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Abstract

In the present paper we study the vector potential problem in exterior domains of R3. Our approach

is based on the use of weighted spaces in order to describe the behaviour of functions at infinity. As a

first step of the investigation, we prove important results on the Laplace equation in exterior domains

with Dirichlet or Neumann boundary conditions. As a consequence of the obtained results on the vector

potential problem, we establish usefull results on weighted Sobolev inequalities and Helmholtz decom-

positions of weighted spaces.
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1 Introduction and basic notation

Let Ω
′ be a simply-connected bounded domain of R

3 assumed to have at least a Lipschitz-continuous

boundary ∂Ω and let Ω denotes the complement of Ω′, in other words, the exterior of Ω
′. For a given

divergence-free vector field u, the vector potential problem in Ω consists in looking for a vector field ψ

that satisfies

u = curl ψ and div ψ= 0 in Ω, (1.1)

where u and ψ satisfy appropriate boundary conditions.

This problem has many applications in fluid mechanics, particularly in fluid flow past an obstacle described

by the Navier-Stokes equations and related linearized problems. We refer for instance to [7, 14, 15] and ref-

erences therein, for the direct use of (1.1) in order to solve the Stokes equations in exterior domains.

Problem (1.1) also allows to establish important results on Helmholtz decompositions which are powerful

tools in the study of the Navier-Stokes equations (see for instance [11, 12] and references therein). We also

refer to [9] for discussions and applications of (1.1) in fluid mechanics and other fields.

∗
Laboratoire de Mathématiques de Sfax, faculté des sciences de Sfax-Tunisie, Route de Soukra km 3.5-BP n 1171-3000 Sfax-Tunisie (hela.louati@gmail.com)

†
Laboratoire de Mathématiques de Sfax, faculté des sciences de Sfax-Tunisie, Route de Soukra km 3.5-BP n 1171-3000 Sfax-Tunisie (medmeslameni@yahoo.fr)

‡
Laboratoire de Mathématiques, CNRS UMR 6623, Université de Franche-Comté, 16 route de Gray 25030 Besançon Cedex France (ulrich.razafison@univ-fcomte.fr)

1



In this work, since the domain Ω is unbounded, we propose to investigate (1.1) by setting the problem in a

class of weighted Sobolev spaces. These spaces enable to describe the growth or the decay of functions at

infinity. They were introduced and studied by Hanouzet in [18]. They were used by Girault to study (1.1) in

the whole space R
3 [13] and in exterior domains [14]. Let us notice that in these works, the study was done

in a Hilbertian framework. Since we are interesting in applications of (1.1) to non linear exterior problems,

we choose to use a Lp theory where 1 < p <∞. Thus, this work is an extension of [13] and [14].

Let us mention now that the potential vector problem has been studied in other types of domains. We can

refer for example to [3, 8] for bounded domains and [10] for the half-space.

This paper is organized as follow. In the next section we introduce the class of weighted Sobolev spaces and

we recall some of their basic properties. In Section 3 we solve two important auxiliary problems needed for

the investigation of (1.1). The first problem is the divergence equation. The second problem is the Laplace

equation in exterior domains with Dirichlet or Neumann boundary conditions. The results established here

extend the ones proved in [6] in the sence that we are interested in the resolution of these problems for var-

ious decay properties at infinity. In Section 4 we solve the vector potential problem. We start with the case

of the whole space and then extend the obtained results to exterior domains. Finally in Section 5, we give

two important applications of the resolution the vector potential problem. We first derive weighted Sobolev

inequalities that extend important imbedding results well known in bounded domains (see for instance [3]

and [8]). The inequalities we proved are extensions of the ones proved in [14] and [20]. Then we end by

proving results on Helmholtz decompositions.

We now give the Notation we use throughout the paper. In what follows, p is a real number in the interval

]1,∞[. The dual exponent of p denoted p ′ is defined by the relation 1/p +1/p ′ = 1. We will use bold char-

acters for vector or matrix fields. A point in R
3 is denoted by x = (x1, x2, x3) and its distance to the origin

by

r = |x| =
(
x2

1 +x2
2 +x2

3

)1/2
.

Let N denote the set of nonnegative integers, Z the set of all integers and Z
− the set of nonpositive integers.

For any multi-index λ ∈N
3, we denote by ∂λ the differential operator of order λ,

∂λ =
∂|λ|

∂x
λ1

1 ∂x
λ2

2 ∂x
λ3

3

, |λ| =λ1 +λ2 +λ2.

We denote by [s] the integer part of s. For any k ∈ Z, Pk stands for the space of polynomials of degree less

than or equal to k and P
∆

k
the harmonic polynomials of Pk . If k is a negative integer, we set by convention

Pk = {0}. We denote by D(Ω) the space of C
∞ functions with compact support in Ω. We recall that D

′(Ω) is

the well-known space of distributions defined on Ω and S
′(R3) is the space of tempered distributions. We
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recall that Lp (Ω) is the well-known Lesbesgue real space and for m ≥ 1, we recall that W m,p (Ω) is the well-

known classical Sobolev space. We shall write u ∈ W
m,p

loc
(Ω) to mean that u ∈ W m,p (O ), for any bounded

domain O , with O ⊂Ω. For R > 0, we denote BR the open ball of radius R centered at 0. We set ΩR =Ω∩BR

and CR =R
3 \B R . The notation 〈., .〉 will denote adequate duality pairing and will be specified when needed.

If not specified, 〈., .〉∂Ω will denote the duality pairing between the space W −1/p,p (∂Ω) and its dual space

W 1/p,p ′

(∂Ω). Given a Banach space B with dual space B ′ and a closed subspace X of B , we denote by B ′⊥X

the subspace of B ′ orthogonal to X , i.e.,

B ′
⊥X = { f ∈ B ′, ∀v ∈ X ,〈 f , v〉 = 0} = (B/X )′.

Finally, as usual, C > 0 denotes a generic constant the value of which may change from line to line and even

at the same line.

2 A class of weighted Sobolev spaces and preliminaries

We introduce the weight function

ρ(x) =
(
1+ r 2

)1/2
.

For α ∈R, we define

W
0,p
α (Ω) = {u ∈D

′(Ω), ραu ∈ Lp (Ω)},

which is a Banach space equipped with the norm

‖u‖
W

0,p
α (Ω)

= ‖ραu‖Lp (Ω).

For any m ∈N\ {0} and α ∈R, we set

k = k(m, p,α) =




−1, if 3/p +α ∉ {1, ...,m} ,

m −3/p −α, if 3/p +α ∈ {1, ...,m} .

We define the weighted Sobolev space:

W
m,p
α (Ω) = {u ∈D

′(Ω);

∀λ ∈N
3 : 0 ≤ |λ| ≤ k, ρα−m+|λ|(ln(2+ r 2))−1∂λu ∈ Lp (Ω);

∀λ ∈N
3 : k +1 ≤ |λ| ≤ m,ρα−m+|λ|∂λu ∈ Lp (Ω)},
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which is a Banach space when endowed with its natural norm:

‖u‖W
m,p
α (Ω) =

(
∑

0≤|λ|≤k

||ρα−m+|λ|(ln(2+ r 2))−1∂λu||
p

Lp (Ω)

+
∑

k+1≤|λ|≤m

||ρα−m+|λ|∂λu||
p

Lp (Ω)

)1/p

.

