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Approximation by multipoles of the multiple

acoustic scattering by small obstacles and

application to the Foldy theory of isotropic

scattering.

Abstract The asymptotic analysis, carried out in this paper, for the problem of a

multiple scattering of a time-harmonic wave by obstacles whosesize is small as

compared with the wavelength establishes that the effect of thesmall bodies can

be approximated at any order of accuracy by the field radiated by point sources.

Among other issues, this asymptotic expansion of the wave furnishes a mathe-
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matical justification with optimal error estimates of Foldy’smethod that consists

in approximating each small obstacle by a point isotropic scatterer. Finally, it is

shown how this theory can be further improved by adequately locating the center

of phase of the point scatterers and taking into account of self-interactions.

1 Introduction

An extensive description of the numerous physical and technological issues which

can be reduced to the solution of a multiple scattering problem involving scatter-

ers, small comparatively with the wavelength, is given in [26, Chap. 7] and in [7,

17]. Solving such kinds of problems is also basic in inverse scattering [32] and

in time-reversal imaging applications (cf. [21] and the references therein). Foldy’s

model is a simplified way for dealing with the small obstacles [14]. A compre-

hensive account of this approach can be found in [22, p. 297]. For the scalar wave

equation, it mainly consists in characterizing the scatteringproperties of each of

the small inclusions in the low-frequency limit by a parameter, called its scattering

coefficient, and in viewing the field it scatters as the one radiated by a monopole

placed at a chosen center of phase. The strengths of the equivalent monopoles

are then determined by solving the corresponding scattering problem. One speaks

then of ‘isotropic scattering’ [14]. As pointed out in [22, p. 302], the ‘important

word’ here is ‘isotropic’. For instance, such an approach does not cover the case of

sound-hard scatterers [22, p. 302]. In this case, it is necessary to modify the usual

Foldy method and to add a dipole field to correctly approximate the wave scattered

by the small body [22, p. 302]. Recently, it has been observed that adding a dipole

field, and thus departing from a plain isotropic scattering approach, increases the

accuracy of the method notably [21].

As brought out in many studies (among many other sources, one cancite [22,

ch. 8] or [26, ch. 7] and the references therein), the key property at the basis of

the above reduced models lies in the fact that the wave is not really propagative

at the scale of the small obstacles and as a result is governed byanother model

of propagation of waves: the long-wave (also called low-frequency) regime, the

overall scattering problem meanwhile remaining posed in terms ofthe usual wave

equation. When the aim is just to perform a model reduction, the link between the
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long-wave and the propagation regime is obtained by approximating the wave in

the proximity of each small obstacle using one of the followingtechniques. The

simplest of these is based on a low-frequency approximation of the wave in the

immediate proximity of each small scatterer [22, Chap. 8]. Othermore involved

procedures use the approximation of the wave from an integral representation [21,

26] or a modal representation [7] of it again near the small obstacle.

Our first objective in this paper is to achieve a full asymptoticanalysis of the

multiple scattering problem to theoretically establish that such kinds of approx-

imations can be performed at any order of accuracy. Namely the wavecan be

approximated at any chosen order of accuracy by accordingly increasing the order

of the multipoles accounting for the field scattered by each of the small obstacles.

Seemingly the approaches cited above are not adapted for this task. The main rea-

son lies in the fact that the long-wave model must be improved when increasing

the order of the asymptotic expansion. The only technique, apparently fulfilling

such a requirement, and being used here, is the method of matchedasymptotic

expansions (see, e.g., [11–13]).

This asymptotic analysis is first used to prove optimal error estimates for

Foldy’s usual isotropic model. The justification of this model has been already

obtained by other techniques. One of these is based on integral equations methods

(see, e.g., [28,27,26,8]). Another method for performing this justification, lim-

ited to disks in 2D and spheres in 3D, is to use a modal expansionof the wave

around each small object [7]. Actually, the real novelty and the importance of the

asymptotic expansion approach lie in the possibility to improve the intuitive Foldy

model. This expansion shows how it is possible to gain one further order of con-

vergence by adding a term accounting for the self-interaction effects, as recently

pointed out by Liao and Ji [21] in another context, and more importantly by intro-

ducing a correction to the centers of phase of the corresponding monopoles. Such

a correction, which is irrelevant when the considered scatterers arespheres [21] or

disks [7] does not seem to have been proposed before, even in an heuristic way.

The geometry of the small obstacles considered in this study isquite general.

They are only assumed to be Liptschitz. However, to improve thereadibility, we

limit ourselves to the case where the scattering properties of each of them are char-
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acterized either by a surface impedance, a sound-hard or a sound-soft boundary

condition. The considered surface impedance, also termed sometimes a wall-law,

can be seen as critical in terms of the transition from a sound-hard toa sound-soft

obstacle. Some indications will be also given concerning theappropriate adap-

tations needed for dealing with penetrable obstacles and the difficulties steming

from other types of impedance boundary conditions.

The outline of the paper is as follows. In Section 2, after givingthe statement

of the scattering problem, we define the method of matched asymptotic expan-

sions used to expand the total wave. In particular, we set out the matching rules

used to link the expansions of the propagative part of the wave and its small scale

components in the proximity of the small obstacles. Section 3is dedicated to the

proof of the existence and uniqueness of the two-scale asymptotic expansions. It

is at this level that is established the fact that the expansion of the propagative

part of the wave consists of multipoles, i.e., spherical wavefunctions [22, p. 69].

A serious difficulty stems then: there are many ways to write down these wave-

functions. Fortunately enough, the power series expansion of the spherical Hankel

establishes that ultimately any multipole can be unambiguously identified. Sec-

tion 4 is dedicated to give a concrete and rigorous shape to the previous matched

asymptotic expansions. A uniformely valid approximation of thetotal wave is

constructed and validated by means of error estimates. It is nextshown how it can

be used to get optimal error estimates for the corresponding approximation of the

propagative part of the wave. These expansions of the wave are next used in sec-

tion 5 first to retrieve the usual Foldy method of isotropic scattering, to establish an

optimal error bound for the corresponding approximation, and nextto improve it

through the procedures mentioned above. In the final Section, we discuss whether

the techniques developed in this study can or cannot handle some other kinds of

scattering problems.

2 The Matched asymptotic expansions method

In this section, we consider the scattering problem dealt with in this study. We also

detail the method of matched asymptotic expansions used to get an asymptotic

expansion of the total wave at any order of accuracy.
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Fig. 1 Geometry of the inhomogneneities

2.1 The multiple scattering problem

We denote byκ andλ the wave number and the wavelength respectively in the

infinite medium of propagation. Each of these is defined in termsof the other from

the relationκλ = 2π. Any of the small obstacles is an open domainO
( j)
δ strictly

contained inBδλ
c j

(i.e.O( j)
δ ⊂ Bδλ

c j
( j = 1, . . . ,N)) whereBδλ

c j
is the open ball of

R
3 centered atc j and of radiusδλ (see figure 1). The dimensionless parameter

δ > 0 is used to state that the obstacles are of small size as compared with the

wavelength by assuming that

δ ≪ 1. (1)

As regards the geometrical smoothness of the scatterers, they are implicitly as-

sumed to be at least Lipschitz.

The c j are the ‘psychological’ positions of the small scatterers, i.e.the lo-

cations of the small scatterers when observed at a sufficiently large distance or

at large scale. At the end of this study, we will develop a rigorous approach for

settling the position of thec j which are taken as the centers of phase of the point

scatterers in Foldy’s model.

At this point, it is necessary to clarify the asymptotic regime that is considered.

Four parameters enter into the picture in this respect: the wavelengthλ , the size

of the small objects characterized above by the small parameterδ, the smallest

distance separating each pair of heterogeneities which can belinked to the wave-
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length by means of a positive parameterd as follows

min
1≤i, j≤N

∣∣ci −c j
∣∣≥ dλ , (2)

and the numberN of particules. In this study, all of these parameters are assumed

to be fixed except the size of the scatterers which goes to 0 asδ → 0.

The multiple scattering problem can then be stated as follows interms of the

total waveuδ




(∆ +κ 2)uδ = 0 in Ωδ ,

uδ(x) = uinc(x)+
exp(iκ |x|)

|x| aδ(x/ |x|)+ o
|x|→∞

(1/ |x|), (3)

supplemented with one of the following boundary condition

– impedance boundary condition

∂n j uδ =
ν j

δ
uδ on∂O

( j)
δ ( j = 1, . . . ,N), (4)

– sound-soft obstacle

uδ = 0 on∂O
( j)
δ ( j = 1, . . . ,N), (5)

– sound-hard obstacle

∂n j uδ = 0 on∂O
( j)
δ ( j = 1, . . . ,N). (6)

The data and the notation are the following.

– The infinite domain in which is set the scattering problem (see Fig. 2) is de-

noted by

Ωδ = R
3\
(

N⋃

j=1

O
( j)
δ

)
. (7)

– Coefficientν j characterizes the scattering properties of small obstacleO
( j)
δ

through an impedance condition set on its boundary∂O
( j)
δ . Assumption

ℑ ν j < 0 (8)

is used to characterize its absorption of the incident wave acoustic energy (cf.,

e.g. [18]).

– The unit normaln j on∂O
( j)
δ is directed outwardsO( j)

δ .
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Fig. 2 Schematic view of the scattering problem

– The incident wave is denoted byuinc. Usually, it is a plane waveuinc(x) =

exp(iκd · rx) of complex amplitude 1, and propagating in the direction of the

unit vectord, rx being the radius vector of the pointx.

For either of the above boundary conditions, it can then be classically estab-

lished [31] that problem (3) has a unique solutionuδ such thatϕuδ ∈ H1 (Ωδ) for

anyϕ ∈ D
(
R

3
)
. The notationℜ z andℑ z stands for the real and imaginary parts

respectively of the complex numberz.

As said above, we now focus on building an asymptotic expansion for uδ using

the method of matched asymptotic expansions.

2.2 The matched asymptotic expansions

The method of matched asymptotic expansions consists here inexpanding the

wave in the proximity of each of the small obstacles and far enough from these and

adequately linking the two expansions called inner and outer in the terminology

of this approach.

2.2.1 The inner and outer expansions

The construction of the above expansions relies upon the introduction of a global

field, called far or outer, describing the overall behavior of the field scattered out-
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side the immediate vicinity of the small scatterers and a field defined inside the

boundary layer enclosing each of them, known as near or inner.The outer expan-

sion is obtained by postulating that the far field has the following expansion:

uδ(x) =
m

∑
k=0

δkuk(x)+ o
δ→0

(δm), x∈ R
3 andx 6= c j ( j = 1, . . . ,N) . (9)

The near field corresponds to a zoom on each of theO
( j)
δ and is expressed in terms

of the fast variables

X =
x−c j

δ
.

According to the general approach of the method of matched asymptotic expan-

sions, we look for an expansion for the solution to the above multiple scattering

problem inside the boundary layer around each small obstacle inthe following

form:

Π ( j)
δ (X) = uδ (c j +δX) =

m

∑
k=0

δkΠ ( j)
k (X)+ o

δ→0
(δm). (10)

Remark 1Few comments are in order to clarify the notation and some features of

the asymptotic expansions.

1. CoordinatesX depend on the particular small scatterer being involved. How-

ever this dependence is left implicit for simplicity. We can also sometimes

more appropriately expressX in terms of the spherical coordinates asX = RΘ

with R= |X| andΘ = X/ |X|.
2. Far and near field is a terminology more linked to scattering problems. Inner

and outer are more usual in the framework of matched asymptotic expansions.

Below we will use one or the other of these terminologies when referring to

these expansions and to what concerns them such as for example the coef-

ficients of the asymptotic expansions or the boundary-value problems these

coefficients satisfy.

