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CERTAINTY BANDS FOR THE CONDITIONAL CUMULATIVE

DISTRIBUTION FUNCTION AND APPLICATIONS

BY S. FERRIGNO1, B. FOLIGUET2, M. MAUMY-BERTRAND3, AND A. MULLER-GUEUDIN1

Abstract. In this paper, we establish uniform asymptotic certainty bands for the con-
ditional cumulative distribution function. To this aim, we give exact rate of strong
uniform consistency for the local linear estimator of this function. The corollaries of this
result are the asymptotic certainty bands for the quantiles and the regression function.
We illustrate our results with simulations and an application on fetopathologic data.
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1. Introduction

1.1. Motivations. Consider (X,Y ), a random vector defined in R×R. Here Y is the variable
of interest and X the concomitant variable. Throughout, we work with a sample {(Xi, Yi)16i6n}
of independent and identically replica of (X,Y ). We will assume that (X,Y ) [resp. X] has a
density function fX,Y [resp. fX ] with respect to the Lebesgue measure. In this paper, we will
mostly focus on the regression function of ψ(Y ) evaluate at X = x defined by:

mψ(x) = E (ψ(Y )|X = x) =
1

fX(x)

∫

R

ψ(y)fX,Y (x, y)dy, with fX(x) 6= 0 (1)

whenever this regression function is meaningful. Here and elsewhere, ψ denotes a specified
measurable function, which is assumed to be bounded on each compact subinterval of R.

Because of numerous applications, the problem of estimating the function mψ, the density
function fX and the regression function mψ=Id has been the subject of considerable interest

during the last decades. We can cite for example Nadaraya [22], Watson [30], Devroye [10], Col-
lomb [5], Härdle [18] and specially mention two articles, Einmahl and Mason [12] and Deheuvels
and Mason [9] for two reasons. The first is that these articles study an estimator of mψ and its
properties. The second is that we use the tools which are developed in these articles in order
to establish our proofs. We now choose ψ = ψt defined by ψt(y) = 1{y6t} with t ∈ R arbitrary
but fixed, and 1 the indicator function, so we obtain the conditional cumulative distribution
function (cond-cdf) of Y given X = x, defined by:

∀t ∈ R, F (t|x) = mψt
(x) = E

(
1{Y 6t}|X = x

)
= P (Y 6 t|X = x) . (2)

1sandie.ferrigno@univ-lorraine.fr,aurelie.gueudin@univ-lorraine.fr
2b.foliguet@maternite.chu-nancy.fr
3mmaumy@math.unistra.fr
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2 FERRIGNO, FOLIGUET, MAUMY-BERTRAND MULLER-GUEUDIN

Saying that, we are implicitly assuming the existence of a regular version for the conditional
distribution of Y given X.

In this article, we study the conditional cumulative distribution function and a nonparametric
estimator associated to this function. The cond-cdf has the advantages of completely character-
izing the law of the random considered variable, allowing to obtain the regression function, the
density function, the moments and the conditional quantile function. The cond-cdf is also used
for example, in medicine (Gannoun et al. [16]) or econometric domain (Li et al. [20]).

Introduce the Nadaraya-Watson estimator (see Nadaraya [22] and Watson [30]) of the cond-cdf
F (t|x), for all t ∈ R and x ∈ R, defined by:

F̂ (0)
n (t, hn|x) =

∑n
i=1 1{Yi6t}K

(
x−Xi

hn

)

∑n
i=1K

(
x−Xi

hn

) for

n∑

i=1

K

(
x−Xi

hn

)
6= 0 (3)

where K(·) is a positive-valued kernel function defined on R and (hn)n>1 is the bandwidth, and
denotes a non-random sequence of positive constants satisfying some assumptions which will be
defined latter.
For the study of the convergence rate of this estimator, it will be convenient to center F̂

(0)
n (t, hn|x)

by the estimator of E(F̂
(0)
n (t, hn|x)):

Ê
(
F̂ (0)
n (t, hn|x)

)
=

E
(
1{Y 6t}K

(
x−X
hn

))

E
(
K
(
x−X
hn

)) · (4)

Remark 1.

(1) With the hypothesis we have in mind (see in Section 1.2), the denominator of this
quantity does not cancel.

(2) In general, Ê(F̂
(0)
n (t, hn|x)) does not coincide with E(F̂

(0)
n (t, hn|x)). However, under

mild regularity assumptions, the difference between these two (non-random) quantities
becomes asymptotically negligible as hn ց 0 together with nhn ր +∞ as n→ +∞.

The estimator F̂
(0)
n (t, hn|x) of the cond-cdf has been first treated by Collomb [4]. He proved

consistency results, without rates, which are uniform in x and pointwise in t. A Glivenko-
Cantelli type theorem for the Nadaraya-Watson estimator, uniform in t and pointwise in x, is
given in Stute [27]. Moreover, Stute [26] was the first to obtain the exact rate of strong uniform
consistency on compact intervals for the kernel density estimator. The best results for the other
estimators in terms of approximate rates that we are aware of are due to Härdle et al. [19].
Such a result plays a fundamental role in obtaining strong uniform consistency rates in other
statistics problems, like in the conditional quantile function.

More later, in 2000, Einmahl and Mason [12] have determined, under mild regularity condi-
tions on the joint and marginal density functions and under hypotheses on the bandwidth (hn),
exact rates of strong uniform consistency for the cond-cdf. We recall here their result:

Corollary 1. (see Corollary 2 in [12].) Let I be a compact interval. Assume that fX,Y
and fX satisfy some regularity conditions and moreover that hn satisfies hn ց 0, nhn ր
+∞, log h−1

n / log log n → +∞ and nhn/ log n → +∞ as n → +∞. Then we have for any
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kernel K defined in [12], with probability 1:

lim
n→+∞

sup
t∈R

sup
x∈I

√
nhn

log(h−1
n )

∣∣∣F̂ (0)
n (t, hn|x)− Ê

(
F̂ (0)
n (t, hn|x)

)∣∣∣ = ||K||2√
2 inf
x∈I

fX(x)
(5)

where ||K||22 =
∫
R
K2(u)du.

Remark 2.

(1) Under the assumptions of this corollary, the limit in Equation (5) does not depend on
the distribution of the random variable Y .