We define the semi-norm

|u|W m,p
α (Ω) =

(
∑

|λ|=m

‖ρα∂λu‖Lp (Ω)

)1/p

.

Let us give an example of such space that will be often used in the remaining of the paper. For m = 1, we

have

W
1,p
α (Ω) =

{
u ∈D

′(Ω); ρα−1 u ∈ Lp (Ω), ρα
∇u ∈ Lp (Ω)

}
if 3/p +α 6= 1

and

W
1,p
α (Ω) =

{
u ∈D

′(Ω); ρα−1(ln(2+ r 2))−1 u ∈ Lp (Ω), ρα
∇u ∈ Lp (Ω)

}
if 3/p +α= 1.

Observe that the logarithmic weight only appears for the critical case 3/p +α ∈ {1, ...,m}.

We shall now give some basic properties of those spaces. For more details, the reader can refer to [5, 6, 18].

The space D(Ω) is dense in W
m,p
α (Ω). For any λ ∈N

3, the mapping

u ∈W
m,p
α (Ω) → ∂λu ∈W

m−|λ|,p
α (Ω) (2.2)

is continuous.

If m ∈N\ {0} and 3/p +α 6= 1, we have the following continuous embedding:

W
m,p
α (Ω) ,→W

m−1,p
α−1 (Ω). (2.3)

Let j be defined as follow:

j =





[
m −3/p −α

]
, if 3/p +α ∉Z

−,

m −3/p −α−1, otherwise.
(2.4)

Then P j is the space of all polynomials included in W
m,p
α (Ω). Moreover, the following Poincaré-type in-

equality holds (see [6]):

∀u ∈W
m,p
α (Ω), inf

µ∈P j ′

‖u +µ‖W
m,p
α (Ω) ≤C |u|W m,p

α (Ω), (2.5)

where j ′ = min( j ,0). Inequality (2.5) is the reason of choosing the weight functions in the definition of
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W
m,p
α (Ω). All the local properties of the space W

m,p
α (Ω) coincide with those of the standard Sobolev space

W m,p (Ω). Hence, it also satisfies the usual trace theorems on the boundary ∂Ω. Therefore, we can define

the space

W̊
m,p
α (Ω) =

{
u ∈W

m,p
α (Ω), γ0u = 0, γ1u = 0, ...,γm−1u = 0

}
.

If Ω is the whole space R
3, then we have W̊

m,p
α (Ω) =W

m,p
α (R3). The space D(Ω) is dense in W̊

m,p
α (Ω). There-

fore the dual space of W̊
m,p
α (Ω), denoted by W

−m,p ′

−α (Ω) is a space of distributions. Moreover, we have the

following Poincaré-type inequality:

∀u ∈ W̊
m,p
α (Ω), ‖u‖W

m,p
α (Ω) ≤C |u|W m,p

α (Ω). (2.6)

We recall some weighted asymptotic properties proved in [1]. Let α ∈Z and Let R > 1 be a real number such

that Ω′ ⊂ BR . Then there exists C > 0 such that for any u ∈W
1,p
α (Ω), we have

‖u(R, .)‖Lp (∂BR ) ≤C R1−3/p−α
‖u‖

W
1,p
α (Ω)

if 3/p +α 6= 1,

‖u(R, .)‖Lp (∂BR ) ≤C ln
(
2+R2

)
‖u‖

W
1,p
α (Ω)

if 3/p +α= 1.
(2.7)

The above asymptotic properties yield the following result that will be often use in the sequel.

Proposition 2.1. Let α, β be real numbers. Let λ be a polynomial that belongs to W
1,p
α (Ω)+W

1,q

β
(Ω). Then λ

belongs to P [γ] where γ= max
(
1−3/p −α,1−3/q −β

)
.

This proposition is proved in Appendix A.

The main tools of this paper are the following isomorphism results on the Laplace operator which summa-

rize Theorems 6.6, 9.5, 9.9 of [5].

Theorem 2.2. Let α and p satisfy

α ∈Z, 3/p +α ∉Z
− and 3/p ′

−α ∉Z
−. (H)

Then the Laplace operators defined by

∆ : W
1,p
α (R3)/P ∆

[1−3/p−α] →W
−1,p
α (R3)⊥P

∆

[1−3/p ′+α] (2.8)

is an isomorphism.

Assume moreover that 3/p+α 6= 1 and 3/p ′−α 6= 1, then for any interger m ≥ 1, the Laplace operators defined

by

∆ : W
1+m,p
α+m (R3)/P ∆

[1−3/p−α] →W
−1+m,p
α+m (R3)⊥P

∆

[1−3/p ′+α] (2.9)

and

∆ : W
1−m,p ′

−α−m (R3)/P ∆

[1−3/p ′+α] →W
−1−m,p ′

−α−m (R3)⊥P
∆

[1−3/p−α] (2.10)
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are isomorphisms.

Remark 1.

1. The above isomorphism results are also valid for real values of α satisfying at least (H). But for the

sake of simplicity, we restrict ourselves to α ∈Z.

2. Observe that if α<−1+3/p ′, then P
∆

[1−3/p ′+α]
= {0} and there are no orthogonality conditions in (2.8)

and (2.9). In the sequel, due to these orthogonality conditions, appart from assumption (H), addi-

tional assumptions on α and p will be required for the vector potential results in weighted Sobolev

spaces.

3. We recall that if u ∈S
′(R3) satisfies ∆u = 0 in R

3, then u is a polynomial.

We end this section by introducing the spaces that will be used to study the vector potential problem. We

first recall that for any vector field v = (v1, v2, v3), the curl of v is defined by

curl v =

(
∂v3

∂x2
−
∂v2

∂x3
,
∂v1

∂x3
−
∂v3

∂x1
,
∂v2

∂x1
−
∂v1

∂x2

)
.

Next note that the vector-valued Laplace operator of a vector field v = (v1, v2, v3) is equivalently defined by

∆v = grad (divv)−curl curl v.

This leads to the following definitions. For α ∈Z, we define

H
p
α (curl,Ω) =

{
v ∈W

0,p
α (Ω); curl v ∈W

0,p
α+1(Ω)

}
,

H
p
α (div,Ω) =

{
v ∈W

0,p
α (Ω); div v ∈W

0,p
α+1(Ω)

}

and we set

X
p
α (Ω) = H

p
α (curl,Ω)∩H

p
α (div,Ω).

These spaces are respectively endowed with the norms

‖v‖H
p
α (curl,Ω) =

(
‖v‖p

W
0,p
α (Ω)

+‖curl v‖p
W

0,p
α+1(Ω)

)1/p
,

‖v‖H
p
α (div,Ω) =

(
‖v‖

p

W
0,p
α (Ω)

+‖div v‖
p

W
0,p
α+1(Ω)

)1/p

and

X
p
α (Ω) =

(
‖v‖

p

W
0,p
α (Ω)

+‖div v‖
p

W
0,p
α+1(Ω)

+‖curl v‖
p

W
0,p
α+1(Ω)

)1/p

.

