate stress values were higher for the adventitia layers, confirming its role of 278 

structural support of the artery (Fung, 1993). 279 

 280 

 281 

DISCUSSION 282 

 283 

Comparison with Existing Literature 284 

Other investigators performing inflation tests have reported rupture stresses between 0.751 and 285 

1.75 MPa (Kim et al., 2012, Mohan and Melvin, 1983, Marra et al., 2006). In the present study the 286 

rupture stress, *TUS, was on average 1.46 MPa for the adventitia layers and 0.72 MPa for the media 287 

layers. The results obtained from our analysis were reasonable and lie within the range of reported 288 

values in the literature. It must be noted that our results were twice as large of those of Kim et al. 289 

(2012) who found 0.751 MPa for adventitia layers and 0.39 MPa for media layers. This can be 290 

explained by the different methods used to calculate the rupture stress. While Kim et al. (2012) 291 

assumed a constant thickness throughout the inflation, the present method was capable of 292 

estimating the thickness evolution of the sample (Eq. (12)). Based on the large changes in thickness 293 

observed in the samples (Fig. 10), it was expected that our values would be significantly larger than 294 

those reported by Kim et al. (2012). 295 

 296 

Comparison of the Ultimate Stress at Different Locations 297 

The stress found using Laplace’s Law, *YPS, in Eq. (13) was considered a global estimate of the 298 

rupture stress, since it was computed using a global radius of curvature and the mean thickness of 299 

the inflated ATAA layer. A comparison between this global stress value and the calculated local stress 300 

values, *OPQ, *�RS, and *TUS, was done as the majority of published studies have not calculated 301 

local stress distributions. The stress calculated from Laplace’s Law was frequently smaller than the 302 
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other local stress values. The difference can likely be explained by differences in the thickness 303 

calculation. On the one hand Laplace’s Law uses the average current thickness of the entire inflated 304 

aortic layer while the three local stress values use the current local thickness of the element where 305 

the node concerned was located. 306 

 307 

Detection of Weakened Zones in the Tissue 308 

In every test rupture was preceded by significant local deformation and reduction of the thickness. 309 

This phenomenon was clearly illustrated in Fig. 8, where local thinning was observed at the rupture 310 

location. Occasionally the maximum stress value was located in the weakened area, but more 311 

frequently it was located elsewhere. This led us to hypothesize that the ATAA layers had weakened 312 

regions that caused the localized thinning of the layer during the inflation test. When observing the 313 

evolution of the ATAA layer thickness (Fig. 10), the region where the rupture was most likely to occur 314 

could be observed many stages before the rupture. Moreover, the orientation of the rupture always 315 

appeared in the same direction as the thickness heterogeneity in the inflated ATAA layer. 316 

 317 

Main Sources of Variability 318 

It was noticed that test number 2, an adventitia layer, had by far the highest ultimate stress values. 319 

Possibly explained because this layer was the thinnest of all the tissue samples and the donor patient 320 

was 36 years old, which made him by far the youngest patient donor (mean age: 66 years). 321 

 322 

Limitations  323 

a) Comparison with healthy tissue 324 

Due to the difficulty of obtaining healthy ascending aortic specimens, there was no comparison 325 

between healthy aorta and ATAA specimens. As many authors have noticed (Choudhury et al., 2008; 326 

Cinthio et al., 2006; Prehn et al., 2009), this comparison can help understanding the causes of the 327 

pathology.  328 
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 329 

b) Initial thickness measurement 330 

The measurement of the ex vivo initial thickness ℎ� of the ATAA tissue was an average estimate of 331 

the thickness of the tissue. Measuring the thickness of the specimen at various locations in the tissue 332 

was precluded as the sharp shape of the caliper can easily penetrate the soft tissue and damage the 333 

tissue. The tests method could be further improved in the future by incorporating a technique 334 

capable of capturing the location dependent thickness of the tissue.  Other techniques such as, for 335 

example, a PC-based video extensometer (Sommer et al., 2008) or a non-contact laser beam 336 

micrometer (Iliopoulos et al., 2009) could be used to measure the thickness of the aortic tissue at 337 

multiple locations.  338 

 339 

c) Effect of the loading conditions 340 

A finite element study was undertaken to show that the traction boundary conditions used in our 341 

simulation (Eqs. 9-10) only minimally affected the stress calculations in the center region of the 342 

specimen.  Due to boundary effects, the present approach is limited to characterizing rupture 343 

phenomenon occurring far from the boundaries. In the future it would be useful to improve the 344 