(2) In 2004, Blondin establishes in [3] a similar result of the Corollary 1 in the multivariate
case, i.e. (X,Y ) is in Rr × Rd, r, d ∈ N∗.

In 2005, Einmahl and Mason [13] have given an uniform in bandwidth consistency of kernel-
type function estimators, in the case where (X,Y ) is in Rr × R, r ∈ N∗, and specially for the

estimator F̂
(0)
n (t, hn|x) defined in (3). We recall below their result:

Theorem 1.1. (see Theorem 3 in [13].) Let I be a compact subset of Rr and let K be a kernel
defined in [13]. Suppose that fX is continuous and strictly positive on J , which is a compact
subset of Rr and contains I. Then, with probability 1, we have for large enough c > 0 and any
bn ց 0:

lim sup
n→+∞

sup
c logn6h6bn

sup
t∈R

sup
x∈I

√
nh

log(h−1) ∨ log log n

∣∣∣F̂ (0)
n (t, h|x)− Ê

(
F̂n(t, h|x)

)∣∣∣ < +∞. (6)

Remark 3. In this result, the exact value of the limit is unknown.

It is a well-known fact the asymptotic bias of the Nadaraya-Watson estimator has a bad form.
To overcome this problem, there exists an alternative: the local polynomial techniques described
in Fan and Gijbels [14] or in Tsybakov [29].

To study the local polynomial estimators, either we can use the U -statistics, for example
Mint El Mouvid [21]. But this method implies heavy calculations. Or we can use the empirical
processes, for example Dony et al. [11]. But the results on the empirical processes indexed by
classes of functions are established only for classes of real-valued functions.

The present paper is organized as follows. First, we introduce the local linear estimator of the
cond-cdf, with the main notations and assumptions needed for our task. Then we establish an
uniform law of the logarithm for the local linear estimator of the cond-cdf in Section 2. In Section
3, we show that limit laws of the logarithm are useful in the construction of uniform asymptotic
certainty bands for the cond-cdf, the regression function and the conditional quantile function.
Such certainty bands are obtained from simulations in Section 4 and from fetopathologic data
in Section 5. Finally, Section 6 is devoted to the proofs of our results.

1.2. Notations and assumptions. Let (X1, Y1), (X2, Y2), . . . , be independent and identically
distributed replica of (X,Y ) in R× R. Let I = [a, b], J = [a′, b′] ) I, two fixed compacts of R.

First, we impose the following set of assumptions upon the distribution of (X,Y ):

(F.1) fX,Y is continuous on J × R and fX is continuous and strictly positive on J ;
(F.2) Y 1{X∈J} is bounded on R.

Remark 4.

(1) Under (F.1-2), the cond-cdf is well defined.
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(2) The assumption (F.2) is very useful for the proof of our results. This boundedness
assumption is common in non-parametric estimation. It ensures the existence of several
moments of the cond-cdf.

K denotes a positive-valued kernel function defined on R, fulfilling the conditions:

(K.1) K is right-continuous function with bounded variation on R;
(K.2) K is compactly supported and

∫
R
K(u)du = 1;

(K.3)
∫
R
uK(u)du = 0 and

∫
R
u2K(u)du 6= 0.

We note: ||K||22 =
∫
R
K2(u)du.

Further, introduce the following assumptions on the non-random sequence (hn)n>1:

(H.0) for all n, 0 < hn < 1;
(H.1) hn → 0, as n→ +∞;
(H.2) nhn/ log n→ +∞, as n→ +∞;
(H.3) hn ց 0 and nhn ր +∞, as n→ +∞;
(H.4) log(h−1

n )/ log log n→ +∞, as n→ +∞.

Remark 5.

(1) The assumption (H.0) is necessary to define
√

log(h−1
n )

−1

(see later in our Theorem 2.1).

(2) The assumptions (H.0-2) are necessary and sufficient for our uniform convergence in
probability (see Theorem 2.1).

(3) In order to have almost surely convergence results, we need the assumptions (H.3-4) (see
Blondin [3]).

(4) The assumptions (H.0, H.2-4) are called the Csörgö-Révész-Stute assumptions.

Our aim will be to establish the strong uniform consistency of the local linear estimator of
the conditional cumulative distribution function, defined by:

F̂ (1)
n (t, hn|x) =

f̂n,2(x, hn)r̂n,0(x, t, hn)− f̂n,1(x, hn)r̂n,1(x, t, hn)

f̂n,0(x, hn)f̂n,2(x, hn)−
(
f̂n,1(x, hn)

)2 (7)

where (1) denotes the order 1 of the local polynomial estimator, and

f̂n,j(x, hn) =
1

nhn

n∑

i=1

(
x−Xi

hn

)j
K

(
x−Xi

hn

)
, for j = 0, 1, 2, (8)

r̂n,j(x, t, hn) =
1

nhn

n∑

i=1

1{Yi6t}

(
x−Xi

hn

)j
K

(
x−Xi

hn

)
, for j = 0, 1. (9)

Remark 6.

(1) The Nadaraya-Watson estimator F̂
(0)
n (t, hn|x) can be also written with the functions f̂n,j

and r̂n,j as

F̂ (0)
n (t, hn|x) =

r̂n,0(x, t, hn)

f̂n,0(x, hn)
·

It is the local polynomial estimator of order 0 of the conditional cumulative distribution
function.
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(2) The estimator F̂
(1)
n (t, hn|x) is better than the Nadaraya-Watson estimator when the

design is random and has the favorable property to reproduce polynomial of order 1.
Precisely, the local linear estimator has a high minimax efficiency among all possible
estimators, including nonlinear smoothers (see Fan and Gijbels [14]).

(3) We have state in the beginning of this Section that we restrict ourselves to the local
polynomial estimator of order 1. The local polynomial estimator can be generalized to
the orders p > 2, but the equations become more complicated. We show briefly the form
of the local polynomial estimator of order 2:

F̂ (2)
n (t, hn|x) =

a1r̂n,0(x, t, hn) + a2r̂n,1(x, t, hn) + a3r̂n,2(x, t, hn)

a1f̂n,0(x, hn) + a2f̂n,1(x, hn) + a3f̂n,2(x, hn)

where





a1 = f̂n,2(x, hn)f̂n,4(x, hn)−
(
f̂n,3(x, hn)

)2

a2 = f̂n,2(x, hn)f̂n,3(x, hn)− f̂n,1(x, hn)f̂n,4(x, hn)

a3 = f̂n,1(x, hn)f̂n,3(x, hn)−
(
f̂n,2(x, hn)

)2

and f̂n,3, f̂n,4 and r̂n,2 are the direct extensions of the definitions given in the Equations
(8) and (9). Note also that, it is not very interesting to study p > 3, see Fan and
Gijbels [14], pp. 20-22 and 77-80. The argument is that the mean square error increases
with p.