These definitions will also be used when the exterior domain Ω is replaced by the whole space R
3.
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Observe that D(Ω) is dense in H
p
α (div,Ω) and in H

p
α (curl,Ω). For the proof, one can use the same arguments

than for the proof of the density of D(Ω) in W
m,p
α (Ω)(see [18]). Therefore, denoting by n the unit normal

vector to the boundary ∂Ω pointing outside Ω, if v belongs to H
p
α (div,Ω), then v has normal trace v ·n in

W −1/p,p (∂Ω), where W −1/p,p (∂Ω) denotes the dual space of W 1−1/p ′,p ′

(∂Ω). By the same way, if v belongs

to H
p
α (curl,Ω), then v has a tangential trace v ×n that belongs to W −1/p,p (∂Ω). Similarly as in bounded

domain, we have the trace theorems: for each α ∈Z, there exists C > 0 such that

∀v ∈ H
p
α (div,Ω), ||v ·n||W −1/p,p (∂Ω) ≤C ||v||H p

α (div,Ω),

∀v ∈ H
p
α (curl,Ω), ||v×n||W −1/p,p (∂Ω) ≤C ||v||H p

α (curl,Ω).

Moreover the following Green’s formulas hold. If 3/p ′−α 6= 1, then for any v ∈ H
p
α (div,Ω) and ϕ ∈W

1,p ′

−α (Ω),

we have
〈

v ·n,ϕ
〉
∂Ω =

∫

Ω

v ·∇ϕd x +

∫

Ω

ϕdivv d x (2.11)

and for any v ∈ H
p
α (curl,Ω) and ϕ ∈W

1,p ′

−α (Ω), we have

〈
v×n,ϕ

〉
∂Ω =

∫

Ω

v ·curlϕd x −

∫

Ω

curl v ·ϕd x. (2.12)

We finally introduce two subspaces of X
p
α (Ω):

X
p

α,N
(Ω) =

{
v ∈ X

p
α (Ω), v×n = 0 on ∂Ω

}
,

and

X
p

α,T
(Ω) =

{
v ∈ X

p
α (Ω);v ·n = 0 on ∂Ω

}
.

3 Auxiliary problems

In this section, we solve in weighted Sobolev spaces two problems that we need in order to solve the vector

potential problem: the divergence and the Laplace problem.

3.1 The divergence operator

We start by recalling a lifting boundary result (see [4] Lemma 3.3 or [12]).

Lemma 3.1. Let O ⊂ R
3 be a bounded domain with boundary ∂O Lipschitz-continuous. Let g ∈ W 1/p ′,p (∂O )

be a given function such that ∫

∂O

g ·nd s = 0.
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Then there exists u ∈W 1,p (O ) such that

div u = 0 in O and u = g on ∂O . (3.13)

We introduce the space

V
m,p
α (Ω) =

{
v ∈ W̊

m,p
α (Ω), divv = 0

}
. (3.14)

Proposition 3.2. Let Ω be an exterior domain of R3 with boundary ∂Ω of class C
1,1 if p 6= 2 and Lipschitz-

continuous if p = 2. Let α and p satisfy (H). Then the following divergence operators are isomorphisms:

div : W̊
1,p
α (Ω)/V

1,p
α (Ω) →W

0,p
α (Ω) if α< 3/p ′,

div : W̊
1,p
α (Ω)/V

1,p
α (Ω) →W

0,p
α (Ω)⊥R if α> 3/p ′.

Proof. First observe that if u ∈ W̊
1,p
α (Ω), then u ∈ H

p
α−1(Ω,div) and since 3/p ′ 6= α the Green for-

mula (2.11) holds. Thus owing to the boundary condition of u, we have

∀ϕ ∈W
1,p ′

1−α(Ω),

∫

Ω

ϕdivudx =−

∫

Ω

u ·∇ϕdx.

Furthermore, if α > 3/p ′, then the constants belong to W
1,p ′

1−α(Ω) which implies that we can take ϕ = 1 and

this yields ∫

Ω

divudx = 0.

Hence, if α> 3/p ′, then divu must be orthogonal to constants.

Next the divergence operator is clearly linear and continuous. It is also injective by construction. It remains

to prove that the operator is onto. Let z be in W
0,p
α (Ω) if α< 3/p ′ or W

0,p
α (R3)⊥R if α> 3/p ′. Extending z by

zero in Ω
′, then the extended function z̃ belongs to W

0,p
α (R3) if α< 3/p ′ or W

0,p
α (R3)⊥R if α> 3/p ′. Since α

and p satisfy (H), then there exists ϕ̃ ∈W
1,p
α (R3) such that

divϕ̃= z̃ in R
3,

(see [1], Proposition 2.1). Now let R > 0 be a real number large enough such that Ω′ ⊂ BR . Then the restric-

tion of ϕ̃ to ∂ΩR belongs to W 1/p ′,p (∂ΩR ). Set now

g =




ϕ̃ on ∂Ω

0 on ∂BR .
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Then g belongs to W 1/p ′,p (∂ΩR ) and

∫

∂ΩR

g ·n ds =

∫

∂Ω
ϕ̃ ·n dx =

∫

Ω′

divϕ̃dx = 0.

It follows from Lemma 3.1 that there exists ψ ∈W 1,p (ΩR ) such that

divψ= 0 in ΩR and ψ= g on ∂ΩR .

Extending ψ by zero outside BR , then the extended vector field still denoted ψ belongs to W
1,p
α (Ω). Let

u = ϕ̃−ψ ∈ W̊
1,p
α (Ω), then we have divu = z in Ω. ä

As already mentioned in the proof, this result is an extension to exterior domains of a result proved in the

whole space R
3 (see [1]).

3.2 The Laplace’s equation

3.2.1 The Dirichlet problem for the Laplace operator

In this section, we propose to solve the Laplace equation with Dirichlet boundary condition:

for given f in W
−1,p
α (Ω) and g in W 1/p ′,p (∂Ω), find u in W

1,p
α (Ω) solution of:

−∆u = f in Ω, u = g on ∂Ω. (3.15)

The case α= 0, 1 < p <∞ has been studied in [6] and the case α ∈Z, p = 2 has been studied in [16].

We start by giving the definition of the kernel of the Laplace operator for any integer α ∈Z:

A
∆

α,p =

{
χ ∈W

1,p
α (Ω); ∆χ= 0 in Ω and χ= 0 on ∂Ω

}
.

In contrast with a bounded domain, the Dirichlet problem for the Laplace operator with zero data can have

nontrivial solutions in an exterior domain; it depends upon the exponent of the weight. We recall the char-

acterizations proved in [16] and [6] respectively.

Proposition 3.3. (Giroire [16]). Let Ω be an exterior domain of R
3 with a Lipschitz-continuous boundary.

