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Trapping of Single Nano-objects in Dynamic Temperature Fields

Marco Braun and Frank Cichos∗

Molecular Nanophotonics Group, Institute of Experimental Physics I, University of Leipzig, 04103 Leipzig, Germany

Alois Würger
LOMA, Université de Bordeaux CNRS, 351 cours de la Libération, 33405 Talence, France

In this article we explore the dynamics of a Brownian particle in a feedback-free dynamic ther-
mophoretic trap. The trap contains a focused laser beam heating a circular gold structure locally
and creating a repulsive thermal potential for a Brownian particle. In order to confine a particle
the heating beam is steered along the circumference of the gold structure leading to a non-trivial
motion of the particle. We theoretically find a stability condition by switching to a rotating frame,
where the laser beam is at rest. Particle trajectories and stable points are calculated as a function of
the laser rotations frequency and are experimentally confirmed. Additionally, the effect of Brownian
motion is considered. The present study complements the dynamic thermophoretic trapping with a
theoretical basis and will enhance the applicability in micro- and nanofluidic devices.

PACS numbers:

I. INTRODUCTION

Single particle trapping is of high importance for long-
time studies of single molecules or particles in solution
without mechanical immobilization. This demand led to
the development of traps to counter-act Brownian mo-
tion following different approaches. Optical forces can
efficiently manipulate objects with sufficiently large di-
electric contrast to the solvent. Quadrupole traps such
as the Paul trap have been developed over half a cen-
tury to trap ions in vacuum by high-frequency electric
quadrupole fields and are applied in various fields such
as mass spectroscopy and quantum information process-
ing. In viscous media quadrupole traps are realized by
utilizing dielectrophoresis and electrophoresis. Recently,
Paul trapping of single submicron-sized particles in aque-
ous solution has been demonstrated [1]. Single molecule
trapping efficiency is achieved with ABEL trapping which
relies on adaptively controlled electric fields. Indepen-
dently from the electronic properties, particles can be
trapped e.g. by hydrodynamic flow [2] or acoustic waves
[3].
Temperature gradients have also been demonstrated

for particle and macromolecular manipulation [4, 5], since
they interact on both non-ionic and charged solutes
through thermophoresis, an umbrella term for thermally
induced motion at a velocity which is proportional to the
temperature gradient [6, 7]. One prominent effect which
leads a charged particle going from the hot to the cold
is caused by the temperature induced perturbation of its
electric double-layer without applying a strong electric
field. Recently, a method was proposed to trap single
particles in a quasi-static temperature landscape that is
produced by a photothermally heated gold structure [8].
In the simplest case, such a structure consists of a circu-
lar hole in a gold film of several microns in diameter. By
illuminating this gold structure by means of an expanded
laser beam, a steady-state temperature field is generated
capable of trapping a single particle within a local tem-

perature minimum in a film of solvent above the center
of the circular hole.

In the present paper stronger temperature gradients
are achieved by heating the edge of the Au hole using a
focused laser beam, as sketched in Fig. 1a. Also, for such
a heating scheme, the object of interest in the center of
the trap is not under direct illumination by the heating
beam, preventing e.g. bleaching. However, for a typically
positive thermodiffusive coefficient leading a particle to
move to a colder region, a steady-state heating by means
of a focused laser beam will end up in a purely repulsive
thermal potential forcing a particle out of the trap imme-
diately. Hence, to prevent the particle from escaping the
trap, the laser beam needs to be steered. Inspired by the
Paul trap, here, we drive the laser beam along the circum-
ference of a hole in a gold film at a frequency f = ω/2π
leading the thermal potential to rotate (Fig. 1a). Due
to a net inward component of the thermophoretic drift a
confinement for a particle can be achieved in the center
of the trap.

In the following we demonstrate the feasibility of a
thermophoretic particle trap using time-dependent tem-
perature gradients. We give a detailed study of the dy-
namic properties of a particle. We theoretically investi-
gate the trapping stability and determine the stationary
trajectories as a function of the thermophoretic drift ve-
locity and the rotation frequency which are experimen-
tally confirmed. In a second step, we account for Brown-
ian motion and determine the probability density in the
thermal trapping potential.