3. Any inner expansion ‘sees’ its surounding medium as if it wereinfinite. In

mathematical words, this amounts to define the expansion on theexteriorR3\
Ô( j) of a scaled description

Ô( j) =
{

X ∈ R
3; x= δX ∈ O

( j)
δ

}

of the obstacle. The outer unit normal to∂ Ô( j) is denoted bŷn j .
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4. Parameterδ is at our disposal, as soon as it tends to zero. We can thus assume

that each of the scaled obstacleŝO( j) is included in the unit ball|X| ≤ 1. In this

way, the geometrical data related to the inner problems when allthe obstacles

are balls of the same radius is simply a ball of radiusR0 ≤ 1. In other words,

all the normalized domainŝO( j) then coincide with the ball|X| < R0 ≤ 1.

(see [2]).

2.2.2 The matching rules

The matching conditions link the inner and the outer expansions and allow for

their complete determination. Actually these conditions express what is known as

the Van Dyke principle enforcing that either of these expansions corresponds to

the same solution. Their specific statement depends on the problem under consid-

eration (cf., e.g., [5,11,13,19]). For the scattering problem beingconsidered here,

we proceed as in [3]. The matching conditions are set during the determination of

the expansions as follows:

– A truncated outer expansion is expressed with respect to the fast variables:
m

∑
l=0

δ l ul (c j +δX).

It is then expanded in powers ofδ and truncated to get:
m

∑
l=0

δ l ul (c j +δX) =
m

∑
l=0

δ l U( j)
m,l (X)+ o

δ→0
(δm) , (11)

We think that it is appropriate to refer to the U( j)
m,l as the matching functions.

– The matching conditions are then set as follows:

Π ( j)
k −U( j)

m,k = o
|X|→+∞

(
1

|X|m−k

)
(k= 0, . . . ,m, j = 1, . . . ,N) . (12)

Hereafter, the convergence corresponding too|X|→+∞ or toO|X|→+∞ is always

assumed to be uniform relatively toX.

It is worth noting that assuming an expansion for∑m
l=0δ l ul (c j + δX) in the

form (11) implies that the outer coefficientsuk have a singularity of finite order at

eachc j , i.e., there existγ > 0, ρ > 0 andM such that

∣∣x−c j
∣∣γ ∣∣u(x−c j)

∣∣≤ M for
∣∣x−c j

∣∣≤ ρ. (13)
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3 Existence and uniqueness of the asymptotic expansions at any order

In this section, we prove that the inner and the outer coefficients can be determined

at any order in a unique way.

3.1 The inner and outer problems

Plugging expansion (9) into system (3) and identifying terms corresponding to the

same power ofδ, we get that each coefficient of the outer expansion satisfies:




(∆ +κ 2)uk (x) = 0, x∈ R
3 andx 6= c j ( j = 1, . . . ,N) ,

lim|x|→+∞ |x|
(
∂|x|− iκ

)(
uk−δk,0uinc

)
= 0,

(k= 0,1, . . .) (14)

whereδk,0 is the Kronecker symbol:δk,0 = 1 if k= 0 and 0 otherwise.

We already said that matching rules (12) compel the coefficientsuk of the

outer expansion to have a singularity of finite order at eachc j . Both the form of

the expansions and the restriction assumed on the singularity ofthe coefficients

of the outer one will be validated by error estimates ensuring the approximation

of uδ by an adequate combination of the truncated expansions∑k≤mδkuk, and

∑k≤mδk ∑0≤ j≤N Π ( j)
k .

Proceeding in the same way as for the far fields, we plug expansion (10) into

(3) and identify terms with the same powers ofδ. We then get the following kind

of recursive Laplace equations satisfied by the inner coefficients:




∆XΠ ( j)
k = κ 2Π ( j)

k−2 in Ô( j)
c
,

B( j)Π ( j)
k = 0 on∂ Ô( j),

(k= 0,1, . . .) (15)

where operatorB( j) is defined according to the boundary condition being consid-

ered

B( j)Π ( j)
k =





∂n̂ j
Π ( j)

k −ν jΠ
( j)
k , for (4),

Π ( j)
k , for (5),

∂n̂ j
Π ( j)

k , for (6),

(16)

and Ô( j)
c
= R

3 \ Ô( j) stands for the open complement ofO( j). Any term Π ( j)
ℓ

corresponding to a subscriptℓ < 0 is implicitly assumed to be zero. Condition

ℑ ν j < 0 simplifies some stability results.
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Remark 2The above recursive Laplace equations is a sharper way, improving

with the order of the expansion, to account for the long-wave regime in the vicin-

ity of the small obstacles. The crudest model simply consistsin discarding any

propagation effect.

The remainder of this section is dedicated to prove the followingtheorem.

Theorem 1 Above equations (14), (15) and matching conditions defined through

(11) and (12) recursively determine one and only one system of inner and outer

coefficients(uk,Π
( j)
k ) for k= 0,1, . . .

Theorem 1 is proved by induction. It will be established fork= 0 and fork+1

assuming that it is true up to orderk. We begin with some preliminary results.

3.2 Preliminary results

At first, we give a complete characterization of the outer coefficients. We next do

the same for the inner ones when|X| is large enough. We finally establish some

general properties owned by these two kinds of coefficients.

3.2.1 General form of the outer coefficients

The following theorem reduces the determination of the outer coefficients to that

of a finite number of parameters and is proved in [2].

Theorem 2 Any solution to (14) which has a finite order of singularity as stated

in (13) is in the following form:

uk(x) = ∑N
j=1∑′

n≥0h(1)n (κ |x−c j |)Y( j)
n,k

(
x−c j
|x−c j |

)
,

x∈ R
3 and x 6= c j ( j = 1, . . . ,N) (k= 0,1, . . .) .

(17)

As usual, h(1)n stands for the spherical Hankel function of the first kind of order

n and Y( j)
n,k for a spherical harmonic function spanned by the2n+ 1 spherical

harmonics Ymn (−n≤ m≤ n) of order n (cf., e.g., [15,22]). The quote in∑′
n≥0

indicates that only a finite number of terms in the sum are not zero.
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The following result is fundamental for the determination of the inner coeffi-

cients.

Lemma 1 Any solution to the recursive Laplace equations

∆XΦ( j)
k = κ 2Φ( j)

k−2 in Ô( j)
c
, (k= 0,1,2, . . .) , (18)

with Φ( j)
−1 = Φ( j)

−2 = 0 andΦ( j)
k growing at most as|X|ν as|X| → ∞ can be written

as follows:

Φ( j)
k (X)|X=RΘ =

∑n≥0

(
∑⌊k/2⌋

l=0 c( j)
l ,n,kR

−(n+1)+2l +d( j)
l ,n,kR

n+2l
)

Y( j)
n,k (Θ) for |X|> 1

(19)

where⌊k/2⌋ is the integral part of k/2 and only a finite number of coefficients

d( j)
l ,n,k are not zero. The series converges uniformly as well as any ofits derivatives

for |X| ≥ 1. In particular, for any integerℓ

Φ( j)
k (X) = o

|X|→+∞

(
|X|ℓ

)
if and only ifΦ( j)

k (X) = O
|X|→+∞

(
|X|ℓ−1

)
(20)

and

if Φ( j)
k (X) = O

|X|→+∞

(
|X|ℓ

)
, then∂|X|Φ

( j)
k (X) = O

|X|→+∞

(
|X|ℓ−1

)
. (21)

Proof Expansion (19) is established in [2]. Interior elliptic estimates then read-

ily give that Φ( j)
k is C ∞ for |X| > 1. The rest of the proof is a straightforward

consequence of the properties of functions having a power seriesexpansion.

Remark 3Theorem 2 and Lemma 1 provide the core foundation for the proof of

theorem 1.

3.2.2 Useful properties of the asymptotic expansion

We first show that the matching functions U( j)
m,l satisfy a system of recursive Laplace

equations.

Lemma 2 Let m and l be integers such that0≤ l ≤ m. Then the matching func-

tions (11) are solution to the recursive Laplace equations:

∆U( j)
m,l (X) =−κ 2U( j)

m,l−2(X) for |X| 6= 0,

with U( j)
m,l−2 = 0 if l −2< 0.
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Proof Asymptotic expansions of the spherical Bessel and Neumann functions (cf.,

e.g., [15,22]) show thatum,δ is a meromorphic function with a pole atc j thus en-

suring the existence of expansions (11). Furthermore the Laurent series expansion

of um,δ atc j can be differentiated term by term to yield

δ2∆x

m

∑
l=0

δ l ul (c j +δX) =
m

∑
l=0

δ l ∆XU( j)
m,l +oδ→0 (δm) .

Using the fact thatum,δ satisfies the Helmholtz equation, we get

δ2∆x

m

∑
l=0

δ l ul (c j +δX) =−κ 2δ2um,δ(c j +δX)

=−κ 2δ2
m−2

∑
l=0

δ l U( j)
m,l (X)+oδ→0 (δm)

=−κ 2
m

∑
l=2

δ l U( j)
m,l−2+oδ→0 (δm)

The rest of the proof follows from the identification of the two expansions in a

straightforward way.

Next lemma gives an accurate expression for the asymptotic behavior of Π ( j)
l −

U( j)
k,l as |X| → ∞. This result is basic for proving that the matching conditions

uniquely determine the singular parts of the outer coefficientsuk.

Lemma 3 Assume that theorem 1 is valid up to order k. Then

(
U( j)

k,l −Π ( j)
l

)
(RΘ) =

1

R(k+1)−l

⌊l/2⌋
∑
γ=0

Y
( j)

2γ+k−l ,k,l (Θ)+ O
R→+∞

(
1

Rk+2−l

)
, (22)

for |X|> 1, and l= 0, . . . ,k, whereY ( j)
ν ,k,l (Θ) are determined spherical harmonic

functions of orderν satisfying the following recurrence relations:

Y
( j)

2γ+k−l ,k,l (Θ) = κ 2

2γ(2(k+γ−l)+1)Y
( j)

2γ+k−l ,k,l−2(Θ) (l = 2, . . . ,k, γ = 1, . . . ,⌊l/2⌋) .
(23)

Proof Defineϕk,l = U( j)
k,l −Π ( j)

l (l = 0, . . . ,k). Lemmas 2 and 15 directly yield

thatϕk,l also satisfy the recursive Laplace equations

∆ϕk,l =−κ 2ϕk,l−2, for |X| ≥ 1
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ensuring as in lemma 1 that

ϕk,l (RΘ) = ∑
n≥0

∑
|m|≤n

(⌊l/2⌋
∑
γ=0

cm,( j)
γ,n,k,l R

−(n+1)+2γ +dm,( j)
γ,n,k,l R

n+2γ

)
Ym

n (Θ).

Matching rules (12) then yieldϕk,l (RΘ) = OR→+∞
(
Rl−k−1

)
. Function ϕk,l is

thus the sum of a term inRl−(k+1) and a rest given by a power series in 1/R

whose coefficients are spherical harmonic functions. As a result,any rest being a

oR→+∞ (1/Rt) is actually aOR→+∞
(
1/Rt+1

)
. This feature will be important in a

subsequent proof establishing that the coefficients of the inner expansion do exist.

The coefficient ofRl−(k+1) can be obtained by collecting the terms correspond-

ing ton andγ such that−(n+1)+2γ=−(k+1)+ l . The order of the correspond-

ing spherical harmonic is thusn= 2γ+k− l so that the term inRl−(k+1) involved

in the expansion ofϕk,l can be written as follows

R−(k+1)+l
⌊l/2⌋
∑
γ=0

Y
( j)

2γ+k−l ,k,l (Θ)

whereY
( j)

ν ,k,l (Θ) is a spherical harmonic function of orderν . The first part of the

lemma is therefore proved.