precision by implementing an approach similar to Zhao (2009) who defined a boundary-effect-free 345 

region where the calculated stress distribution remains invariant. 346 

 347 

d) Pure membrane assumption 348 

Using the present approach, the average stress across the thickness of the inflated ATAA layer was 349 

calculated. The assumption of a pure membrane behavior is justified when the concerned tissue is 350 

subjected to tensile extension, and is physically thin enough so the transverse shear and the across-351 

thickness stress variation are safely ignored (Horgan and Saccomandi 2003, Lu et al. 2008). Based on 352 

the validation analysis (Appendix A), the stress distribution calculated using the present approach 353 

was in very good agreement with the average stress distribution calculated between the outer and 354 
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inner surface using Abaqus® software. This indicates that the pure membrane assumption does not 355 

affect the reconstruction of this average stress across the thickness. 356 

 357 

 358 

CONCLUSIONS 359 

 360 

In this manuscript, we have used a straight forward approach to investigate the in vitro rupture 361 

behavior of ATAA layer during an inflation test. The main advantage of our approach was that local 362 

stress field for the ATAA layer was obtained without requiring any material properties.  Our results 363 

showed that rupture in the ATAA inflated layers was more prone to occur in regions where the layer 364 

was weakened. The majority of the time, rupture occurs where the thickness of the layer has been 365 

reduced the most. Using maps of the local thickness as a function of pressure one can easily predict 366 

the rupture location.  Future studies must be conducted to determine if the localized thinning 367 

observed in these experiments can also be observed in vivo using techniques such as magnetic 368 

resonance imaging. 369 

 370 
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TABLE 1. Demographic information for the collected ATAA specimens. 

 

 

Test No. Layer Type Sex/Age Diameter before surgery (mm) Ex vivo thickness (mm) 

1 adventitia M/67 50 1.18 

2 adventitia M/36 50 0.51 

3 adventitia M/55 53 0.79 

4 adventitia M/81 54 0.64 

5 adventitia M/76 52 0.62 

6 adventitia M/71 48 0.55 

7 media M/70 63 0.89 

8 media M/67 50 0.68 

9 media M/54 60 0.98 

10 media M/55 53 1.09 

11 media F/76 55 1.15 

12 media M/81 54 0.91 

13 media M/68 59 1.02 

14 media M/69 51 1.09 

15 media M/71 48 1.04 



 

TABLE 2. Components of the Cauchy stress tensor reported at the NodeMAX, NodeTOP and 

NodeRUP locations (in MPa). Test No. 1 to 6 were adventitia layers and Test No. 7 to 15 were 

media layers.  

 

 NodeMAX NodeTOP NodeRUP 

Test No. 11σ  22σ  12σ  11σ  22σ  12σ  11σ  22σ  12σ  

1 1.124 1.091 -0.036 0.681 0.842 -0.098 1.128 1.062 -0.005 

2 3.066 3.812 -0.065 3.035 3.778 -0.064 2.954 3.527 0.084 

3 1.233 1.613 -0.011 1.246 1.554 0.023 0.977 0.949 0.189 

4 0.938 0.853 0.001 0.922 0.863 -0.002 0.922 0.795 0.012 

5 1.964 1.642 0.050 1.920 1.647 0.020 1.699 1.419 -0.042 

6 1.035 1.019 -0.046 1.035 1.019 -0.046 0.920 0.933 -0.108 

7 0.756 0.997 0.041 0.677 0.909 0.078 0.640 0.924 0.006 

8 1.764 1.654 0.097 1.617 1.573 0.077 1.120 0.913 -0.051 

9 1.042 1.064 -0.06 1.033 1.067 -0.05 0.903 1.049 -0.027 

10 1.308 1.007 -0.012 1.042 1.038 -0.028 1.174 0.927 -0.042 

11 0.627 0.622 -0.009 0.549 0.602 -0.03 0.552 0.605 -0.025 

12 0.631 0.630 0.076 0.664 0.633 0.042 0.655 0.626 0.040 

13 0.819 0.720 -0.055 0.805 0.714 -0.053 0.815 0.725 -0.051 

14 0.728 0.866 -0.018 0.800 0.858 -0.016 0.791 0.805 0.0001 

15 0.805 0.601 -0.037 0.79 0.588 -0.044 0.714 0.546 -0.041 

 
         

Mean 1.18 1.21 -0.006 1.12 1.17 -0.013 1.06 1.05 -0.004 

Std. 0.64 0.80 0.05 0.64 0.79 0.05 0.59 0.71 0.06 



 

TABLE 3. Comparison between four different ultimate stress values calculated at different 

locations within the same tissue. Test No. 1 to 6 were adventitia layers and Test No. 7 to 15 were 

media layers. 

