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Abstract. The stochastic multi-armed bandit problem is a popular model of the

exploration/exploitation trade-off in sequential decision problems. We introduce

a novel algorithm that is based on sub-sampling. Despite its simplicity, we show

that the algorithm demonstrates excellent empirical performances against state-

of-the-art algorithms, including Thompson sampling and KL-UCB. The algo-

rithm is very flexible, it does need to know a set of reward distributions in ad-

vance nor the range of the rewards. It is not restricted to Bernoulli distributions

and is also invariant under rescaling of the rewards. We provide a detailed exper-

imental study comparing the algorithm to the state of the art, the main intuition

that explains the striking results, and conclude with a finite-time regret analysis

for this algorithm in the simplified two-arm bandit setting.
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1 Introduction

In sequential decision making under uncertainty, the main dilemma that a decision

maker faces is to explore, or not to explore. One of these problems is the popular

stochastic multi-armed bandit problem, termed in reference to the 19th century gam-

bling game and introduced by [23, 20]. It illustrates the fundamental trade-off between

exploration, that is, making decisions that improve the knowledge of the environment,

and exploitation, that is, choosing the decision that has maximized the previous payoff.

Classically, each decision is referred to as an “arm”. There is a finite set of arms and

each arm, when pulled, returns a real value, called the reward, which is independently

and identically drawn from an unknown distribution. At each time step the decision

maker chooses an arm based on the sequence of rewards that has been observed so far,

pulls this arm and observes a new sample from the corresponding unknown underlying

distribution. The objective is to find a policy for choosing the next arm to be pulled,

that maximizes the sum of the expected rewards, or equivalently minimize the expected

regret, that is the loss caused by not pulling the best arm at each time step. If A denotes

the set of arms and {µa}a∈A the mean reward of the distribution of each arm, we denote

⋆ ∈ argmaxa∈A µa an optimal arm and the (expected) regret of an algorithm that pulls

arms a1, . . . , aT up to time T is classically defined as

Rt = E

[ T∑

t=1

(µ⋆ − µat)

]
. (1)

Previous work Since the formulation of the problem by Robbins (1952), the re-

gret, that measures the cumulative loss resulting from pulling sub-optimal arms, has



been a popular criterion for assessing the quality of a strategy. Gittins index based poli-

cies ([13, 14, 12]), which were initially introduced by Gittins in 1979, is a family of

Bayesian-optimal policies that based on indices that fully characterize each arm given

the current history of the game, and at each time step the arm with the highest index

will be pulled. However, the high computational cost of Gittins indices and the fact that

they are practically limited to a specific set of distributions, arose the need of modifying

the policies and make them more efficient. In [8], extending the seminal work of [18],

the authors characterized the achievable performance. They showed that under suitable

conditions on the possible distributions associated to each arm, any policy that is “ad-

missible” (that is, not grossly under-performing, see [18] for details) must satisfy the

following asymptotic lower-performance bound

lim inf
T→∞

RT

log(T )
>

∑

a:µa<µ⋆

µ⋆ − µa

Kinf

(
νa;µ⋆

) , (2)

where Kinf

(
νa;µ⋆

)
is an information-theoretic quantity which measures the minimal

Kullback-Leibler divergence between νa and distributions in the model that have expec-

tations larger than µ⋆. In the same papers, [18], [10], [8] suggested that Gittins indices

can be approximated by quantities that can be interpreted as upper bounds of confidence

intervals.

In [1], the generic class of index policies termed UCB (Upper Confidence Bounds)

was introduced, together with an asymptotic analysis of their performance. [5] provided

the first finite time analysis for a particular variant of UCB based on Hoeffding’s in-

equality, showing that the regret grows logarithmically with the time horizon T . A few

algorithms from the UCB family have been recently introduced such as UCB-V ([4]),

MOSS ([3]), Improved-UCB ([6]), as well as the recent Kullback-Leibler-based algo-

rithms DMED ([15]), Kinf ([19]), kl-UCB ([11]) and KL-UCB ([9]), that were shown

to be first-order optimal.

Besides Gittins index and the UCB-type algorithms, another important class of algo-

rithms is that introduced by Thompson ([23, 24]), and called Thompson sampling.

The algorithm assumes that the arms’ distributions belong to a parametric family of

distributions P = {p(.|θ), θ ∈ Θ} where Θ ⊆ R, it starts by putting a prior distribu-

tions on each one of the arms’ parameters, and at each time step a posterior distribution

is maintained according to the rewards observed so far. In practice each different P
leads to a different implementation of the algorithm. At each time step, this Bayesian

algorithm draws one sample for each arm from its posterior, then pulls the arm that

maximizes the expected reward given that parameter. Recently, the analysis developed

in [9] enabled to tackle the first frequentist optimal bound for the Thompson-sampling

algorithm ([16]) in case of a family of Bernoulli distributions, thus proving that this

algorithm also achieves optimality with a the regret that grows logarithmically with T .

See also [2], as well as the recent extension to another class of distributions in [17].

Contribution In this paper we introduce a novel algorithm called BESA (Best

Empirical Sampled Average) for the stochastic multi-armed bandit problem (see Sec-

tion 2). The algorithm has a different flavor than previously introduced algorithms. It

is not based on the computation of an empirical confidence bounds but rather on the

sampling of some specific quantity. It is for that reason related in spirit to the Thomp-

son sampling algorithm. However, unlike Thompson sampling, BESA does not rely on



Algorithm 1 BESA(a,b) for a two-arm bandit

Require: Two arms a, b, current time t.

1: Sample Iat ∼ Wr(Nt(a);Nt(b)) and Ibt ∼ Wr(Nt(b);Nt(a)).
2: Define µ̃t,a = µ̂(Xa

1:Nt(a)
(Iat )) and µ̃t,b = µ̂(Xb

1:Nt(b)
(Ibt )).

3: Choose (break ties by choosing the arm with the smaller Nt)

at = argmax
a′∈{a,b}

µ̃t,a′ .

a parametric set of distribution (or a prior) and is instead fully non-parametric. In Sec-

tion 3, we compare the performance of the algorithm against state-of-the-art algorithms,

including Thompson sampling and KL-UCB, in several scenarios with different types

of reward distributions and show that the algorithm demonstrates excellent empirical

performances against them. In Section 4, we provide a possible explanation for the

strong performance of BESA, and then discuss its properties; Perhaps the most impor-

tant property of BESA is its flexibility, since the same implementation can be used for

any type of reward distributions, contrary to Thompson sampling or KL-UCB whose

implementations differ according to the considered set of distribution. Finally in Sec-

tion 5, we provide a finite-time regret bound for this algorithm in the two-arm bandit

problem. We show with a rough analysis that the expected regret of the algorithm in this

case is O(log(T )) where T is the time horizon. The focus of the paper is to introduce

and report the striking empirical performance of this simple and flexible algorithm.