To prove the recurrence relation forY
( j)

2γ+k−l ,k,l (Θ), we use the recursive Laplace

equations satisfied byϕk,l . Expressing the Laplace operator in spherical coordi-

nates, we get

R2∆Xϕk,l =
(
(R∂R)

2+(R∂R)+∆S

)
ϕk,l

=
1

R(k+1)−l

⌊l/2⌋
∑
γ=0

2γ(2(l −γ−k)−1)Y ( j)
2γ+k−l ,k,l (Θ)

+ O
R→+∞

(
1

Rk+2−l

)
.

We have used the following properties:(R∂R)
ν Rα = α ν Rα and ∆S Ym

n (Θ) =

−n(n+1)Ym
n (Θ). Expandingϕk,l−2 in the same way, we come to

R2ϕk,l−2 =
R2

Rk+1−l+2

⌊(l−2)/2⌋
∑
γ=0

Y
( j)

2(γ+1)+k−l ,k,l−2(Θ)

+R2 O
R→+∞

(
1

Rk+2−l+2

)

=
1

Rk+1−l

⌊l/2⌋
∑

γ′=1

Y
( j)

2γ′+k−l ,k,l−2(Θ)+ O
R→+∞

(
1

Rk+2−l

)
,
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The latter expression has been obtained by the change of the summation indexγ′ =

γ+1. The recursive Laplace equations∆ϕk,l =−κ 2ϕk,l−2 finally yield recurrence

formula (23).

3.3 Proof of the existence and the uniqueness of the expansions

As said above, we prove Theorem 1 by induction. We establish that the coeffi-

cients of both inner and outer expansions can be uniquely determined through the

following procedure. We prove the theorem first fork= 0. Assuming next that it is

true up to orderk, we prove that the(k+1)-th order inner coefficient is uniquely

determined. We then complete the proof by establishing the same statement for

the outer coefficient of orderk+1.

3.3.1 Zeroth-order expansions

Noting thath(1)n (z)∼Cnz−n−1 for z→ 0 (cf., e.g., [15]), matching conditions (12)

impose thatu0 is not singular in the neighborhood of any of thec j . As a result,

u0 = uinc in R
3.

To get the zero-th order inner coefficient, we first compute the matching func-

tions (11). A Taylor expansion yields:

u0(c j +δRΘ) = u0(c j)+ o
δ→0

(1) = U( j)
0,0(X)+ o

δ→0
(1).

FunctionsΠ ( j)
0 then satisfy the following boundary-value problem on the open

complement̂O( j)
c
= R

3\ Ô( j) of Ô( j)





∆Π ( j)
0 = 0 in Ô( j)

c
,

B( j)Π ( j)
0 = 0 on∂ Ô( j),

Π ( j)
0 (X)−U( j)

0,0 (X) = o|X|→+∞ (1) ,

(24)

in whichB( j) is the differential boundary operator defined in (16).

To solve problem (24), we consider the following one




∆Φ( j) = 0 in Ô( j)
c
,

B( j)Φ( j) = 0 on∂ Ô( j),

Φ( j) (X) = 1+ o
|X|→∞

(1) ,

(25)
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A solution to (25) is sought in the formΦ( j) = 1+Φ( j)
BL where its variational part

Φ( j)
BL is lying in the usual Beppo-Levi space (cf., e.g., [20,24])

BL( j) =
{

Φ ∈ D
′
(
Ô( j)

c)
;
(
1+ |X|2

)−1/2Φ and∇ Φ ∈ L2
(
Ô( j)

c)}

since, as established in [24] for instance, this space is a Hilbert space for the norm

‖Φ‖BL( j) = ‖∇ Φ‖
L2
(

Ô( j)
c
) . (26)

We can then state the following lemma.

Lemma 4 The zero-th order inner coefficientΠ ( j)
0 satisfying (24) is uniquely de-

fined and is given by

Π ( j)
0 = u0(c j)Φ( j).

Proof Clearly, it is enough to prove that problem (25) is well-posed in the follow-

ing functional framework

H1
loc

(
Ô( j)

c
)
=
{

Φ ∈ D
′
(
Ô( j)

c)
; θΦ ∈ H1

(
Ô( j)

c)
, ∀θ ∈ D

(
R

3)} .

The integral representations of the solution to the Laplace equation (cf., e.g., [16,

24]) readily yield thatΓ ( j) = 1−Φ( j) satisfies

Γ ( j) (X) = O

(
1
|X|

)

and thus belongs to BL( j). The boundary condition satisfied byΦ( j) on ∂ Ô( j)

yields the following one forΓ ( j)





Γ ( j) = 1, for Φ( j) = 0,

∂n̂ j
Γ ( j)−ν jΓ ( j) =−ν j , for ∂n̂ j

Φ( j)−ν jΦ( j) = 0,

∂n̂ j
Γ ( j) = 0, for ∂n̂ j

Φ( j) = 0.

Thus, we are accordingly led to solve one of the following variational problems




Γ ( j) ∈ BL( j), Γ ( j)|
∂ Ô( j)

= 1, ∀Ψ ∈ BL( j), Ψ|
∂ Ô( j)

= 0,
ˆ

Ô( j)
c∇ Γ ( j) · ∇ Ψdx= 0,





Γ ( j) ∈ BL( j), ∀Ψ ∈ BL( j),
ˆ

Ô( j)
c∇ Γ ( j) · ∇ Ψdx+ν j

ˆ

∂ Ô( j)
Γ ( j)

0 Ψdσ =−ν j

ˆ

∂ Ô( j)
Ψdσ ,
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



Γ ( j) ∈ BL( j), ∀Ψ ∈ BL( j),
ˆ

Ô( j)
c∇ Γ ( j) · ∇ Ψdx= 0.

Let us denote by

a( j)(Φ,Ψ) =





´

Ô( j)
c ∇ Φ · ∇ Ψdx+ν j

´

∂ Ô( j)
ΦΨdσ ,

´

Ô( j)
c ∇ Φ · ∇ Ψdx,

(27)

the bilinear form of the variational problem being considered above. In view of

(26), it is directly coercive on BL( j) for the second case in (27). For the first one,

denoting by 0< θ < π the opposite of the argument of the complex numberν j ,

i.e.,ν j =
∣∣ν j
∣∣e−iθ , we can write that

eiθa( j) (Φ,Φ
)
= eiθ ‖∇ Φ‖

L2
(

Ô( j)
c
)+

∣∣ν j
∣∣‖Φ‖2

L2
(

∂ Ô( j)
) .

This shows that
∣∣∣a( j) (Φ,Φ

)∣∣∣≥ ℑ
(

eiθa( j) (Φ,Φ
))

= sinθ ‖∇ Φ‖
L2
(

Ô( j)
c
)

and hence establishes that the bilinear form is coercive on BL( j) in this case too.

Lax-Milgram lemma then straightforwardly completes the proof.

Remark 4For the sound-hard boundary condition∂n̂ j
Φ( j)=0,Γ ( j)= 0 and hence

Φ( j) = 1. This feature will have an important consequence for the reduction of the

multi-scattering problem by Foldy’s method.

We have hence established the existence and the uniqueness ofthe zero-th

order inner and outer expansions.

3.3.2 First part of the inductive step: determination of theouter coefficient

In view of Theorem 2 and the singularity of spherical Hankelh(1)n (z) at z= 0, it

can be argued that

uk+1(x) =
N

∑
j=1

k

∑
γ=0

h(1)γ (κ |x−cl |)H ( j)
γ,k+1(Θ), (28)

whereH
( j)

γ,k+1(Θ) are spherical harmonic functions of orderγ not yet determined.

The following remark is fundamental both in the proof by inductionor for explic-

itly obtaining the expansion up to the first-order which will be abasic step in the

mathematical justification of Foldy’s model.
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Remark 5Sinceδk+1h(1)γ (κδR)∼δ→0 Cγδk−γ, theH
(l)

γ,k+1(Θ) can be determined

recursively forγ = k,k−1, until γ = 0. Moreover, at each step, only the matching

functions Uk+1,l (l = 0, . . . ,k−γ) are involved for writing down the related equa-

tions. This gives rise to the following extremely important property: it is enough

to expand∑k+1
l=0 δ l ul (c j +δRΘ) up to orderk, i.e.

k+1

∑
l=0

δ l ul (c j +δX) =
k

∑
l=0

δ l U( j)
k+1,l (X)+o

(
δk
)

(29)

instead up to orderk+1 to determine theH ( j)
γ,k+1(Θ).

The following lemma, establishing a link between matching functions U( j)
k+1,l

and U( j)
k,l , is the first ingredient towards proving that the outer coefficient uk+1 can

be uniquely determined.

Lemma 5 The following relations hold true

U( j)
k+1,l (RΘ) = U( j)

k,l (RΘ)+ 1
Rk+1−l ∑⌊l/2⌋

t=0 N2t+k−l ,tH
( j)

2t+k−l ,k+1(Θ)

( j = 1, . . . ,N; l = 0, . . . ,k)

where the constants Nn,γ are those involved in the power series expansion of the

spherical Neumann function (cf. [25, formulae 10.47.4, 10.2.2])

iyn(κz) =
i
√

π
2 ∑

γ≥0

(−1)γ−(n+1) (κz/2)2γ−(n+1)

γ!Γ (γ+ 1
2 −n)

= ∑
γ≥0

Nn,γz2γ−(n+1);

hereΓ denotes the usual gamma function

Proof Let l be an integer such that 0≤ l ≤ k. The matching functions are defined

through the above identification (29). Writing the left-hand side of (29) as

k+1

∑
l=0

δ l ul (c j +δX) =
k

∑
l=0

δ l ul (c j +δX)+δk+1uk+1(c j +δX),

reduces the determination of the matching functions U( j)
k+1,l (l = 0, . . . ,k) to that of

the terms inδ l involved in the expansion ofδk+1uk+1(c j +δX). It is worth noting

that only the singular part ofh(1)n = jn+ iyn contributes to these terms

δk+1uk+1(c j +δRΘ) = δk+1
k

∑
γ=0

hγ(κδR)H ( j)
γ,k+1(Θ)

= δk+1
k

∑
γ=0

iyγ(κδR)H ( j)
γ,k+1(Θ)+oδ→0(δk).
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Plugging the power series expansion ofyγ(κδR) in the above relation, we come

to

δk+1uk+1(c j +δRΘ) = δk+1
k

∑
γ=0

∑
ν≥0

Nγ,ν (δR)2ν−(γ+1)
H

( j)
γ,k+1(Θ)+oδ→0(δk).

Making the following change of the indices related to the double summation

(t = ν , l = 2ν − (γ+1)+(k+1) = 2ν +k−γ)

and dropping any term inδ l with l > k, we get

δk+1uk+1(c j +δRΘ) =
k

∑
l=0

δ l

Rk+1−l

⌊l/2⌋
∑
t=0

N2t+k−l ,tH
( j)

2t+k−l ,k+1(Θ)+oδ→0(δk).

Gathering all the above results, we readily complete the proof.

Next lemma finishes the first part of the induction step.

Lemma 6 There exists one and only one outer coefficient uk+1 satisfying the

above equations and the matching conditions.

Proof The proof reduces to establish the above statement forH
( j)

l ,k+1(Θ). Lemma

5 and the inductive hypothesis yield

(
U( j)

k,l −Π ( j)
l

)
=

1

R(k+1)−l

⌊l/2⌋
∑
γ=0

Y
( j)

2γ+k−l ,k,l (Θ)+ o
R→+∞

(
1

Rk+1−l

)

implying first that

⌊l/2⌋
∑
t=0

N2t+k−l ,tH
( j)

2t+k−l ,k+1(Θ) =−
⌊l/2⌋
∑
γ=0

Y
( j)

2γ+k−l ,k,l (Θ) (l = 0, . . . ,k)

and next that

(
U( j)

k,l −Π ( j)
l

)
+

1
Rk+1−l

⌊l/2⌋
∑
t=0

N2t+k−l ,tH
( j)

2t+k−l ,k+1(Θ) = o
R→+∞

(
1

Rk+1−l

)
.