 

Test No. ���� (MPa) ���� (MPa)  ���� (MPa)  �	
� (MPa)  

1 0.9695 1.1481 0.8889 1.0719 

2 3.5825 3.8183 3.7841 3.5269 

3 1.1725 1.6134 1.5558 0.9755 

4 0.8116 0.9385 0.9222 0.8265 

5 1.5928 1.9724 1.9221 1.4644 

6 0.8414 1.0752 1.0752 0.9335 

7 0.7275 1.0049 0.9337 0.6412 

8 1.4016 1.8214 1.6756 1.0057 

9 0.8503 1.1148 1.1036 0.9309 

10 0.8215 1.3086 1.0692 1.1733 

11 0.4863 0.6346 0.6169 0.6015 

12 0.5559 0.7074 0.6936 0.6286 

13 0.7283 0.8438 0.8302 0.7259 

14 0.8244 0.8687 0.8623 0.8028 

15 0.6386 0.8121 0.7994 0.5891 

     

Mean 1.0669 1.3121 1.2488 1.0598 

Std. 0.7573 0.7979 0.7933 0.7236 



 

Fig. 1. ATAA specimen preparation for the inflation test. 

 



 

Fig. 2. View of the experimental set-up and the inflation of the ATAA layer through the left and 

right cameras of the DIS-C system. An image is recorded every loading stage defined at 3 kPa, for 

the duration of the test. Note that the acrylic protector is used to prevent water from reaching the 

cameras when the specimen bursts. 

 



 

Fig. 3. Reconstructed shape of the ATAA layer at the final inflation stage. The 3D coordinates of 

each material point were used to reconstruct the shape.  

 



 

Fig. 4. Schematic of the kinematics and base vectors. 

 



 

 

Fig. 5. Discretization of the surface. The unchanged mesh is deformed from a) the initial to b) the 

current configuration. For one boundary element the local (�, �, �) Cartesian frame used to define 

the boundary conditions is shown. 



Fig. 6. Top view of the element by element comparison between stress fields calculated by a) the 

FEA simulation (reference) and b) our approach. The absolute error (in MPa) between a) and b) is 

presented in c) and in d) where the boundary elements are neglected. 
 



Fig. 7. The a) stress field (���), b) displacement field (��) and c) strain field (���) for three ATAA 

specimens all at a pressure of 0.027 MPa. 

 



 

Fig. 8. ATAA rupture. For each test, a) the color map of the thickness measurement, b) the 

deformed mesh (  = NodeMAX,  = NodeTOP,  = NodeRUP) and c) the rupture picture where 

��	is the unit vector perpendicular to the rupture. 

 



 
 

 
 

 

Fig. 9. Four different ultimate stresses for each of the 15 ATAA samples where ���� is the Laplace 

stress calculated from Eq. (12),  ���� is the maximum principal stress,   ���� is the maximum 

principal stress at the node of the top, and �	
� is the rupture stress calculated from Eq. (10). 



Fig. 10. Local thickness evolution (Eq. (11)) in mm. for one representative ATAA sample (Test No. 

14). Top view from the initial stage (0.003 MPa) until the final stage (0.057 MPa) and the image 

captured by the DIS-C system at rupture are presented. 
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APPENDIX A 1 

To validate the membrane assumption the stress fields calculated by our approach on a pre-defined 2 

geometry were compared to reference stresses provided by a finite element analysis (FEA) on the 3 

same reference geometry.  In order to compare exactly the data at the same points, we used the 4 

same nodal arrangement for both methods, which means that we had to interpolate the reference 5 

FEA results into our own predefined mesh used in our approach (644 nodes and 1203 elements). 6 

 7 

 8 

Validation Process 9 

 10 

A FEA simulation of the inflation process was performed with the aim to numerically reproduce an 11 

experimental dataset. Using the Abaqus® software we created a 0.85 mm thick circular patch of 30 12 

mm of diameter, corresponding to the area of interest (AOI) for an inflated of the experimental aortic 13 

layers. In order to perform the numerical simulation it was necessary to define the material 14 

properties of the circular patch, which were based on the anisotropic hyperelastic Holzapfel-Gasser-15 