Now, we study the consistency of the estimator F̂
(1)
n (t, hn|x) via the following decomposition:

F̂ (1)
n (t, hn|x)− F (t|x) = F̂ (1)

n (t, hn|x)− Ê
(
F̂ (1)
n (t, hn|x)

)

︸ ︷︷ ︸
(1)

+ Ê
(
F̂ (1)
n (t, hn|x)

)
− F (t|x)

︸ ︷︷ ︸
(2)

where, following the ideas of Deheuvels and Mason (see [9]), the centering term is defined by:

Ê
(
F̂ (1)
n (t, hn|x)

)
=
fn,2(x, hn)rn,0(x, t, hn)− fn,1(x, hn)rn,1(x, t, hn)

fn,0(x, hn)fn,2(x, hn)− f2n,1(x, hn)

where fn,j(x, hn) = E
(
f̂n,j(x, hn)

)
for j = 0, 1, 2 and rn,j(x, t, hn) = E (r̂n,j(x, hn)) for j = 0, 1.

The random part (1) is the object of our theorem given in the following Section. Under (F.1-
2), (H.1) and (K.1-3), the deterministic term (2), so-called bias, converges uniformly to 0 over
(x, t) ∈ I ×R. The argument to proof this is the Bochner’s Lemma (see for instance [12], or our
Equations (24) in Section 6).

2. Uniform consistency of the local linear estimator

We have now all the ingredients to state our main results. The uniform law of the logarithm
concerning the local linear estimator of the cond-cdf, is given in Theorem 2.1 below.

Theorem 2.1. Under (F.1-2), (H.0-2) and (K.1-3), we have:

sup
x∈I

√
nhn

log(h−1
n )

∣∣∣F̂ (1)
n (t, hn|x)− Ê

(
F̂ (1)
n (t, hn|x)

)∣∣∣ P−−−−−→
n→+∞

σF,t(I) (10)

where σ2F,t(I) = 2||K||22 supx∈I
(
F (t|x)(1−F (t|x))

fX(x)

)
·
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Moreover, we have:

sup
t∈R

sup
x∈I

√
nhn

log(h−1
n )

∣∣∣F̂ (1)
n (t, hn|x)− Ê

(
F̂ (1)
n (t, hn|x)

)∣∣∣ P−−−−−→
n→+∞

σF (I) (11)

where

σ2F (I) = 2||K||22 sup
t∈R

sup
x∈I

(
F (t|x)(1− F (t|x))

fX(x)

)
=

||K||22
2 inf
x∈I

fX(x)
·

The proof of Theorem 2.1 is postponed to Section 6.

Remark 7.

(1) The matching almost surely convergence result can also be obtained by assuming (H.2-4)
instead of (H.0-2).

(2) The terms σF,t(I) and σF (I) depend upon the unknown density fX . But it is a minor
problem in practice, because, as shown in Deheuvels [7], and Deheuvels and Mason [9],
an application of Slutsky’s Lemma allows us to replace, without loss of generality, this

quantity by f̂n,0(x, hn) (or by any other estimator of fX(x) which is uniformly consistent

on I). Indeed, under (F.1-2), (H.0-2), (K.1-3) we have supx∈I

∣∣∣ f̂n,0(x,hn)
fX(x) − 1

∣∣∣ P−−−−−→
n→+∞

0.

This last remark yields to the following corollary.

Corollary 2. Under (F.1-2), (H.0-2), (K.1-3), we have:

sup
t∈R

sup
x∈I

√
2nhn

‖K‖22 log(h−1
n )

f̂n,0(x, hn)
∣∣∣F̂ (1)
n (t, hn|x)− Ê

(
F̂ (1)
n (t, hn|x)

)∣∣∣ P−−−−−→
n→+∞

1· (12)

We introduce the following quantity Ln(x) :=

√
2nhn

‖K‖22 log(h−1
n )

f̂n,0(x, hn)

−1

. We have noted

at the end of the Section 1 that the bias part can be neglected, then we have the following
proposition.

Proposition 1. Under (F.1-2), (H.0-2) and (K.1-3), and if hn is such that the bias term

supt∈R supx∈I{Ln(x)}−1
∣∣∣F (t|x)− Ê

(
F̂

(1)
n (t, hn|x)

)∣∣∣ −−−−−→
n→+∞

0 then we have:

sup
t∈R

sup
x∈I

{Ln(x)}−1
∣∣∣F̂ (1)
n (t, hn|x)− F (t|x)

∣∣∣ P−−−−−→
n→+∞

1. (13)

Remark 8.

(1) The matching almost surely convergence result can also be obtained by assuming (H.2-4)
instead of (H.0-2).

(2) For our applications in Sections 4 and 5, a reference choice for hn is given by minimizing
the weighted Mean Integrated Square Error (MISE) criteria (see for instance Berlinet [2],
Deheuvels [6] or Deheuvels and Mason [9]). A detailed discussion about the theoretical
choice of this bandwidth is given in Ferrigno [15]. The asymptotically optimal constant
bandwidth is given by:

hn = C(K,F, fX)n
− 1

5

where the constant C(K,F, fX) is easy to calculate.
(3) The choice of the kernel K is not important in practice. The most common used kernels

are the Gaussian, the indicator function over [−1
2 ,

1
2 ], and the Epanechnikov kernels (see

for instance Deheuvels [6]). Note that the Gaussian kernel is not compactly supported,
but our results can be extended to this case.
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3. Uniform asymptotic certainty bands

3.1. Application to the cond-cdf. We show now how the Proposition 1 can be used to construct
uniform asymptotic certainty bands for F (t|x), in the following sense. Under the assumptions
of the Proposition 1, we have, for each 0 < ε < 1, and as n→ +∞:

P
{
F (t|x) ∈

[
F̂ (1)
n (t, hn|x)± (1 + ε)Ln(x)

]
, for all (x, t) ∈ I × R

}
→ 1 (14)

and
P
{
F (t|x) ∈

[
F̂ (1)
n (t, hn|x)± (1− ε)Ln(x)

]
, for all (x, t) ∈ I × R

}
→ 0. (15)

Whenever (14) and (15) hold jointly for each 0 < ε < 1, we have the following corollary:

Corollary 3. Under (F.1-2), (H.0-2) and (K.1-3), and if hn is such that the bias term

supt∈R supx∈I{Ln(x)}−1|F (t, hn|x)− Ê
(
F̂

(1)
n (t, hn|x)

)
| −−−−−→
n→+∞

0 then the interval

[
F̂ (1)
n (t, hn|x)± Ln(x)

]
(16)

provides uniform asymptotic certainty bands (at an asymptotic confidence level of 100%) for the
cond-cdf F (t|x), uniformly in (x, t) ∈ I × R.

