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Abstract The asymptotic analysis, carried out in this paper, for the prolf a
multiple scattering of a time-harmonic wave by obstacles wisazeis small as
compared with the wavelength establishes that the effect drttadl bodies can
be approximated at any order of accuracy by the field radiated iy pources.
Among other issues, this asymptotic expansion of the wavedhesi a mathe-
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matical justification with optimal error estimates of Foldg®thod that consists
in approximating each small obstacle by a point isotropictsoat Finally, it is
shown how this theory can be further improved by adequatelyitog#te center
of phase of the point scatterers and taking into account of s&lfactions.

1 Introduction

An extensive description of the numerous physical and tecigiedl issues which
can be reduced to the solution of a multiple scattering probtemiving scatter-
ers, small comparatively with the wavelength, is given in [26ag. 7] and in [7,
17]. Solving such kinds of problems is also basic in inversetedag [32] and
in time-reversal imaging applications (cf. [21] and the referencereth). Foldy’s
model is a simplified way for dealing with the small obstacle$][A compre-
hensive account of this approach can be found in [22, p. 297]. Esdalar wave
equation, it mainly consists in characterizing the scattepirggerties of each of
the small inclusions in the low-frequency limit by a parametaited its scattering
coefficient, and in viewing the field it scatters as the one tadidy a monopole
placed at a chosen center of phase. The strengths of the kxptivaonopoles
are then determined by solving the corresponding scatteringgarolidne speaks
then of ‘isotropic scattering’ [14]. As pointed out in [22, p. 302jet ‘important
word’ here is ‘isotropic’. For instance, such an approach doesovatrt¢he case of
sound-hard scatterers [22, p. 302]. In this case, it is hecessarydifyrtite usual
Foldy method and to add a dipole field to correctly approximaemive scattered
by the small body [22, p. 302]. Recently, it has been observeadtiding a dipole
field, and thus departing from a plain isotropic scattering appragacreases the
accuracy of the method notably [21].

As brought out in many studies (among many other sources, ongitegd22,
ch. 8] or [26, ch. 7] and the references therein), the key propertyeabdiis of
the above reduced models lies in the fact that the wave is nity prapagative
at the scale of the small obstacles and as a result is governaddbiger model
of propagation of waves: the long-wave (also called low-frequerayime, the
overall scattering problem meanwhile remaining posed in terrtseofisual wave
equation. When the aim is just to perform a model reduction, tihedetween the
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long-wave and the propagation regime is obtained by approxignétie wave in
the proximity of each small obstacle using one of the followieghniques. The
simplest of these is based on a low-frequency approximationeofvtve in the
immediate proximity of each small scatterer [22, Chap. 8]. Othere involved

procedures use the approximation of the wave from an integral repediss [21,

26] or a modal representation [7] of it again near the small chsta

Our first objective in this paper is to achieve a full asymptatialysis of the
multiple scattering problem to theoretically establish thathskinds of approx-
imations can be performed at any order of accuracy. Namely the vaveée
approximated at any chosen order of accuracy by accordinglyasicrg the order
of the multipoles accounting for the field scattered by each@tmall obstacles.
Seemingly the approaches cited above are not adapted forgkisitae main rea-
son lies in the fact that the long-wave model must be improveenwhcreasing
the order of the asymptotic expansion. The only techniquea@mtly fulfilling
such a requirement, and being used here, is the method of maisketptotic
expansions (see, e.g., [11-13]).

This asymptotic analysis is first used to prove optimal erromests for
Foldy’s usual isotropic model. The justification of this mbtas been already
obtained by other techniques. One of these is based on ihezgrations methods
(see, e.g., [28,27,26,8]). Another method for performing thisfjaation, lim-
ited to disks in 2D and spheres in 3D, is to use a modal expamditme wave
around each small object [7]. Actually, the real novelty and thedrtance of the
asymptotic expansion approach lie in the possibility to imprite intuitive Foldy
model. This expansion shows how it is possible to gain oneduxider of con-
vergence by adding a term accounting for the self-interactiorts{fas recently
pointed out by Liao and Ji [21] in another context, and more irtgydly by intro-
ducing a correction to the centers of phase of the correspondingpotas. Such
a correction, which is irrelevant when the considered scatterespheges [21] or
disks [7] does not seem to have been proposed before, even in @sticevay.

The geometry of the small obstacles considered in this stugyiie general.
They are only assumed to be Liptschitz. However, to improvedhdibility, we
limit ourselves to the case where the scattering properties bfafdbem are char-
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acterized either by a surface impedance, a sound-hard or a sofirlibandary

condition. The considered surface impedance, also termedisoasea wall-law,

can be seen as critical in terms of the transition from a sound-harddond-soft
obstacle. Some indications will be also given concerningahgropriate adap-
tations needed for dealing with penetrable obstacles and flieutlies steming

from other types of impedance boundary conditions.

The outline of the paper is as follows. In Section 2, after gitimg statement
of the scattering problem, we define the method of matched asyimgxpan-
sions used to expand the total wave. In particular, we set eumiitching rules
used to link the expansions of the propagative part of the wasléta small scale
components in the proximity of the small obstacles. Secticddicated to the
proof of the existence and uniqueness of the two-scale asyimptgpansions. It
is at this level that is established the fact that the expenef the propagative
part of the wave consists of multipoles, i.e., spherical wawdfans [22, p. 69].
A serious difficulty stems then: there are many ways to write ddvese wave-
functions. Fortunately enough, the power series expansidreafitherical Hankel
establishes that ultimately any multipole can be unambiglyoidentified. Sec-
tion 4 is dedicated to give a concrete and rigorous shape to thmpsematched
asymptotic expansions. A uniformely valid approximation of tb&l wave is
constructed and validated by means of error estimates. It isshextn how it can
be used to get optimal error estimates for the corresponding appban of the
propagative part of the wave. These expansions of the wave gresed in sec-
tion 5first to retrieve the usual Foldy method of isotropic scitg to establish an
optimal error bound for the corresponding approximation, and toexhprove it
through the procedures mentioned above. In the final Sectioniseess whether
the techniques developed in this study can or cannot handie ther kinds of

scattering problems.

2 The Matched asymptotic expansions method

In this section, we consider the scattering problem dealt withis study. We also
detail the method of matched asymptotic expansions usedttangasymptotic
expansion of the total wave at any order of accuracy.
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Fig. 1 Geometry of the inhomogneneities

2.1 The multiple scattering problem

We denote by andA the wave number and the wavelength respectively in the
infinite medium of propagation. Each of these is defined in texitise other from

the relationkA = 271. Any of the small obstacles is an open doméiﬁ) strictly
contained inZg} (i.e.@ c #2" (j=1,...,N)) where%2" is the open ball of

R3 centered atj and of radiusdA (see figure 1). The dimensionless parameter
0 > 0 is used to state that the obstacles are of small size as cainpwiélrethe

wavelength by assuming that
d< 1 1)

As regards the geometrical smoothness of the scatterers, thempalieitly as-
sumed to be at least Lipschitz.

Thec; are the ‘psychological’ positions of the small scatterers,the.lo-
cations of the small scatterers when observed at a sufficieartye Idistance or
at large scale. At the end of this study, we will develop a rigsrapproach for
settling the position of the; which are taken as the centers of phase of the point
scatterers in Foldy’s model.

At this point, it is necessary to clarify the asymptotic regime ihaonsidered.
Four parameters enter into the picture in this respect: the emgtiA, the size
of the small objects characterized above by the small parametde smallest
distance separating each pair of heterogeneities which chinkee to the wave-
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length by means of a positive parameteas follows
min [¢—cj| >dA 2
1§i,j§N| ( ]| - ) ( )
and the numbeN of particules. In this study, all of these parameters are assumed
to be fixed except the size of the scatterers which goes ta0-a9.
The multiple scattering problem can then be stated as followarins of the

total waveus

(A+K?)us =0in Qg,
o exp(ik|x|) (3)
Us(X) = Uinc(X) + = aé(x/‘XD""X'gm(l/‘XDv
supplemented with one of the following boundary condition
— impedance boundary condition
OnUs = dusondod) (j=1,....N 4
nju(sfguéon F.) (J* 1o )7 ()
— sound-soft obstacle
us=00naoy) (j=1,...,N), (5)
— sound-hard obstacle
On,Us =000 (j=1,...,N). (6)

The data and the notation are the following.