Lemma 3 ensures that

H
( j)

2γ+k−l ,k+1(Θ) =− 1
N2γ+k−l ,γ

Y
( j)

2γ+k−l ,k,l (Θ) (l = 0, . . . ,k, γ = 0, . . . ,⌊l/2⌋) .
(30)

This is an overdetermined system since different(l ,γ) can lead to the same value

for ν = 2γ+k− l .
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Fortunately enough, spherical harmonic functions− 1
N2γ+k−l ,γ

Y
( j)

2γ+k−l ,k,l (Θ) are

identical as soon as they are of the same degreeν = 2γ+k− l . Indeed, coefficients

Nn,γ are linked by the following relations

Nn,γ =
κ 2

2γ(2(n−γ)+1)
Nn,γ−1, Nn,0 =−

√
π
(−1)n+1κ−(n+1)2n

Γ (1
2 −n)

.

Thus

H
( j)

2γ+k−l ,k+1(Θ) =− 1
N2(γ−1)+k−(l−1),γ−1

2γ(2(γ+k−l)+1)
κ 2 Y

( j)
2γ+k−l ,k,l (Θ)

which in view of (23) yields

H
( j)

2γ+k−l ,k+1(Θ) =− 1
N2(γ−1)+k−(l−2),γ−1

Y
( j)

2(γ−1)+k−(l−2),k,l−2(Θ).

Continuing in this way, we come to

H
( j)

2γ+k−l ,k+1(Θ) =− 1
N2γ+k−l ,0

Y
( j)

2γ+k−l ,k,l−2γ(Θ).

This shows that for any fixedk, H ( j)
2γ+k−l ,k+1(Θ) does not depend on the particular

spherical harmonic functionY ( j)
2γ+k−l ,k,l (Θ) used to define it. This completes the

proof of the lemma.

3.3.3 Second part of the inductive step: Determination of theinner coefficient

Any (k+1)-th order inner coefficient satisfies




∆Π ( j)
k+1 =−κ 2Π ( j)

k−1 in Ô( j)
c
,

B( j)Π ( j)
k+1 = 0 on∂ Ô( j),

Π ( j)
k+1−U( j)

k+1,k+1 = oR→+∞ (1) .

The following change of unknownΓ ( j)
k+1 = Π ( j)

k+1 −U( j)
k+1,k+1 puts the above

problem in the following form




∆Γ ( j)
k+1 = F in R

3\ Ô( j),

B( j)Γ ( j)
k+1 = g on∂ Ô( j),

Γ ( j)
k+1 = oR→+∞ (1) ,

(31)

with 



g= B( j)U( j)
k+1,k+1,

F =−κ 2Π ( j)
k−1−∆U( j)

k+1,k+1.
,



Multiple scattering by small bodies. 21

Lemma 7 Problem (31) has one and only one solutionΓ ( j)
k+1 ∈ BL( j) and makes it

possible to uniquely determine the(k+1)-th order inner coefficient as follows

Π ( j)
k+1 = U( j)

k+1,k+1+Γ ( j)
k+1.

Proof WhenB( j) is the boundary operator corresponding to a sound-hard or an

impedance boundary condition, problem (31) can be put in the following varia-

tional form 



Γ ( j)
k+1 ∈ BL( j), ∀Ψ ∈ BL( j),

a(Γ ( j)
k+1,Ψ) =

´

∂ Ô( j)
gΨdσ −

´

Ô( j)
c FΨdx,

(32)

with the bilinear form already given in (27). It thus remains to checkthatF does

define a continuous inear form on BL( j). It is worth noting thatF = 0 for k = 0.

We can thus assume thatk≥ 1. Lemma 2 then yields

F (X) = κ 2
(

U( j)
k+1,k−1(X)−Π ( j)

k−1(X)
)
.

It is not enough to make use of the following behaviorF(X) = o|X|→∞(1/ |X|2),
which is a direct consequence of the inductive hypothesis. A sharper estimate is

needed. Making use of the first property stated in Lemma 5, we can write F in the

following form

F(RΘ) = κ 2


U( j)

k,k−1(RΘ)−Π ( j)
k−1(RΘ)

+ 1
R2 ∑⌊(k−1)/2⌋

t=0 N2t+k−(k−1),tH
( j)

2t+k−(k−1),k+1(Θ)




which in view of (30) can be also expressed as

F(RΘ) = κ 2

(
U( j)

k,k−1(RΘ)−Π ( j)
k−1(RΘ)− 1

R2

⌊(k−1)/2⌋
∑
t=0

Y
( j)

2t+k−(k−1),k,k−1(Θ)

)
.

Sharp asymptotic behavior (22) then readily yields that for a sufficiently largeA

|F(X)| ≤ C
R3 (|X| ≥ A).

Expressing the following integral
ˆ

|X|≥A
|F
(
1+ |X|2

)1/2Ψ
(
1+ |X|2

)−1/2 |dX

in terms of spherical coordinates and using Cauchy-Schwartz inequality then al-

low us to write
ˆ

|X|≥A
|FΨ|dX ≤C

√
ˆ +∞

A

∣∣∣∣
1
R3

∣∣∣∣
2

(1+R2)R2dR
ˆ

|X|≥A

|Ψ|2
1+ |X|2 dX.
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Hereafter,C stands for a constant not the same in all instances. Finally, we get
∣∣∣∣∣

ˆ

|X|≥A
FΨdX

∣∣∣∣∣≤C‖Ψ‖BL .

The right-hand side does define a continuous linear form on BL( j) thus implying

that problem (32) is well-posed. SinceΠ ( j)
l (l = 0, . . . ,k+1) satisfy the recursive

Laplace equations (18), Lemma 1 ensures that

(
U( j)

k+1,k+1−Π ( j)
k+1

)
(X) = o|X|→∞ (1) .

Clearly, the same proof can be repeated with obvious adaptations for dealing with

the case whereB( j) corresponds to a sound-soft boundary condition.

4 Error estimates

Error estimates, established in this section, give a rigorous framework to the above

asymptotic expansions. Namely they furnish a procedure enablingthe approxima-

tion of the total waveuδ from the outer and the inner expansions. In this respect,

the approach being used relies upon considering the so-called uniformly valid ap-

proximation ofuδ (cf. [11]).

4.1 The uniformly valid approximation

The construction of the uniformly valid approximation ofuδ makes use of the

cut-off function

χ ∈ C
∞(R), χ(r) =





1, r ≤ 1

0, r ≥ 2
, χ ′(r)≤ 0, for all r ≥ 0,

and is carried out as follows

um,δ(x) =
(

1−∑N
j=1 χ ( j)

δ (x)
) m

∑
k=0

δkuk(x)

+

(
N

∑
j=1

χ ( j)
δ (x)

)
m

∑
k=0

δkΠ ( j)
k ((x−c j)/δ) (x∈ Ωδ) ,

whereχ ( j)
δ (x) = χ

(
|x−c j |/

√
δ
)

.
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As a result, the obtained approximation coincides with the truncated inner and

outer expansions of the field respectively inside and outsideappropriate neighbor-

hoods of the small obstacles

um,δ(x) =
m

∑
k=0

δkuk(x)

(
min

j=1,...,N

∣∣x−c j
∣∣≥ 2

√
δ
)
,

um,δ(x) =
m

∑
k=0

δkΠ ( j)
k

(
x−c j

δ

) (
min

j=1,...,N

∣∣x−c j
∣∣≤

√
δ
)
.

In the matching zones

{
M

( j)
δ =

{
x∈ R

3 |
√

δ <
∣∣x−c j

∣∣≤ 2
√

δ
}

both expansions contribute to approximateuδ .

4.2 Stability estimates

A quite natural way for obtaining an estimate ofuδ −um,δ is first to truncate the

unbounded domainΩδ . The part ofuδ defined on the truncated zone is next taken

into account through a transparent boundary condition on the fictitious boundary

so introduced. This condition is expressed in terms of a Dirichlet-to-Neumann

(DtN) operator defined below. An error estimate will then result froma stability

property and a consistency estimate consisting of a bound on therelated residual

(cf., e.g., [1,4] for more details on this approach).

We begin with the truncation procedure. Letϒ be a connected bounded open

set ofR3, with smooth boundary whose outward unitary normal isn, enclosing

all the small obstacles. The DtN operatorT associated with the open complement

ϒc = R
3 \ϒ of ϒ is defined as follows: For any givenφ in H

1
2 (∂ϒ), let v be the

solution to the following boundary value problem whose existence and uniqueness

can be obtained for instance from the limiting-absorption principle (see, e.g., [31])




v∈ D
′
(ϒc), θv∈ H1(ϒc) ∀θ ∈ D(R3),

(
∆ +κ 2

)
v= 0 inϒc,

v= φ on∂ϒ,

lim|x|→+∞ |x|
(
∂|x|− iκ

)
v= 0,

(33)

Tφ = ∂ncv∈ H− 1
2 (∂ϒ),
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wherenc is the unit normal to∂ϒ pointing outwardsϒc. The coercivity properties

of this operator are stated as follows. There exists a bounded linear operatorT0 act-

ing fromH1/2 (∂ϒ) intoH−1/2 (∂ϒ) such thatT−T0∈L
(
H1/2 (∂ϒ) ,H5/2 (∂ϒ)

)

and

∃γ > 0 : 〈T0v,v〉H−1/2(ϒ),H1/2(ϒ) ≥ γ‖v‖2
H−1/2(ϒ)

, ∀v∈ H1/2 (ϒ) .

We denote by

eδ,m = um,δ −uδ

the error corresponding to the uniformly valid approximation ofuδ . Plugging it

in (3) and according to the considered boundary condition in (4), (5)or (6) respec-

tively, we come to:




(∆ +κ 2)eδ,m = (∆ +κ 2)um,δ in ϒδ =ϒ\⋃N
j=1O

( j)
δ ,

B( j)eδ,m = 0 on∂O
( j)
δ ( j = 1, . . . ,N) ,

∂neδ,m+Teδ,m = 0 on∂ϒ,

(34)

wheren still denotes the unit normal pointing outwardsϒ. The above problem can

be equivalently expressed in the following variational form




eδ ∈Vδ , ∀v∈Vδ

aδ(eδ ,v) = lδ(v),
(35)

with the following notation

aδ(u,v) =
ˆ

ϒδ

(
∇ u · ∇ v−κ 2uv

)
dx+βδ (u,v)+ 〈Tu,v〉H−1/2(ϒ),H1/2(ϒ) ,

lδv=−
ˆ

ϒδ

(
∆um,δ +κ 2um,δ

)
v dx,

where

βδ (u,v) =−
N

∑
j=1

ν j

δ

ˆ

∂O
( j)
δ

uv ds

for the impedance condition,βδ = 0 otherwise and

Vδ =

{
v∈ H1 (ϒδ) ; v|

∂O
( j)
δ

= 0, ( j = 1, . . . ,N)

}

for the sound-soft boundary condition,Vδ = H1 (ϒδ) otherwise.

One main ingredient for estimatingem,δ is provided by the following stability

theorem.
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Theorem 3 There exists a constant C independent ofδ such that

∥∥eδ,m
∥∥

H1(ϒδ)
≤C

∥∥(∆ +κ 2)um,δ
∥∥

L2(ϒδ)
. (36)

Proof The estimate is a direct consequence of the following uniform inf-sup con-

dition

‖u‖H1(ϒδ)
≤C sup

v∈Vδ

|aδ(u,v)|
‖v‖H1(ϒδ)

(37)

which we prove by contradiction below. We first deal with the caseof the impedance

boundary condition. So assume that there exist a sequenceδn ց 0 andun ∈ Vδn

such that

1. ‖un‖H1(ϒδn)
= 1,

2. limn→0aδn (un,vn) = 0 for all sequences(vn)n≥0 such thatvn ∈Vδn and

‖vn‖H1(ϒδn)
= 1.