Setup and notations We consider a multi-armed bandit setting with finitely many

arms A and respective reward distributions {νa}a∈A, where νa ∈ P([0, 1]) and P([0, 1])
denotes the set of probability measures with support in [0, 1]. We denote µa ∈ [0, 1] the

mean of the distribution νa, and Xa
1:n = (Xa

1 , . . . , X
a
n) a sample of size n, i.i.d. from

νa. In the sequel, we use the short-hand notation [n] for the set of integer {1, . . . , n}.

For a set of indices I ⊂ [n] of size m, say I = (i1, . . . , im), we write Xa
1:n(I) =

(Xa
i1
, . . . , Xa

im
) for the corresponding sub-sampled set. A sample of size m drawn

without replacement from the set [n] is written I(n;m) ∼ Wr(n;m). Here Wr(n;m)
denotes a distribution over sets of integers (with the convention that Wr(n;m) = δ[n] if

m > n, where δ refers to a Dirac distribution). Finally, for a sample S of real val-

ues, we denote µ̂(S) the average of the sample components. For instance we have

µ̂(Xa
1:n) = 1

n

∑n
i=1 X

a
i . Let ⋆ ∈ A denote an arm with maximal mean µ⋆. The re-

gret of an algorithm that pulls arms {at}t∈[T ] up to time T is defined by (1), where

the expectation is taken with respect to all sources of randomness. We also denote the

number of pulls of an arm a ∈ A up to time t by Nt(a) =
∑t−1

t′=1 I{at′ = a}.

2 The BESA Algorithm
The main contribution of this paper is to introduce a novel algorithm, called BESA (Best

Empirical Sampled Average) that uses a sub-sampling procedure in order to compare

between the empirical values of two arms. The pseudo-code of the algorithm, for two

arms is provided in Algorithm 1. The version for the more general multi-armed bandit

uses a tournament strategy described in Algorithm 2.

The main idea of the algorithm is to make a fair comparison between the arms:

Given two arms a and b that has been pulled na = Nt(a) and nb = Nt(b) > na times

respectively at time t, comparing the empirical averages of the arms is not a fair compar-

ison since a has not gotten the same number of opportunities as b to show its abilities.

BESA compensates for this situation by sub-sampling uniformly na rewards out of the



Algorithm 2 BESA(A) for a multi-armed bandit

Require: Set of arms A of size A, current time t.

1: if A = {a} then

2: Choose at = a .
3: else
4: Choose at = BESAt(BESAt({ai}16i<⌈A/2⌉),BESAt({ai}⌊A/2⌋<i6A))
5: end if

nb rewards of arm b. BESA then compares the empirical average of the rewards from

a, to the empirical average of the rewards sub-sampled from b. It finally chooses b if

its computed value is larger than the one of a. We provide in Algorithm 1 a more for-

mal and unified presentation of this strategy. If nb > na, the sampled set (line 2) is

Ibt ∼ Wr(Nt(b);Nt(a)) (indeed Iat ∼ Wr(Nt(a);Nt(b)) is the full set [Nt(a)] in this

case). Then (line 3,4) the compared values become µ̂(Xa
1:Nt(a)

) and µ̂(Xb
1:Nt(b)

(Ibt )).
BESA, FTL and Thompson sampling At first sight, BESA seems close to a

version of the standard Follow The Leader (FTL) algorithm. This algorithm selects

argmaxa∈A µ̂(Xa
1:Nt(a)

), that is the best empirical arm (with no sub-sampling). FTL

is known to be a bad strategy in the bandit setting as it can lead to a linear regret

in a number of situations. It is thus a priori striking that BESA can be any reason-

able. On the other hand, BESA uses a sampling strategy in order to select the sub-

set used to compute the sub-sampled mean. This is in this respect related in spirit to

the Thompson sampling strategy, that is known to be both Bayesian optimal, and

frequentist optimal, achieving the state-of-the-art for the bandit setting with Bernoulli

distribution of rewards ([16]), or more recently distributions in the one-dimension expo-

nential family ([17]). Note that Thompson sampling actually refers to a collection

of algorithms whose implementation depend on the prior we have on reward distribu-

tions. Thus Thompson sampling for Bernoulli distributions is for instance different

than Thompson sampling for exponential distributions. In contrast, BESA keeps

the same form regardless of the distribution on rewards.

A tournament for many arms We extend Algorithm 1 written for two arms to

the more general case of a finite set A of arms by using a divide-and-conquer style

algorithm (see Algorithm 2). This intuitively corresponds to organizing a tournament

between arms. To avoid relying too much on a specific ordering of the arms that may

bias the final result (and look arbitrary), we randomly shuffle the set of arms before

each decision. That is, at time t, we create a copy Ãt of A that is obtained by shuffling

A uniformly at random, and then output the arm BESA(Ãt).

3 Numerical Experiments

Our findings show that, surprisingly, BESA is a strong competitor of the state-of-the-art

strategies from the bandit literature. Before providing one possible explanation for this

striking performance, we now report these intriguing results more precisely.

In this section, the BESA algorithm is compared against well-known optimal algo-

rithms such as KL-UCB, KL-UCB+ ([11, 19, 9]), Thompson sampling ([23, 24])

with prior Beta(1,1), KL-UCB-exp ([9]) and UCB-tuned ([5]), on different scenarios

with different set of arms. To avoid implementation bias, we use the open-source code

available on-line at http://mloss.org/software/view/415 for the imple-

mentation of these algorithms. Note that these algorithms do not need parameter tuning.

In each one of the scenarios detailed below, the time horizon is set to T = 20, 000, and
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Fig. 1. Regret against time for the two-arm scenario, with µ⋆ = 0.9 and µa = 0.8.

Table 1. Performance measures for T = 20, 000 in the two-arm scenario, with µ⋆ = 0.9 and

µa = 0.8. Complexity α1/2(M, 1) = O(0.9M ).

BESA KL-UCB KL-UCB+ Thompson sampling

Average regret at T 11.83 17.48 11.54 11.3

Beat BESA −− 1.82% 41.6% 58.28%

Average running time 2.86X 2.7X 3.12X X

the scenario is run on 50,000 independent experiments. In each run, so as to have a fair

comparison, the rewards of the arms are all drawn in advance, and all the algorithms

are run on the same set of drawn rewards. In other words, on each of the 50, 000 runs,

∀n ∈ {1, . . . , 20000}, a ∈ A all the algorithms will observe the same reward on the nth

pull of arm a. This enables us to measure the percentage of runs on which one algorithm

is better than a reference one, thus providing another measure of performance, besides

the empirical average cumulative. We systematically report below in Table 1, . . . , 7 this

percentage using BESA as a reference. In Figures 1, . . . , 7, the dark gray represents the

plot quartiles, while the light gray represents the upper 5 percents quantile. Finally, in

section 5, we introduce the so-called balance function α1/2 (see definition 1) that acts

as a complexity parameter. For clarity, we report the scaling of this function in most of

the following scenarios as well.