Remark 9.

(1) Probability convergence is sufficient for forming certainty bands, and requires less re-
strictive hypotheses on the bandwidth hn than the almost surely convergence results.
That is why we use only the probability convergence result of the Proposition 1.

(2) Following a suggestion of Deheuvels and Derzko [8], we use, for these upper and lower
bounds for F (t|x), the qualification of certainty bands, rather that of confidence bands,
because there is no preassigned confidence level α ∈ (0, 1). Some authors (see for instance
Deheuvels and Mason [9], or Blondin [3]) have used the term confidence bands.

3.2. Application to the regression function. Let m(x) = E(Y |X = x) the regression func-

tion and m̂
(1)
n (x) =

∫
yF̂

(1)
n (dy, hn|x) its local linear estimator. The Proposition 1 has the

following corollary for the regression function.

Corollary 4. Under (F.1-2), (H.0-2) and (K.1-3), and if hn is such that the bias term

supt∈R supx∈I{Ln(x)}−1
∣∣∣F (t|x)− Ê

(
F̂

(1)
n (t, hn|x)

)∣∣∣ −−−−−→
n→+∞

0 and the variable Y lives in the

real interval [α, β], then the interval
[
m̂(1)
n (x)± (β − α)Ln(x)

]
(17)

provides uniform asymptotic certainty bands (at an asymptotic confidence level of 100%) for the
conditional regression function m(x), uniformly in x ∈ I.

The proof of Corollary 4 is postponed to Section 6.

3.3. Application to the conditional quantiles. Let 0 < α < 1. We define the conditional
α-quantile of the cond-cdf by:

qα(x) = inf{t ∈ R : F (t|x) > α}, for all α ∈ (0, 1).

The local linear estimator of the conditional α-quantile is defined by:

q̂(1)α,n(x) = inf{t ∈ R : F̂ (1)
n (t, hn|x) > α}, for all α ∈ (0, 1).

The Proposition 1 has the following corollary for the conditional quantiles.
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Corollary 5. Under (F.1-2), (H.0-2) and (K.1-3), if hn is such that the bias term

supt∈R supx∈I{Ln(x)}−1
∣∣∣F (t|x)− Ê

(
F̂

(1)
n (t, hn|x)

)∣∣∣ −−−−−→
n→+∞

0 and if the function x 7→ fX,Y (x, qα(x)) 6=
0 for all x ∈ I, then the interval

[
q̂(1)α,n(x)±

2Ln(x)fX(x)

fX,Y (x, qα(x))

]
(18)

provides uniform asymptotic certainty bands (at an asymptotic confidence level of 100%) for the
conditional α-quantile qα(x), uniformly in x ∈ I.

The proof of Corollary 5 is postponed to Section 6.

Remark 10.

(1) The form of these certainty bands is not very useful in practice since the bounds depend

upon the unknown conditional density fY |X(y|x) =
fX,Y (x,y)
fX(x) · Nevertheless, this gives

the order of the deviation
∣∣∣q̂(1)α,n(x)− q(x)

∣∣∣.
(2) To give a more practical result, the idea is to replace the conditional density fY |X(qα(x)|x)

by an estimator f̂Y |X

(
q̂
(1)
α,n(x)|x

)
such that supx∈I

∣∣∣∣∣
f̂Y |X

(
q̂
(1)
α,n(x)|x

)

fY |X(qα(x)|x)
− 1

∣∣∣∣∣
P−−−−−→

n→+∞
0. This

is not the object of the present article, and will be presented in a future work. A review
of kernel estimators for the conditional density is given for instance in [32, 31]. We can
cite here the kernel estimator of Parzen-Rosenblatt [23, 24].

4. A simulation study

In this paragraph, the cond-cdf and the certainty bands introduced in Corollary 3 are con-
structed on simulated data. We considered the case: X ∼ N (0, 1) where N (0, 1) denotes the
Gaussian distribution with mean 0 and standard deviation 1. We present two models:

(M1) Y |X = x follows a Beta(a, b) distribution with shape parameters a = 1 and b = 1 + x2.
(M2) Y |X = x follows an Uniform distribution between −|x| and |x|.
We worked with the sample sizes n = 100 and n = 500. For the kernel K, we opted for the

Epanechnikov kernel. For the bandwidth, we selected hn = n−1/5. The Figure 1 illustrates the
results for the models (M1) and (M2) defined above. For each model, we give the graph of a
sample (Xi, Yi)i=1,...,n, and the cond-cdf: the true function F (t|x) is in full line, whereas the

estimated conditional distribution F̂
(1)
n (t, hn|x) is in black dashed line, and certainty bands in

grey line, for x = 0 and 1.
The confidence bands appear to be adequate. The fact that the true function does not belong

to our certainty bands for some points was expected: it is due to the ε term in Equations (14)
and (15). For n = 500, the results are better than for n = 100.

5. Application in study of the fetal growth

The study is based on 3606 fetuses autopsied in fetopathologic units of the ”Service de foe-
topathologie et de placentologie” of the Maternité Régionale Universitaire (CHU Nancy, France)
between 1996 and 2013. From this dataset, 694 fetuses were carefully selected by exclusion of
multiple pregnancies, malformed, macerated or serious ill fetuses, or those with chromosomal
abnormalities.

The naive idea, classically used by the fetopathologists or the echographists (see for in-
stance [1], [25]), is to fit a parametric regression model Yi = β0 + β1Xi + β2X

2
i + ǫi with

the assumptions that ǫi, for i = 1, . . . , n are independent and follow the Gaussian distribution
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Figure 1. From top to bottom: models (M1) and (M2) for n = 100, and
(M1) and (M2) for n = 500.