Two main arguments will lead to a contradiction. The first one isprovided in

[23]. It ensures thatun can be extended to a functioñun ∈ H1 (ϒ) in a stable way,

i.e. ũn|ϒδn
= un and

‖un‖H1(ϒδn)
≤ ‖ũn‖H1(ϒ) ≤C‖un‖H1(ϒδn)

, (38)

with C a constant independent ofn. The second one is the well-known fact that

the subspaceV of thosev ∈ H1 (ϒ) satisfyingv = 0 in a neighborhood of each

c j is dense inH1 (ϒ) (cf., e.g., [29]). From the weak compactness of the unit ball

of Hilbert spaces, we can assume that limn→∞ ũn = u weakly inH1 (ϒ). From the

second of the two points listed above, we then easily deduce thatu is solution to

the following problem 



u∈ H1 (ϒ) ,

∆u+κ 2u= 0 inϒ,

∂nu+Tu= 0 on∂ϒ.

This problem is an equivalent formulation of a problem satisfyingthe Helmholtz

equation in all ofR3 and the Sommerfeld radiation condition. As well-known

(cf., e.g., [31]), Rellich’s lemma directly implies thatu = 0. The next ingredi-

ent is obtained by passing to the imaginary part ofaδn(un,un) after noting that
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ℑ 〈Tun,un〉H−1/2(ϒ),H1/2(ϒ) = ℑ 〈(T −T0)un,un〉H−1/2(ϒ),H1/2(ϒ)

ℑ aδn(un,un) = ℑ 〈(T −T0)un,un〉H−1/2(ϒ),H1/2(ϒ)

+
N

∑
j=1

ℑ ν j

δn

ˆ

∂O
( j)
δn

|un|2 ds.

Since by compacity the first term of the above sum tend to 0, usingonce more the

second of the above assumptions, it can be argued that

lim
n→∞

1
δn

ˆ

∂O
( j)
δn

|un|2 ds= 0.

The contradiction is then a straightforward consequence of the fact thataδn (un,un)

can thus be decomposed in a term which can be uniformly bound below by‖un‖2
H1(ϒδn)

and a rest tending to zero.

This proof does not cover the case of sound-hard or sound-soft obstacles. How-

ever, it can be obtained in the same way just by remarking that there is no integral

on∂O
( j)
δ then.

We are thus led to get a bound for(∆ +κ 2)um,δ . Since∆( f g) = f ∆g+g∆ f +

2∇ f · ∇ g, this term can be written as

(∆ +κ 2)um,δ =

(
1−

N

∑
j=1

χ ( j)
δ (x)

)(
m

∑
k=0

δk(∆ +κ 2)uk(x)

)

+

(
N

∑
j=1

χ ( j)
δ (x)

)
m

∑
k=0

δk(∆ +κ 2)Π ( j)
k

(
x−c j

δ

)

+

(
N

∑
j=1

∆χ ( j)
δ (x)

)(
m

∑
k=0

(
Π ( j)

k

(
x−c j

δ

)
−uk(x)

))

+2
N

∑
j=1

m

∑
k=0

∇ χ ( j)
δ (x) · ∇

(
Π ( j)

k

(
x−c j

δ

)
−uk(x)

)
.

Since the inner coefficients are solution to recursive Laplace equations, we get

(∆ +κ 2)um,δ = κ 2
N

∑
j=1

χ ( j)
δ (x)

m

∑
k=0

δk
(

Π ( j)
k

(
x−c j

δ

)
− 1

δ2 Π ( j)
k−2

(
x−c j

δ

))

+
N

∑
j=1

∆χ ( j)
δ (x)

(
m

∑
k=0

δk
(

Π ( j)
k

(
x−c j

δ

)
−uk(x)

))

+2
N

∑
j=1

m

∑
k=0

δk∇ χ ( j)
δ (x) · ∇

(
Π ( j)

k

(
x−c j

δ

)
−uk(x)

)
,
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whereΠ ( j)
−2 =Π ( j)

−1 = 0. In previous formula, the first term is called theinner error

and the last two ones thematching error. We now bound each of these one by one.

4.3 Bounds for the inner and matching errors

The bound for the inner error is established in the following lemma.

Lemma 8 LetI ( j)
δ =

(
R

3\O
( j)
δ

)
∩B

√
δ

c j
. The following bound

N

∑
j=1

∥∥∥∥∥χ ( j)
δ

(
m

∑
k=0

δk
(

Π ( j)
k − 1

δ2 Π ( j)
k−2

))∥∥∥∥∥
L2(I

( j)
δ )

≤Cδm/2+1/4,

holds true with a constant C> 0 independent ofδ.

Proof At first, we write the sum involved in the inner error a bit differently
m

∑
k=0

δk
(

Π ( j)
k − 1

δ2 Π ( j)
k−2

)
= δmΠ ( j)

m +δm−1Π ( j)
m−1.

Triangular inequality then yields
∥∥∥∥∥χ ( j)

δ

m

∑
k=0

δk
(

Π ( j)
k − 1

δ2 Π ( j)
k−2

)∥∥∥∥∥
L2(I

( j)
δ )

≤C
m

∑
l=m−1

δ l
∥∥∥Π ( j)

l

∥∥∥
L2(I

( j)
δ )

.

Passing to the fast variableX = (x−c j)/δ, we obtain:
∥∥∥Π ( j)

l

∥∥∥
2

L2(I
( j)
δ )

= δ3
ˆ

Î
( j)
δ

∣∣∣Π ( j)
l (X)

∣∣∣
2
dX,

whereÎ
( j)
δ =

(
Ô( j)

c)
∩B

1/
√

δ
0 . Lemmas 4 and 7 yield

Π ( j)
l (X) = U( j)

l ,l (X)+Γ ( j)
l (X)

(
X ∈ Ô( j)

c)
,

where U( j)
l ,l andΓ ( j)

l are respectively the matching function and the solution to

variational problem (32) introduced above. With the notation introduced there,

one thus obtains the bound

∥∥∥Γ ( j)
l

∥∥∥
L2(Î

( j)
δ )

=

(
ˆ

Î
( j)
δ

∣∣∣(1+ |X|)−1/2Γ ( j)
l (X)

∣∣∣
2
(1+ |X|)dX

)1/2

≤
(

1+
1√
δ

)1/2∥∥∥(1+ |X|2)−1/2Γ ( j)
l

∥∥∥
L2(Î

( j)
δ )

≤C

√
1+

1√
δ

∥∥∥Γ ( j)
l

∥∥∥
BL

.
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The first term can then be bounded as follows

δ l δ3/2
∥∥∥Γ ( j)

l

∥∥∥
L2(Î

( j)
δ )

≤Cδ l+3/2−1/4 =Cδ l+5/4.

It remains to get an upper bound for Ul ,l . It is defined by means of (11) and de-

pends at most on the outer coefficients of order≤ l . Formula (17) gives thatuk(x)

is a meromorphic function with poles of order≤ k at thec j . As a result, the match-

ing functions can be bounded as follows

∣∣∣U( j)
l ,l (X)

∣∣∣≤C|X|l , ∀X ∈ Ô( j)
c

yielding

δ l+3/2
∥∥∥U( j)

l ,l

∥∥∥
L2(Î

( j)
δ )

≤Cδ l+3/2
(

1√
δ

)l+3/2

≤Cδ l/2+3/4.

Using the previous results forl = m− 1 and l = m, we come to the bound an-

nounced in the statement of the lemma.

Matching errors of the first kind are dealt with in the following lemma.

Lemma 9 As in above lemma, we have

N

∑
j=1

∥∥∥∥∥∆χ ( j)
δ

(
m

∑
k=0

δk
(

Π ( j)
k −uk

))∥∥∥∥∥
L2
(
M

( j)
δ

) ≤Cδm/2+1/4.

Proof The chain rule directly yields

∆χ ( j)
δ (x) =

3

∑
i=1

∂ 2
xi

χ
( |x−c j |√

δ

)
=

1√
δ

3

∑
i=1

∂xi

(
xi − (c j)i

|x−c j |
χ ′
( |x−c j |√

δ

))

=
1
δ

χ ′′
( |x−c j |√

δ

)
+

2√
δ

1
|x−c j |

χ ′
( |x−c j |√

δ

)
.

Therefore, since
√

δ/
∣∣x−c j

∣∣< 1 for x∈ M
( j)
δ , we can write

∥∥∥∥∥∆χ ( j)
δ

(
m

∑
k=0

δk
(

Π ( j)
k −uk

))∥∥∥∥∥
L2(M

( j)
δ )

≤ C
δ

∥∥∥∥∥
m

∑
k=0

δk
(

Π ( j)
k −uk

)∥∥∥∥∥
L2(M

( j)
δ )

,
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with a constantC depending only onχ . We now use matching conditions (12) to

bound the above terms. Introducing the matching functions as follows
∥∥∥∥∥

m

∑
k=0

δk
(

Π ( j)
k −uk

)∥∥∥∥∥
L2(M

( j)
δ )

≤
∥∥∥∥∥

m

∑
k=0

δk
(

Π ( j)
k −U( j)

m,k

)∥∥∥∥∥
L2(M

( j)
δ )

+

∥∥∥∥∥
m

∑
k=0

δk
(

uk−U( j)
m,k

)∥∥∥∥∥
L2(M

( j)
δ )

,

expressing them with respect to the fast variableX = (x− c j)/δ, and passing to

spherical variables, we get

∥∥∥∑m
k=0δk

(
Π ( j)

k −U( j)
m,k

)∥∥∥
2

L2(M
( j)
δ )

=

ˆ 2√
δ

1√
δ

ˆ

S 2

∣∣∣∑m
k=0δk

(
Π ( j)

k (RΘ)−U( j)
m,k(RΘ)

)∣∣∣
2
δ3R2dΘdR,

whereS 2 is the unit sphere ofR3. Making use of the sharp asymptotic behavior

(22)

U( j)
m,k−Π ( j)

k = O
R→+∞

(
1

Rm−k+1

)
,

we come to

∥∥∥∥∥
m

∑
k=0

δk
(

Π ( j)
k −U( j)

m,k

)∥∥∥∥∥
L2(M

( j)
δ )

≤C
m

∑
k=0

δk+ 3
2

(
ˆ 2√

δ

1√
δ

1
R2m−2k+2 R2dR

) 1
2

≤C
m

∑
k=0

δk+ 3
2 δ(2m−2k−1)/4 ≤Cδ

m
2 +

5
4

In the same way, we have

∥∥∥∥∥
m

∑
k=0

δk
(

uk−U( j)
m,k

)∥∥∥∥∥
L2(M

( j)
δ,1)

≤Cδ
3
2+m

(
ˆ 2√

δ

1√
δ

R2dR

) 1
2

≤Cδm+ 3
2 δ− 3

4 =Cδm+ 3
4 .

Gathering the previous estimates, we arrive to
∥∥∥∥∥∆χ ( j)

δ

m

∑
k=0

δk
(

Π ( j)
k −uk

)∥∥∥∥∥
L2(M

( j)
δ )

≤C
(

δ
m
2 +

1
4 +δm+ 3

4

)

≤Cδ
m
2 +

1
4 .
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The last matching error term is dealt with in the following lemma.