3.1 Scenario 1: Two Bernoulli Arms

In this scenario we consider the case of two Bernoulli arms A = {⋆, a}, with expecta-

tions µ⋆ = 0.9 and µa = 0.8, respectively. The empirical average cumulative regret of

each algorithm is shown in the first raw of Table 1, while the second raw shows the per-

centage of the runs on which the algorithm gave a lower regret than BESA, and the third

shows the average run time where X denotes the average run time of the fastest algo-

rithm. In Figure 1 the average regret is shown as a function of time. The same scenario

has been considered in [11]. On one hand, from figure 1 in [11] one can conclude that

the average cumulative regret of UCB-V is larger than 50, while all the other algorithms

but KL-UCB have average cumulative regret between 21 and 36. On the other hand, as

reported in Table 1, the average cumulative regret of BESA is 11.38. Thus BESA out-

performs all the algorithms considered in [11] such as e.g. UCB-tuned, DMED, MOSS

on this scenario, including KL-UCB. Note that KL-UCB+ does get a slightly lower ex-

pected regret, but does not beat BESA more than 50 per cent of the time. Thompson

sampling here slightly outperforms BESA.

3.2 Scenario 2: Bernoulli with a Small ∆

This scenario is similar to scenario 1 but with a smaller gap ∆: We consider the case of

two Bernoulli arms, with expectations µ1 = 0.81 and µ2 = 0.8 respectively. Similarly



to scenario 1 the average regret, the percentage of experiments on which BESA was

beaten and the average run time are shown in Table 2, and the cumulative regret as a

function of time is shown in Figure 2. Note that the average regret of BESA is close

to that of KL-UCB+ and smaller than that of KL-UCB and Thompson sampling.

Interestingly enough, in addition the percentage of runs on which BESA is beaten by

any of the state-of-the-art algorithms is smaller than 37%.
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Fig. 2. Regret against time for the two-arm scenario, with µ⋆ = 0.81 and µa = 0.8.

Table 2. Performance measures for T = 20, 000 for the two-arm scenario, with µ⋆ = 0.81 and

µa = 0.8. Complexity α1/2(M, 1) = O(0.9M ).

BESA KL-UCB KL-UCB+ Thompson sampling

Average regret at T 42.6 52.34 41.71 46.14

Beat BESA −− 25.61% 36.86% 35.2%

Average running time 4.56X 2.78X 3.47X X

3.3 Scenario 3: Bernoulli with Low Means

In this scenario we consider the scenario used in [11], and inspired by a situation, fre-

quent in applications like marketing or Internet advertising, where the mean reward of

each arm is very low. More precisely we consider a harder case which has ten Bernoulli

arms, the best arm has expectation 0.1, three arms have expectation 0.05, three arms

expectation 0.02, and the rest with expectation 0.01. Table 3 summarizes the results

of this experiment, and the regret as a function of time is shown in Figure 3. As can

be seen from Table 3 the average regret of BESA is much smaller than KL-UCB and

Thompson sampling regrets, and it is beaten by KL-UCB only in 1.57% of the

runs and by Thompson sampling only in 3.09% of the runs. It is also beaten by

KL-UCB+ less than 36% of the time. As can be seen in figure 2 of [11] the regrets of

all the algorithms but DMED+ and KL-UCB+, which include e.g. CP-UCB, DMED, UCB-

Tuned, are between 100 and 400. Thus we can conclude that BESA’s average is smaller

than the average of those algorithms.
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Fig. 3. Regret against time for scenario 3.



Table 3. Performance measures for T = 20, 000 for scenario 3. α1/2(M, 1) = O(0.5025M ).

BESA KL-UCB KL-UCB+ Thompson sampling

Average regret at T 74.41 121.21 72.84 83.36

Beat BESA −− 1.57% 35.41% 3.09%

Average running time 13.85X 2.83X 3.08X X

3.4 Scenario 4: All Half but One

In this scenario we consider a case with ten Bernoulli arms, considered as being hard:

The optimal arm has expectation 0.51 while all the others have expectation 0.5. The

results of this experiment are shown in Table 4 and Figure 4. We note that BESA gets a

smaller average regret than its competitors, and is not beaten by them more than 42%

of the time. Thus BESA performs best in this hard setting.
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Fig. 4. Regret against time for scenario 4.

Table 4. Performance measures for T = 20, 000 for scenario 4. α1/2(M, 1) = O(0.75M ).

BESA KL-UCB KL-UCB+ Thompson sampling

Average regret at T 156.7 170.82 165.28 165.08

Beat BESA −− 41.36% 41.57% 40.78%

Average running time 19.64X 2.78X 2.96X X

3.5 Scenario 5: Truncated Exponential

In order to further demonstrate the flexibility of the BESA algorithm, we consider in

this scenario the case of rewards coming from an exponential distribution. Five arms

were considered with parameters
{

1
5 ,

1
4 ,

1
3 ,

1
2 , 1

}
, truncated at 10 then divided by 10

(thus they are bounded in [0, 1]). The results of this experiment are shown in Table 5

and Figure 5. Note that the regret of KL-UCB-exp, which is the version of KL-UCB

specifically tuned for exponential families and achieving the state-of-the-art for this

case, is lower than that of BESA only on 5.72% of the runs. Note that BESA need not

know that the distributions are exponential, that is, we use exactly the same algorithm.

Now, as can be seen in the figure of BESA the graph is not smooth: the reason is that

BESA misses the optimal arm if the first reward that it gives is too low. In order to get

a smoother behavior, we ran a slightly modified version of BESA to skip these corner

cases: The modified algorithm is called BESAT, and simply pulls each arm ten times

before starting running the regular BESA. As can be seen in the results this improved

the regret dramatically. Now KL-UCB-exp beats BESAT only on 1.38% of the runs, and



similar numbers is achieved for UCB-tuned. In [11] a similar scenario is considered,

with the difference that they didn’t divided the reward by 10. It is actually easy to prove

that both BESA and BESAT are actually invariant by rescaling, that is they pull the

same arms in the same order wither we divide the reward by 10 or not. Thus, running

the algorithms with the same runs without dividing the rewards by 10, the regret of

BESA is 532.6 and the one of BESAT is 314.1, which is still better than the regrets

reported in [11] at Figure 3 (they are above 600).
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Fig. 5. Regret against time for scenario 5.

Table 5. Performance measures for T = 20, 000 for scenario 5.

BESA BESAT KL-UCB-exp UCB-tuned

Average regret at T 53.26 31.41 65.67 97.6

Beat BESA −− 40.59% 5.72% 4.33%

Beat BESAT 59.41% −− 1.38% 0.85%

Average running time 6.01X 7.09X 2.76X X

3.6 Scenario 6: Truncated Poisson

In this scenario we consider the case of Poisson rewards, six Poisson arms are consid-

ered with parameters 0.5 + i
3 , where 1 6 i 6 6, truncated at 10 then divided by 10.

A similar scenario was considered in [9] where KL-UCB-Poisson is the leading algo-

rithm. From Table 6, BESA and BESAT outperform KL-UCB and KL-UCB-Poisson on

95.95% of the runs for BESA and 97.99% for BESAT, with a much smaller average

regret.