N (0, σ). The parameters β0, β1, β2, σ are estimated by the least squares method. We use the R

2.15.1 function lm.
The result is shown on the left graph of the Figure 2. This method yields to several problems:

• We obtain heteroscedastic and non-Gaussian errors.
• Moreover, regarding the confidence intervals of the previsions, they show that the pre-
vision uncertainty is not growing with the gestational week: this is not consistent with
the medical intuition.

• Another problem is that the global polynomial estimation can not enhance some changes
in the growing curve of the fetal weight. For the fetopathologists, such changes are
important as they correspond to delicate periods during the intrauterine growth. These
change points can not been observed by a global estimation.

For these reasons, the local polynomial estimation is then a non-parametric alternative to the
global parametric regression model.

We can conclude, by the observation of the right graph of the Figure 2:

• Our method gives the mean, the confidence intervals and the median weight. Satisfac-
torily, the confidence intervals show the growing of the prevision uncertainty with the
gestational week.

• We observe for instance a change point between the 20th and 25th gestational week
on the 0.975 percentile curve. This change point corresponds to the viability date of
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Figure 2. Fetal weight during the pregnancy: estimation of mean and
quantiles with the second order polynomial regression (left), and with the
linear local method (right).

the fetus. We can also remark a decrease of the growing speed around the 35th week.
This has also been remarked in the medical article [17], where it is explained that this
time corresponds to the regression (in the medical sense) of the placenta. More precise
statistical tests to detect the change points of the fetal growth will be presented in a
future work.

6. Proofs

6.1. Proof of Theorem 2.1. We prove the probability convergence result (Theorem 2.1),
uniformly in (x, t) ∈ I × R. The uniform in x ∈ I result (less difficult) is left to the reader.

Remark 11. The almost surely convergence result could be proved with some additional ar-
guments, based on the Borel-Cantelli’s Lemma (see for instance Blondin [3] or Einmahl and
Mason [12]).

Step 1: In a first step, we introduce a general local empirical process. For any j = 0, 1, 2 and
continuous real valued functions c(·) and d(·) on J , set for x ∈ J , t ∈ R,

Wn,j(x, t) =
n∑

i=1

(
c(x)1{Yi6t} + d(x)

)
Kj

(
x−Xi

hn

)
− nE

((
c(x)1{Y 6t} + d(x)

)
Kj

(
x−X

hn

))

(19)
where

Kj(u) = ujK(u) (20)

for j = 0, 1, 2 and u ∈ R.
For every fixed t ∈ R, and j = 0, 1, 2, the process Wn,j(·, t) can be represented as a bivariate

empirical process indexed by a class of functions. More precisely, we have:

Wn,j(·, t) =
√
nαn(g) =

n∑

i=1

{g(Xi, Yi)− E (g(X,Y ))},

where αn is the empirical process based upon (X1, Y1), . . . , (Xn, Yn) and indexed by a suitable
subclass Fn,j of the class of functions defined on J × R:

Fj =
{
(x, y) 7→

{
c(z)1{y6t} + d(z)

}
Kj

(
z − x

h

)
: t ∈ R, z ∈ I, 0 < h < 1

}
·

We give now the result from which our main Theorem 2.1 follows.
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Theorem 6.1. Under (F.1-2), (H.0-2), (K.1-3) we have:
√

1

2nhn log(h
−1
n )

sup
t∈R

sup
x∈I

|Wn,j(x, t)| P−−−−−→
n→+∞

σW,j(I), (21)

where

σ2W,j(I) = sup
t∈R

sup
x∈I

E
(∣∣c(x)1{Y 6t} + d(x)

∣∣2 |X = x
)
fX(x)

∫

R

K2
j (u)du.

Proof: The proof is divided into an upper bound result, and a lower bound result.

Upper bound part: The proof of the upper bound result is divided into two steps. The
hypothesis (F.2) is important in the upper bound part: we can found a real M > 0 such that if
X ∈ J then |Y | 6M .

Step A: Discretization in x ∈ I and t ∈ [−M,M ]. First, we examine the behavior of our process
(x, t) 7→Wn,j(x, t) on an appropriate chosen grid of I × [−M,M ], with increment δhn for I and
increment δ for [−M,M ], for fixed 0 < δ < 1:





zi,n = a+ iδhn, i = 1, . . . , in =
[
b−a
δhn

]
,

tl = −M + lδ, l = 1, . . . , L =
[
2M
δ

]
,

where [u] 6 u < [u] + 1 represents the integer part of u.
The study of the supremum on I× [−M,M ] is then reduced to the study of the maximum on

a finite number of points. The empirical process is then indexed on the finite class of functions

Fn,j =
{
(x, y) 7→ {c(zi,n)1y6tl + d(zi,n)}Kj

(
zi,n − x

hn

)
: i = 1, . . . , in, l = 1, . . . , L

}
·

The useful tool in this Step is the Bernstein inequality (see for instance Deheuvels and Ma-
son [9]).

Step B: Oscillation. Next we study the behavior of our process between the grid points zi,n and
tl for 1 6 i 6 in and 1 6 l 6 L. The objective of this Step is to study the maximal oscillations
between the grid points. The useful tool in this Step is the Talagrand inequality for VC Classes
(see for instance Talagrand [28], Einmahl and Mason [12] or Blondin [3]).

Lower bound part: The lower bound result is proved with technical results based on Poisson
processes, and needs the Bochner’s Lemma. In this part, the hypothesis (F.1) is particularly
important.

Step 2: We give now useful corollaries of Theorem 6.1. We recall that Kj has been defined in
Equation (20), and ||Kj ||22 =

∫
R
K2
j (u)du.

Corollary 6. Under (F.1-2), (H.0-2) and (K.1-3), we have, by application of Theorem 6.1 with
c(x) = 0, d(x) = 1, j = 0, 1, 2:

√
nhn

2 log(h−1
n )

sup
x∈I

|f̂n,j(x)− fn,j(x)| P−−−−−→
n→+∞

σf,j(I), (22)

where

σ2f,j(I) = ||Kj ||22 sup
x∈I

{fX(x)} ·
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Corollary 7. Under (F.1-2), (H.0-2) and (K.1-3), we have, by application of Theorem 6.1 with
c(x) = 1, d(x) = 0, j = 0, 1:

√
nhn

2 log(h−1
n )

sup
t∈R

sup
x∈I

|r̂n,j(x, t)− rn,j(x, t)| P−−−−−→
n→+∞

σr,j(I) (23)

where

σ2r,j(I) = ||Kj ||22 sup
t∈R

sup
x∈I

{F (t|x)fX(x)} .