Lemma 10 There exists a constant C> 0 independent ofδ such that:

N

∑
j=1

∥∥∥∥∥
m

∑
k=0

δk∇ χ ( j)
δ · ∇

(
Π ( j)

k −uk

)∥∥∥∥∥
L2(M

( j)
δ )

≤Cδm/2+7/4.

Proof As above, we have

∇ χ ( j)
δ (x) =

1√
δ

χ ′
( |x−c j |√

δ

)
x−c j

|x−c j |
,

Passing to the fast variable, we can write

∇ χ ( j)
δ (x) · ∇ x

(
Π ( j)

k

(
x−c j

δ

)
−uk(x)

)
=

1
δ
√

δ
χ ′
( |x−c j |√

δ

)
∂R

(
Π ( j)

k (RΘ)−uk(c j +δRΘ)
)
.

We then obtain
∥∥∥∑m

k=0δk∇ xχ ( j)
δ · ∇ x

(
Π ( j)

k −uk

)∥∥∥
L2(M

( j)
δ )

≤ C
δ3/2

∥∥∥∑m
k=0δk∂R

(
Π ( j)

k −uk

)∥∥∥
L2(M

( j)
δ )

≤ C
δ3/2

∥∥∥∑m
k=0δk∂R

(
Π ( j)

k −U( j)
m,k

)∥∥∥
L2(M

( j)
δ )

+ C
δ3/2

∥∥∥∑m
k=0δk∂R

(
uk−U( j)

m,k

)∥∥∥
L2(M

( j)
δ )

,

with a positive constantC independent ofδ. We now need to get bounds on the

derivatives of the matching rules. Chain rule∂R = δ∂|x−c j | and the fact thatc j is a

pole for the meromorphic function∑m
k=0δ l uk(x)−∑m

k=0δ l U( j)
m,l ((x−c j)/δ) yield

∂R

(
m

∑
k=0

δ l uk(c j +δRΘ)−
m

∑
k=0

δ l U( j)
m,l (RΘ)

)
= O

δ→0

(
δm+1) .

We then obtain:
∥∥∥∥∥

m

∑
k=0

δk∂R

(
uk−U( j)

m,k

)∥∥∥∥∥
L2(M

( j)
δ )

≤Cδ
3
2+m+1

(
ˆ 2√

δ

1√
δ

R2dR

) 1
2

≤Cδm+ 7
4 .

To get bounds for the derivatives of the matching rules, we use lemma 3 which

shows that the U( j)
m,k−Π ( j)

k satisfy the recursive Laplace equations with conditions

at infinity given by the matching rules (12). In view of (21), we can then argue that

∂R

(
U( j)

m,k−Π ( j)
k

)
= O

R→+∞

(
1

Rm−k+2

)
.
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This directly leads to

∥∥∥∑m
k=0δk∂R

(
Π ( j)

k −U( j)
m,k

)∥∥∥
L2(M

( j)
δ )

≤C∑m
k=0δk+ 3

2

(
ˆ 2√

δ

1√
δ

∣∣∣ 1
Rm−k+2

∣∣∣
2
R2dR

) 1
2

≤C∑m
k=0δk+ 3

2
(
δ2m−2k+1

) 1
4 ≤Cδ m

2 +
7
4 .

Gathering the previous estimates, we get

∥∥∥∥∥
m

∑
k=0

δk∇ χ ( j)
δ · ∇

(
Π ( j)

k −uk

)∥∥∥∥∥
L2(M

( j)
δ )

≤Cδ
m
2 +

7
4 ,

with C a constant independent ofδ.

4.4 Final and optimal error estimates

From the stability result (36) and the above bounds on the residual, we directly

obtain the following bound for the uniformly valid approximation.

Theorem 4 Let um,δ be the above uniformly valid approximation of the solution

uδ to scattering problem (3) with any of the above conditions (4), (5),or (6) on

the small objects. The following bound holds true

∥∥uδ −um,δ
∥∥

H1(ϒδ)
≤Cδ

1
4+

m
2 ,

with a positive constant C independent ofδ.

The previous theorem gives a theoretical justification for the above inner and

outer expansions. The obtained error estimate is of course not optimal. This is due

as usual in this kind of issues to the two-scale character of thesolution. An optimal

error estimate can however be retrieved outside suitable fixed neighborhoods of

the small obstacles.

Theorem 5 Let

Fρ =ϒ\∪N
j=1B

ρ
c j
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whereρ is fixed sufficiently small positive number. There existδ0 > 0 and a pos-

itive constant Cρ such that for0 < δ ≤ δ0 the following optimal error estimate

holds true ∥∥∥∥∥uδ −
m

∑
k=0

δkuk

∥∥∥∥∥
H1(Fρ)

≤Cρδm+1. (39)

Proof Clearly, forρ sufficiently small the ballsBρ
c j do not intersect. In the same

way, for 0< δ ≤ δ0 with δ0 sufficiently smallum,δ |Fρ = ∑m
k=0δkuk. Now for

an integerp such thatp ≥ m and p/2+ 1/4 ≥ m+ 1, the error estimate on the

uniformly valid approximation yields

∥∥uδ −up,δ
∥∥

H1(ϒδ)
≤Cδ

1
4+

p
2 ≤Cδm+1.

Using the triangular inequality, we readily obtain

∥∥uδ −um,δ
∥∥

H1(Fρ)
≤
∥∥uδ −up,δ

∥∥
H1(ϒδ)

+
p

∑
l=m+1

δ l ‖ul‖H1(Fρ )

thus completing the proof of the theorem.

We have thus completed the proof that the effect of each of the small obstacles

can be approximated by a suitable multipole, the order of whichincreasing with

the accuracy which is being sought. We will see at the end of this paper to what

kind of other scatterers can or cannot be drawn the same conclusion.We are going

now to show how this analysis can be used to obtain a mathematical justification

of Foldy’s usual reduced model in which each small obstacle isreplaced by an

isotropic point scatterer and more importantly how this enablesus to improve it.

5 Foldy’s model and its improvement

After introducing two boundary-value problems involved in the determination of

the inner expansion up to order 2, we give a characterization of the asymptotic

behavior at infinity of their solution. This will enable us ina first step to establish

an optimal bound for the error induced by Foldy’s model and next to improve it.
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5.1 Two fundamental exterior boundary-value problems

In this part, we give a characterization of the asymptotic behavior at infinity of

two boundary-value problems involved in the explicit determination of the inner

asymptotic expansion ofuδ up to order 2. The first of these has been already

introduced in (25).

5.1.1 The exterior boundary-value problems

The second exterior boundary-value problem is stated as follows





∆Λ ( j) = 0 in Ô( j)
c
,

B( j)Λ ( j) = 0 on∂ Ô( j),

Λ ( j) (X) = X+ o
|X|→∞

(1) .

(40)

It is worth underlying that problem (40) actually consists of threeuncoupled

problems each of them posed for one component ofΛ ( j).

As for Φ( j), we seek a solution to (40) in the formΛ ( j) = X+Λ ( j)
BL with Λ ( j)

BL

in the usual Beppo-Levi space (cf., e.g., [24,20]). we readily get that this problem

too has one and only one solution. Clearly, the same conclusioncan be drawn for

either a Dirichlet or a Neumann condition on∂ Ô( j).

5.1.2 Asymptotic expansion at infinity

Using the well-posedness of the interior Dirichlet problem for the Laplace equa-

tion, we easily get that the above scalarΦ( j) and vectorial functionsΛ ( j) admit

the following integral representations in terms of a single-layerpotential





Φ( j) (X) = 1+
ˆ

∂ Ô( j)

1
|X−Y|ϕ

( j)(Y)dsY, X ∈ Ô( j)
c
,

Λ ( j) (X) = X+

ˆ

∂ Ô( j)

1
|X−Y|λ (Y)dsY, X ∈ Ô( j)

c
.

(41)

It is well-known that the Green kernel 1/ |X−Y| can be expanded for|Y|< |X|
using the generating function for Legendre polynomialsPn (t)

1√
1−2xt+ t2

=
∞

∑
n=0

Pn (x) tn for |t|< min
(∣∣∣x±

√
x2−1

∣∣∣
)
, (42)
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as an entire function of|Y|/ |X| (see, e.g., [30, Formula (2), p. 215])

1
|X−Y| =

∞

∑
n=0

Pn

(
X
|X| ·

Y
|Y|

) |Y|n

|X|n+1 . (43)

As a result, the above two functions can be expanded as follows for|X| → ∞




Φ( j) (X) = 1+
∞

∑
n=0

σ ( j)
n (X/ |X|)
|X|n+1 ,

Λ ( j) (X) = X+
∞

∑
n=0

S( j)
n (X/ |X|)
|X|n+1 ,

(44)

with 



σ ( j)
n (X/ |X|) =

ˆ

∂ Ô( j)
Pn

(
X
|X| ·

Y
|Y|

)
|Y|nϕ ( j)(Y)dsY,

S( j)
n (X/ |X|) =

ˆ

∂ Ô( j)
Pn

(
X
|X| ·

Y
|Y|

)
|Y|nλ ( j)(Y)dsY.

(45)

Actually, sinceP0 (x) = 1 andP1 (x) = x, σ ( j)
0 , σ ( j)

1 , andS( j)
0 are expressed in

terms of the respective moments ofϕ ( j) andλ ( j) of order 0 or 1





σ ( j)
0 =

ˆ

∂ Ô( j)
ϕ ( j)(Y)dsY,

Σ( j)
1 =

ˆ

∂ Ô( j)
Yϕ ( j)(Y)dsY,

σ ( j)
1 (X/ |X|) = Σ( j)

1 ·X/ |X| .

(46)

In the same way,S( j)
0 is constant and is given by

S( j)
0 =

ˆ

∂ Ô( j)
λ ( j)(Y)dsY. (47)

Remark 6It should be mentionned that, as regard with the Neumann condition

for Φ( j), sinceΦ( j)
BL = 0 (see Remark 4 above), any of the coefficientsσ ( j)

n is zero.

5.1.3 Some properties of the coefficients of the asymptotic expansion at infinity

We begin with a kind of reciprocity theorem.

Lemma 11 Recall thatS 2 denotes the unit sphere ofR3. The above coefficients

σ ( j)
1 and S( j)

0 satisfy

S( j)
0 =

ˆ

S 2
3σ ( j)

1

(
X̂
)

X̂dŝX. (48)
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Proof Let us denote byO( j)
R = Ô( j)

c
∩BR with BR =

{
x∈ R

3; |x|< R
}

. Green

formula then yields
ˆ

O
( j)
R

(
Φ( j)∆Λ ( j)−Λ ( j)∆Φ( j)

)
dx=−

ˆ

∂ Ô( j)

(
Φ( j)∂n̂ j

Λ ( j)−Λ ( j)∂n̂ j
Φ( j)

)
ds

+R2
ˆ

Ŝ


1+

σ ( j)
0

R
+

σ ( j)
1

(
X̂
)

R2 +O

(
1
R3

)

(

X̂− S( j)
0

R2 +O

(
1
R3

))
ds

−R2
ˆ

S 2


−σ ( j)

0

R2 −
2σ ( j)

1

(
X̂
)

R3 +O

(
1
R4

)

(

RX̂+O

(
1
R

))
ds.

The boundary condition in problems (25) and (40) give that the integral on∂ Ô( j)

is zero. By symmetry we also have
ˆ

S 2
X̂ds= 0.

As a result, we get from the above relation
ˆ

S 2
3σ ( j)

1

(
X̂
)

X̂dŝX −S( j)
0 +O

(
1
R

)
= 0

readily yielding (48) by passing to the limit asR→ ∞.

Remark 7Note that the above lemma gives in particular thatS( j)
0 = 0 when deal-

ing with a Neumann condition.