— The infinite domain in which is set the scattering problem (see Bi is de-
noted by
N N
Qs =R3\ (U ﬁé”) . @)
j=1
— Coefficientv; characterizes the scattering properties of small obstﬁfgilé
through an impedance condition set on its bountMﬁj). Assumption

Ovj <0 (8)

is used to characterize its absorption of the incident wavesticoenergy (cf.,

e.g. [18]).
— The unit normah; on 964 is directed outwardg’.).
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Fig. 2 Schematic view of the scattering problem

— The incident wave is denoted hy,c. Usually, it is a plane wavei¢(x) =
exp(ikd-ry) of complex amplitude 1, and propagating in the direction of the
unit vectord, ry being the radius vector of the poixt

For either of the above boundary conditions, it can then besidally estab-
lished [31] that problem (3) has a unique solutignsuch thatpus € H* (Q5) for
anyg € (R3). The notatiori]z andJz stands for the real and imaginary parts
respectively of the complex number

As said above, we now focus on building an asymptotic exparfsials using
the method of matched asymptotic expansions.

2.2 The matched asymptotic expansions

The method of matched asymptotic expansions consists hezgpanding the
wave in the proximity of each of the small obstacles and faughdrom these and
adequately linking the two expansions called inner andrdatéhe terminology

of this approach.
2.2.1 The inner and outer expansions

The construction of the above expansions relies upon the inttiothuof a global
field, called far or outer, describing the overall behaviorhef field scattered out-
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side the immediate vicinity of the small scatterers and a fiefthed inside the
boundary layer enclosing each of them, known as near or ilherouter expan-
sion is obtained by postulating that the far field has the falg expansion:

Us(X) = kiékUK(X) +630(6m), xeR¥andx#¢cj (j=1,...,N).  (9)

The near field corresponds to a zoom on each oﬁﬁé and is expressed in terms
of the fast variables

According to the general approach of the method of matched asyimpxpan-
sions, we look for an expansion for the solution to the abovdipielscattering
problem inside the boundary layer around each small obstadleeifiollowing
form: -
() k(1) m
M7 (X)=ug(ci+oX)=Y o°rn,"(X o (oM. 10
' (X) =ua(ci+6X) = 5 &NMV(X)+ o (&7) (10)

Remark 1Few comments are in order to clarify the notation and some featéires o
the asymptotic expansions.

1. CoordinateX depend on the particular small scatterer being involved. How-
ever this dependence is left implicit for simplicity. We cas@akometimes
more appropriately expre3sin terms of the spherical coordinatesXas- RO
with R=|X| and® = X/ |X].

2. Far and near field is a terminology more linked to scatteringlpros. Inner
and outer are more usual in the framework of matched asymptotinsiqns.
Below we will use one or the other of these terminologies whéerriag to
these expansions and to what concerns them such as for exdmeptedf-
ficients of the asymptotic expansions or the boundary-valubl@mnts these
coefficients satisfy.

3. Any inner expansion ‘sees’ its surounding medium as if it wefiite. In
mathematical words, this amounts to define the expansion cextagorR?3\

—

0'1) of a scaled description

—

o) = {X ER3 x=0X € ﬁg”}

of the obstacle. The outer unit normalde(l) is denoted by;.
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4. Parameted is at our disposal, as soon as it tends to zero. We can thus assum
that each of the scaled obstacied) is included in the unit ballX| < 1. In this
way, the geometrical data related to the inner problems wheheabbstacles
are balls of the same radius is simply a ball of radigs< 1. In other words,

all the normalized domaing(l) then coincide with the ballX| < Ry < 1.
(see [2]).

2.2.2 The matching rules

The matching conditions link the inner and the outer exparsiand allow for
their complete determination. Actually these conditionsregp what is known as
the Van Dyke principle enforcing that either of these exparsmrresponds to
the same solution. Their specific statement depends on thiepraimder consid-
eration (cf., e.g., [5,11,13,19]). For the scattering problem beimgidered here,
we proceed as in [3]. The matching conditions are set during tleerdetation of

the expansions as follows:

— Atruncated outer expansion is expressed with respect to thedaables:

5'ui(cj + 8X).

M3

|
It is then expanded in powers éfand truncated to get:

C sl _ syl m
l;a u|(c,+6X)_I;6 Um'(x)+530(5 ) 11)

J

We think that it is appropriate to refer to theﬂﬂJas the matching functions.
— The matching conditions are then set as follows:
nd-ud - o [—— ) (k=0,....m j=1,....N). 12
k m,k X[ -0 ‘X|m_k ( J ) ( )
Hereafter, the convergence corresponding 0., ., or to Ojx|_, ;. is always
assumed to be uniform relatively ¥a

It is worth noting that assuming an expansion §gf.,3'u (cj + 6X) in the
form (11) implies that the outer coefficienig have a singularity of finite order at
eachc;, i.e., there exisy > 0, p > 0 andM such that

[x—cj|"|u(x—cj)| <M for [x—cj| < p. (13)
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3 Existence and uniqueness of the asymptotic expansions at anyder

In this section, we prove that the inner and the outer coeffisiesin be determined

at any order in a unigue way.

3.1 The inner and outer problems

Plugging expansion (9) into system (3) and identifying terms spoeding to the
same power 0b, we get that each coefficient of the outer expansion satisfies

(k=0,1,...) (14)

(A+KH)uc(x) =0, xe R¥andx#c¢j (j=1,...,N),
Iim‘xHer |X| (a|x‘ - |K) (Uk_ék,ouinc) =0,

wheredy o is the Kronecker symboby o = 1 if k= 0 and 0 otherwise.

We already said that matching rules (12) compel the coefficieptsf the
outer expansion to have a singularity of finite order at egciBoth the form of
the expansions and the restriction assumed on the singularibheafoefficients
of the outer one will be validated by error estimates ensuriegafiproximation
of us by an adequate combination of the truncated expansjq@g]ékuk, and
Skemd* Tocjen M.

Proceeding in the same way as for the far fields, we plug expaf$@) into
(3) and identify terms with the same powersdofWe then get the following kind
of recursive Laplace equations satisfied by the inner codffiie

. . ——¢C
A n(J) — KZn(J) in o)

X k22 77 (k=0,1,...) (15)
B(J)I'Ili” =0ondoli,

where operatoB() is defined according to the boundary condition being consid-

ered _ _
I, Y — vy for (4),
BV ={ plh, for (5), (16)
I 1Y, for (6),

—cC — X .
and 0l) = R3\ ¢() stands for the open complement 6f)). Any term I'I(g“)
corresponding to a subscript< 0 is implicitly assumed to be zero. Condition
Ov; < 0 simplifies some stability results.
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Remark 2The above recursive Laplace equations is a sharper way, imgrovin
with the order of the expansion, to account for the long-wavemedn the vicin-

ity of the small obstacles. The crudest model simply congistliscarding any
propagation effect.

The remainder of this section is dedicated to prove the followhegrem.

Theorem 1 Above equations (14), (15) and matching conditions defined girou
(11) and (12) recursively determine one and only one systemmnef iand outer
coefficientg u, ﬂé”) fork=0,1,...

Theorem 1 is proved by induction. It will be establishedKer 0 and fork+ 1
assuming that it is true up to orderWe begin with some preliminary results.

3.2 Preliminary results

At first, we give a complete characterization of the outer cdefits. We next do
the same for the inner ones whpfj is large enough. We finally establish some
general properties owned by these two kinds of coefficients.

3.2.1 General form of the outer coefficients

The following theorem reduces the determination of the outeffic@nts to that
of a finite number of parameters and is proved in [2].

Theorem 2 Any solution to (14) which has a finite order of singularity tested
in (13) is in the following form:

1 N/ xec
U(X) = ¥}1 Y0 he (kx—cj ) Yak <\§7z;\) )

)

_ a7
xeR¥and x#£¢j (j=1,...,N) (k=0,1,...).

As usual, ﬁl) stands for the spherical Hankel function of the first kind afesr
n and \(]“k) for a spherical harmonic function spanned by e+ 1 spherical
harmonics ¥' (—n < m< n) of order n (cf., e.g., [15,22]). The quote i},
indicates that only a finite number of terms in the sum are emt.z
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The following result is fundamental for the determination of tineeir coeffi-

cients.
Lemma 1 Any solution to the recursive Laplace equations
. f ——=C
MoV = k2ol in o) (k=0,1,2,...), (18)

with mﬁi{ = dJ(_jz) =0and CDS) growing at most agX|” as|X| — o can be written

as follows:

(DIE])( X)|x_ro =

19
=0 (zl k/2 Rf(n+l)+2| +d( i) Rn+2|) ( )fOf |X‘ >1 (19)

where |k/2] is the integral part of K2 and only a finite number of coefficients
dl(’jn)!k are not zero. The series converges uniformly as well as aity dérivatives
for |X| > 1. In particular, for any intege¥
oW (x AW i (1) -1
o] X|") ifand onlyif@,”’ (X)= O X 20
o= o (X) vile00=_ o (XI"*) (0
and
ito)(x)= o (X),thendy @ x)= o (|x“%). (21
o= 0 () thenax @ 00= o (IXI"*). @
Proof Expansion (19) is established in [2]. Interior elliptic estinsatieen read-
ily give that m,ﬁ” is €~ for |X| > 1. The rest of the proof is a straightforward
consequence of the properties of functions having a power seqsision.