Assume α ∈Z. Then

A
∆

α,2 =
{

v(q)−q, q ∈P
∆

−α−1

}
,

where v(q) ∈W 1,2
0 (Ω) is the unique solution of the Dirichlet problem

∆v(q) = 0 in Ω and v(q) = q on ∂Ω. (3.16)

In particular, A
∆

α,2 = {0} if α≥ 0.
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Proposition 3.4. (Amrouche et al. [6]). Let Ω be an exterior domain of R3 with boundary ∂Ω of class C
1,1 if

p 6= 2 and Lipschitz-continuous if p = 2. Then

A
∆

0,p (Ω) =
{

v(q)−q, q ∈P
∆

[1−3/p]

}
,

where v(q) ∈W 1,2
0 (Ω)∩W

1,p
0 (Ω) is the unique solution of (3.16). In particular A

∆

0,p (Ω) = {0} if 1 < p < 3.

We generalize the two previous results by characterizing the kernel A
∆
α,p (Ω) for α ∈ Z and 1 < p <∞. The

proof is given in Appendix B.

Proposition 3.5. Let Ω be an exterior domain of R3 with boundary ∂Ω of class C
1,1 if p 6= 2 and Lipschitz-

continuous if p = 2. Assume α ∈Z. Then

A
∆

α,p (Ω) =
{

v(q)−q, q ∈P
∆

[1−3/p−α]

}
.

where v(q) ∈W 1,2
0 (Ω)∩W

1,p
α (Ω) is the unique solution of (3.16). In particular, A

∆
α,p (Ω) = {0} if α> 1−3/p.

Our second step is to solve the following harmonic Dirichlet problem

∆u = 0 in Ω, u = g on ∂Ω. (3.17)

Theorem 3.6. Let Ω be an exterior domain of R3 with boundary ∂Ω of class C
1,1 if p 6= 2 and Lipschitz-

continuous if p = 2. Let α and p satisfy (H). Assume moreover that α < 0. Then for any g in W 1/p ′,p (∂Ω),

Problem (3.17) has a solution u in W
1,p
α (Ω).

The proof of this theorem is given in Appendix C. As a consequence, we can prove the following theorem for

any α ∈Z.

Theorem 3.7. Let Ω be an exterior domain of R3 with boundary ∂Ω of class C
1,1 if p 6= 2 and Lipschitz-

continuous if p = 2. Let α and p satisfy (H). Then for any f in W
−1,p
α (Ω) and g in W 1/p ′,p (∂Ω) such that

∀λ ∈A
∆

−α,p ′(Ω),
〈

f ,λ
〉

W
−1,p
α (Ω)×W̊

1,p′

−α (Ω)
=

〈
g ,

∂λ

∂n

〉

W 1/p′ ,p (∂Ω)×W −1/p′ ,p′ (∂Ω)

, (3.18)

problem (3.15) has a unique solution u in W
1,p
α (Ω)/A ∆

α,p (Ω). In addition, there exists a constant C , indepen-

dent of u, f and g , such that

||u||
W

1,p
α (Ω)/A ∆

α,p (Ω)
≤C

(
|| f ||

W
−1,p
α (Ω)

+||g ||W 1/p′ ,p (∂Ω)

)
.

Proof. The case α= 0 is proved in [6] so we focus on the case α 6= 0.

1. We first prove that (3.18) is a necessary condition. Let λ be in A
∆

−α,p ′(Ω). Note that for any open

bounded domain O ⊂Ω, λ belongs to W 1,p ′

(O ) and ∆λ to Lp ′

(O ). Then for any ψ ∈D(Ω), the following

10



Green formula holds:

∫

Ω

ψ∆λdx−

∫

Ω

∆ψλdx =

〈
ψ,

∂λ

∂n

〉

W 1/p′ ,p (∂Ω)×W −1/p′ ,p′ (∂Ω)

−

〈
∂ψ

∂n
,λ

〉

∂Ω

.

Since λ ∈A
∆

−α,p ′(Ω), this is reduced to

−

∫

Ω

∆ψλdx =

〈
ψ,

∂λ

∂n

〉

W 1/p′ ,p (∂Ω)×W −1/p′ ,p′ (∂Ω)

.

Let now u ∈ W
1,p
α (Ω) and g ∈ W 1/p ′,p (∂Ω) satisfy (3.15). Then, due to the density of D(Ω) in W

1,p
α (Ω),

we deduce (3.18).

2. For the resolution of (3.15), the proof is made of three steps.

• Step 1: the case α< 0 and g = 0.

The first point is to extend f by zero in Ω
′. Since f belongs to W

−1,p
α (Ω), then there exists a func-

tion F in W
0,p
α (Ω) such that f = divF in Ω (see [2], Proposition 1.3). Let F̃ denote the extension

by zero of F in Ω
′ and set f̃ = div F̃ . Then f̃ ∈ W

−1,p
α (R3) is an extension of f . Next since α < 0,

the polynomials space P
∆

[1−3/p ′+α]
is reduced to {0}. Using the fact that α and p satisfy (H), we

deduce from Theorem 2.2 that there exists a unique w̃ in W
1,p
α (R3) such that

−∆ w̃ = f̃ in R
3.

We denote by w the restriction of w̃ to Ω. Thanks to Theorem 3.6, there exists ξ ∈ W
1,p
α (Ω)

satisfying

∆ξ= 0 in Ω, ξ=−w on ∂Ω.

Setting u = w +ξ, then u ∈W
1,p
α (Ω) and satisfies problem (3.15) with g = 0.

• Step 2: the case α> 0 and g = 0.

It follows from the previous case that the Laplace operator defined by

∆ : W̊
1,p ′

−α (Ω)/A ∆

−α,p ′(Ω) 7−→W
−1,p ′

−α (Ω)

is an isomorphism. Therefore, by duality, the Laplace operator

∆ : W̊
1,p
α (Ω) 7−→W

−1,p
α (Ω) ⊥A

∆

−α,p ′(Ω)

is also an isomorphism

• Step 3: the general case.

Let R be chosen so that Ω′ is contained in BR . Let v ∈ W 1,p (ΩR ) be the lifting function of g

11



satisfying:

∆v = 0 in ΩR , v = g on ∂Ω, v = 0 on ∂BR . (3.19)

Extending v by zero outside BR and still denoted by v the extended function, problem (3.15) is

equivalent to

−∆z = f +∆v in Ω, z = 0 on ∂Ω. (3.20)

Ifα<−1+3/p ′, then thanks to Proposition 3.5, A ∆

−α,p ′(Ω) = {0} and as f +∆v belongs to W
−1,p
α (Ω),

it follows from steps 1 and 2 that problem (3.20) has a solution z ∈W
1,p
α (Ω). Hence u = v + z be-

longs to W
1,p
α (Ω) and satisfies problem (3.15). Uniqueness follows from the definition of the

kernel A
∆
α,p (Ω). If α≥−1+3/p ′, then, using (3.18) and the properties of v , one can easily prove

that f +∆v is orthogonal to A
∆

−α,p ′(Ω) and we can again use the previous steps to end the proof.