We are now going to establish that we can always ensure thatσ ( j)
1 = 0 by a

change of variables of the form

X = X′+X0 (49)

obtained by suitably translating the origin. This is preciselythe way, which was

previously announced, for adequately fixing the centers of phasesc j in Foldy’s

model to improve its accuracy. We first prove the following intermediary lemma.

Lemma 12 The following formula holds true

ℑ σ ( j)
0 =− ℑ ν j

4π

ˆ

∂ Ô( j)

∣∣∣Φ( j)
∣∣∣
2
ds. (50)

and thusσ ( j)
0 satisfies

σ ( j)
0 6= 0 (51)

when dealing with the impedance boundary condition.
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Proof We proceed as in the proof of the above lemma and use Green’s formulato

write

ˆ

O
( j)
R

(
Φ( j)∆Φ( j)+

∣∣∣∇ Φ( j)
∣∣∣
2
)

dx=−
ˆ

∂ Ô( j)
Φ( j)∂n̂ j

Φ( j)ds

+R2
ˆ

S 2

(
1+O

(
1
R

))(
−σ ( j)

0

R2 +O

(
1
R3

))
ds.

Expanding and passing to the limit asR→ ∞, we directly get
ˆ

Ô( j)
c

∣∣∣∇ Φ( j)
∣∣∣
2
dx+

ˆ

∂ Ô( j)
Φ( j)∂n̂ j

Φ( j)ds+4πσ( j)
0 = 0 (52)

which directly yields formula (50). The rest of the proof is a consequence of condi-

tion (16) and the fact that Cauchy dataΦ( j)|
∂ Ô( j)

and∂n̂ j
Φ( j)|

∂ Ô( j)
of Φ( j) cannot

be zero simultaneously.

Remark 8We have already pointed out thatσ ( j)
0 = 0 for the Neumann condition.

The above propertyσ ( j)
0 6= 0 holds for the Dirichlet condition also by using (52).

Let us now defineΨ( j) the function obtained fromΦ( j) by the above variable

change (49)

Ψ( j) (Y) = Φ( j)(Y+X0). (53)

This function satisfies the same boundary-value problem thanΦ( j). Expanding

1/ |X| for sufficiently large|Y| as follows

1
|Y+X0|

=
1
|Y|

∞

∑
n=0

(−1)n
Pn

(
Y
|Y| ·

X0

|X0|

) |X0|n
|Y|n

we get the following asymptotic expansion forΨ( j) as|Y| → ∞

Ψ( j)(Y) = 1+
σ ( j)

0

|Y| +
1

|Y|2
(

Σ( j)
1 −σ ( j)

0 X0

)
· Y
|Y| +O

(
1

|Y|3

)
. (54)

We have thus almost proved the following theorem.

Theorem 6 The two first coefficientsσ ( j)
0 and Σ( j)

1 of the asymptotic expansion

of Φ( j) for |X| → ∞ have to be modified according to the variable change (49) as

follows

σ ( j)
0,X0

= σ ( j)
0 , Σ( j)

1,X0
= Σ( j)

1 −σ ( j)
0 X0. (55)
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Therefore, by possibly making the above variable change, wecan always assume

that

Σ( j)
1 = 0 (56)

and also, from (48), that

S( j)
0 = 0. (57)

Proof For boundary condition of problem (25) and for the case of a Dirichlet

boundary condition, we obtain (56) by passing to the variableY with

X0 =
1

σ ( j)
0

Σ( j)
1 . (58)

The case of a Neumann condition does not require any change: both σ ( j)
0 , Σ( j)

1 ,

andS( j)
0 are then zero.

5.2 The usual Foldy model

We first determine the first-order outer asymptotic expansion ofuδ explicitely and

show how Foldy’s usual model can then be derived and error estimates established.

5.2.1 Explicit determination of the first-order outer asymptotic expansion

We follow the general procedure already given above. Both the outer and inner

zeroth-order asymptotic expansions have been determined. We just recall thatu0 is

obtained by just disgarding the effects of the small obstacles. The inner expansion

is obtained for each small object by

Π ( j)
0 (X) = u0 (c j)Φ( j) (X) (59)

whereΦ( j) is one of the two functions introduced above.

The matching rules give that the first-order expansion contains at most monopole

sources located at thec j

u1(x) =
N

∑
ℓ=1

h(1)0 (κ |x−cℓ|)Y( j)
0 (60)

whereh(1)0 is the first kind Hankel function of order 0 andY( j)
0 is a yet undeter-

mined spherical harmonic function of order zero, really a constant.
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To determineY( j)
0 , we have first to define the matching function U( j)

0,1 from the

following expansion

u1δ(c j +δX) = u0 (c j +δX)+δu1 (c j +δX)

= U( j)
1,0 (X)+ o

δ→0
(1) .

Since

h(1)0 (z) =
eiz

iz
=

1
iz
+

iz
2
+ o

z→0
(z) , (61)

we readily get

U( j)
1,0 (X) = u0(c j)+

Y( j)
0

iκ |X| . (62)

Matching rules

Π ( j)
0 (X)−U( j)

1,0 (X) = o
|X|→∞

(
1
|X|

)

given above in (12) then yield

Y( j)
0 = iκσ ( j)

0 u0(c j). (63)

First-order outer coefficientu1 is hence obtained as the field created by the

following monopoles placed at the centers of phasec j

u1 (x) = iκ
N

∑
j=1

σ ( j)
0 u0(c j)h

(1)
0

(
κ
∣∣x−c j

∣∣) . (64)

5.2.2 Derivation of the usual Foldy model

In view of the above calculation, up to the first-order terms inδ, the total field

resulting from the scattering of an incident fieldw which would be present in the

proximity of c j without the small scatterer placed there, is given by

w(x)+ iκδσ( j)
0 w(c j)h

(1)
0

(
κ
∣∣x−c j

∣∣) . (65)

This is the crucial assumption of Foldy’s isotropic model. Thescattering prob-

lem related to this model is set by looking to an approximation of the total field as

the superposition of the incident fielduinc andN unknown monopoles

uF
δ (x) = uinc (x)+

N

∑
ℓ=1

A(ℓ)h(1)0 (κ |x−cℓ|) . (66)
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(see, e.g, [14,22]) whose strengths can be determined by solving the following

linear system





A( j) = iκδσ( j)
0

(
uinc (c j)+∑1≤ℓ≤N

ℓ 6= j

A(ℓ)h(1)0

(
κ
∣∣c j −cℓ

∣∣)
)

(1≤ j ≤ N) .

(67)

Clearly, if A denotes the column-wise vector collecting theA( j), the above

system can be put in the following compact form

A−δΞA= δB (68)

whereΞ is theN×N matrix whose coefficients areΞ jl = iκσ ( j)
0 h(1)0

(
κ
∣∣c j −cℓ

∣∣)

for j 6= l andΞll = 0, andB j = iκσ ( j)
0 uinc (c j). System (68) is set in term of a

Neumann matrix obtained as a pertrurbation of the identity matrixasδ → 0. The

proof of the following lemma can be readily obtained from the explicit entire

series expansion of the inverse ofI −δΞ

(I −δΞ)−1 = I +δΞ+δ2Ξ2+ · · · (69)

Lemma 13 System (68) can be uniquely solved in a stable way asδ → 0. More-

over, its solution admits the following expansion

A= A0+δA1+ · · ·+δnAn+ o
δ→∞

(δn) (70)

whose coefficients are recursively defined by

A0 = 0, A1 = B, An+1 = ΞAn (n= 1,2, . . .) (71)

Hence,

A( j)
1 = iκσ ( j)

0 u0 (c j) . (72)

In other words, the 1st-order expansion ofuF
δ in powers ofδ coincides with the

outer expansion ofuδ . As a result, we get the following theorem containing the

justification of Foldy’s isotropic model from above theorem thatestablishes opti-

mal error bounds for the outer approximation ofuδ in section 5
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Theorem 7 Let uδ be the total field of scattering problem (3) with impedance (4)

or sound-soft boundary condition on the small objects. Let uF
δ be the solution (66)

obtained from the above Foldy model. Then, there existδ0, ρ > 0 and a constant

Cρ such that for0< δ ≤ δ0 the following optimal bound holds true

∥∥uδ −uF
δ
∥∥

H1(Fρ) ≤Cρδ2 (73)

(see Theorem 5 for the definition ofFρ).

Remark 9Clearly, using the usual integral representation of the far fieldaδ (Θ)(
Θ ∈ Ŝ3

)
, Ŝ3 being the unit ball ofR3, as defined in (3) (see e.g. [24]), and

defining in the same way the far fieldaF
δ (Θ) corresponding to the fielduF

δ provided

by the Foldy model, we readily get the following estimate

∥∥aδ −aF
δ
∥∥

Hs
(
Ŝ3

) ≤Csδ2 (s∈ R) (74)

with a constantCs independent ofδ.

5.3 The improved Foldy model

We now explicitely expand both the exact solutionuδ of the multi-scattering prob-

lem and its approximationuF
δ through the usual Foldy-Lax model up to order 2.

This will enable us to see that it is possible by adequately choosing the centers of

phasesc j and suitably writing this model to gain one further order of convergence.

5.3.1 Explicit determination of the 2nd-order outer asymptotic expansion

We first determine the 1st-order asymptotic expansion ofuδ . Expanding

u1δ (c j +δX) = u0 (c j +δX)+

δ




N

∑
ℓ=1
ℓ 6= j

iκσ (ℓ)
0 u0 (cℓ)h(1)0

(
κ
∣∣c j −cℓ+δX

∣∣)

+iκσ ( j)
0 u0 (c j)h(1)0 (κδ |X|)




= U( j)
1,0 (X)+δU( j)

1,1 (X)+ o
δ→0

(δ) ,
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we get the matching function

U( j)
1,1 (X) = ∇ u0 (c j) ·X+d( j)

with

d( j) =
N

∑
ℓ=1
ℓ 6= j

iκσ (ℓ)
0 u0 (cℓ)h(1)0

(
κδ
∣∣c j −cℓ

∣∣)+ iκσ ( j)
0 u0 (c j) . (75)

Above matching rules (12) then give

Π ( j)
1 (X) = ∇ u0 (c j) ·Λ ( j) (X)+d( j)Φ( j) (X) (76)

whereΛ ( j) is defined above as the solution to (40).

Matching rules once more compelu2 to be in the following form

u2 (x) =
N

∑
ℓ=1

h(1)0 (κ |x−cℓ|)Y(ℓ)
0,2 +

N

∑
ℓ=1

h(1)1 (κ |x−cℓ|)Y(ℓ)
1,2

whereY(ℓ)
k,2 are undetermined spherical harmonics of degreek (k= 0,1) andh(1)1 (z)

is the first kind spherical Hankel function of order 1 (cf., e.g., [15])

h(2)1 (z) =−∂z
eiz

iz
=−eiz

z2 (i +z) .

Since

h(2)1 (z) =− i
z2 −

i
2
+ o

z→0
(1)

then

u2δ (c j +δX) =
(
u0+δu1+δ2u2

)
(c j +δX)

= U( j)
2,0 (X)+δU( j)

2,1 (X)+ o
δ→0

(δ)

so that 



U( j)
2,0 (X) = U( j)

1,0 (X)− i
κ 2|X|2Y( j)

1,2 ,

U( j)
2,1 (X) = U( j)

1,1 (X)− i
κ |X|Y

( j)
0,2 .

Since




Π ( j)
0 (X)−U( j)

2,0 (X) = 1
|X|2 u0 (c j)σ ( j)

1 · X
|X| +

i
κ 2|X|2Y( j)

1,2 + o
|X|→∞

(
1

|X|2
)
,

Π ( j)
1 (X)−U( j)

2,1 (X) = 1
|X|

(
∇ u0 (c j) ·S( j)

0 +d( j)σ ( j)
0

)
+ i

κ |X|Y
( j)
0,2 + o

|X|→∞

(
1
|X|

)
,
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matching rules then give




Y( j)
1,2 = iκ 2u0 (c j)σ ( j)

1 · X
|X| ,

Y( j)
0,2 = iκ

(
σ ( j)

0 d( j)+ ∇ u0 (c j) ·S( j)
0

)
.