Remark 3Theorem 2 and Lemma 1 provide the core foundation for the proof of

theorem 1.
3.2.2 Useful properties of the asymptotic expansion

We first show that the matching functionﬂpsatisfy a system of recursive Laplace
equations.

Lemma 2 Let m and | be integers such that< | < m. Then the matching func-
tions (11) are solution to the recursive Laplace equations:

AUR(X) = —K2Ul) ,(X) for [X] #0,

withu) _—oifl —2 <o0.

ml-2
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Proof Asymptotic expansions of the spherical Bessel and Neumantidasdcf.,

e.g., [15,22]) show thaty, 5 is a meromorphic function with a pole gt thus en-
suring the existence of expansions (11). Furthermore the Laundes sxpansion
of uy 5 atc;j can be differentiated term by term to yield

m m .
5205 8'u(ci+X) = § 8'axUY) + 05,0 (8™M).
Using the fact thati,, 5 satisfies the Helmholtz equation, we get
m
52Ny %5' Ui (Cj + 6X) = —Kk25%Up 5(Cj + 6X)
|=
m-2 .
= k252 % 8'UY) (X) +05.,0(8™)
A )

m .
= k2 ;5' U, +05.0(8M)
|=

The rest of the proof follows from the identification of the two empians in a
straightforward way.

Next lemma gives an accurate expression for the asymptotitvhmalmﬁﬂl(j) —
Uf(ﬂ) as|X| — oo. This result is basic for proving that the matching conditions
uniquely determine the singular parts of the outer coeffisignt

Lemma 3 Assume that theorem 1 is valid up to order k. Then

) 1 WG 1
(Uk,l = ) (RO) = RIGD > Doy (@)+_ O (Rk+2') , (22)
y:

R—+00

for X|>1,and 1=0,...,Kk, where@\/({(),l(O) are determined spherical harmonic

functions of ordew satisfying the following recurrence relations:

K2

%(yjikA,kJ(@) = W%(yjlk—l,k,lfz(e) (I=2....k y=1,...,[1/2]).
(23)

Proof Define ¢y = Ulifl) — I'Il(j) (1=0,...,k). Lemmas 2 and 15 directly yield
that ¢y also satisfy the recursive Laplace equations

Ay) = —K2@y) 2, for |X| > 1
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ensuring as in lemma 1 that

/2] . .
¢ri(RO) = ZO\ ‘Z ( Z) o) REMFLH2Y g g Rn+2V> Y"(o).
n>0|m|<n \ y=

Matching rules (12) then yielgh(RO) = Or_,+ (R7¥71). Function ¢y is
thus the sum of a term iR —(<*1) and a rest given by a power series ifiRL
whose coefficients are spherical harmonic functions. As a resultrest being a
OR-+00 (1/R) is actually aOr-, 1 (1/R*1). This feature will be important in a
subsequent proof establishing that the coefficients of theriexpansion do exist.
The coefficient oR ~(**1) can be obtained by collecting the terms correspond-

ing tonandy such that-(n+ 1) + 2y = —(k+1) +1. The order of the correspond-
ing spherical harmonic is thus= 2y +k—| so that the term iR ~(k+1 involved

in the expansion opy| can be written as follows

sz
Rf(k+1)+| Z} @2(&/]_’)«_'.}(7' (O)
y:

where?,?/v(.f()I (@) is a spherical harmonic function of order The first part of the
lemma is therefore proved.

To prove the recurrence relation @E(Jlk—l,k,l (@), we use the recursive Laplace
equations satisfied b . Expressing the Laplace operator in spherical coordi-

nates, we get

ReAx ¢k = ((ROR)?+ (RR) + A5 ) i,

1 U2 |
~ RKk+D-I Z) vl —y=k= 1)@2<Jw>tkfl,k,l (©)

y:
1
We have used the following propertieRdg)"R* = aR* and A»Y,"(O) =

—n(n+1)Y"(O). Expandingpy 2 in the same way, we come to

Rz L0-2)/2
Rk+1-1+2 %(y+l)+kfl,k,lfz(

1
TR0, <Rk+2|+z)

1 [1/2] () 1
= QLT Vzl%y%k—l,k,lfz(e) +.9. <Rk+2—') ,

Ry 2 = o)
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The latter expression has been obtained by the change of theation index/ =
y+ 1. The recursive Laplace equatiofigy | = —k 2@ _» finally yield recurrence
formula (23).

3.3 Proof of the existence and the uniqueness of the expansion

As said above, we prove Theorem 1 by induction. We establighthieacoeffi-
cients of both inner and outer expansions can be uniquegrmated through the
following procedure. We prove the theorem firstkce 0. Assuming next that it is
true up to ordek, we prove that thék + 1)-th order inner coefficient is uniquely
determined. We then complete the proof by establishing the sdatement for
the outer coefficient of ordde+ 1.

3.3.1 Zeroth-order expansions

Noting thath (z) ~ Cyz "1 for z— 0 (cf., e.g., [15]), matching conditions (12)
impose thatig is not singular in the neighborhood of any of ttye As a result,

Ug = Ujnc in RS,
To get the zero-th order inner coefficient, we first compute the mragcfunc-
tions (11). A Taylor expansion yields:

Uo(Cj + ORO) = Up(cj)+ 0 (1) =UJl(X)+ o (1).
0—0 ? 0—0

Functionsl‘léj) then satisfy the following boundary-value problem on the open
—=¢C —= —=
complemenw() =R3\ (i) of ¢(I)
() o)
AMyY =0ino)
B =0onae, (24)
Mg (X) = Uglg (X) = 01 (1),

in which BU) is the differential boundary operator defined in (16).
To solve problem (24), we consider the following one

—C

A0 —0in o)
B o) — 0 ongel), (25)
oW (X)=1+ o (1),

IX| 500
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A solution to (25) is sought in the forrp()) = 1+ wéjL) where its variational part
cDé’E is lying in the usual Beppo-Levi space (cf., e.g., [20,24])

~1/2

BLU = {0 (@TDC) F(1+ X)) ToandOe e L2 (0/@0)}

since, as established in [24] for instance, this space is a&Hi#ipace for the norm
[®llg i) = HD‘I’HLZ((/@C) : (26)
We can then state the following lemma.

Lemma 4 The zero-th order inner coefficieﬁtéj) satisfying (24) is uniquely de-
fined and is given by
1 = (i@,

Proof Clearly, it is enough to prove that problem (25) is well-posed énftilow-

ing functional framework
Hi (ﬂif) —{oc7(607); 00eH! (00)), voc 7 (R}

The integral representations of the solution to the Laplacetenugf., e.g., [16,
24)) readily yield that™ () = 1 — @) satisfies

ro-of )

and thus belongs to BL. The boundary condition satisfied §) on d&(i)
yields the following one fof (1)

ra— 1, for o) = 0,
07D —vy;r ) = —y;, for 95 @) — v;0) =0,
5,7 =0, for g5, @) = 0.

Thus, we are accordingly led to solve one of the following vavizl problems

repL, r(i)|(m7j) =1 vy eBLD, L,u|(m7j) =0,

/ACDFU) -O¥dx=0,
Z8))

{ repLd), vweBL),

/ACD/-(J).DL.UdXJr Vi Aro“)‘pda:—vj/Awda,
o) a0 00
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riepL®, vwepLb),
/A_CDF(1>~DWdX:O.

o)
Let us denote by

all(o,w) = {

the bilinear form of the variational problem being consideredvabin view of

[ 5o 0@-0Wdx+v; [~ ®¥do, 27)
ngj)c Oo-0OWdx,
(26), it is directly coercive on Bl for the second case in (27). For the first one,
denoting by O< 6 < mrthe opposite of the argument of the complex numiger
i.e.,vj = |vj|e'% we can write that
i0-() (b D) — 6 _ 2

e’al) (o, 0) =¢ ||D<D\|L2<ﬁ@c> + |vj| |\<D||L2(mj)> :

This shows that

‘a“) <®75)‘ >0 (eiea(i) (@76)) :sinel\DCDHLz@Tj)C)

and hence establishes that the bilinear form is coercive dh Bithis case too.
Lax-Milgram lemma then straightforwardly completes the proof.

Remark 4For the sound-hard boundary conditign @) =0, V) = 0 and hence
o) = 1. This feature will have an important consequence for the restuofithe
multi-scattering problem by Foldy’s method.

We have hence established the existence and the uniquen#ss oéro-th
order inner and outer expansions.

3.3.2 First part of the inductive step: determination of theer coefficient

In view of Theorem 2 and the singularity of spherical Hadﬁéi (z)atz=0, it
can be argued that

N K .
w9 =3 3 Y (kx—a)z(0), (28)
i=1y=
wherej‘(;,f,j(il(e) are spherical harmonic functions of ordemot yet determined.