Thermalization of the plasmonic excitation occurs at a
time-scale of microseconds. Hence, the temperature field
follows almost instantaneously the rotation laser. Be-
cause of the different heat conductivity of gold and water,
the resulting temperature profile is not isotropic but sig-
nificantly smeared out along the edge of the gold film, as
shown by the numerical simulation results of Fig. 1, b–d).
This distortion, however, is of minor importance for our
purpose, since thermophoretic trapping relies mainly on
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FIG. 1: a) Sketch of the sample: A circular gold structure is
heated by a focused laser beam. b) Simulated temperature
field produced by the optically heated gold film. The dashed
green circle indicates the edge of the gold structure. c) Tem-
perature profile along the gold edge in the plane of the gold
structure (black) and 300 nm above (dashed red). d) tem-
perature line profile in the plane of the gold structure (black)
and 300 nm above (dashed red). The green line indicated the
laser profile (in a.u.).
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FIG. 2: a) Position distribution of a 460 nm PS sphere within
a TP trap at a laser rotation frequency of 100Hz. b) Same
for 0.7Hz. The dashed green circle indicates the path of the
laser beam (in clockwise direction). c) Same data as in b)
after transformation to the rotating frame, where the laser
is immobile (green dot) and where the fluid rotates counter-
clockwise at a frequency of 0.7Hz. The arrows indicate the
particle velocity field.

the radial component of the temperature gradient. Thus,
the following analysis assumes an isotropic and instanta-
neous profile T (r,t) = T0 + Q/(4πκ |r− rL(t)|),where Q
is the absorbed power, κ the heat conductivity and rL

the position of the laser. Experiments were carried out
in a microscopy setup using the sample preparation as
presented in our previous publication [8]. Further details
are described in the Materials and Methods section.

II. PARTICLE DYNAMICS IN THE ROTATING
FRAME

The experimental results of the particle dynamics in a
rotating temperature field reveal some general features,
which we want to highlight before starting with an in
depth description of the particle motion.
Fig. 2a) and b) display the positional distribution of

a single 460 nm PS bead in the same trap structure with
equal heating laser intensity but at different laser rota-
tion frequencies of 100Hz and 0.7Hz. Both trajectory
point distributions indicate the confinement of the par-
ticle in the rotating temperature field. However, while
the magnitude of the thermal drift is only dependent on
the heating laser intensity and does not change with ro-
tation frequency, the inward component of the thermal
drift seems to decrease for a slower rotation frequency.
Due to the rotating laser field, a tangential component
of the particle drift should appear as well. The parti-
cle dynamics should therefore depend on this tangential
drift at slow frequency too. This importance of tangential
and radial drift in the trap structure is better recognized
when when transforming the coordinate system in to the
frame moving with the laser beam. In such a frame the
laser beam and the temperature profile are at rest but
the sample including the fluid rotates counter-clockwise
around the center of the trap. Fig. 2c) shows the data
at 0.7Hz transformed to the rotating frame. The posi-
tion of the heating beam is indicated by the green dot.
The particles position distribution is Gaussian but asym-
metric and the maximum shifted from the center of the
trap. These features are readily understood in terms of
the thermophoretic repulsion from the laser position and
the advection by the rotating flow, and imply in par-
ticular that the particle is always in front of the laser
spot. Transforming back to the lab frame smears out
the asymmetry, and one recovers the broadened position
distribution of Fig. 2b). The arrows in Fig. 2c) indicate
the particle velocity with respect to the rotating frame.
They reveal a circular motion around the center of the
distribution function. These effects will be studied in
detail.