ä

Remark 2. Assume Ω be an exterior domain of R3 with boundary ∂Ω of class C
1,1, assume that f is in

W
0,p
α (Ω) and g in W 1+1/p ′,p (∂Ω). Then, if 3/p+α 6= 2 and 3/p ′−α 6= 0, one can prove that the solution u dis-

cussed in Theorem 3.7 belongs to W
2,p
α (Ω)/A ∆

α−1,p (Ω). In addition, there exists a constant C , independent

of u, f and g , such that

||u||
W

2,p
α (Ω)/A ∆

α−1,p (Ω)
≤C

(
|| f ||

W
0,p
α (Ω)

+||g ||W 1+1/p′ ,p (∂Ω)

)
.

This regularity result is obtained via an adequate partition of unity that allows to split u into the solution of

a Laplace problem in R
3, solved by Theorem 2.2 (isomorphism (2.9) with m = 1 and α replaced by α−1) and

the solution of a Dirichlet problem for the Laplace operator in a bounded domain.

3.2.2 The harmonic Neumann problem

In this part we consider the following Laplace equation: For g given in W −1/p,p (∂Ω), find u solution of:

∆u = 0 in Ω,
∂u

∂n
= g on ∂Ω. (3.21)

We define the kernel of the Laplace operator with Neumann boundary condition:

N
∆

α,p (Ω) =

{
χ ∈W

1,p
α (Ω), ∆χ= 0 in Ω,

∂χ

∂n
= 0 on ∂Ω

}
.

The characterizations below are proved in [16] and in [6] respectively.

Proposition 3.8. (Giroire [16]). Let Ω be an exterior domain of R
3 with a Lipschitz-continuous boundary.

Assume α ∈Z. We have

N
∆

α,2(Ω) =
{

w(q)−q, q ∈P
∆

−1−α

}
,

12



where w(q) ∈W 1,2
0 (Ω)∩W 1,2

α (Ω) is the unique solution of the Neumann problem

∆w(q) = 0 in Ω,
∂w(q)

∂n
=

∂q

∂n
on ∂Ω. (3.22)

In particular N
∆

−1,2(Ω) =R and N
∆

α,2(Ω) = {0}, If α≥ 0.

Proposition 3.9. (Amrouche et al. [6]). Let Ω be an exterior domain of R3 with boundary ∂Ω of class C
1,1 if

p 6= 2 and Lipschitz-continuous if p = 2. We have

N
∆

0,p (Ω) =P [1−3/p].

The next proposition characterizes the kernel N
∆
α,p (Ω) for α ∈Z and the proof is given in Appendice D.

Proposition 3.10. Let Ω be an exterior domain of R3 with boundary ∂Ω of class C
1,1 if p 6= 2 and Lipschitz-

continuous if p = 2. Assume α ∈Z . We have

N
∆

α,p (Ω) =
{

w(q)−q, q ∈P
∆

[1−3/p−α]

}
,

where w(q) ∈ W 1,2
0 (Ω)∩W

1,p
α (Ω) is the unique solution of (3.22). In particular, N

∆
α,p (Ω) = {0}if α > 1−3/p

and N
∆
α,p (Ω) =R if −3/p <α≤ 1−3/p.

The two theorems below solve the harmonic Neumann problem in weighted spaces.

Theorem 3.11. Let Ω be an exterior domain of R3 with boundary ∂Ω of class C
1,1 if p 6= 2 and Lipschitz-

continuous if p = 2. Let α and p satisfy (H). Assume moreover that α < −1 + 3/p ′. Then for any g in

W −1/p,p (∂Ω), problem (3.21) has a solution u in W
1,p
α (Ω) unique up to an element of N

∆
α,p (Ω). Moreover

we have the estimate

‖u‖
W

1,p
α (Ω)/N ∆

α,p (Ω)
≤C‖g‖W −1/p,p (∂Ω).

Theorem 3.12. Let Ω be an exterior domain of R3 with boundary ∂Ω of class C
1,1 if p 6= 2 and Lipschitz-

continuous if p = 2. Let α and p satisfy (H). Assume moreover that α ≥ −1 + 3/p ′. Then for any g in

W −1/p,p (∂Ω), problem (3.21) has a solution u in W
1,p
α (Ω) if and only if

∀v ∈N
∆

−α,p ′(Ω), 〈g , v〉∂Ω = 0. (3.23)

The solution u is unique up to an element of N
∆
α,p (Ω).

Remark 3.

1. Note that these results have been proved by Specovius-Neugebauer [19] for exterior domains with

boundaries of class at least C
2. The solution of the harmonic Neumann problem is represented as a

single layer potential and weighted estimates on the solution are established. We propose proofs with
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a different approach making use of known results established in [6], [16] and Theorem 2.2. The proofs

can be seen in Appendices E and F.

2. If Ω is an exterior domain with boundary of class C
1,1 and if the datum has the additional regularity: g

belongs to W 1/p ′,p (∂Ω) and if α and p satisfy the additionnal assumptions 3/p+α 6= 2 and 3/p ′−α 6= 0,

then as in Remark 2, the solution u of Problem (3.21) discussed in Theorem 3.11 and Theorem 3.12

belongs to W
2,p
α (Ω).

4 The Vector potential operator

In this section we study the vector potential problem (1.1). We begin with the whole space R
3 and then

extend the results to exterior domains.

4.1 The vector potential in R
3

We start by introducing the following spaces:

Gk =
{
∇q, q ∈P

∆

k+1

}

G
m,p
α =

{
∇q, q ∈W

m+1,p
α (R3)/P j ′

}

where j ′ = min(0, j ) and where j is defined in (2.4). For m ∈Z, we recall the space

V
m,p
α (R3) =

{
v ∈W

m,p
α (R3), divv = 0

}
.

We finally recall a useful lemma whose proof can be found in [13].

Lemma 4.1. (Girault [13]). Let k ≥ 1 be an integer, q be a polynomial in Pk−1 such that div q = 0 and r be a

polynomial in Pk−1. Then there exists a unique polynomial λ in Pk /Gk such that

curl λ= q and div λ= r.

The mapping (q,r ) →λ is linear.

Theorem 4.2. Let α and p satisfy (H). Assume, moreover that α < 1+3/p ′. Let u be in V
0,p
α (R3). Then there

exists a unique vector potential ψ ∈W
1,p
α (R3)/G[1−3/p−α] such that

u = curl ψ and div ψ= 0.

Moreover, we have

‖ψ‖
W

1,p
α (R3)/G[1−3/p−α]

≤C‖u‖
W

0,p
α (R3)

.
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Proof. We shall prove that the curl operator is an isomorphism from V
1,p
α (R3)/G[1−3/p−α] onto V

0,p
α (R3). The

curl operator is clearly linear and continuous. Let us prove that it is injective. Let u be in V
0,p
α (R3). Assume

that there exist two vector potentials ψ1 and ψ2 that belong to V
1,p
α (R3) satisfying u = curl ψ1 = curl ψ2.