The following remark is fundamental both in the proof by inductotior explic-
itly obtaining the expansion up to the first-order which will bbasic step in the
mathematical justification of Foldy's model.
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. 1 _
Remark 5Sinced* h{" (k3R) ~5_,0 C,8* Y, thet%py(k)u

recursively fory = k,k— 1, until y = 0. Moreover, at each step, only the matching

(©) can be determined

functions U.1) (I =0,...,k—y) are involved for writing down the related equa-
tions. This gives rise to the following extremely important pndyeit is enough
to expanoz'“rl 3'ui (cj + 6RO) up to ordekk, i.e.

k+1

ch‘i'w G+ OX) = Z}a‘ oy () +0/(8Y) (29)

instead up to ordek+ 1 to determine th@éﬁ, k+1( )-

The following lemma, establishing a link between matchingcfions Lf<+1,
and LL‘l , is the first ingredient towards proving that the outer coefficign; can

be uniquely determined.
Lemma 5 The following relations hold true
. . |2 .
U|(<J+)1J (RO) = U|(<f|)(R9) = s N2t+kfl,tf%ﬁ2(t£k—l,k+1(e)
(j=1,...,N; 1 =0,...,k)
where the constantsyly are those involved in the power series expansion of the
spherical Neumann function (cf. [25, formulae 10.47.4, 1))2.

ya(kg) = VT s GO D020 ooy ),
2 &% Wrheion A '

herel" denotes the usual gamma function

Proof Letl be an integer such that<0l < k. The matching functions are defined

through the above identification (29). Writing the left-hand siti28) as

k+1
%6'u| cj+0X) = Z}é'w (¢j + 0X) + 6 u 1 (cj + 8X),

reduces the determination of the matching functiob%ly(l =0,...,k) to that of
the terms in8' involved in the expansion @**tuy, 1(cj + 8X). Itis worth noting

that only the singular part cln°§1l> = jn+iyn contributes to these terms

Kk .
5k+luk+l(ci +0RO) = 31 %hy(K5R)19f¥,E|J(>+l(e)

k
:5k+12) Yy(KSR)A\D, 1(©) +05.,0(8Y).
y=
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Plugging the power series expansionypfkSR) in the above relation, we come
to

k .
& Muia(ci +8RO) =81 5 5 Ny (SR~ 1 (©) +05.,0(8).

=0v>0

Making the following change of the indices related to the dewimmation
t=v,I=2v—(y+1)+(k+1)=2v+k—y)

and dropping any term i&' with | > k, we get

k o /2]
6"+luk+1(cj +0RO) = % R Z Nat k- Itjfziﬁk | k+1(@) +06%0(6k)

Gathering all the above results, we readily complete the proof.
Next lemma finishes the first part of the induction step.

Lemma 6 There exists one and only one outer coefficignt; isatisfying the
above equations and the matching conditions.

Proof The proof reduces to establish the above statememiffiril(e). Lemma
5 and the inductive hypothesis yield

/2] .
() _ i 1 1
(U -’ ) ROGT) T ZJ 2y+k k(@) +_ 0 (Rk+1—l>
implying first that
[1/2] Q) [1/2] .
Zj Not+k— Itt%ﬂzwk I k+1 Z) %y+k I kI 0) (I= - K)

and next that

o 1 U2 !
(Uf(fl)—l'h“)) RK+1-T Z) Nat-e- It%zgk Ik+1(e) R—>+°°<Rk+l I)

Lemma 3 ensures that

l .
P11 (©) (1=0,... .k y=0,...,[1/2]).

(30)
This is an overdetermined system since differgny) can lead to the same value

2y+k—|,k+1( ) Noy1k—1,y

forv=2y+k—I.
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Fortunately enough, spherical harmonic functleq@k—ly 2y+k 1) (@) are
identical as soon as they are of the same degre®y+k—1I. Indeed, coefficients

Nn,y are linked by the following relations

K2 (_1)n+1K7(n+1)2n

Noy= 2 Nay1, Nno= —/TT
W iy D o= YT
Thus
(i) _ 1 2y(2(y+k=1)+1) (i)
Hoyik-1xk1(@) = YT <2 Doyik1x1(©)

which in view of (23) yields

(i) _ 1 ()
°%ﬁ2V+k—l,k+l(O) = Na(y—1) +h(1-2).y_1 %(y—1)+k—<| —2),k,|—2(@)'

Continuing in this way, we come to

i 1
jiﬂz(yjlkfl,kﬂ(@) ==

—— ) o).
N2y k1.0 okt ki -2y(©)
This shows that for any fixekl jszk | k+l( ) does not depend on the particular
spherical harmonic funct|o€(/2(;lk 1k, (@) used to define it. This completes the

proof of the lemma.
3.3.3 Second part of the inductive step: Determination ofrther coefficient

Any (k+ 1)-th order inner coefficient satisfies

) . —c¢C
and) = —k2n in 601,

B(J?I'Iig)l =0 onﬁé(\i),
nlgr)l - le ki1 = OR-4o0 (1)
The following change of unknowh‘k(+”1 = I‘IéJ> U|<(+)1 k41 PUts the above
problem in the following form
Al'l((+')1 —FinR3\ 00,
B! k+1 —gondoll, (31)
R =oroie (1),
with .
{ 9= BU)le k+10

j )]
F= —K2I'I|E ) AUk+1 k+1°
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Lemma 7 Problem (31) has one and only one squtiQH e BLU) and makes it
possible to uniquely determine thle+ 1)-th order inner coefficient as follows

3 _ (i)
M = Uy g

Proof WhenB() is the boundary operator corresponding to a sound-hard or an
impedance boundary condition, problem (31) can be put in thewially varia-
tional form
{ r) eBL), vweBLO), @)
an)),w) = [, 75 9% — [ e FWdx
with the bilinear form already given in (27). It thus remains to chiait F does
define a continuous inear form on BL It is worth noting thaf = 0 for k = 0.

We can thus assume thHat 1. Lemma 2 then yields

F(X) = k2 (U100 =M (x)).
It is not enough to make use of the following behawiX) = 0Ojx|_,(1/ X%,
which is a direct consequence of the inductive hypothesishakper estimate is

needed. Making use of the first property stated in Lemma 5, we cémkvin the
following form

F(R@) _ K2 UI((Jll l(R@) (J> ( )
B )/ZJ (i)
+r 515V Nat e ORI (<)

which in view of (30) can be also expressed as

2y (i) 1 0
F(RO) = k% | U 1(RO) - M1 (RO) — Z} 2t+k (k1) kk-1(@) | -
Sharp asymptotic behavior (22) then readily yields that for Acsently largeA
C
< — >A).
IFX)I < =g (IXI2A)

Expressing the following integral

/X|>AF (1+ X)) 2w (14]x[2) "% |dx

in terms of spherical coordinates and using Cauchy-Schwartzatiggthen al-

low us to write

+oo | q 2
FW|dX<C /
/X>A| | \/ A R3

2
(1+R2)R2dR/ hd ,
x=a 1+ |X]
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HereafterC stands for a constant not the same in all instances. Finatlget

/ FwdX
X|>A

The right-hand side does define a continuous linear form o/ Bhus implying
that problem (32) is well-posed. SinEEF(j) (1=0,...,k+1) satisfy the recursive

<C||¥g -

Laplace equations (18), Lemma 1 ensures that

<U|(<J-21,k+1 - nlgr)l) (X) = 0|5 (1)

Clearly, the same proof can be repeated with obvious adapsdtiodealing with
the case wherB() corresponds to a sound-soft boundary condition.

4 Error estimates

Error estimates, established in this section, give a rigoroussfranrk to the above
asymptotic expansions. Namely they furnish a procedure enabkngpproxima-
tion of the total wavels from the outer and the inner expansions. In this respect,
the approach being used relies upon considering the so-callExtmtyi valid ap-
proximation ofus (cf. [11]).

4.1 The uniformly valid approximation
The construction of the uniformly valid approximation w§ makes use of the
cut-off function

o 1, r<1 ,
X€E”(R), x(r)= , X'(r) <0, forallr >0,
0r>2

) iy

and is carried out as follows
N (D) ©
tns09 = (1= 31L4x5"09) 3 Stk(x)
k=
S i | S sk )
+{ 2 X5 2)5 M ((x—=cj)/d) (x€ Qs),
=1 k=

wherex\ (x) = x (\x— Ci |/\/5) .
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As a result, the obtained approximation coincides with the atettinner and
outer expansions of the field respectively inside and outgigeopriate neighbor-
hoods of the small obstacles

m
Uns(X) =Y u(x) ( min |x—c; >2\/S>a
m s (X) kZO k(X) (j:l,...,N’ |2

In the matching zones
{,///éj) = {xeR3 |V < |x—¢j| < 2\5}

both expansions contribute to approximage

4.2 Stability estimates

A quite natural way for obtaining an estimatewgf— up, 5 is first to truncate the
unbounded domaifs. The part ofus defined on the truncated zone is next taken
into account through a transparent boundary condition on thgdict boundary
so introduced. This condition is expressed in terms of a DirtefoldNeumann
(DtN) operator defined below. An error estimate will then result frostability
property and a consistency estimate consisting of a bound arléted residual
(cf., e.g., [1,4] for more details on this approach).