Moreover, under (F.1-2), (H.1) and (K.1-3), the Bochner’s Lemma (cf for instance [12]) im-
plies, uniformly in (x, t) ∈ I × R:

fn,0(x) = fX(x)µ0(K) + o(1),
fn,1(x) = fX(x)µ1(K) + o(1),
fn,2(x) = fX(x)µ2(K) + o(1),
rn,0(x, t) = fX(x)F (t|x) + o(1),
rn,1(x, t) = fX(x)F (t|x)µ1(K) + o(1),

(24)

where µj(K) =
∫
R
Kj(u)du, for j = 0, 1, 2. The hypotheses (K.2-3) imply that µ0(K) = 1,

µ1(K) = 0 and µ2(K) 6= 0.

Step 3: In this third step, the deviation F̂
(1)
n (t|x) − Ê

(
F̂

(1)
n (t|x)

)
can be asymptotically ex-

pressed as a linear function of the bivariate empirical process.

F̂
(1)
n (t|x)− Ê

(
F̂

(1)
n (t|x)

)

=
r̂n,0(x, t)f̂n,2(x)− f̂n,1(x)r̂n,1(x, t)

f̂n,2(x)f̂n,0(x)− f̂2n,1(x)
− rn,0(x, t)fn,2(x)− fn,1(x)rn,1(x, t)

fn,2(x)fn,0(x)− f2n,1(x)
(25)

=
r̂n,0(x, t)f̂n,2(x)− rn,0(x, t)fn,2(x) + fn,1(x)rn,1(x, t)− f̂n,1(x)r̂n,1(x, t)

f̂n,2(x)f̂n,0(x)− f̂2n,1(x)
(26)

+
(rn,0(x, t)fn,2(x)−fn,1(x)rn,1(x, t))(fn,2(x)fn,0(x)−f2n,1(x)−f̂n,2(x)f̂n,0(x)+f̂2n,1(x))(

f̂n,2(x)f̂n,0(x)− f̂2n,1(x)
)(

fn,2(x)fn,0(x)− f2n,1(x)
) (27)

First, studying the numerator of the expression (26), we have:

Num(26) =
((
f̂n,2(x)− fn,2(x)

)
+
(
fn,2(x)− fX(x)µ2(K)

)
+ fX(x)µ2(K)

)
(r̂n,0(x, t)− rn,0(x, t))

+
((
rn,0(x, t)− fX(x)F (t|x)

)
+ fX(x)F (t|x)

) (
f̂n,2(x)− fn,2(x)

)

+fn,1(x) (rn,1(x, t)− r̂n,1(x, t))

+
((
r̂n,1(x, t)− rn,1(x, t)

)
+ rn,1(x, t)

) (
fn,1(x)− f̂n,1(x)

)
.
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Let βn =

√
nhn

2 log(h−1
n )

· Because of (H.2), we have βn −→ +∞ as n −→ +∞. Combining with

the two previous corollaries and Equations (24), we see that:

βn sup
t∈R

sup
x∈I

|Num(26)− ĝn(x, t)| P−−−−−→
n→+∞

0 (28)

where ĝn(x, t) = fX(x)µ2(K) (r̂n,0(x, t)− rn,0(x, t))− fX(x)F (t|x)
(
f̂n,2(x)− fn,2(x)

)
.

Lemma 6.2. The denominator of the expression (26), denoted Den(26), satisfies:

sup
x∈I

∣∣∣∣Den(26)− 1

fX(x)2µ2(K)

∣∣∣∣
P−−−−−→

n→+∞
0. (29)

Proof: For all ǫ > 0, let the event

Aǫ =

{
sup
x∈I

∣∣∣∣Den(26)− 1

fX(x)2µ2(K)

∣∣∣∣ > ǫ

}

and for all B > 0, let the event

B =

{
sup
x∈I

∣∣∣
(
f̂n,2(x)f̂n,0(x)− f̂n,1(x)

2
)
fX(x)

2µ2(K)
∣∣∣ > B

}
·

Then we have:

P(Aǫ) = P(Aǫ ∩ B) + P(Aǫ ∩ Bc).
In one hand, we have:

P(Aǫ ∩ Bc) 6 P(Bc) 6 P


sup
x∈I

∣∣∣f̂n,2(x)f̂n,0(x)− f̂n,1(x)
2
∣∣∣ 6 B

inf
x∈I

fX(x)
2µ2(K)


 .

Taking B =
1

2

(
inf
x∈I

fX(x)
2µ2(K)

)2

, we obtain:

P(Aǫ∩Bc) 6 P

(
sup
x∈I

∣∣∣f̂n,2(x)f̂n,0(x)− f̂n,1(x)
2 − fX(x)

2µ2(K)
∣∣∣ > 1

2
inf
x∈I

fX(x)
2µ2(K)

)
−−−−−→
n→+∞

0·

This last limit is obtained by the following trivial decomposition:

f̂n,2(x)f̂n,0(x)− f̂n,1(x)
2 − fX(x)

2µ2(K) =((
f̂n,2(x)− fn,2(x)

)
+
(
fn,2(x)− fX(x)µ2(K)

)
+ fX(x)µ2(K)

)

×
((
f̂n,0(x)− fn,0(x)

)
+
(
fn,0(x)− fX(x)

))

+
((
f̂n,2(x)− fn,2(x)

)
+
(
fn,2(x)− fX(x)µ2(K)

))
fX(x),

and by applying the Corollary 6 and Equations (24), combined with the boundedness property
of fX on I.