Set ϕ=ψ1 −ψ2, then

curl ϕ= 0 and div ϕ= 0. (4.24)

This implies that ∆ϕ= 0 and therefore, ϕ belongs to P [1−3/p−α]. From (4.24) and Lemma 4.1, ϕ belongs to

G[1−3/p−α]. We shall now prove that the curl operator is onto. Let u ∈ V
0,p
α (R3), then it follows that curl u

belongs to W
−1,p
α (R3).

• Assume first that α<−1+3/p ′, then thanks to Theorem 2.2, there exists ψ ∈W
1,p
α (R3) such that

−∆ψ= curl u in R
3. (4.25)

Furthermore, since div u = 0, then, on the one hand, we have curl ψ−u ∈W
0,p
α (R3) satisfies∆(curl ψ−

u) = 0 which shows that curl ψ−u is a polynomial of P [−3/p−α] and, on the other hand, we also have

div (curl ψ−u) = 0. Besides, Equality (4.25) implies that ∆(div ψ) = 0 which yields that div ψ is a

polynomial of P [−3/p−α]. Therefore, according to Lemma 4.1, there exists a polynomialλ in P [1−3/p−α]

such that

curl λ= curl ψ−u and div λ= div ψ.

Hence a vector potential candidate is ψ−λ.

• Assume next that −1+3/p ′ ≤ α < 3/p ′. Then curl u is obviously orthogonal to P0 and we can again

solve (4.25).

• Assume finally 3/p ′ <α< 1+3/p ′, then curl u is orthogonal to P1. Indeed, we have

∀q ∈P1, 〈curl u,q〉
W

−1,p
α (R3)×W

1,p′

−α (R3)
=−〈u,curl q〉

W
0,p
α (R3)×W

0,p′

−α (R3)
.

Besides, for any q ∈P1, there exists p ∈P1 such that curl q =∇p. It follows that

〈u,curl q〉
W

0,p
α (R3)×W

0,p′

−α (R3)
= 〈u,∇p〉

W
0,p
α (R3)×W

0,p′

−α (R3)
= 〈div u, p〉

W
−1,p
α (R3)×W

1,p′

−α (R3)
= 0

since u ∈V
1,p
α (R3). Then, again we can solve (4.25). ä

Theorem 4.3. Let α and p satisfy (H). Assume moreover that α≥ 1+3/p ′. Let u be in V
0,p
α (R3) satisfies

〈curl u, q〉
W

−1,p
α (R3)×W

1,p′

−α (R3)
= 0, ∀q ∈P

∆

[1−3/p ′+α]. (4.26)
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Then there exists a unique ψ ∈W
1,p
α (R3)/G[1−3/p−α] such that

u = curl ψ and div ψ= 0 in R
3.

Conversely, any function u = curl ψ with ψ in V
1,p
α (R3) satisfies (4.26).

Proof. Since curl u satisfies the compatibility condition (4.26), then, for the proof of the existence of the

unique vector potentialψ in V
1,p
α (R3)/G[1−3/p−α], one can apply Theorem 2.2 and therefore one can proceed

as in the proof of Theorem 4.2. Let us now prove the converse. If u = curl ψ with ψ ∈V
1,p
α (R3), then we have,

curl u = curl curl ψ=−∆ψ+∇(div ψ).

It follows that ψ is solution of the Laplace equation

∆ψ=−curl u in R
3.

Hence, in view of Theorem 2.2, curl u belongs to W
−1,p
α (R3)⊥P

∆

[1−3/p ′+α]
. In other words, curl u satisfies

(4.26). ä

Remark 4. The main drawback of Theorem 4.3 is that the necessary compatibility condition (4.26) is difficult

to satisfy in applications. The last theorem of the subsection states that the existence and the uniqueness

of the vector potential in the case α≥ 1+3/p ′ can still be valid once condition (4.26) is removed. In return,

this unique vector potentiel is not necessary of divergence free. We first need a lemma on characterizations

of duals of some weighted spaces.

Lemma 4.4. Let α and p satisfy (H). Assume moreover that α≥ 1+3/p ′. Then we have

(
V

−1,p ′

−α (R3)
)′
=W

1,p
α (R3)/G

1,p
α

and (
V

0,p ′

−α (R3)/G[−3/p ′+α]

)′
=V

0,p
α (R3).

This lemma is proved in Appendix G. As a consequence, we can state the following.

Theorem 4.5. Let α and p satisfy (H). Assume moreover that α ≥ 1+3/p ′. Let u be in V
0,p
α (R3). Then there

exists a unique ψ ∈W
1,p
α (R3)/G

1,p
α such that

u = curl ψ in R
3.

Proof. Proceeding as in the proof of Theorem 4.2 with the use of the isomorphism of the Laplace

operator (G.53), we can easily prove that the curl operator defined by

curl : V
0,p ′

−α (R3)/G[−3/p ′+α] 7→V
−1,p ′

−α (R3)
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is an isomorphism. By duality, the curl operator defined by

curl :
(
V

−1,p ′

−α (R3)
)′
7→

(
V

0,p ′

−α (R3)/G[−3/p ′+α]

)′

is an isomorphism. Then Lemma 4.4 ends the proof. ä

4.2 The vector potential in an exterior domain

For α in Z, we define the spaces

Y
p

α,N
(Ω) =

{
w ∈ X

p

α,N
(Ω); divw = 0 and curl w = 0 in Ω

}
. (4.27)

and

Y
p

α,T
(Ω) =

{
w ∈ X

p

α,T
(Ω); divw = 0 and curl w = 0 in Ω

}
. (4.28)

As a consequence of Section 3 and the vector potential problem in the whole space, we have the following

characterizations of these spaces.

Proposition 4.6. Let Ω be an exterior domain of R3 with boundary ∂Ω of class C
1,1 if p 6= 2 and Lipschitz-

continuous if p = 2. Let α and p satisfy (H). Then

Y
p

α,N
(Ω) =

{
∇

(
w(q)−q

)
, q ∈P

∆

[1−3/p−α]

}
,

where v(q) is the unique solution in W 1,2
0 (Ω)∩W

1,p
α (Ω) of problem (3.16). In particular, Y

p

α,N
(Ω) = {0} if

α> 1−3/p.

Proof. The proof follows the ideas of Girault-Giroire-Sequeira in [15]. Let w be in Y
p

α,N
(Ω). Then since

Ω
′ is simply-connected and under the assumptions on α and p, thanks to Theorem 4.2 and Theorem 4.5,

there exists a χ ∈ W
1,p
α (Ω), unique up to an additive constant, such that w = ∇χ. But w×n = 0, hence, χ is

constant on ∂Ω ( we recall that ∂Ω is a connected boundary) and we choose the additive constant in χ so

that χ= 0 on ∂Ω. Thus χ ∈W
1,p
α (Ω) satisfies the following problem:

∆χ= 0 in Ω and χ= 0 on ∂Ω.

Thus the proposition follows from the characterization of the kernel A ∆
α,p (Ω). Now, to end the proof we shall

prove that ∇(w(q)−q) belongs to Y
p

α,N
(Ω). But this is a simple consequence of the definition of q and w(q).