We begin with the truncation procedure. Débe a connected bounded open
set of R3, with smooth boundary whose outward unitary normat,ignclosing
all the small obstacles. The DtN operafoassociated with the open complement
Y® =R3\ Y of Y'is defined as follows: For any givepin H 2 (3Y), letv be the
solution to the following boundary value problem whose existeamd unigueness
can be obtained for instance from the limiting-absorption priedigee, e.g., [31])

ve 7' (Y°), Bv e HY(Y®) VO € 2(R3),
(A+Kk?)v=0inY",

(33)
v=¢@onday,

Iim‘xHHo |X‘ (0‘)(‘ — iK)V: 0,

TQ=0rcve H*%(ﬁY),
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wheren€ is the unit normal t@Y" pointing outward¥’®. The coercivity properties
of this operator are stated as follows. There exists a boundet laperatoily act-
ing fromHY/2(dY) intoH~Y/2(9Y) such thall — To € £ (HY/2(9Y) ,H%2(3Y))
and
Ay > 01 (ToViV)y-12(y) 12y = VHVHa—l/Z(Y)v weHY2(Y).
We denote by
€5,m = Ums — Us

the error corresponding to the uniformly valid approximatiorugf Plugging it
in (3) and according to the considered boundary condition in (40r(8) respec-
tively, we come to:

(A+K2)esm=(A+K)ums in Y5 = Y\UY, 05,
Biesm=00nd6y (j=1,...,N), (34)
On€sm+ T m=00naY,

wheren still denotes the unit normal pointing outwardsThe above problem can
be equivalently expressed in the following variational form

{ es €Vs, YWweVs (35)

as(es,v) =1s(v),

with the following notation

as(u,v) :/ (Ou- Dv—Kzuv)dx+[35(u,v)+<Tu,v>H,1/2m.H1/2m,
v :
|5V = —/ (AUm s+ KU 5) v dX
\6

where
N

Vi
Bs(uv)=—S =2 [ uvds
121 Fo) aﬂél)

for the impedance conditioifis = O otherwise and
Vs = {ve H08); W, 0 =0, (1= 1)}

for the sound-soft boundary conditios = H (Y3) otherwise.
One main ingredient for estimatirgy, 5 is provided by the following stability
theorem.
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Theorem 3 There exists a constant C independend glich that

1€5mllavy) < C (B +K2)ums|l 2y - (36)

Proof The estimate is a direct consequence of the following uniformupfeon-
dition
a5 (u,v)|
ullyzy:y < Csupi——>— (37)
Hi() vevs IVl
which we prove by contradiction below. We first deal with the gzfdbe impedance
boundary condition. So assume that there exist a sequineg0 andun € V5,

such that

L unllnapy) = 1,
2. limys085, (Un,vn) = O for all sequencee/n)nZO such thaw, € V5, and

”VnHHl(Y%) =1

Two main arguments will lead to a contradiction. The first onersvided in
[23]. It ensures thati, can be extended to a functieR € H (Y) in a stable way,

ie. Un|Y5|1 = up and

||Un||H1(Y5m) < [Tnllpayy) < CHUHHHl(an)> (38)

with C a constant independent of The second one is the well-known fact that
the subspace” of thosev € H!(Y) satisfyingv = 0 in a neighborhood of each
cj is dense itHY(Y) (cf., e.g., [29]). From the weak compactness of the unit ball
of Hilbert spaces, we can assume thatylim 0, = u weakly inH?* (Y). From the
second of the two points listed above, we then easily dechatelis solution to
the following problem

ueH(Y),

Au+k2u=0inY,

ohu+Tu=0o0n2aY.
This problem is an equivalent formulation of a problem satisfythrgyHelmholtz
equation in all ofR® and the Sommerfeld radiation condition. As well-known
(cf., e.g., [31]), Rellich’s lemma directly implies that= 0. The next ingredi-
ent is obtained by passing to the imaginary paragfun,Us) after noting that
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D<Tlha‘Tn>H—1/2(y),H1/2(y') =0((T-To) UnaLTn>H—1/2(Y),Hl/2(y')

Oag, (Un,Un) = O((T —To) Un7U7n>H71/2(y»)7H1/2(Y3
N Qv

2
+5 = |un|® ds
,Zl % Jao))

Since by compacity the first term of the above sum tend to O, usicg more the
second of the above assumptions, it can be argued that

1
Mnma ml |un|? ds=0.

The contradiction is then a straightforward consequence of théatas, (un,Un)
can thus be decomposed in a term which can be uniformly bounWltn@/I@unHal(Yan)
and a rest tending to zero.

This proof does not cover the case of sound-hard or sound-soétabbst How-
ever, it can be obtained in the same way just by remarking teat tils no integral
on dﬁéj) then.

We are thus led to get a bound @ -+ k2)up, 5. SinceA(fg) = fAg+gAf +
20f - g, this term can be written as

(A+K U5 = (1— S xé”(x)) (g (A +k?) uk(x)>
N (ZX<1>(X)> S 5 (4 +k2) 1100 <XCI>
o y k 5

=1

Since the inner coefficients are solution to recursive Laplgoations, we get
2 K X—Cj () (X=6i
st St 8 (00 (57) s (57)

N X—C
-3 ox (;5k(ﬂk (52)- k<x>)>

1
+2y s ox(x) -0 (ﬂé” <6]> —uk(x)> ,
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wherel‘lsz) = I'Ifjf = 0. In previous formula, the first term is called thaer error
and the last two ones tleatching error We now bound each of these one by one.

4.3 Bounds for the inner and matching errors

The bound for the inner error is established in the following leanm

Lemma 8 Letﬂéj> = (Rﬂﬁé”) m%’gj/g. The following bound

i (%&(w-rﬁ@)

holds true with a constant € 0 independent od.

< CamH/A,
Lz(féj))

Proof At first, we write the sum involved in the inner error a bit differgntl
Zo5k< = 7/7( D ) =omy +omin),.
Triangular inequality then yields
m

)5 sk (ni_ L a0
X 0 (I‘I - =" )
‘ 5 k;) k 52 k=2
Passing to the fast variable= (x—c;)/d, we obtain:

o o
|_2

—_— e
where.7{!) — (ﬁ(l) ) m%’é/ﬁ. Lemmas 4 and 7 yield

c y o

=m-—

‘ m

L2 y(l)) :

I

. . . ——¢C
%) =ul )+ ;Y (x) (x e o) ) :

where Lﬁ andl’,(j) are respectively the matching function and the solution to
variational problem (32) introduced above. With the notatiamoniuced there,
one thus obtains the bound

1/2
- ( |5 \<1+|><|>—1/2r.<”<><>\2<1+|x>d><>

1\Y? 121 ()
(“w) |2+

<C 14— Hr
BL

H,—I(i)

LZ(,ﬂéh)

L2(s4)
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The first term can then be bounded as follows

5|53/2H,—|(J')H — < Co'3/2-1/4 _ clt5/4
27400y

It remains to get an upper bound for Ult is defined by means of (11) and de-
pends at most on the outer coefficients of orddr Formula (17) gives thaty(x)

is a meromorphic function with poles of orderk at thec;j. As a result, the match-
ing functions can be bounded as follows

, .
’UH)(X)] <C|X|', X e o
yielding

— -

< Ca\/2+3/4,

Using the previous results for= m— 1 andl = m, we come to the bound an-
nounced in the statement of the lemma.

Matching errors of the first kind are dealt with in the following lelmm

Lemma 9 As in above lemma, we have

. m .
AX(J)( (0 _y )
) kZO ( k k)

Proof The chain rule directly yields

< CaM2+1/4

|_2<//[§l-))

N

2,

ax(x foz' (") - lex'<lx—cj| (*5))
() Bt (5.

Therefore, since/3/ [x—¢j| < L forx e .\, we can write

axy) (kiék (n _Uk)>

m

<[5, 5(m-w)

)

LZ('//[éJ'))

L))
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with a constan€ depending only ory. We now use matching conditions (12) to

bound the above terms. Introducing the matching functions asisl!|
m .

o (n IEJ) —uy <
3,3 )

m . .
, Z 5k (nél) _ UETJ],)k>
L2(5))

k=0

Lz(//,éi))
%5 (ue—Ut,)

expressing them with respect to the fast variable (x—cj)/d, and passing to

_|_

)

LZ(%éJ'))

spherical variables, we get

[stoe (0 -y |

LZ(///éJ'))
2
1 2
75 5%

where.#? is the unit sphere dR®. Making use of the sharp asymptotic behavior
(22)

- - 2
sm 5k (né” (RO) — USTJ,}k(Re)) ’ 5°R2dOdR

M [l _ 1
Unic =" = RﬁOJroo (R’“k+1> ’
we come to
1
2

1

m 2

k+§ Vo 1

<CH oz R2m— 2k 2 RedR
() k=0 7o

L2 s

N

<C 5k+3 5(2m-2k-1)/4 < coo+

In the same way, we have

m

2 5k (Uk — Ur(‘ri,)k)
=0

Gathering the previous estimates, we arrive to

Lo m .
AXC(SJ) kzoék (,—,IEU _ Uk)

LZ(%éj))
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The last matching error term is dealt with in the following lemma.