0 0.5 1 1.5 2

x 10
4

0

50

100

150

200

time

re
g
re

t

BESA

0 0.5 1 1.5 2

x 10
4

0

50

100

150

200

time

BESAT

0 0.5 1 1.5 2

x 10
4

0

50

100

150

200

time

KLUCBpoisson

0 0.5 1 1.5 2

x 10
4

0

50

100

150

200

time

KLUCB

Fig. 6. Regret against time for scenario 6.



Table 6. Performance measures for T = 20, 000 for scenario 6.

BESA BESAT KL-UCB-Poisson KL-UCB

Average regret at T 19.37 16.72 25.05 150.56

Beat BESA −− 39.92% 4.05% 0.72%

Beat BESAT 59.51% −− 2.01% 0.17%

Average running time 3.53X 3.49X 1.15X X

3.7 Scenario 7: Uniform Distributions

In this experiment, we consider a challenging setting where arms are uniformly dis-

tributed with Xa ∼ U([0.2, 0.4]) and X⋆ ∼ U([0, 1]). Note that there is no natural

KL-UCB nor Thompson sampling algorithm to deal with such family of distri-

bution. In such a scenario, we note that α1/2(M, 1) does not decay exponentially to

0 with M , indicating that this is a difficult scenario for BESA. However, it holds that

α1/2(1, n) = O(βn) with β = 0.2. According to Theorem 1, we should initialize BESA

by pulling n0 times each arm before applying BESA (that is, run BESAT), where for

T = 20, 000, n0 ≃ 6.15. We ran BESAT with different number of initialization pulls

n0 ∈ {0, 3, 6, 7, 8, 9, 10}, and we also ran UCB KL-UCB and Thompson sampling

(with Beta(1,1) prior) on the same set of arms. The average regrets of each of the al-

gorithms in addition to the percentage on which each non-BESA algorithm beats BESA

with different n0 are provided in Table 7. The average regret of BESA improves with

increasing n0 as expected, and as can be seen from the table, BESA with n0 = 10
gave a lower average regret than UCB and KL-UCB and a bit higher than Thompson

sampling and it was beaten by the other algorithms on less than 0.8% of the runs.

Table 7. Performance measures for T = 20, 000 for scenario 7.

Alg. UCB KL-UCB Thompson sampling

Average regret 21.23 20.72 13.18

Beat BESA n0 = 0 24.26% 24.28% 24.7%

Beat BESA n0 = 3 7.27% 7.3% 7.83%

Beat BESA n0 = 7 1.56% 1.58% 1.76%

Beat BESA n0 = 10 0.62% 0.63% 0.74%

BESA n0 = 0 n0 = 3 n0 = 6 n0 = 7 n0 = 8 n0 = 9 n0 = 10

Average regret 920.12 213.44 50.6 35.38 25.88 17.85 15.42

3.8 Summary of the Experimental Results

From the first four numerical experiments, we deduce that BESA is able to compete

with the state-of-the-art bandit algorithms in the Bernoulli case. It becomes especially

good when the gaps are small, or when the Bernoulli parameters are small, which are

two main cases of practical interest (especially in web-advertising). Scenario 5, 6 and 7

highlight the flexibility of the algorithm: the same algorithm competes favorably against

one of the best algorithm for exponential distributions as well as for Poisson distribu-

tions. Using a slight modification, we can beat them by an even larger margin.



4 Intuition and Properties

In this section, we provide an explanation for the striking performance of the BESA

algorithm, and discuss further its advantages and drawbacks. In the next section, we

use this intuition to derive a regret bound for the BESA algorithm.

4.1 Why Does It Work?

To give intuition why BESA works, let us focus on the two-arm bandit problem. The

heuristic idea behind the algorithm is that a comparison between two empirical mean

estimates built on a very different number of samples na and nb is not really “fair”,

and that it seems more natural to compare empirical means based on the same num-

ber of samples. Thus the algorithm we introduce is based on sub-sampling. In the rich

sub-sampling literature, the works of [7] and [21], show that using sub-sampling with-

out replacement ensures convergence guarantees in a strictly broader setting than sub-

sampling with replacement (a.k.a bootstrap). This may provide some informal support

for the soundness of the method. However we now provide a more direct justification

for the striking performance of BESA.

On the theoretical side, one can justify the intuition by looking at the probability of

repeatedly choosing a wrong action. If µb > µa and the number of plays of each arm

satisfies na > nb, the probability that BESA chooses a wrong action is approximatively

P

[
µ̂
(
Xa

1:na

(
I(na;nb)

))
> µ̂

(
Xb

1:nb

)]
, (3)

where I(na;nb) ∼ Wr(na;nb), and the probability of making M consecutive mistakes

is essentially

P

[
∀m∈ [M ] µ̂

(
Xa

1:n
(m)
a

(
Im(n(m)

a ;nb)
))

>µ̂
(
Xb

1:nb

)]
, (4)

where for all m 6 M , Im(na;nb) ∼ Wr(na;nb), and where we introduced for conve-

nience the short-hand notation n
(m)
a = na +m− 1.

Now, for deterministic1 na, nb, (3) typically scales with exp
(
−2nb(µb−µa)

2
)

, by

a standard Hoeffding inequality since nb samples are involved. On the other hand, (4)

can decrease at a much faster rate, intuitively of order exp
(
−2nbM̃(µb−µa)

2
)

where

M̃ is the number of non-overlapping sub-samples of size nb. Indeed if Im′(n
(m)
a ;nb)∩

Im(n
(m)
a ;nb) = ∅ for all m 6= m′ ∈ M ⊂ [M ] where |M| = M̃ , then the corre-

sponding empirical means are independent from each other, which leads to the intuitive

improvement. Using sub-sampling, the later event is of high probability for a reasonable

M̃ provided that na/nb is large enough. Note that in the case when we do not resort to

sub-sampling, such a phenomenon will not happen, due to the strong dependency be-

tween the samples at two consecutive time steps. Thus M̃ is essentially 1 which means

that the probability of committing M successive mistakes, will stay big, of the order

of exp
(
− 2nb(µb − µa)

2
)
. Now in an ideal case, with only M = na/nb subsets, we

might get a mistake error scaling with exp
(
− 2na(µb −µa)

2
)
, even though b has only

been pulled nb times. As long as na/nb ≪ na − nb, then we need less trials than the

1 The exact argument needs to deal with the fact that na = Nt(a) and nb = Nt(b) are both

random stopping times.



procedure based only on confidence interval estimates before accurately discarding the

wrong arm with the same probability. This intuitive idea is formalized and captured by

Lemma 1, which we consider to be the key for the current analysis.

4.2 Properties of the Algorithm

We now highlight some of the main properties of BESA.

Simplicity We first note the simplicity of the BESA compared to previous methods,

such as KL-UCB for instance that requires some fancy linear program in order to com-

pute the upper confidence bound, or Thompson sampling that requires to be able

to find an appropriate conjugate prior and implement the update of its parameters, or

even the UCB-type strategies that generally require some free parameter to be adjusted.