III. STATIONARY POINTS IN THE FLOW
FIELD

The particle dynamics originates from the thermal
forces, advection, and Brownian motion. As a first step,
we discard Brownian motion and retain the deterministic
part only. Due to the aqueous solvent and small particle
size the Reynolds number is low Re ∼ 10−6, i.e. viscous
forces dominate the motion of the particle. In this over-
damped limit, inertia may be neglected and the particle
instantaneously follows the thermal and advection drift.
Then the particle velocity field in the rotation frame

can be written as the sum

u = vT + ω × r (1)
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FIG. 3: a) Sketch of the coordinate system used in the rota-
tion frame. The green dot indicates the position of the laser
beam. b) Flow field in the rotating frame u(x, y) for the angu-
lar frequency parameter ξ = 6. The green half circle indicates
the line x2 = y(a − y). The two stationary points u = 0 are
clearly visible; the lower one (red) is an attracting fixed point,
whereas the upper one (blue) is unstable. With increasing ξ
the stationary points repel each other; the unstable migrates
toward the position of the laser, and the stable one toward
the center. c) The curves describe the radial distance r of
the stationary points to the center of the gold structure as a
function of the dimensionless parameter ξ. The upper branch
(blue) corresponds to an unstable fix point, whereas the lower
one (red) is stable.

of the thermophoretic drift velocity vT = −DT∇T (r)
with the thermodiffusion coefficient DT at the position r

with respect to the center of the trap and the advection
by the rotating fluid with ω = ωez. In the following
we assume an isotropic temperature profile as mentioned
above, which implies that the gradient decays as ∇T =
−Q/(4πκR2), with R = |r−aey| being the distance from
the laser position.
In Fig. 3a we plot the calculated flow field u(x, y) in

the upper-right quadrant of the trap for a given set of

parameters. The flow field shows two fix points, where
the thermophoretic drift vT and the advection drift ω×r

cancel each other such that the particle flow vanishes
u = 0 (see Fig. 3b). The upper one is unstable. A slight
perturbation is amplified and the particle either escapes
to infinity or moves towards the lower fix point, which
is stable. The flow field around this fix point appears to
be spiraling towards this fix point. As the flow field is
depicted in the rotating frame, a particle in this fix point
would carry out a circular motion around the trap center
in the lab frame when neglecting Brownian motion.
We further determine the position of the fix points in

the trap as a function of laser rotation frequency ω and
the thermophoretic velocity vT. Inserting the tempera-
ture gradient into equation 1 and setting u = 0 yields two
real solutions, which correspond to the positions of the
above described fix points. Both solutions lie on a half
circle described by x2 = y(a−y) as indicated by the green
line in Fig. 3b. The coordinates of the fix points may be
expressed in terms of the dimensionless parameter

ξ =
ωa

uT

(2)

which is given by the ratio of the tangential laser velocity
ωa and the thermophoretic velocity

uT = DT

Q

4πκa2
.

The cartesian coordinates of the stable fix point are then
given by a power series in ξ by y0 = a(ξ−2 + 2ξ−4 + ...)

and x0 =
√

y0(a− y0).
Similarly the position of the stable fix point may also

be expressed in polar coordinates given by the distance
r0 from the trap center

r0
a

=
1

ξ
+

1

ξ3
+ ... (3)

and the angle ϕ0 when tanϕ0 = 1

ξ +
3

2ξ3
+ .... The exact

coordinates of the fix points are reported in the supple-
ment.
The above equations immediately reveal that both sta-

tionary points exist only for a sufficiently large value of
ξ > ξmin =

√

27/4 ≈ 2.598. This means that the tangen-
tial velocity of the laser on the circumference of the trap
has to be larger than the thermophoretic velocity by a
factor of 2.598. If this stability condition is not fulfilled,
the rotating laser is to slow to prevent the particle from
being pushed out of the trap by the thermal drift. In the
case ξ = ξmin, both fix points are located at the same po-
sition on the half circle. When increasing ξ further they
repel each other and the stable fix point is approaching
the center of the trap. With typical experimental pa-
rameters, uT ∼ µm/s and a ∼ µm, one finds a minimum
frequency of ω/2π ∼ Hz.
These theoretical findings agree well with experimen-