Lemma 10 There exists a constant€ 0 independent od such that:
N m . .
ST soxd o (nd - w)
=1

Proof As above, we have

1 [x—cj|\ x—c;
OyWix) = — /< J> L
0=\ il

Passing to the fast variable, we can write

< C5m/2+7/4.
Lz(bﬂéi))

x5 () - O (1) (—) —u¥) =
57X’ (\x\;, )dR (”éj)(R@)—Uk(chréRe)).

We then obtain

[omodonag o) )

L2((///_éj))
572 || Zke0 0 %R <l‘lé‘> _uk) L2y
k (1 ()
T o%ar (M - U ath
(1)
+ 6g:/2 = 5kaR (Uk - Um,k) L2<%(j)) ?
A

with a positive constart independent od. We now need to get bounds on the
derivatives of the matching rules. Chain rale= 5dx_cj| and the fact that; is a
pole for the meromorphic functiop 5 &' ug(x) — T &' Uf]i)l ((x—cj)/d) yield

m
I ) 1 (D) 1
Or (kzoé uk(cJ +0RO) — Z o'uU 7, (RO) ) Mo(é"‘* )

We then obtain:

kg 5k0R (Uk - U%)k)
=0

1
2 2
< Cco3tmil </l“3 deR> <Co™ i,
V3

L2(<///§j>)
To get bounds for the derivatives of the matching rules, we usenie 3 which
shows that the ﬁ satlsfy the recursive Laplace equations with conditions
at infinity given by the matchlng rules (12). In view of (21), we caartlargue that

R (U'(Ti)k B H'EI)) - R—Qq—oo <Rmk+2> :
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This directly leads to

50858 (A1 Ul

LZ('%éj))

2
m k+3 Vo 1
S C:2k:06 2 (/1 RM—k+2

%
3 1 7
<CsP, ok+3 (52m—2k+1) 1<Co7ta,

Gathering the previous estimates, we get

m . .
;5"5)(9) oM - w)
k= L2(%/§(J))

with C a constant independent &f

4.4 Final and optimal error estimates

From the stability result (36) and the above bounds on the rdsideadirectly
obtain the following bound for the uniformly valid approximation.

Theorem 4 Let u, 5 be the above uniformly valid approximation of the solution
us to scattering problem (3) with any of the above conditions (4), ¢5)6) on
the small objects. The following bound holds true

HU5 - umv6||H1(Y5) < C5%+%7

with a positive constant C independentdof

The previous theorem gives a theoretical justification for thevabnner and
outer expansions. The obtained error estimate is of courseptiotal. This is due
as usual in this kind of issues to the two-scale character afdhgion. An optimal
error estimate can however be retrieved outside suitable fixgthhberhoods of
the small obstacles.

Theorem 5 Let

_ N P
Fp =Y \U_1 %,
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wherep is fixed sufficiently small positive number. There e&jst 0 and a pos-
itive constant G such that for0 < & < & the following optimal error estimate
holds true

<CpoMH, (39)

m
us— Y S uy
k=0 HL(Fp)

Proof Clearly, forp sufficiently small the ball@é’j do not intersect. In the same
way, for 0< & < & with & sufficiently smalluy 5|7, = Yglo S ux. Now for
an integerp such thatp > mandp/2+ 1/4 > m+ 1, the error estimate on the
uniformly valid approximation yields

lus = Up s ] 1y < CE#7E <CE™.

Using the triangular inequality, we readily obtain

p
Huafum,aHHl(yp) < Huafup,aHHl%) + Z 5 [Ju ||H1(5zp)
=1
thus completing the proof of the theorem.

We have thus completed the proof that the effect of each of tladl sivstacles
can be approximated by a suitable multipole, the order of wiricteasing with
the accuracy which is being sought. We will see at the end effithper to what
kind of other scatterers can or cannot be drawn the same camtMé& are going
now to show how this analysis can be used to obtain a matheshatstification
of Foldy’s usual reduced model in which each small obstaclepgaced by an
isotropic point scatterer and more importantly how this enalda® improve it.

5 Foldy’s model and its improvement

After introducing two boundary-value problems involved in théedmination of

the inner expansion up to order 2, we give a characterizatioheofsymptotic
behavior at infinity of their solution. This will enable usarfirst step to establish
an optimal bound for the error induced by Foldy’s model and neknprove it.
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5.1 Two fundamental exterior boundary-value problems

In this part, we give a characterization of the asymptotic beftaati infinity of
two boundary-value problems involved in the explicit deterrtioraof the inner
asymptotic expansion afs up to order 2. The first of these has been already
introduced in (25).

5.1.1 The exterior boundary-value problems

The second exterior boundary-value problem is stated as follows

AN —0in 60,

BIAG) —0onaa(l, (40)
AD(X)=X+ o (1).
[X[|—00

It is worth underlying that problem (40) actually consists of thueeoupled
problems each of them posed for one componem(&.

As for @), we seek a solution to (40) in the fordl) = X + AU} with AU}
in the usual Beppo-Levi space (cf., e.g., [24,20]). we readily gatttis problem
too has one and only one solution. Clearly, the same conclesiotbe drawn for
either a Dirichlet or a Neumann condition /()

5.1.2 Asymptotic expansion at infinity

Using the well-posedness of the interior Dirichlet problem far ttaplace equa-
tion, we easily get that the above scaéd!) and vectorial functiong\ (1) admit

the following integral representations in terms of a single-lggential

. ——C
o) =1+ [ sto0(nds, X e 60
200 41
. e (41)
/\<J>(X)=x+/ xayA (Y)dsy, X € 00
aol)

It is well-known that the Green kernel IX — Y| can be expanded fdY| < |X|
using the generating function for Legendre polynomigi$t)

\/1;)(7'[“ z Pn(x)t" for Jt| < mm(’xi VX2 D (42)
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as an entire function d¥| / |X| (see, e.g., [30, Formula (2), p. 215])

1 = (x Y) Y|
N e . (43)
vl ~ 2 X vl i

As a result, the above two functions can be expanded as followX fer oo

, o ()
o) (X) =1+ %‘W,
240 “
AD (X)) =X+ ,
nZ |X|n+1
with
"D = [P () e as
s&l (X/IXI) f __Pn % Y IYPAD () dsy

Actually, sincePo(x) = 1 andP; (x) = x, g}, o\, and s’ are expressed in
terms of the respective momentsgof) andA ) of order 0 or 1

ol = [ _eUy)ds,
' 001
)= | _veias,. (46)
o)

</ 1K) = 25X/ 1X.
In the same waﬁ,j) is constant and is given by

%J) _ A)\“)(Y)ds(. 47)
1700

Remark 61t should be mentionned that, as regard with the Neumann conditi
for @), sinced)éjl_) = 0 (see Remark 4 above), any of the coefficiem&@ is zero.

5.1.3 Some properties of the coefficients of the asymptqiiEnesion at infinity
We begin with a kind of reciprocity theorem.

Lemma 11 Recall that.#2 denotes the unit sphere Bf. The above coefficients
al(j) and %j) satisfy

§) = / 30 (X) Xds;. (48)
72
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. ——cC
Proof Let us denote by = 6() N %g with %r = {x € R3; x| < R}. Green
formula then yields

/ <¢(J)A/\(J)_/\(J')A(p(i))dxz_/ (¢,<i>dA_A(j>_/\m,;w,(i))ds
ﬁé{” a()/;(]\) nJ nl

(i) a“’()?) )
(o 1 1 S 1
+R2/§(1+R+R2+O<3>> (X—R2+O<3)>ds
i) 200 ()?)
Oy 1 1 o 1

—

The boundary condition in problems (25) and (40) give that thegiral ond ¢'(1)
is zero. By symmetry we also have

/ Xds=0.
7?2
As a result, we get from the above relation
() (%) Kde _ i) 1) _
/yzsol (X)Xds; - +0<R> —0
readily yielding (48) by passing to the limit &— co.

Remark 7Note that the above lemma gives in particular lﬁgﬁ}[ = 0 when deal-
ing with a Neumann condition.

We are now going to establish that we can always ensureo‘riﬂét: O bya
change of variables of the form

X =X +Xo (49)

obtained by suitably translating the origin. This is precigbly way, which was
previously announced, for adequately fixing the centers ofgsgsin Foldy’'s
model to improve its accuracy. We first prove the following interragdlemma.