We have thus obtained that the second-order term in the outer expansion ofuδ

reads

u2(x) = ∑N
j=1 iκ 2u0 (c j)h(1)1

(
κ
∣∣x−c j

∣∣)σ ( j)
1 · x−c j

|x−c j |+

∑N
j=1 iκσ ( j)

0


∑N

ℓ=1
ℓ 6= j

iκσ (ℓ)
0 u0 (cℓ)h(1)0

(
κδ
∣∣c j −cℓ

∣∣)

+iκσ ( j)
0 u0 (c j)+ ∇ u0 (c j) ·S( j)

0


h(1)0

(
κ
∣∣x−c j

∣∣) .
(77)

The second-order term of the asymptotic expansion of the solution to Foldy’s

model is obtained more easily from the above Neumann series expansion

uF
2(x) =

N

∑
j=1

iκσ ( j)
0




N

∑
ℓ=1
ℓ 6= j

iκσ (ℓ)
0 u0 (cℓ)h(1)0

(
κδ
∣∣c j −cℓ

∣∣)

h(1)0

(
κ
∣∣x−c j

∣∣) (78)

5.3.2 The improved Foldy model

The 2nd-order outer coefficient (77) contains dipolesiκ 2u0 (c j)h(1)1

(
κ
∣∣x−c j

∣∣)Σ( j)
1 ·

(x−c j)/
∣∣x−c j

∣∣which are not present in the same order one corresponding to the

Foldy model. If we stop here with the derivation of the model, errorbound (73) can

no more be improved. Actually, a further order of convergence can be gained by

suitably choosing the centers of phasec j instead of taking them rather intuitively.

The correct procedure is the following.

– Take intuitivelyc j as previously indicated such that thej-th small bodyO( j)
δ

is contained in the ballBλδ
c j

.

– Scale the variableX = (x−c j)/δ and solve problem (25).

– Determineσ ( j)
0 andΣ( j)

1 and in view of (55) and (58) correct the center of

phase according to

ccorr
j = c j +

δ
σ ( j)

0

Σ( j)
1 . (79)

The correction of the centers of phase keepsσ ( j)
0 unchanged while setting the

dipole momentΣ( j)
1 to zero . Fortunately enough, according to (48), coefficient

S( j)
0 is also zero then.



Multiple scattering by small bodies. 43

Coefficientsu2 (x) anduF
2(x) still differ by the term

(
iκσ ( j)

0

)2
u0 (c j) but it is

easy to restore the agreement at this order too by a slight modification of the Foldy

model, actually by substituting the scattering coefficient

w(x)+
iδκσ( j)

0

1− iδκσ( j)
0

w(ccorr
j )h(1)0

(
κ
∣∣x−ccorr

j

∣∣) (80)

for the previous one in (65). It can easily be proved then that the modified Foldy

model yields a 2nd-order approximation inδ of the actual waveuδ .

Theorem 8 Let the centers of phase and the scattering coefficients be defined

according to (79) and (80) respectively. Then the solution uFL
δ corresponding to the

Foldy model (67) yields an approximation of the solution to themulti-scattering

problem (3) satisfying the following error bound

∥∥uδ −uFL
δ
∥∥

H1(Fρ) ≤Cρδ3 (81)

under the same conditions and notation already used in Theorem 7.

6 Extensions and concluding remarks

A first part of this section is devoted to the consideration of impedance bound-

ary conditions with another asymptotic behavior than the critical one considered

above. By considering obstacles that are spheres, we in particular retrieve the well-

known facts that the usual isotropic Foldy model cannot be used to approximate

the effect of small sound-hard obstacles. We next give some indications on the

adaptations which can be carried out to deal with small penetrable obstacles. To

conclude, we give some indications on possible extensions ofthis study for other

asymptotic regimes.

6.1 Multiple scattering problem relative toN spheres

We look at the above multiple scattering problem relative toN spheres of radiusδ

but now we consider two additional asymtotic behavior for thesurface impedance

of the small obstacles. The centers of phase are naturally the centers of the spheres

in this configuration. Calculations, too long to be reported here, readily then yield
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the coefficients of the outer expansion of the total wave for all the considered

boundary conditions in an explicit way. The 0-th order coefficient u0(x) is always

uinc(x).

The total wave is now denoted byuδ,m (m= 0,1,2,3,4). The additional sub-

scriptm is used to specify to what boundary condition this solution corresponds.

In all cases, the total wave has the following asymptotic outerexpansion

uδ,m(x) = uinc (x)+δ
N

∑
j=1

h0
(
κ
∣∣x−c j

∣∣)Y( j)
0,1,m+δ2

N

∑
j=1

h(1)0

(
κ
∣∣x−c j

∣∣)Y( j)
0,2,m+

δ3
N

∑
j=1

h(1)0

(
κ
∣∣x−c j

∣∣)Y( j)
0,3,m+h(1)1

(
κ
∣∣x−c j

∣∣)Y( j)
1,3,m · x−c j∣∣x−c j

∣∣ .

Recall that the Hankel function of the first kind can be retrieved from the following

expression

h(1)n (z) = zn(−z−1∂z
)n eiz

iz

(cf., e.g., [25]).

Sound-soft spheres.

– Boundary condition

uδ,0 = 0 onS
δ
c j

( j = 1, . . . ,N) ,

S δ
c j

being the sphere of centerc j and of radiusδ.

– 1st-order

Y( j)
0,1,0 =−iκuinc(c j)

– 2nd-order

Y( j)
0,2,0 = T( j)

{
Y(ℓ)

0,1,0

}N

ℓ=1

with

T( j) {vℓ}N
ℓ=1 =−iκ

(
v j + ∑

ℓ 6= j

h(1)0

(
κ
∣∣c j −cℓ

∣∣)vℓ

)
.

– 3rd-order

Y( j)
0,3,0 = T( j)

{
Y(ℓ)

0,2,0

}N

ℓ=1
− iκ 3

3
uinc (c j) .

Y( j)
1,3,0 =−iκ 2∇ uinc (c j)

Super-critical acoustic impedance spheres.
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– Boundary condition

∂n j uδ,1−
ν j

δ2 uδ,1 = 0 onS
δ
c j

( j = 1, . . . ,N) ,

– 1st-order

Y( j)
0,1,1 =−iκuinc(c j)

– 2nd-order

Y( j)
0,2,1 = T( j)

{
Y(ℓ)

0,1,1

}N

ℓ=1
+

iκ
ν j

uinc(c j)

– 3rd-order

Y( j)
0,3,1 = T( j)

{
Y(ℓ)

0,2,1

}N

ℓ=1
− iκ 3

3
uinc (c j)−

1
ν j

T( j)
{

Y(ℓ)
0,1,1

}N

ℓ=1
− iκ

ν2
j

uinc (c j) .

Y( j)
1,3,1 =−iκ 2∇ uinc (c j) .

Critical acoustic impedance spheres.

– Boundary condition

∂n j uδ,2−
ν j

δ
uδ,2 = 0 surS δ

c j
( j = 1, . . . ,N) ,

– 1st-order

Y( j)
0,1,2 =−iκ

ν j

1+ν j
uinc(c j)

– 2nd-order

Y( j)
0,2,2 =

ν j

1+ν j
T( j)

{
Y(ℓ)

0,1,2

}N

ℓ=1

– 3rd-order

Y( j)
0,3,2 =

ν j

1+ν j
T( j)

{
Y(ℓ)

0,2,2

}N

ℓ=1
− iκ 3

3
uinc (c j)+ iκ 3 ν j

(1+ν j)
2 uinc (c j)

Y( j)
1,3,1 =−iκ 2 ν j −1

2+ν j
∇ uinc (c j) .

Sub-critical acoustic impedance spheres.

– Boundary condition

∂n j uδ,3−ν juδ,3 = 0 surS δ
c j

( j = 1, . . . ,N) ,

– 1st-order

Y( j)
0,1,3 = 0



46 A. Bendali, P.-H. Cocquet, S. Tordeux

– 2nd-order

Y( j)
0,2,3 =−iκν juinc (c j)

– 3rd-order

Y( j)
0,3,3 =

(
− iκ 3

3
+ iκν 2

j

)
uinc (c j)

Y( j)
1,3,3 =

iκ 2

2
∇ uinc (c j) .

Sound-hard spheres

– Boundary condition

∂n j uδ,4 = 0 surS δ
c j

( j = 1, . . . ,N) ,

– 1st-order

Y( j)
0,1,4 = 0

– 2nd-order

Y( j)
0,2,4 = 0

– 3rd-order

Y( j)
0,3,4 =− iκ 3

3
uinc (c j)

Y( j)
1,3,4 =

iκ 2

2
∇ uinc (c j) .

In view of the above expansions, it can be argued that the usualFoldy model

can be retrieved from the critical case just by takingν j = 0 for high impedance

and, as a limiting case, sound-soft spheres. In the opposite case, the above expan-

sions clearly yield that the 1st-order outer expansion reduces to the incident field

for weak impedance and sound-hard spheres and can also be derived ina formal

way from the critical surface impedance model by lettingν j → ∞. However, the

improvement of Foldy’s model as done above requires specific expressions for the

self-interaction terms.

We also retrieve the well-known fact that dipole effects are involved at the

lowest order for hard-sound scatterers. They therefore cannot be handled by means

of a simple isotropic usual Foldy’s model.
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6.2 Extension to other kinds of scatterers

There is no difficulty to extend the above asymptotic analysisestablishing that the

scattered field can be approximated at any order of accuracy inδ by multipoles

to the case where the scatterers are characterized by a low impedance boundary

condition in the meaning given above for the spheres. However,this extension is

not obvious for the other case of a high surface impedance. Thisis mainly due to

the fact that then inner problems are characterized by a boundary condition set in

terms of non smooth data

Π ( j)
k =

1
ν j

∂n̂ j
Π ( j)

k−1 on∂ Ô( j).

Of course, such a difficulty occurs only when the geometry of the scatterer presents

some singularity. This probably means that for non smooth scatterers an expansion

in integer powers ofδ does not exist. A similar situation is met for other kinds of

singular asymptotic expansions (see, e.g., [10,6]).

All the above study can be adapted to deal with the case when the small objects

are inhomogeneities, in other words, penetrable scatterers. It isenough in this case

to substitute the refractive indexn j/δm to the surface impedanceν j/δm (see [9]).

6.3 Concluding remarks

This study established that the scattered wave by a finite number of small scatter-

ers can be approximated by point scatterers for a fixed frequency at any order of

accuracy corresponding to the size of the small obstacles. It hasbeen shown how

the usual isotropic Foldy method can be derived in a rigorous way from the first-

order of these approximations for obstacles whose scattering properties are close

to that of a sound-soft scatterer. An outcome of the mathematical justification was

the possibility to increase the accuracy of this model by suitably locating the cen-

ter of phase of the monopoles involved in Foldy’s model. These results have been

obtained for the following asymptotic regime: the frequency, thenumber of partic-

ules, and the distance between any pair of obstacles are assumed to be fixed while

the size of the scatterers goes to zero.
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Foldy’s model can be used as a part of a homogenization proceduremainly

for making up metamaterials (cf., e.g., [27,28,9]). A justificationof this approach

mainly requires a control on the above bounds relative to the number N of par-

ticules and their density. An attempt towards such estimatesis given [27,8]. In

our opinion however, the issue consisting of defining in a precise way the various

asymptotic regimes for such a scattering problem in its full extent largely reamins

an open question.
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