Ogden (HGO) model (Holzapfel et al. 2000). The material properties defined for the FEA simulation 16 

were obtained from the literature: density= 5.0e-4 , C10= 0.0764 MPa, D= 1.e-8 , k1= 0.0839611 MPa, 17 

k2= 1.2644611 , κ= 0  and β= 41 °. 18 

 19 

The nodes on the boundary of the circular patch were pinned allowing their rotation. The applied 20 

load was defined as a uniform pressure of 0.06 MPa, applied to the inner surface of the circular patch 21 

(Fig. A1). Finally the mesh size of the simulation was defined by 10119 nodes and 19887 shell 22 

elements. 23 

 24 



 

2 
 

 25 

The FEA simulation provided the displacement and stress distributions at the end of the inflation. The 26 

stress fields provided by this FEA simulation were then used as a reference for the validation of our 27 

approach and the final geometry provided by this FEA was also used as the reference geometry for 28 

validating our approach.   29 

 30 

For our simulation, we used shell elements which yielded two sets of stress fields in the results, one 31 

located at the inner surface (Fig. A2-a) and another located at the outer surface (Fig. A2-b) of the 32 

inflated membrane. The stress at the inner surface was slightly lower than the stress at mid-thickness 33 

and the stress at the outer surface was slightly higher than the stress at mid-thickness. For a 0.85 mm 34 

thick sheet, it was estimated that the mean absolute difference between the stress at the inner and 35 

outer surface was 0.32 MPa for σ��, 0.26 MPa for σ�� and 0.0013 MPa for σ��. In contrast, our 36 

approach provides directly the stress field at mid-thickness. Knowing this, the two stress fields, outer 37 

and inner, obtained from the FEA simulation were averaged to provide an accurate comparison with 38 

our approach. 39 

 40 

 

Fig. A1. Lateral view of the circular patch created in Abaqus® software. Boundary conditions allow the 

rotation. A uniform pressure is applied to the inner surface of the patch.  
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 41 

After extracting the nodal displacements, we interpolated the values across a grid of pixels in order 42 

to create a dataset with the same spatial resolution as the experimental data (Fig. A3). Then we 43 

applied our approach to these experimental-like data in order to reconstruct the maps of the Cauchy 44 

stress tensor. Using the Abaqus® output file, we interpolated the stress values at the same nodes 45 

that we reconstructed them.  Afterwards our Cauchy stress estimates, from applying our approach to 46 

the experiment-like data, were compared to the Cauchy stress values provided by the FEA 47 

computation. 48 

  49 

 

Fig. A2. FEA computation (Abaqus® software top view) provided stress fields located at a) the inner surface 

and b) the outer surface of the inflated membrane. 
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 50 

Therefore, we were able to compare, element by element, the results of our approach and those of a 51 

reference FEA simulation. In Figure A4-a the reference stress distribution from the FEA simulation is 52 

shown and in Figure A4-b the stress distribution from our approach is displayed. The difference 53 

between both was calculated at each element and is presented in Figure A4-c. Mean absolute errors 54 

of 0.031 MPa for ���, 0.002 MPa for ���, and 0.005 MPa for ���.were calculated between our 55 

approach and the FEA simulation. These mean absolute errors are equivalent to mean relative errors 56 

of 3.5% for ���, 0.3% for ��� and 0.5% for ���. 57 

 58 

 

Fig. A3. The 3D deformed geometry (surface) obtained with the FEA simulation (blue) was imported into 

Matlab®   

a) Nodes where the Cauchy stress will be estimated are defined (red dots) across this surface  

b) The surface is meshed using the Delaunay triangulation. 



 

5 
 

 59 

The differences in the results are due to the different boundary conditions used for each method (i.e. 60 

pinned for the FEA approach and traction boundary conditions for our approach).  An interesting 61 

result was that the boundary conditions only affected the estimated stress near the border.  After 62 

removing the three first stripes of triangles adjacent to the border (Fig. A4-d), the mean absolute 63 

errors were reduced to 0.008 MPa for ���, 0.013 MPa for ���, and 0.008 MPa for ���.  These mean 64 

absolute errors are equivalent mean relative values of 0.8% for ���, 1.4% for ��� and 0.8% for ���, 65 

indicating that the stress estimates contain some errors along the border due to the assumed 66 

 

Fig. A4.  Top view of the element by element comparison between stress fields calculated by a) the 

FEA simulation (reference) and b) our approach. The absolute error (in MPa) between a) and b) is 

presented in c) and in d) where the boundary elements are neglected. 
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boundary conditions but these errors vanish rapidly away from the border. 67 