Lemma 12 The following formula holds true

. DV'
0o = ——'/,\
A1t J500)
()

and thusaoj satisfies

2
¢<J>] ds (50)

ol £0 (51)

when dealing with the impedance boundary condition.
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Proof We proceed as in the proof of the above lemma and use Green'’s fotmnula

write

‘ , 12 . -
/ | <<D(I)A(D(”+‘D¢>“>‘ >dx: [ o0, oVds
o 200 !

+R2/y2 <1+o<;>> (—cé:+o<é3>)ds

Expanding and passing to the limit Bs— o, we directly get

/@Wf

which directly yields formula (50). The rest of the proof is a conseape of condi-
tion (16) and the fact that Cauchy daié)) |, @nddy; olt) L,z of @) cannot

be zero simultaneously.

2 — ; j
Dq,m‘ dx+ [ @la oWds+4ndg)) =0 (52)
a0l

Remark 8We have already pointed out thaéj) = 0 for the Neumann condition.
The above propertyc(,” = 0 holds for the Dirichlet condition also by using (52).

Let us now definé?(l) the function obtained fron®)) by the above variable
change (49)
W (y) = U (Y + Xo). (53)

This function satisfies the same boundary-value problem thdh Expanding
1/|X| for sufficiently large]Y| as follows

w n
Vi & (v )
we get the following asymptotic expansion #f}) as|Y| — oo
wi(y)=1+ o’ + L (29 - o) Y o <1> . (54)
M 1 0 N NE

We have thus almost proved the following theorem.

Theorem 6 The two first coefﬁcientséj) and Z(lj) of the asymptotic expansion
of @) for |X| — o have to be modified according to the variable change (49) as
follows

=5 _ gllx,. (55)
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Therefore, by possibly making the above variable changeanelways assume
that
sV =0 (56)

and also, from (48), that

g’ =o. (57)

Proof For boundary condition of problem (25) and for the case of a Dieichl
boundary condition, we obtain (56) by passing to the variabiéth

Xo = i.zg”. (58)
olb)
0

The case of a Neumann condition does not require any changengrj&t Z(lj),
and%j) are then zero.

5.2 The usual Foldy model

We first determine the first-order outer asymptotic expansiary ekplicitely and
show how Foldy’s usual model can then be derived and error gstineatablished.

5.2.1 Explicit determination of the first-order outer asyotjut expansion

We follow the general procedure already given above. Both the auig inner
zeroth-order asymptotic expansions have been determined siVegall thatig is
obtained by just disgarding the effects of the small obstagles inner expansion
is obtained for each small object by

18 (X) = uo (cj) @ (X) (59)

where®()) is one of the two functions introduced above.
The matching rules give that the first-order expansion contaimest monopole

sources located at tleg
S O ()
uz(X) :; hy” (K [x—c|) Yo (60)
/=1

wherehél) is the first kind Hankel function of order 0 ar\é” is a yet undeter-
mined spherical harmonic function of order zero, really a constant
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To determiné(é”, we have first to define the matching functioﬁlb‘rom the

following expansion

Ugs (Cj + X) = U (Cj + 8X) + By (¢j + 6X)

— Ul (x 1).
10( )‘*‘530( )
Since _
W, _ € _1 iz
ho” (2) = iz 2t 2 +230(z), (61)

we readily get

Ulo (X) = to(e) + 1, S (62)
Matching rules
0 -uihoo= o ()
X0 \ [X]
given above in (12) then yield
YV =ika{uo(cy). (63)

First-order outer coefficient; is hence obtained as the field created by the
following monopoles placed at the centers of phgse

IKZU uo(cj)hy” (K |x—c;j|). (64)

5.2.2 Derivation of the usual Foldy model

In view of the above calculation, up to the first-order term®jrthe total field
resulting from the scattering of an incident fisldvhich would be present in the

proximity of ¢j without the small scatterer placed there, is given by
w(x) +ikd a3 w(c;)hS" (k Ix—cj|). (65)

This is the crucial assumption of Foldy’s isotropic model. Shattering prob-
lem related to this model is set by looking to an approximaticthe total field as
the superposition of the incident fielg,. andN unknown monopoles

X) = Uin (X +;A V(K [x—cy]). (66)
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(see, e.g, [14,22]) whose strengths can be determined by sohénfpliowing

linear system

Al = ik5 gl (uinc (cj) + T1<ean ARG (k |cj Cﬂ|)>

oy (67)

(1<j<N).

Clearly, if A denotes the column-wise vector collecting #é), the above
system can be put in the following compact form

A—3ZA=0B (68)

whereZ= is theN x N matrix whose coefficients acg; = iKaéj)hgl) (K |cj—ci)
for j #1 and= =0, andBj = iKUéj)uinc (cj). System (68) is set in term of a
Neumann matrix obtained as a pertrurbation of the identity masi— 0. The
proof of the following lemma can be readily obtained from the expkntire
series expansion of the inverselof § =

(1-62)1=1+3=+5%=2+... (69)

Lemma 13 System (68) can be uniquely solved in a stable way as0. More-

over, its solution admits the following expansion

A=Ay +0A 1+ --+0"An+ 0 (3" (70)

d—00

whose coefficients are recursively defined by
Ag=0,A1 =B, Ay1=3=A (n=1,2,..)) (71)
Hence,
AV = ikaiuo (cp). (72)

In other words, the 1st-order expansionuﬁfin powers ofd coincides with the
outer expansion ofis. As a result, we get the following theorem containing the
justification of Foldy’s isotropic model from above theorem téstiablishes opti-
mal error bounds for the outer approximationugfin section 5
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Theorem 7 Let uy be the total field of scattering problem (3) with impedance (4)
or sound-soft boundary condition on the small objects. Igdnejthe solution (66)
obtained from the above Foldy model. Then, there &gisb > 0 and a constant
Cp, such that for0 < 8 < & the following optimal bound holds true

lus = U5l 1 5,) < Co0® (73)
(see Theorem 5 for the definition.&i,).

Remark 9Clearly, using the usual integral representation of the far fgl®)
(e c %), 73 being the unit ball ofR3, as defined in (3) (see e.g. [24]), and
defining in the same way the far fiedj (©) corresponding to the fieldf; provided
by the Foldy model, we readily get the following estimate

|25~ 5llys( 75) <C0° (s€R) (74)

with a constan€s independent od.

5.3 The improved Foldy model

We now explicitely expand both the exact solutigyof the multi-scattering prob-
lem and its approximatioug through the usual Foldy-Lax model up to order 2.
This will enable us to see that it is possible by adequatebpsing the centers of
phases; and suitably writing this model to gain one further order of cogeace.

5.3.1 Explicit determination of the 2nd-order outer asymiptexpansion
We first determine the 1st-order asymptotic expansiamnsoExpanding
U (Cj +0X) = Up (Cj + 0X) +

N
/Z ikay uo (co)hy? (k|cj — ¢+ 8X|)
=1

0 1]

+ikauo (cj) h{Y (k& X))

= U (X)+ 811 (X) + 0 (3).
—0
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we get the matching function
Ut (X) = Duo (7) - X +d 1V

with
N
dl) = ;IKO'C())Uo(Cg)( (k8 |cj —c/|) +iko o (cp) - (75)
=]
(#]

Above matching rules (12) then give
Y (X) = Ouo (cj) - AD (X) +dD o) (X) (76)

whereA () is defined above as the solution to (40).

Matching rules once more compel to be in the following form
;h<l (K|x—cy|) Y02+th K[x—c|)Y.

WhereYk(g are undetermined spherical harmonics of degrige= 0, 1) andh(ll) (2)
is the first kind spherical Hankel function of order 1 (cf., e.g., [15])

@ € _ €
hl (Z)_ dZ iz - ZZ( +Z)
Since
(@)= —%—=+ o (1)
s 2 2 7250
then
Ups (Cj + 0X) = (Up + Sy + 8%Up) (cj + OX)
= U (%) +8U31 () + 0 (8)
—0
so that _
UG (X) = Uy (X) — iz Y5,
US} (X) = U} (X) — Yo -
Since

YUy oo (;)
K2|X| 2+\XH X|

(
1 2
MY (0 ~U51 00 = iy (o (e5) & +dVog? ) + dheved + 0 (k).

1§ () —Ugy (%) = Lawo () o & +
(1)
1 IX|>
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matching rules then give
Yl“z> = ik2up (cj) ol - p%’
Yé”z) —iK <aé‘>d(j) + Ouo (cj) - %’)) )
We have thus obtained that the second-order term in the outansxm ofus

reads

. 1 j —Cj
) = $Y-aiweuo (e (e of . 5 ¢

_ N ikod uo () hiY (kS |ci — ¢ (77)
(J)(Z[@jl 0 o (k3¢ —ci hél>(K}x—cj|).