ä

Proposition 4.7. Let Ω be an exterior domain of R3 with boundary ∂Ω of class C
1,1 if p 6= 2 and Lipschitz-

continuous if p = 2. Let α and p satisfy (H). Then

Y
p

α,T
(Ω) =

{
∇

(
w(q)−q

)
, q ∈P

∆

[1−α−3/p]

}
,
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where w(q) is the unique solution in W 1,2
0 (Ω)∩W

1,p
α (Ω) of problem (3.22). In particular, Y

p

α,T
(Ω) = {0} if

α>−3/p.

Proof. We proceed as in the proof of Proposition 4.6. If w belongs to ∈ Y
p

α,T
(Ω) , then the fact that Ω′

is simply-connected and under the assumptions on α and p, there exists a χ ∈ W
1,p
α (Ω), unique up to an

additive constant, such that w =∇χ. But w ·n = 0 on ∂Ω thus χ ∈W
1,p
α (Ω) satisfies the following problem:

∆χ= 0 in Ω and
∂χ

∂n
= 0 on ∂Ω.

Thus the proposition follows from the characterization of the kernel N
∆
α,p (Ω). Finally the fact that ∇(w(q)−

q) belongs to Y
p

α,T
(Ω) is straightforward. ä

Our first theorem does not require the uniqueness of the vector potential and holds for any exponent of the

weight satisfying (H).

Theorem 4.8. Let Ω be an exterior domain of R3 with boundary ∂Ω of class C
1,1 if p 6= 2 and Lipschitz-

continuous if p = 2. Let α and p satisfy (H). Then for any function v ∈ H
p
α (div,Ω) that satisfies

divv = 0 in Ω and 〈v ·n,1〉∂Ω = 0,

there exists ψ in W
1,p
α (Ω) such that

v = curlψ and divψ= 0 in Ω.

Proof. Let us solve the following Neumann problem in the bounded domain Ω
′:

∆θ = 0 in Ω
′ and

∂θ

∂n
=−v ·n on ∂Ω.

Since 〈v ·n,1〉∂Ω = 0, this problem has a solution θ in W 1,p (Ω′) and there exists a constant C independent of

v such that

||θ||W 1,p (Ω′) ≤C ||v ·n||W −1/p,p (∂Ω).

Let us take w = ∇θ in Ω
′ and w = v in Ω. Then w belongs to H

p
α (div,R3) and divw = 0 in R

3. Indeed let

ϕ ∈D(R3), then we have

〈divw,ϕ〉D ′(R3)×D(R3) = −

∫

R3
w ·∇ϕdx

= −

∫

Ω

v ·∇ϕdx−

∫

Ω′

∇θ ·∇ϕdx

= −〈v ·n,ϕ〉∂Ω−

〈
∂θ

∂n
,ϕ

〉

∂Ω

= 0.

The proof is now splitted into two cases.
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• The case α< 1+3/p ′. Thanks to Theorem 4.2, we deduce that w has a unique vector potential ψ in

W
1,p
α (R3)/G[1−3/p−α] that satisfies

w = curl ψ and div ψ= 0 in R
3.

Then the restriction of ψ to Ω is the required vector potential.

• The case α≥ 1+3/p ′. In order to apply Theorem 4.3, curl w needs to satisfy the compatibility con-

dition (4.26). The goal is then to modify the extension w so that it satisfies (4.26). Observe first that

due to Theorem 4.5, there exists a vector potential ψ ∈ W
1,p
α (R3) such that w = curl ψ in R

3. But of

course, this vector potential is not necessarily divergence free. Let now D1 and D2 be two balls such

that D1 ⊂ D2 ⊂Ω
′ and let µ ∈D(R3) be a cut-off function such that

0 ≤µ≤ 1, µ= 1 in D1, supp µ⊂ D2.

We introduce the mapping

q 7→

(∫

Ω′

µ(x)q(x)2dx

)1/2

(4.29)

which is a norm on Pk for any k ∈ N. Consider next the following problem: find λ ∈ P [−1−3/p ′+α]

solution of

∀q ∈P [−1−3/p ′+α],

∫

Ω′

µ(x)λ(x) ·q(x)dx =

∫

R3
ψ(x) ·q(x)dx. (4.30)

The bilinear form (q1,q2) 7→
∫
Ω′ µ(x)q1(x) ·q2(x)dx is continuous and coercive with respect the norm

defined in (4.29). Therefore, thanks to Lax-Milgram lemma, problem (4.30) has a unique solution

λ ∈P [−1−3/p ′+α]. Hence for any q ∈P [1−3/p ′+α], we have curl curl q ∈P [−1−3/p ′+α], so we can write

∫

Ω′

µ(x)λ(x) ·curl curl q(x)dx =

∫

R3
ψ(x) ·curl curl q(x)dx

which implies ∫

Ω′

curl curl
(
µ(x)λ(x)

)
·q(x)dx = 〈curl w,q〉

W
−1,p
α (R3)×W

1,p′

−α (R3)
.

Setting now w̃ = w− curl (µλ), then w̃ ∈ H
p
α (div,R3) is an extension of v that satisfies div w̃ = 0 and

condition (4.26). Then Theorem 4.3 ends the proof. ä

In order to ensure the uniqueness of the vector potential, we shall impose either the tangential component

of the trace or the normal component of the trace to vanish. This will lead to additional constraints on the

exponent of the weight function. We start with a result where the vanishing of the tangential component of

the trace is imposed.

Theorem 4.9. Let Ω be an exterior domain of R3 with boundary ∂Ω of class C
1,1 if p 6= 2 and Lipschitz-

continuous if p = 2. Let α and p satisfy (H). Assume moreover that α < 3/p ′, 3/p +α 6= 2 and 3/p ′−α 6= 0.
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Then each function v in H
p
α (div,Ω) that satisfy

divv = 0 in Ω and v ·n = 0 on ∂Ω

has a unique vector potential ψ in W
1,p
α (Ω)/Y

p

α−1,N
(Ω) such that

v = curlψ, divψ= 0 in Ω, ψ×n = 0 on ∂Ω. (4.31)

Moreover it depends continuously on v:

||ψ||
W

1,p
α (Ω)/Y

p

α−1,N (Ω)
ÉC ||v||

W
0,p
α (Ω)

. (4.32)

Proof. Let us prove the existence. Since v ·n = 0 on ∂Ω, we can extend v by zero in Ω
′ and the extended

function denoted by ṽ belongs to H
p
α (div,R3) and satisfies div ṽ = 0 in R

3. Under the assumptions (H) and

α < 3/p ′, we can apply Theorem 4.2 which implies that ṽ has a vector potential z ∈ W
1,p
α (R3). In addition,

we have

||z||
W

1,p
α (R3)/G[1−3/p−α]

ÉC ||ṽ||
W

0,p
α (R3)

. (4.33)