Here, BESA requires no parameter tuning, and no complicated prior/posterior relation

is needed either. Thus the algorithm is directly applicable in a broad range of situation.

Flexibility A striking property of the algorithm is its flexibility to adapt to vari-

ous situations. For instance, note that BESA does not need to know the support of the

distributions, and is also invariant under rescaling. This is not the case of most ban-

dit algorithms that explicit use the knowledge of the support [a, b] of distributions. We

believe this can be a serious advantage in some situation. Moreover, both Thompson

sampling and KL-UCB are dependent on a considered parametric set of distributions:

in practice a different set of distribution leads to a different implementation. BESA does

not need such parameters, keeps the same form in all situations, and more importantly

still achieves excellent performance in a number of situations, as detailed in Section 3.

Efficiency Finally, one might wonder about the computationally efficiency of BESA

due to the use of a sub-sampling method, that is generally not memory less. We were a

bit worried about this fact, and thus we implemented the algorithm in a naive way and

reported the computational cost of the algorithm in each table for completeness. We

conclude from these results that the computational cost of the algorithm is essentially

not a problem. Moreover, note that, due to the i.i.d. nature of the data, one may use

fancier but more efficient sub-sampler techniques. A naive implementation needs to

save all the received rewards. In case the rewards take only finitely many values one

can use instead a counter for each possible value. To avoid distracting the reader from

the main message, we do not discuss possible tricks that could be used to improve

further the numerical efficiency of the method.

5 Regret Upper-Bound

In this section, we provide a simple regret analysis of the BESA algorithm2. Formalizing

further the heuristic intuition of Section 4, it is actually possible to derive a non-trivial

regret bound for the BESA algorithm, given in Theorem 1. In order to characterize the

difficulty of a bandit problem, we now define the following problem-dependent quantity

Definition 1. For integers M,n and λ ∈ [0, 1], we define the balance function of the

distributions (νa, ν⋆) as

αλ(M,n) = EZ∼ν⋆,n

[
(1− Fνa,n(Z) + λνa,n(Z))M

]
,

2 We study a slightly modified version, that break ties uniformly at random.



where νa,n is the distribution of
∑n

i=1 X
a
i with Xa

i
i.i.d
∼ νa and Fν is the cdf of ν (that

is, Fν(x) = PX∼ν(X 6 x)).

Let us provide some intuition on two examples. Note that αλ is not increasing both

in M and n. First, let us consider two Bernoulli arms with Xa ∼ B(µa) and X⋆ ∼

B(µ⋆). We can compute easily that αλ(M, 1) = (λµa)
Mµ⋆+

(
λ+µa(1−λ)

)M
(1−µ⋆).

Now, since µa < µ⋆ 6 1, we deduce that α1/2(M, 1)
M→∞
→ 0, and more precisely that

α1/2(M, 1) = O

((µa ∨ (1− µa)

2

)M
)
.

Thus it converges exponentially fast to 0. Note, however that α1(M, 1)
M→∞
→ 1 − µ⋆,

which is non zero unless µ⋆ = 1. Second, let us consider the case of two Uniform arms

Xa ∼ U([0.2, 0.4]) and X⋆ ∼ U([0, 1.]). For all λ it holds that αλ(M,n)
M→∞
→ 0.2n.

Thus there is no exponential decay with M . However, it holds that αλ(1, n) = O(0.2n).
We now prove the following

Theorem 1. Let A = {⋆, a} be a two-armed bandit with bounded rewards in [0, 1], and

∆ = µ⋆−µa be the mean gap. Let us moreover assume that there exists α ∈ (0, 1) and

c > 0 such that α1/2(M, 1) 6 cαM . Then the regret of BESA at time T is controlled by

RT 6
11 log(T )

∆
+ Cνa,ν⋆

+O(1) ,

where Cνa,ν⋆
depends on the parameters of the problem α, c and ∆, but not on T .

Moreover if there exists some β ∈ (0, 1) and c > 0 such that α1/2(1, n) 6 cβn. Let us

define

n0,T =

⌈
ln(T )− ln

(
(1− β)C

)

ln(1/β)

⌉
.

Then if BESA is initialized with n0,T pulls of each arm, then its regret at time T is

controlled by

RT 6
11 log(T )

∆
+ n0,T + C̃νa,ν⋆ +O(1) .

where C̃νa,ν⋆
depends on C and on the parameters β, c and ∆, but not on T .

Remark 1. Up to Lemma 1 (see below) which is a purely probabilistic result, and is in-

dependent on the bandit setting, the proof is arguably simpler than the typical ones used

for Thompson sampling. In particular, we do not need to resort to a fancy “Bernoulli-

Beta” trick that is used in classical proofs of Thompson sampling and does not extend

easily to general distributions (see for instance [17] that is entirely devoted to the ex-

tension to exponential families of dimension one).

Remark 2. Since one needs not use empirical confidence intervals in the analysis, but

simply confidence intervals, one can hope to derive much tighter results in the future,

using Kullback-Leibler-based Chernoff bounds, or event the sharpest Sanov bounds.

We provide the full proof of this result in the appendix. It mainly follows the proof

of [16] that provides a sharp analysis of the Thompson sampling algorithm, with

some simplifications: first, we consider only two arms, which enables us to skip a re-

currence argument (but the same technique could be used to extend our analysis to the



case of K-arms); then, we only use mean-based arguments essentially for clarity of ex-

posure. We believe it is more important at this point to provide a clear intuition about

why the algorithm works than to provide a tight analysis based on Kullback-Leibler

concentration results that are trickier to catch. Now for clarity, we summarize in the

next Lemma what we believe is the key result for the regret analysis of BESA. This

purely probabilistic result is specific to the properties of the sub-sampling procedure.

The sketch of proof is as follows: As usual, we express the regret in terms of the

expected number of pulls of sub-optimal arms, that are further decomposed according

to the event that the optimal arm has been pulled enough or not. Under the event that

the optimal arm is pulled enough, we control easily the probability of mistake resorting

to standard proof techniques based on concentration bounds. One difference with re-

spect to standard bounds is that we use here a Serfling-Hoeffding ([22]) concentration

inequality. This gives the first term of the regret. The next and difficult step is to show,

as usual, that the optimal arm is indeed pulled enough with high probability. To that

end, we borrow a proof technique considered in [16]: we introduce the random times τj
between the jth and (j+1)th pull of the optimal arm, and show that they cannot be too

large for too many j, that is to show that the number of consecutive mistakes made by

the algorithm must be small with high probability. This is one key of the regret analysis

of Thompson sampling that enables to derive an optimal performance bound. The

novelty that we introduce for the analysis of BESA is to relate this number of consec-

utive mistakes to the probability that many sub-samples of small size do not overlap,

as explained in Section 4. The precise lemma that covers this part, and that eventually

leads to our regret bound is the following:

Lemma 1 (Maximal non-overlapping sub-samples). Let M = {p, . . . , q} ⊂ N be

some interval. Let j,M ∈ N be such that p > 2j, and M 6 |M|. For all s ∈ M, we

introduce the random variable Is(s− j; j) ∼ WR(s− j; j). Then the function defined by

fM(M, j) = 1− P

[
∃s1 < · · · < sM ∈ M,

∀m 6= m′ ∈ [M ] : Ism(sm−j; j) ∩ Ism′
(sm′−j; j) = ∅

]

is decreasing with p. Moreover, for a sequence of intervals Mt = {pt, . . . , qt}, such

that limt→∞
qt−pt

t = C > 0 and integers Mt,j such that Mt,jj = O(ln(qt)), we have

fMt
(Mt,j , j) =o(t−1) . (5)

One way to show this lemma is by studying fM(M, j) formally, and trying to see

how it behaves with the different parameters. This however turns out to be tedious and

very technical. On the other hand, we can take advantage of the fact that this function is

problem-independent and thus can be computed off-line. It can actually be simulated,

and since it is decreasing with |M|, it is enough to study its behavior for small |M|. For

our purpose in the analysis, we only need to look at small values of M = O(log(T ))
(note that for a time horizon T = 20, 000, then log(T ) < 10). Similarly we use small

value for n0 6 j 6 uT = O(log(T )) as well. It is not difficult to simulate fM(M, j)
for Mx = [2j + 1, x] with various values of M and x. We are interested in the ratio

α = − log(fMx(M, j))/ log(x), and observe numerically that this ratio is increasing

with x and quickly becomes larger than 1, that is fMx
(M, j) < x−1 for large enough



x > CM = o(M) that is slowly increasing with M . In the analysis of Theorem 1, we

use x = O(t/ log(t)), and M = O(log(T )), and thus as soon as t > C ′ log(t), which

happens for t > C for some numerical constant C, then fMt(M, j) starts decaying

faster than t−1, that is fMt(log(t)/j, j) = o(t−1). In figure 7, we plot the function α
in terms of x and M , and for different values of j. Each point is the result obtained

via 5, 000 replications. We report especially in blue the regions when α becomes larger

than 1, which is the critical value to ensure that the lemma holds.
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Fig. 7. α as a function of x and M for j = 3 (left), j = 8 (middle) and j = 15 (right). (Note

that for ∆ = 0.3 and T = 20, 000, then 1
2∆

log(T ) ≃ 16.5.) The black circles indicate when

αx > 1 and the white circles when αx < 1.

6 Discussion and Conclusion

In this paper, we introduced a novel algorithm for the stochastic multi-armed bandit

that is based on sub-sampling. We provided a careful experimental analysis of the BESA

algorithm, by comparing it with the optimized versions of the state-of-the-art algorithms

known in each situation. We demonstrated the advantage of BESA specifically in the

case of Bernoulli distributions, including the case of small parameters and small gaps,

as well as exponential and Poisson distributions. For completeness, we reported three

measures of performance of the algorithm: plots of the cumulative reward, included

quantiles, the percentage it is beaten by other standard algorithms and the numerical

complexity with respect to the fastest method.

The algorithm has several striking properties: it is simple to implement, and is very

flexible. It does not need to know a set of distributions in advance, unlike Thompson

sampling or KL-UCB and does not even need to know the support, unlike UCB or

kl-UCB. It is also invariant under rescaling of the rewards. This is thus a fully non-

parametric algorithm, that competes favorably against standard algorithms.

We finally provide a regret analysis for BESA, which shows that the regret of the

algorithm is logarithmic (we believe that the constants are not tight). More importantly,

we provided a novel proof technique that we believe conveys the core intuition why the

algorithm is working, and can lead to much tighter bounds in the future.

Now that we have introduced this algorithm and shown its flexibility, it seems natu-

ral to try to extend the BESA to other settings. One first direction of research is to con-

sider the contextual-bandit problem, another one is to consider the adversarial multi-

armed bandit setting.
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Appendix beyond the page limit

A Proof of Theorem 1

We now provide the proof of Theorem 1. It is divided in 6 steps, and is broadly inspired

from the proof of [16] used to derive the state-of-the-art regret bounds for Thompson

Sampling, with some simplifications due to the restriction to two arms.

STEP 1. Decomposition of the regret. For any u > 0, the expected regret RT at

time T can be decomposed as

RT = (µ⋆ − µa)E[NT (a)]

= ∆E

[ T∑

t=1

I{µ̃t,a > µ̃t,⋆}

]

6 ∆

T∑

t=1

(
P

[
µ̃t,a > µ̃t,⋆ ∩Nt(⋆) > u

]
+ P [Nt(⋆) 6 u]

)
. (6)

We now control separately each of the two events that appear in the right hand side of

the inequality.

STEP 2. Probability of mistake. We combine here two results from concentration

of measure. On the one hand, by application of a simple Serling-Hoeffding’s inequality

[22], it holds for all δ ∈ (0, 1) that

P

[
µ̂(X⋆

1:Nt(⋆)
(I⋆t (Nt(⋆), Nt(a))) 6 (7)

µ̂(X⋆
1:Nt(⋆)

)−

√
ρ⋆,a log(1/δ)

2min{Nt(a), Nt(⋆)}

∣∣∣∣F<t

]
6 δ ,

where ρ⋆,a = 1 − Nt(a)−1
Nt(⋆)

if Nt(a) 6 Nt(⋆)/2, ρ⋆,a = 0 if Nt(a) > Nt(⋆), and

ρ⋆,a = (1 − Nt(a)
Nt(⋆)

)(1 + 1
Nt(a)

) else. On the other hand, we get by a simple Hoeffding

bound that

P

[
∃s ∈ {⌈u⌉, . . . , t} : µ̂(X⋆

1:Nt(⋆)
) 6

µ⋆ −

√
α log(t)

2s

]
6 (t− ⌈u⌉+ 1)t−α ,

or by a more refined maximal Hoeffding’s inequality combined with a peeling argument

that for all α > 1,

P

[
∃s ∈ {⌈u⌉, . . . , t} : µ̂(X⋆

1:Nt(⋆)
) 6

µ⋆ −

√
α log(t)

2s

]
6

(
log(t− ⌈u⌉+ 1)

log ((α+ 1)/2)
+ 1

)
t−

2α
α+1 .



Now, by definition of the BESA algorithm, it holds that At = a implies

µ̃t,a − µ̂(Xa
1:Nt(a)

) + µ̂(X⋆
1:Nt(a)

)− µa + µa

> µ̃t,⋆ − µ̂(X⋆
1:Nt(⋆)

) + µ̂(X⋆
1:Nt(⋆)

)− µ⋆ + µ⋆ ,

that is, reorganizing the terms and using a union bound, we deduce that provided that

Nt(⋆) > u, then there exists an event of probability higher than 1−2
(

log(t−⌈u⌉+1)
log((α+1)/2) + 2

)
t−

2α
α+1

such that on this event

∆ 6

(
µ̃t,a − µ̂(Xa

1:Nt(a)
)
)
+

(
µ̂(X⋆

1:Nt(a)
)− µa

)

+
(
µ̂(X⋆

1:Nt(⋆)
)− µ̃t,⋆

)
+
(
µ⋆ − µ̂(X⋆

1:Nt(⋆)
)
)

6

√
ρa,⋆α log(t)

(α+ 1)min{Nt(a), Nt(⋆)}
+

√
α log(t)

2Nt(a)

+

√
ρ⋆,aα log(t)

(α+ 1)min{Nt(a), Nt(⋆)}
+

√
α log(t)

2Nt(⋆)
. (8)

Now, either Nt(a) < Nt(⋆), or Nt(a) > Nt(⋆). Let us first consider the case when

Nt(a) < Nt(⋆). We then have ρa,⋆ = 0, and also

ρ⋆,a 6 1−
Nt(a)

Nt(⋆)
+

1

Nt(⋆)
6 2 .