On the other hand, we have:

P(Aǫ ∩ B) 6 P

(
sup
x∈I

∣∣∣f̂n,2(x)f̂n,0(x)− f̂n,1(x)
2 − fX(x)

2µ2(K)
∣∣∣ > ǫB

)
−−−−−→
n→+∞

0

for the same reason as before. We have then proved (29). �
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Combining (28) and (29), we have:

βn sup
t∈R

sup
x∈I

∣∣∣∣(26)−
r̂n,0(x, t)− rn,0(x, t)

fX(x)
− F (t|x)
fX(x)µ2(K)

(
f̂n,2(x)− fn,2(x)

)∣∣∣∣
P−−−−−→

n→+∞
0· (30)

This last limit is due to the following lemma.

Lemma 6.3. Let I ⊂ Rd, with d ∈ N∗, and Xn, Zn, Yn and Y random functions defined on I
such that

sup
w∈I

|Xn(w)− Zn(w)| P−−−−−→
n→+∞

0, sup
w∈I

|Yn(w)− Y (w)| P−−−−−→
n→+∞

0,

and for enough high B > 0, lim
n→+∞

P(sup
w∈I

|Xn(w)| > B) = 0 and Y is bounded on I. Then,

sup
w∈I

|Xn(w)Yn(w)− Zn(w)Y (w)| P−−−−−→
n→+∞

0.

Proof:

sup
I

|XnYn − ZnY | 6 sup
I

|Xn| sup
I

|Yn − Y |+ sup
I

|Y | sup
I

|Xn − Zn| ,

then for all ǫ > 0,

P

(
sup
I

|XnYn − ZnY | > ǫ

)
6 P

(
sup
I

|Xn| sup
I

|Yn − Y | > ǫ

2

)
+ P

(
sup
I

|Y | sup
I

|Xn − Zn| >
ǫ

2

)
.

Introducing the event B =

{
sup
I

|Y | > B

}
with B > 0, we bound the second term:

P

(
sup
I

|Y | sup
I

|Xn − Zn| >
ǫ

2

)
6 P (B) + P

(
sup
I

|Xn − Zn| >
ǫ

2B

)
−−−−−→
n→+∞

0

for enough high B. Now, we bound the first term:

P

(
sup
I

|Xn| sup
I

|Yn − Y | > ǫ

2

)
6 P

(
sup
I

|Xn| > B

)
+ P

(
sup
I

|Yn − Y | > ǫ

2B

)
−−−−−→
n→+∞

0

for enough high B. �

Let’s studying now the second part (27) in the expression of F̂
(1)
n (t|x) − Ê

(
F̂

(1)
n (t|x)

)
. Note

that the numerator is equal to:

(rn,0(x, t)fn,2(x)− fn,1(x)rn,1(x, t))
(
fn,2(x)fn,0(x)− f2n,1(x)− f̂n,2(x)f̂n,0(x) + f̂2n,1(x)

)
·

The first term Num1(27) = rn,0(x, t)fn,2(x) − fn,1(x)rn,1(x, t) of this last expression converges
uniformly, thanks to (24):

sup
t∈R

sup
x∈I

∣∣Num1(27)− fX(x)
2µ2(K)F (t|x)

∣∣ −−−−−→
n→+∞

0. (31)

With the same arguments as in the study of the numerator of (26), we study the second term
defined by:

Num2(27) = fn,2(x)fn,0(x)− f2n,1(x)− f̂n,2(x)f̂n,0(x) + f̂2n,1(x)

and show that

βn sup
x∈I

∣∣∣Num2(27)− fX(x)µ2(K)
(
fn,0(x)− f̂n,0(x)

)
− fX(x)

(
fn,2(x)− f̂n,2(x)

)∣∣∣ P−−−−−→
n→+∞

0·
(32)
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Thanks to the boundedness property of fX on I, and the Corollary 6, we have, by the Lemma
6.3:

βn sup
t∈R

sup
x∈I

∣∣∣Num(27)− ĵn(x, t)
∣∣∣ P−−−−−→
n→+∞

0

where ĵn(x, t) = fX(x)
3µ2(K)F (t|x)

(
µ2(K)

(
fn,0(x)− f̂n,0(x)

)
+
(
fn,2(x)− f̂n,2(x)

))
.

The denominator in (27) can be expressed as

Den(27) = Den(26)
1

fn,2(x)fn,0(x)− fn,1(x)2
·

It is clear that, thanks to (24)

sup
x∈I

∣∣∣∣
1

fn,2(x)fn,0(x)− fn,1(x)2
− 1

fX(x)2µ2(K)

∣∣∣∣ −−−−−→n→+∞
0·

Then, tanks to the boundedness property of fX on I, the Lemma 6.3 says that

sup
x∈I

∣∣∣∣Den(27)− 1

fX(x)4µ2(K)2

∣∣∣∣
P−−−−−→

n→+∞
0· (33)

Finally, we have, thanks to the Lemma 6.3

βn sup
t∈R

sup
x∈I

∣∣∣∣(27)−
F (t|x)
fX(x)

(
fn,0(x)− f̂n,0(x)

)
− F (t|x)
fX(x)µ2(K)

(
fn,2(x)− f̂n,2(x)

)∣∣∣∣
P−−−−−→

n→+∞
0·
(34)

Remember that F̂
(1)
n (t|x)− Ê

(
F̂

(1)
n (t|x)

)
= (26) + (27). Then, combining (30) and (34) it is

easy to see finally that

βn sup
t∈R

sup
x∈I

∣∣∣∣F̂
(1)
n (t|x)− Ê

(
F̂ (1)
n (t|x)

)
+
F (t|x)
fX(x)

(
f̂n,0(x)− fn,0(x)

)
− r̂n,0(t, x)− rn,0(t, x)

fX(x)

∣∣∣∣
P−−−−−→

n→+∞
0·

(35)

Step 4:

Now choosing c(x) =
1

fX(x)
and d(x) = −F (t|x)

fX(x)
in the definition of Wn,0(x, t), the local

empirical process, it is easy to show that:

Wn,0(x, t) =
nh

fX(x)
r̂n,0(x, t)−

F (t|x)
fX(x)

× nhf̂n,0(x)−
nh

fX(x)
rn,0(x, t) +

F (t|x)
fX(x)

× nhfn,0(x)

=
nh

fX(x)

(
r̂n,0(x, t)− rn,0(x, t)− F (t|x)

(
f̂n,0(x)− fn,0(x)

))
·

Let An =
√

2nhn log(h
−1
n )

−1

, so we have:

AnWn,0(x, t) = βn

(
r̂n,0(t, x)− rn,0(t, x)

fX(x)
− F (t|x)
fX(x)