tal data obtained for a single 460 nm PS bead in wa-
ter recorded at different laser rotation frequencies ω. At
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each frequency, the particle positions have been recorded
and were transformed to the rotating frame. Figure 4a
displays the corresponding histograms of the particle po-
sitions for three different laser rotation frequencies and
already reveals the shift of the fix point towards the trap
center with increasing rotation frequency ω. The dis-
tance of the histogram maximum for different laser ro-
tation frequencies follows nicely the predicted frequency
dependence. Fitting the radial distance as a function
of frequency (eq. 3) in Fig. 4b directly yields a ther-
mophoretic velocity of uT = 3.3µm/s at the trap radius
of a = 4.3µm. The x, y positions of the measured max-
ima are consistently below the half circle x2 = y(a − y)
(Figure 4c, grey squares). While the radial distance r0
is matched by the theory, the phase ϕ0 is preceding the
theoretical phase due to the fact that the real heat source
is smeared out along the rim of the gold structure (see
Fig. 1a), while we model the behavior with a point
heat source. We estimate a resulting shift in angle to
be ∆ϕ0 ≈ 10◦. The corrected data is shown with the
colored squared Fig. 4c and follows the half circle indi-
cated by the green line.

IV. MOTION CLOSE TO THE STATIONARY
POINT

While the flow field already indicates the two different
fix points we can analyze the motion of the particle close
to the tentatively stable fix point in more detail. We
therefore linearize the flow u(r) at the distance from the
stationary point, r̂ = r− r0, and then expand in powers
of 1/ξ

u = ω × r̂+
ω

ξ
(x̂ex − 2ŷey) + ... (4)

where we have discarded terms of O(ξ−2). The first term
describes the rotation around the stationary point with
frequency ω.
The second term, which is by a factor ξ smaller and

therefore independent of ω, accounts for the radial flow
with respect to the fix point at r0. The flow along
the x̂-direction with velocity ωx̂/ξ = uT x̂/a is oriented
outward, whereas along the ŷ-direction there is an in-
ward flow toward the fixed point with twice the velocity
−2ωŷ/ξ = −2uTŷ/a. When averaging over one cycle one
finds that there is a net inward flow towards the station-
ary point r0, which proofs the stable nature of this fix
point.
Eq. (4) can be integrated to the following form,

x̂(t) = Ae−Γt cos(Ωt− φ),

ŷ(t) = Ae−Γt sin(Ωt), (5)

a spiral trajectory, where A is the initial amplitude,

Ω = ω
√

1− φ−2 the frequency, Γ = uT/(2a) a damping
coefficient and φ = 3

2
ξ−1 the phase describing the asym-

metry. Without taking thermal fluctuations into account
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FIG. 4: a) Position distribution histograms in the rotating
frame for 0.6Hz (top), 1.1Hz (center) and 2.7Hz (bottom).
b) Distance of the central point of the positional distribution
as a function of the rotation frequency with fit of equation 3.
c) Position of the central point of the positional distributions,
i.e. the positions of the stable point for different rotation
frequencies. All points are tilted by 10◦ around the origin
to compensate for the finite extend of the heat source in the
experiment. The green arc again indicates the line x2 = y(a−
y). The frequency is color-coded and can be read from the
plot in c. The grey squares is the uncorrected data.

the particle will converge to the fix point on a spiral in
the rotating frame for t → ∞ if the stability condition
ξ > ξmin is fulfilled. Once the fix point is reached, the
particle travels in circles around the center of the trap in
the lab frame. Γ can be interpreted as a relaxation rate
describing how fast a particles reaches the stable point,
which is independent of ω. Hence, while increasing uT

and ω by the same factor does not influence the posi-
tion of the stable point, it amplifies the net inward flow.
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The phase φ determines the skewness of the trajectory,
which reduces to a circle for φ = 0, for high laser rotation
frequencies.
A vector plot of an experimentally observed velocity

field u(x, y) = (ux(x, y), uy(x, y)) in the rotating frame
is shown in Figure 5 for the lowest measured frequency
of f = 0.6Hz (ξ = 4.9). Each arrow represents the av-
erage direction of the particle in the according region,
such that the stochastic Brownian motion of the parti-
cle averages out. To compare the data to the theoreti-
cal description, we plotted the velocities separated in x
and y-direction along the horizontal (green) and vertical
(magenta) lines in figures 5b and 5c. Correspondingly,
the black lines were calculated from equations 5 with
f = ω/2π = 0.6Hz, a = 4.3µm and uT = 3.3µm/s
which was found from the fit of eqn. 3 in Fig. 4c. As can
be seen, the theory and experimental data agree very
well.
Although working at much lower frequencies, the mo-