Thus, inequality (8) can be further simplified to

∆ 6

√
2α log(t)

Nt(a)

(√ 1

α+ 1
+ 1

)
,

and thus the number of pulls of the sub-optimal arm must be controlled by

Nt(a) 6
(
1 +

√
1

α+ 1

)2 2α log(t)

∆2
. (9)

In the case when Nt(a) > Nt(⋆), we deduce similarly that ρ⋆,a = 0 and that

∆ 6

√
2α log(t)

Nt(⋆)

(√ 1

α+ 1
+ 1

)
,

from which we deduce that we must have

u 6 Nt(⋆) 6
(
1 +

√
1

α+ 1

)2 2α log(t)

∆2
.

As a result, if we introduce ut =
(
1 +

√
1

α+1

)2 2α log(t)
∆2 , we deduce that provided that

Nt(⋆) > ut, then with probability higher than 1−2
(

log(t+1)
log((α+1)/2) + 2

)
t−

2α
α+1 we must



have Nt(a) < Nt(⋆) when At = a, that is (9) must hold. This means that the number

of pulls of the sub-optimal arms is controlled in this case. Thus, in order to control the

regret, we only have to show that Nt(⋆) > ut indeed happens with sufficiently high

probability for large enough t (such as t > 2ut for instance).

STEP 3. In this step, we show that the optimal arm is pulled often with high proba-

bility. Let us introduce tj to be the occurrence of the jth play of arm ⋆, with t0 = 0, and

τj = (tj+1 − 1) − tj being the number of time steps during the jth and the (j + 1)th

play of the optimal arm ⋆. Note that τ0 6 2 since all arms are pulled once during the

initialization step. Then, provided that t/u− 1 > 2, that is t > 3u, it holds that

P [Nt(⋆) 6 u] = P [Nt(a) 6 t− u]

6 P [∃j ∈ {0, . . . , ⌊u⌋} : τj > t/u− 1]

= P [∃j ∈ {1, . . . , ⌊u⌋} : τj > t/u− 1]

6

⌊u⌋∑

j=1

P [τj > t/u− 1] . (10)

We now focus on the event Ej = {τj > t/u − 1}. We want to show that it is

unlikely that ⋆ is not chosen for a large amount of consecutive time steps, due to the

high probability that two small sub-samples chosen from arm a are independent of each

other. Note that as = a happens if either µ̃s,a > µ̃s,⋆ or µ̃s,a = µ̃s,⋆ and ξs = 1.

Expliciting further the event τj > t/u− 1, it holds that

P [Ej ] 6 P

[
∀s ∈ {tj , . . . , tj + ⌊t/u⌋ − 1} : Ns(a) > j

∩

{
µ̂
(
Xa

1:Ns(a)

(
Is(Ns(a); j)

))
> µ̂

(
X⋆

1:j

)
∪

µ̂
(
Xa

1:Ns(a)

(
Is(Ns(a); j)

))
= µ̂

(
X⋆

1:j

)
∩ ξs = 1

}]

+ P

[
∀s ∈ {tj , . . . , tj + ⌊t/u⌋ − 1} : Ns(a) < j

∩

{
µ̂
(
Xa

1:Ns(a)

)
> µ̂

(
X⋆

1:j

(
Is(j;Ns(a))

))
∪

µ̂
(
Xa

1:Ns(a)

)
= µ̂

(
X⋆

1:j

(
Is(j;Ns(a))

))
∩ ξs = 1

}]
.

We now show that the second term of the sum in right hand side of this inequality is

0 for large enough t. Indeed, since on the one hand Ntj+⌊t/u⌋−1(a) = tj+⌊t/u⌋−1−j,

and on the other hand tj > j, we deduce that if t > u(1 + u), then

tj + ⌊t/u⌋ − 1− j > ⌊u⌋ > j ,

which shows the desired claim. Note that t > ut(1 + ut) happens for t > c∆ where c∆
is a constant depending on the sub-optimality gap ∆ only.



As a result, for t > u(1 + u), we obtain for all 1 6 j 6 u the following control

P[Ej ]6P

[
∀s∈{tj , . . . , tj+⌊t/u⌋−1} : as=a ∩Ns(a)> j

∩

{
µ̂
(
Xa

1:Ns(a)

(
Is(Ns(a); j)

))
> µ̂

(
X⋆

1:j

)
∪

µ̂
(
Xa

1:Ns(a)

(
Is(Ns(a); j)

))
= µ̂

(
X⋆

1:j

)
∩ ξs = 1

}]
.

Now, following a similar step as in [16], let us split the interval Mj,t = [tj , tj +
⌊t/u⌋ − 1] in two parts

M
(1)
j,t = [tj , tj + ⌊

t/u− 1

2
⌋]

M
(2)
j,t = [tj + ⌈

t/u− 1

2
⌉, tj + ⌊t/u⌋ − 1] .

When a is repeatedly chosen during all M
(1)
j,t , then, for all s ∈ M

(2)
j,t , we must have

Ns(a) = s− j > tj + ⌈
t/u− 1

2
⌉ − j

> ⌈
t/u− 1

2
⌉ .

For instance if t > ut(1 + 2kut), which happens for t > ck,∆ where ck,∆ is a constant

independent on T , then for all s ∈ M
(2)
j,t it holds that s− j > kut > kj. thus, it makes

sense to introduce the deterministic quantity nt,kj = max{⌈ t/ut−1
2 ⌉, kj}. Note that we

have the following inequalities

P [Ej ]

6P

[
∀s ∈ M

(2)
j,t : as = a ∩Ns(a) > nt,j ∩

{
µ̂
(
Xa

1:Ns(a)

(
Is(Ns(a); j)

))
>µ̂

(
X⋆

1:j

)
∪

µ̂
(
Xa

1:Ns(a)

(
Is(Ns(a); j)

))
= µ̂

(
X⋆

1:j

)
∩ ξs = 1

}]

6P

[
∀s∈M

(2)
j,t : µ̂

(
Xa

1:s−j

(
Is(s−j; j)

))
>µ̂

(
X⋆

1:j

)

∪ µ̂
(
Xa

1:s−j

(
Is(s−j; j)

))
>µ̂

(
X⋆

1:j

)
∩ ξs = 1

]
, (11)

where |M
(2)
j,t | > M t

def
= ⌊ t/ut−1

2 ⌋.