(
f̂n,0(x)− fn,0(x)

))
. (36)

Then

βn

(
F̂ (1)
n (t|x)− Ê

(
F̂ (1)
n (t|x)

))
= AnWn,0(x, t)

+βn

(
F̂ (1)
n (t|x)− Ê

(
F̂ (1)
n (t|x)

)
+
F (t|x)
fX(x)

(
f̂n,0(x)− fn,0(x)

)
− r̂n,0(t, x)− rn,0(t, x)

fX(x)

)
,
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and applying Theorem 6.1

sup
t∈R

sup
x∈I

∣∣∣βn
(
F̂ (1)
n (t|x)− Ê

(
F̂ (1)
n (t|x)

))∣∣∣ P−−−−−→
n→+∞

σF (I) (37)

with

σ2F (I) = sup
t∈R

sup
x∈I

E

([
1{Y 6t}

fX(x)
− F (t|x)
fX(x)

]2
|X = x

)
fX(x)||K||22

= sup
t∈R

sup
x∈I

E
([

1{Y 6t} − E(Y 6 t|X = x)
]2 |X = x

)

fX(x)
||K||22

= sup
t∈R

sup
x∈I

(
F (t|x)(1− F (t|x))

fX(x)

)
||K||22.

This finishes the proof of Theorem 2.1.�

6.2. Proof of Corollary 4. If the variable Y takes its values in [α, β], then

m̂(1)
n (x)−m(x) =

∫ β

α
y
(
F̂ (1)
n (dy, hn|x)− F (dy|x)

)
= −

∫ β

α

(
F̂ (1)
n (y, hn|x)− F (y|x)

)
dy.

It implies
∣∣∣m̂(1)

n (x)−m(x)
∣∣∣ 6 |β − α| supy∈R

∣∣∣F̂ (1)
n (y, hn|x)− F (y|x)

∣∣∣.
The conclusion of the Corollary 4 is then deduced from this last inequality combined with

Corollary 3.

6.3. Proof of Corollary 5. Let α ∈ (0, 1). It suffices to show that

P

(
∀x ∈ I,

∣∣∣q̂(1)α,n(x)− qα(x)
∣∣∣ > 2Ln(x)fX(x)

fX,Y (x, qα(x))

)
−→ 0 as n −→ +∞. (38)

Let ǫ = ǫα,x,n = 2Ln(x)fX(x)
fX,Y (x,qα(x))

· We have

P
(
∀x ∈ I,

∣∣∣q̂(1)α,n(x)− qα(x)
∣∣∣ > ǫ

)
= P

(
∀x ∈ I, q̂

(1)
α,n(x) > qα(x) + ǫ

)
+ P

(
∀x ∈ I, q̂

(1)
α,n(x) < qα(x)− ǫ

)

= (I) + (II).

To study the first term (I), consider the following implication, for all x ∈ I,
(
q̂(1)α,n(x) = inf{t ∈ R : F̂ (1)

n (t, hn|x) > α} > qα(x) + ǫ
)
⇒
(
F̂ (1)
n (qα(x) + ǫ, hn|x) < α

)
.

Then

(I) 6 P
(
∀x ∈ I, F̂

(1)
n (qα(x) + ǫ, hn|x) < α

)

= P
(
∀x ∈ I, F̂

(1)
n (qα(x) + ǫ, hn|x)− F (qα(x) + ǫ|x) < α− F (qα(x) + ǫ|x)

)

6 P
(
∀x ∈ I, supy∈R

∣∣∣F̂ (1)
n (y, hn|x)− F (y|x)

∣∣∣ > F (qα(x) + ǫ|x)− α
)

6 P
(
∀x ∈ I, supy∈R

∣∣∣F̂ (1)
n (y, hn|x)− F (y|x)

∣∣∣ > ǫfX,Y (x,qα(x))
2fX(x)

)

= P
(
∀x ∈ I, supy∈R

∣∣∣F̂ (1)
n (y, hn|x)− F (y|x)

∣∣∣ > Ln(x)
)
−→ 0 as n −→ +∞

where F (qα(x) + ǫ|x)− α = F (qα(x) + ǫ|x)− F (qα(x)|x) = ǫ
fX,Y (x,qα(x))

fX(x) + o(ǫ) >
ǫfX,Y (x,qα(x))

2fX(x) ·
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To study the second term (II), consider the following implications, for all x ∈ I:
(
q̂
(1)
α,n(x) < qα(x)− ǫ

)
⇒

(
F
(
q̂
(1)
α,n(x)|x

)
< F (qα(x)− ǫ|x) < α 6 F̂

(1)
n

(
q̂
(1)
α,n(x), hn|x

))

by the growing property of F and the definition of the quantile q̂
(1)
α,n(x)

⇒
(
F̂

(1)
n

(
q̂
(1)
α,n(x), hn|x

)
− F

(
q̂
(1)
α,n(x)|x

)
> α− F (qα(x)− ǫ|x)

)
.

Then

(II) 6 P
(
∀x ∈ I, F̂

(1)
n

(
q̂
(1)
α,n(x), hn|x

)
− F

(
q̂
(1)
α,n(x)|x

)
> α− F (qα(x)− ǫ|x)

)

6 P
(
∀x ∈ I, supy∈R

∣∣∣F̂ (1)
n (y, hn|x)− F (y|x)

∣∣∣ > α− F (qα(x)− ǫ|x)
)

6 P
(
∀x ∈ I, supy∈R

∣∣∣F̂ (1)
n (y, hn|x)− F (y|x)

∣∣∣ > ǫfX,Y (x,qα(x))
2fX(x)

)

= P
(
∀x ∈ I, supy∈R

∣∣∣F̂ (1)
n (y, hn|x)− F (y|x)

∣∣∣ > Ln(x)
)
−→ 0 as n −→ +∞

where α− F (qα(x)− ǫ|x) = F (qα(x)|x)− F (qα(x)− ǫ|x) = ǫ
fX,Y (x,qα(x))

fX(x) + o(ǫ) >
ǫfX,Y (x,qα(x))

2fX(x) ·
Finally, we have proved (38).
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et Mémoires de la Société d’anthropologie de Paris, Nouvelle Série, 5(1-2) (1993), pp.11-20.
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diriger des recherches, Université de Rouen et du Havre, France, 2011.