tion that is observed for a particle in a thermal trap with
a rotating temperature field exhibits strong similarities to
the motion of ions in a Paul trap, which travel on non-
trivial trajectories within the trap. Depending on the
stability parameters a macro-motion is observed superim-
posed with the micro-motion at the frequency of the ro-
tating quadrupole field. In our description of the thermal
trap we decoupled the micro-motion at ω by switching to
the rotating frame. Within this frame, we observe a har-
monic oscillation (macro-motion) at a frequency Ω which
also depends on the trapping parameters. However, due
to the viscous damping at low Reynolds number in the
thermal trap this macro-motion disappears exponentially
and the particle reaches the stable point in the long time
limit whereas it sustains for ion trapped in vacuum.
Eqns. (5) resemble a solution of a two-dimensional

damped harmonic oscillator. Hence, from this trajec-
tory it is clear that the particle is confined in an effec-
tive anisotropic harmonic potential in the rotating frame,
leading to an anisotropic Gaussian positional distribu-
tion.

V. PROBABILITY DISTRIBUTION

So far we have not taken into account the Brownian
motion of the particle. The corresponding convection-
diffusion problem is described by the stationary Smolu-
chowski equation for the particle concentration,

∇ · J = 0,J = cu−D∇c. (6)

Because of the rather intricate velocity field u there is no
general analytical solution. In the following we derive an
approximate steady-state distribution function.
The drift velocity (4) is linearized in powers of x̂ and ŷ.

Its radial and angular components read to leading order
in 1/ξ,

ur̂ =
ω

ξ

x̂2 − 2ŷ2

r̂
, uϕ = ωr̂. (7)
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FIG. 5: a) Experimental flow field calculated from the tra-
jectory for a rotation frequency of f = 0.6Hz. The green dot
indicated the position of the heated spot. The red dot shows
the location of the stationary point. Note that in this image
the length of the arrow does not represent |u|. b) and c) Flow
velocities in x and y-direction along the green and magenta
lines in a). The black lines are not fits, but calculated accord-
ing to eqns 5 for a trap radius a = 4.3µm and uT = 3.3µm/s
as obtained earlier.
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Note that the radial drift occurs outward along the x̂-axis
and towards the center along the ŷ-axis. Thus without
the angular motion, the particle would escape within the
cones x̂2 − 2ŷ2 > 0. Yet since both radial drift and dif-
fusion are slow as compared to the angular motion, the
distance r̂ changes rather little during one cycle.
Thus we may, in a first approximation, replace the ra-

dial velocity with its time average ūr̂. From (5) one finds

x̂2 = 1

2
r̂2 = ŷ2, and with the definition of ξ one readily

has

ūr̂ = −uT
r̂

2a
. (8)

Since uT > 0, there is an effective drift towards the sta-
tionary point. Thus trapping arises from the superposi-
tion of the fast angular motion and the minus sign of the
mean radial velocity ūr̂. The stationary state is obtained
requiring that the radial current J̄r̂ = cūr̂ −Ddc/dr̂ van-
ishes. Solving J̄r̂ = 0 results in the Gaussian probability

distribution c = c0e
−r̂2/2σ2

, where the mean-square dis-
tance

σ2 =
2Da

uT
(9)

is determined by the ratio of the diffusion coefficient and
the thermophoretic velocity.
Both from the stream lines in Fig. 3 and from the

trajectories (5), it is clear, however, that c(x̂, ŷ) is not
isotropic in the x̂ − ŷ-plane. The anisotropy is best
expressed in terms of the non-zero correlation x̂ŷ =
1

2
r̂2 sinφ, which follows directly from (5). The correla-

tion matrix is diagonalized by adopting skew coordinates
r̂± = (x̂ ± ŷ)/

√
2, resulting in the steady-state distribu-

tion

c(x̂, ŷ) = c0 exp

(

− r̂2+
2σ2

+

− r̂2−
2σ2

−

)

, (10)

with mean-square displacements

σ2
± = (1± sinφ)

2Da

uT
. (11)

By expanding in inverse powers of ξ, we find sinφ = 3

2ξ .