N .
2j-11% gl )
+1K0y " Ug (Cj) + Oug (Cj) . %
The second-order term of the asymptotic expansion of the saltmi Foldy’s
model is obtained more easily from the above Neumann series &gpan

N . N

ub(x) = Zikaé” ;iKUéZ)uO(Cg)hél) (k3 |cj—ci|) | A (k [x—cj]) (78)
= =
]

5.3.2 The improved Foldy model

The 2nd-order outer coefficient (77) contains dipokdsio (cj) hi” (k |x—¢;[) =1V
(x—c¢j)/ |x— Cj | which are not present in the same order one corresponding to the
Foldy model. If we stop here with the derivation of the model, eognd (73) can

no more be improved. Actually, a further order of convergence eagained by
suitably choosing the centers of phageénstead of taking them rather intuitively.
The correct procedure is the following.

— Take intuitivelyc;j as previously indicated such that tie¢h small bodyﬁéj)
is contained in the bal#°.

— Scale the variablX = (x—c;j) /6 and solve problem (25).

- Determineoéj) and Zgj) and in view of (55) and (58) correct the center of
phase according to

6 .
¢ = ¢+ —= 21 (79)
9
The correction of the centers of phase keeé)i% unchanged while setting the
dipole momemZ<1j> to zero . Fortunately enough, according to (48), coefficient
é)j) is also zero then.
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Oy 2
Coefficientsu, (x) andu(x) still differ by the term(iKU(”) Uo(cj) butitis
easy to restore the agreement at this order too by a slight mattificz the Foldy
model, actually by substituting the scattering coefficient
iskol)
W(X) + — 2590 yy(ceomp (i [x— o) (80)
1-idka)
0
for the previous one in (65). It can easily be proved then that thefredd~oldy
model yields a 2nd-order approximationdrof the actual wavels.

Theorem 8 Let the centers of phase and the scattering coefficients fieede
according to (79) and (80) respectively. Then the solut@}mmrresponding tothe
Foldy model (67) yields an approximation of the solution tordti-scattering
problem (3) satisfying the following error bound

55 ) < o @)

under the same conditions and notation already used in Emedt.

6 Extensions and concluding remarks

A first part of this section is devoted to the consideration ofédance bound-
ary conditions with another asymptotic behavior than thécedibne considered
above. By considering obstacles that are spheres, we in partietilieve the well-
known facts that the usual isotropic Foldy model cannot bel ts@pproximate
the effect of small sound-hard obstacles. We next give someadtidhs on the
adaptations which can be carried out to deal with small peretaistacles. To
conclude, we give some indications on possible extensiottiotudy for other
asymptotic regimes.

6.1 Multiple scattering problem relative M spheres

We look at the above multiple scattering problem relativll spheres of radiug
but now we consider two additional asymtotic behavior fordhgace impedance
of the small obstacles. The centers of phase are naturally thersef the spheres
in this configuration. Calculations, too long to be reported hexadily then yield
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the coefficients of the outer expansion of the total wave fothe considered
boundary conditions in an explicit way. The 0-th order coeffitig(x) is always
Uinc(X).

The total wave is now denoted log ., (m= 0,1,2,3,4). The additional sub-
scriptm s used to specify to what boundary condition this solution spoads.
In all cases, the total wave has the following asymptotic oeteansion

N . N .
Us m(X) = Uine () +8 3 o (K [x—ci[) Yg! i+ 8% 3 15" (k [x—ci]) Yg B+
=1 j=1

X—Cj
5gzh K[x—cj]) 03m+h ( x—cj|)Y 13mﬁ

Recall that the Hankel function of the first kind can be retrievethftioe following
expression

=
°=
—
N
I

z (727102) E

(cf., e.g., [25]).
Sound-soft spheres.

— Boundary condition
Uso=00n.72 (j=1,...,N),

5”0‘? being the sphere of centey and of radiusd.

— 1st-order
510 = —iKUinc(c))
— 2nd-order
. L
chlz)o:-r(J> {Yéfo}é:l
with
0t = (w5 1 -
7
— 3rd-order
Yo(ls)o_T J>{Yozo} Ulnc(cl)
Y1) o = —ik2Otine (cj)

Super-critical acoustic impedance spheres.
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— Boundary condition
Vi .
dnju571—5—'2u5,1:00n<§”c? (i=1,...,N),
— lst-order
Yé_’lel - —|KU|nc(C])
— 2nd-order _
() _ (j){ () }N K e
Yy5, =T Y
02,1 01,1 z:1+vj Uinc(Cj)
— 3rd-order
: ) ik3 ) N i
() _ (J){ (¢ }N LS (J){ () } _K e
Y, =T Y, Uinc (C T Y, Uinc (Cj) .
03,1 021f, .7 3 inc (Cj) : 011f, 4 ij inc (Cj)
Y(lJ:)31 = —ik%Ouine (cj) .
Critical acoustic impedance spheres.
— Boundary condition
Vi .
On;Us 2 — gjué’z =0sursd (j=1,...,N),
— lst-order
0,12 1+
— 2nd-order
() _ Vi ' (0)
Yo2.2= 1+v T(J){sz}/:l
— 3rd-order
3
i Vi o NIk 3 VY
Y(g,a),zz l—i—VJT(j){ (5,2),2}[_1 3 Uinc (Cj) +iK (l+vj)zuinc(ci)
i %
Yg_J%l = |K22]—’_ J DUinC (CJ)

Sub-critical acoustic impedance spheres.
— Boundary condition
On;Us3— VjUs3 =0 surﬂc‘? (j=1,...,N),

— 1st-order
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— 2nd-order

Yc§12>3: —iKVjUinc (Cj)

&y

— 3rd-order

. ik3 .
Yo(,ls'),s _ (3 + |va2> Uinc (Cj)

Sound-hard spheres
— Boundary condition

OnjUs4=0sursy (j=1,...,N),

— 1st-order
Yc§7j1),4 =0
— 2nd-order
j
Y<§,2)~,4 =0
— 3rd-order
.3
iK
YCgIB)4 = *?Uinc(CJ)
)
iK
Y= — Dtine (¢;)

In view of the above expansions, it can be argued that the &=ldy model
can be retrieved from the critical case just by taking= 0 for high impedance
and, as a limiting case, sound-soft spheres. In the oppositethasabove expan-
sions clearly yield that the 1st-order outer expansion reducttincident field
for weak impedance and sound-hard spheres and can also be deravéatmmal
way from the critical surface impedance model by letting— . However, the
improvement of Foldy’s model as done above requires specifiessgjpns for the
self-interaction terms.

We also retrieve the well-known fact that dipole effects are veglat the
lowest order for hard-sound scatterers. They therefore cannot beeHdoydmeans
of a simple isotropic usual Foldy’s model.
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6.2 Extension to other kinds of scatterers

There is no difficulty to extend the above asymptotic analgsiablishing that the
scattered field can be approximated at any order of accuradybiyn multipoles

to the case where the scatterers are characterized by a low impeo@medary

condition in the meaning given above for the spheres. Howévisrextension is
not obvious for the other case of a high surface impedance.i§ hsinly due to

the fact that then inner problems are characterized by a boundadjtion set in

terms of non smooth data

n = oo n, onaot.

Of course, such a difficulty occurs only when the geometry oftaéterer presents
some singularity. This probably means that for non smootheseaitt an expansion
in integer powers 0d does not exist. A similar situation is met for other kinds of
singular asymptotic expansions (see, e.g., [10, 6]).

All the above study can be adapted to deal with the case wieesnthall objects
are inhomogeneities, in other words, penetrable scatterergrlbiggh in this case
to substitute the refractive index/d™ to the surface impedanaeg/d™ (see [9]).

6.3 Concluding remarks

This study established that the scattered wave by a finite nuofilsenall scatter-
ers can be approximated by point scatterers for a fixed frequency atrrder of
accuracy corresponding to the size of the small obstacles. hdes shown how
the usual isotropic Foldy method can be derived in a rigorous wamy the first-
order of these approximations for obstacles whose scatteringepies are close
to that of a sound-soft scatterer. An outcome of the mathenhaiitiication was
the possibility to increase the accuracy of this model by blyitencating the cen-
ter of phase of the monopoles involved in Foldy’s model. Bresults have been
obtained for the following asymptotic regime: the frequencyiiber of partic-
ules, and the distance between any pair of obstacles are edsarne fixed while
the size of the scatterers goes to zero.
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Foldy’s model can be used as a part of a homogenization procetairdy

for making up metamaterials (cf., e.g., [27,28,9]). A justificatibthis approach

mainly requires a control on the above bounds relative to the rublof par-

ticules and their density. An attempt towards such estimiatgdsen [27,8]. In

our opinion however, the issue consisting of defining in aipeeway the various

asymptotic regimes for such a scattering problem in its full exXtagely reamins

an open question.
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