STEP 4. So far, our analysis is not essentially different from what would be the

regret analysis of the follow-the-leader algorithm, which is known to fail achieving

reasonable regret bounds in a number of situations. Thus, the following is the key part



of the analysis, that proves BESA is a sound strategy. In order to control the event

appearing in the last line of (11), we decompose it by considering the following event:

Fj,M =

{
∃s1 < · · · < sM ∈ M

(2)
j,t : ∀m < m′ ∈ [M ],

Ism(sm − j; j) ∩ Ism′
(sm′ − j; j) = ∅

}
.

Using Fj,M and the assumption of independence between the samples of arm a, we

deduce the following bound, valid for any M 6 M t

P [Ej ] 6 P

[
Fc

j,M

]

+P

[
∀s∈M

(2)
j,t : Fj,M ∩

{
µ̂
(
X

′a,(s)
1:j

)
>µ̂(X⋆

1:j)∪ µ̂
(
X

′a,(s)
1:j

)
=µ̂(X⋆

1:j)∩ ξs = 1

}]

6 P

[
Fc

j,M

]
+ α1/2(M, j) ,

where X
′a,(s)
1:j = Xa

1:s−j

(
Is(s− j; j)

)
, with the sub-sampled index set Is ∼ Wr(s −

j; j), and where we introduced in the second line the following distribution-dependent

quantity α1/2(M, j), defined by

α1/2(M, j) = EZ∼ν⋆,j

[
(1− Fνa,j

(Z) +
1

2
νa,j(Z))M

]
,

where νa,j is the distribution of the sum of j i.i.d variables following νa and Fν(x) =
PX∼µ(X 6 x) is the repartition function of ν.

We now resort to Lemma 1 that enables to control the term P

[
Fc

j,M

]
in terms of

nt,kj , j, and M . From Lemma 1, we deduce that

P

[
Fc

j,M

∣∣∣tj
]
= f

M
(2)
j,t
(M, j) ,

= f[
tj+⌈

t/u−1
2 ⌉,tj+⌊t/u⌋−1

]
(
M, j

)

6 f[
j+⌈

t/u−1
2 ⌉,j+⌊t/u⌋−1

]
(
M, j

)
,

since tj > j. Thus , we deduce that

P

[
Fc

j,M

∣∣∣tj
]
6 f[pt,qt]

(
M, j

)
,

where pt = j + ⌈ t/u−1
2 ⌉ and qt = O(t/u) = O(t/ log(t)).

We thus deduce the following bound

P [Ej ] 6 α1/2(M
⋆
t,j , j) + f[pt,qt](M

⋆
t,j , j) . (12)



STEP 5. We now combine the previous steps together. Note that t > ut(ut + 1)
happens for t > c∆ where c∆ is a constant that depends only on ∆ (an not on T ). More

precisely, combining (10) and (12), it holds that

T∑

t=1

P [Nt(⋆) 6 ut] 6 c∆

+

T∑

t>c∆

⌊ut⌋∑

j=1

(
α(M⋆

t,j , j)+f[pt,qt](M
⋆
t,j , j)

)
, (13)

where qt − pt = O(t/ log(t)). Under the assumption of the first part of the theorem,

we have α(M, 1) 6 cαM with α < 1. Moreover, since α(M, j) 6 α(M, 1), we can

choose the value M⋆
t,j = 1∨ 1

log(1/α)

(
(1+ε) log(t)+log log(t)

)
for some small ε > 0

and deduce by Lemma 1 that

T∑

t=1

P [Nt(⋆) 6 ut] 6 c∆ + cα,∆

T∑

t=1

t−(1+ε) +O
(
1
)

6 c∆ +
cα,∆
ε

+O
(
1
)
.

where cα,∆ = c
(
1 +

√
1

α+1

)2 2α
∆2 .

Now, under the assumption that α(1, n) 6 cβn with β < 1, we use a slightly

modified strategy that pulls each arm n0 times first, where

n0,T >
ln(T )− ln

(
(1− β)C

)

ln(1/β)
.

In that case, we have on the one hand that

T∑

t>c∆

ut∑

j>n0

α(M, j) 6 c
(1− β)C

T

T − c∆ + 1

1− β

6 cC .

We then control the second term by choosing Mt,j such that Mt,jj = O(log(T )), and

obtain

T∑

t=1

P [Nt(⋆) 6 ut] 6 c∆ + cC +O
(
1
)
.

Thus, if we define n0,T = 1 for the first case, we can show that in the two cases,

T∑

t=1

P [Nt(⋆) 6 ut] 6 cνa,ν⋆ + n0,T +O
(
1
)
,

with cνa,ν⋆
a problem dependent bound, and a O

(
1
)

that hides a numerical, problem-

independent constant.



STEP 6. Final regret bound. Plugging-in the result of step 2 in the decomposition

(6), we deduce that the expected regret of BESA is upper-bounded at time T by

RT 6 ∆

T∑

t=1

P

[
µ̃t,a > µ̃t,⋆ ∩Nt(⋆) > ut

]

+∆

T∑

t=1

P [Nt(⋆) 6 ut]

6 ∆

T∑

t=1

2

(
log(t+ 1)

log ((α+ 1)/2)
+ 2

)
t−

2α
α+1

+∆E

[ T∑

t=1

I{At = a ∩Nt(a) 6 ut}

]

+∆

T∑

t=1

P [Nt(⋆) 6 ut] .

Now, using (13) and reorganizing the terms, we obtain the regret bound

RT 6 ∆uT +∆cνa,ν⋆
+ n0,T +O(1)

+2∆

(
1

log ((α+1)/2)
+2

) T∑

t=1

log(t+ 1)t−
2α

α+1 ,

Let us simplify a little bit this bound. For β > 1, a simple sum-integral comparison

lemma gives that

T∑

t=1

t−β
6 1 +

∫ T

t=1

t−β

6 1 +
1

β − 1
(1− T 1−β)

6
β

β − 1
. (14)

Thus, since log(t+ 1) 6 t0.38, we apply this result for β = 2α
α+1 − 0.38, provided that

α > 1.38/0.62. This leads to β
β−1 = 1.62α−0.38

0.62α−1.38 . Now, on the other hand, we have

⌊ut⌋∑

j=0

exp
(
− j∆2/2

)
6

1

1− exp
(
−∆2/2

) 6
4

∆2
. (15)

Thus, for α > 2.23, from (14) and (15), the regret bound simplifies to

RT 6

(
1 +

√
1

α+ 1

)2 2α log(T )

∆
+

4

∆
+ n0,T +∆cνa,ν⋆

+2∆

(
1

log ((α+1)/2)
+2

)
1.62α− 0.38

0.62α− 1.38
+O

(
1
)
. (16)



For a specific choice of α, we get

RT 6
11 log(T )

∆
+ n0,T +

4

∆
+(26+cνa,ν⋆)∆+O

(
1
)

(17)

We conclude the proof by setting the constant Cνa,ν⋆
= 4

∆ + (26 + cνa,ν⋆
)∆.
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