This parameter is largest at small frequency and de-
creases with increasing ω. At large frequency the widths
σ± become equal, the trajectory in the trap approaches
a circle, and the probability distribution reduces to (9).
Equations 10 and 11 can be directly compared to the

experimental data (Figure 6). Although the data points
of σ+ and σ− do not quantitatively follow the predic-
tions in Figure 6a, it can clearly be seen that the average
values of the width are consistent with the theory. Also,
the anisotropy σ+/σ− is clearly visible for low rotation
frequencies and disappears for higher frequencies as ex-
pected.
The parameters σ± give the width of the trapping po-

tential in the rotating frame. They are determined by
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FIG. 6: a) Width σ+ (black) and σ− (red) as a function of
the laser rotation frequency. The curves show the theoretical
dependence of equations 10 and 11 again with uT = 3.3µm/s
and a = 4.3µm. b) Anisotropy σ+/σ−.

the ratio of advective and diffusive transport rates and
hence are inversely proportional to the square-root of the
Péclet number Pe = uTa/D. In the experiment, with a
diffusion coefficient of D = 0.59µm2/s, a thermal drift of
uT = 3.3 µm/s and a trap radius of a = 4.3µm a Péclet
number of Pe ≈ 24 is achieved. The widths are also in-
versely proportional to the the square-root of the Soret
coefficient and excess temperature σ± ∝ (ST∆T )1/2 sim-
ilar as found in [8].

VI. CONCLUSION

We have studied the motion of a single colloidal par-
ticle in a dynamic feedback-free thermal trap using a ro-
tating temperature field to create confinement. Since the
temperature field is repulsive for the colloidal particles,
the confinement is the result of the dynamics of the tem-
perature field and requires a certain threshold rotation
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frequency. For frequencies below this threshold particles
are pushed out of the trap, while above the threshold a
metastable and a stable trapping point exist. The mo-
tion of the particles around the stable fix point is remi-
niscent of the complex motion in an electrodynamic Paul
trap. The particle motion, however, is strongly damped
as compared to the ion motion in the Paul trap due to the
viscous environment. The theoretical findings are well
supported by experiments confirming the main charac-
teristics of the motion and provide a first glimpse on how
single particle or even single molecule motion might be
manipulated with dynamic temperature fields.

VII. MATERIALS AND METHODS

The preparation of the gold structure is fully analogous
to a previous publication [8]. A clean glass substrate is
coated by 5 nm chromium film, an adhesion layer for the
gold structure. Isolated polystyrene beads (∼ 8µm di-
ameter) are prepared on a glass substrate by spin coating.
After coating the glass with the beads with a 50 nm gold

layer by thermal evaporation, the beads are removed by
sonication and toluene. The gold film with circular holes
of about 8µm diameter remains on the glass substrate.
The chromium film uncovered by the gold is removed by
etching. The experimental sample consists of two par-
allel glass slides, where the lower one carries the gold
structure. A water film of about 700 nm thickness is con-
fined between the glass slides. The water film contains
dye-doped colloidal PS beads of 460 nm diameter. The
motion of the colloidal particles is monitored by wide-
field fluorescence microscopy, where the fluorecence is ex-
cited at 532 nm wavelength by an expanded laser beam
(ω0,w ≈ 20µm), collected by an Olympus lens (100x/1.4)
and imaged onto an Andor Ixon EMCCD camera. A
framerate of 100Hz was used at a 2× 2 binning. An ad-
ditional focused laser beam (ω0,h ≈ 20µm) also of 532 nm
wavelength can be steered in the sample plane with the
help of an acousto-optic deflector (AOD) and is used for
the plasmonic heating of the gold structure. The heating
laser spot is driven in circles along the circumference of
the gold structure at a rotation frequency f = ω/2π.
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