Now, the fact that curl z = 0 in Ω
′ implies that, z = ∇θ in Ω

′ for some function θ ∈ W 2,p (Ω′)/R. Let θ be a

representative of θ. Then (4.33) yields

||θ||W 2,p (Ω′) ÉC ||z||W 1,p (Ω′)/G[1−3/p−α]
ÉC ||v||

W
0,p
α (Ω)

. (4.34)

As a consequence, the trace of θ on ∂Ω satisfies

||θ|∂Ω||W 2−1/p,p (∂Ω) ÉC ||θ||W 2,p (Ω′) ÉC ||v||
W

0,p
α (Ω)

. (4.35)

In order to satisfy the boundary condition in (4.31), we solve the following Dirichlet problem for Laplace:

∆χ= 0 in Ω, χ= θ on ∂Ω. (4.36)

Since θ|∂Ω belongs to W 2−1/p,p (∂Ω), under the assumptions on α and p , it follows from Theorem 3.7 and

Remark 2 that this problem has a solution χ in W
2,p
α (Ω) unique up to an element of A

∆

α−1,p (Ω) such that

||χ||
W

2,p
α (Ω)/A ∆

α−1,p (Ω)
≤C ||θ|∂Ω||W 2−1/p,p (∂Ω). (4.37)

Now, every solution χ of problem (4.36) satisfies ∇χ×n = z ×n on ∂Ω. Indeed, let µ ∈W 1/p,p ′

(∂Ω). As Ω′ is

bounded, we can fix once for all a ball BR , centered at the origin and with radius R > 0, such that Ω′ ⊂ BR .

Thus we have the existence of ϕ ∈W 1,p ′

(ΩR ) such that ϕ=µ on ∂Ω and ϕ= 0 on ∂BR . The function ϕ can

be extended by zero outside BR and owing to its boundary conditions on ∂BR , the extended function, still
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denoted by ϕ, belongs to W
1,p ′

ℓ
(Ω), for any ℓ since its support is bounded. Let ϕ′ ∈W 1,p ′

(Ω′) be any function

such that ϕ′ =µ on ∂Ω and set ϕ̃=ϕ in Ω and ϕ̃=ϕ′ in Ω
′. Thus ϕ̃ belongs in particular to W

1,p ′

1−α(R3). Now,

using (2.11) and (2.12), we can write

〈
∇χ×n,µ

〉
∂Ω =

∫

Ω

∇χ ·curlϕ̃d x =
〈

curlϕ̃ ·n,θ
〉
∂Ω

=

∫

Ω′

z ·curlϕ̃dx =
〈

z×n,µ
〉
∂Ω .

Therefore it remains to setψ= z−∇χ is the required vector potential of v. Equality (4.32) follows from (4.33),

(4.35) and (4.37). Finally, the uniqueness follows immediately from the definition of the space Y
p

α−1,N
(Ω).

ä

We end this section with a result where we impose the normal component of the trace of the vector potential

to vanish.

Theorem 4.10. Let Ω be an exterior domain of R3 with boundary ∂Ω of class C
1,1 if p 6= 2 and Lipschitz-

continuous if p = 2. Let α and p satisfy (H). Assume moreover that α< 1+3/p ′, 3/p +α 6= 2 and 3/p ′−α 6= 0.

Then each function v ∈ H
p
α (div,Ω) that satisfies

divv = 0 in Ω and 〈v ·n,1〉∂Ω = 0,

has a unique vector ψ in W
1,p
α (Ω)/Y

p

α−1,T
(Ω) such that

v = curlψ, divψ= 0 in Ω and ψ ·n = 0 on ∂Ω. (4.38)

Proof. Let ϕ be the vector potential of v constructed in Theorem 4.8 and let us solve the following

problem

∆z = 0 in Ω and
∂z

∂n
=ϕ ·n on ∂Ω. (4.39)

Since ϕ ∈W
1,p
α (Ω) and divϕ= 0 in Ω we deduce that ϕ ·n belongs to W 1/p ′,p (∂Ω). The proof now is splitted

into two cases.

(i) The case α< 3/p ′. With this assumption, N
∆

1−α,p ′(Ω) is reduced to {0} which implies that ϕ ·n has no

compatibility condition to satisfy. Therefore applying Theorem 3.11 problem (4.39) has a solution z

in W
1,p
α−1(Ω).

(ii) The case 3/p ′ ≤α< 1+3/p ′. It follows from Proposition 3.10 that N
∆

1−α,p ′(Ω) = R. Thus problem

(4.39) does not have a solution in W
1,p
α−1(Ω) unless ϕ·n satisfies the necessary condition 〈ϕ·n,1〉∂Ω = 0.

But, for any w ∈W
1,p ′

1−α(Ω) the following Green’s formula holds:

〈ϕ ·n, w〉∂Ω =

∫

Ω

ϕ ·∇w d x. (4.40)
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Since 3/p ′ ≤α< 1+3/p ′, the constants belong to W
1,p ′

1−α(Ω) then (4.40) is still valid for w = 1 and thus

we have

〈ϕ ·n,1〉∂Ω = 0.

It follows from Theorem 3.12 that there exists z in W
1,p
α−1(Ω) solution of problem (4.39).

In both cases, thanks to regularity results (see Remark 3) we deduce that z belongs to W
2,p
α (Ω). Therefore it

remains to set ψ=ϕ−∇z is the required vector potential of v.

The proof of uniqueness follows the same lines as in the proof of Theorem 4.9. ä

5 Applications of the vector potential results

5.1 Weighted Sobolev’s inequalities

Theorem 5.1. Let Ω be an exterior domain of R3 with boundary ∂Ω of class C
1,1 if p 6= 2 and Lipschitz-

continuous if p = 2. Let α and p satisfy (H). Assume moreover that α < 3/p ′, 3/p +α 6= 2 and 3/p ′−α 6= 0.

Then the space X
p

α−1,N
(Ω) is continuously imbedded in W

1,p
α (Ω). In addition for any ϕ ∈ X

p

α−1,N
(Ω), we have

||ϕ||
W

1,p
α (Ω)

≤C

{
||ϕ||

p

W
0,p
α−1(Ω)

+||divϕ||
p

W
0,p
α (Ω)

+||curlϕ||
p

W
0,p
α (Ω)

}1/p

. (5.41)

Proof. We shall use a partition of unity. Let R > 0 be a real number large enough so that Ω′ ⊂ BR . Let λ

and µ be two scalar, nonnegative functions in C∞(R3) that satisfy

∀ x ∈ BR , λ(x) = 1, suppλ⊂ BR+1, ∀ x ∈R
3, λ(x)+µ(x) = 1.

Then for any ϕ ∈ X
p

α−1,N
(Ω) we can write ϕ = λϕ+µϕ, where λϕ has its support in ΩR+1 and µϕ in CR .

Consider first µϕ. Its domain CR is simply-connected and has a very smooth and connected boundary ∂CR .

Next, div(µϕ) = µdivϕ+ϕ ·∇µ belongs to W
0,p
α (CR ). Therefore, applying Proposition 3.2, there exists w in

W
1,p
α (CR ), that vanishes on ∂CR , such that

divw = div(µϕ) in Ω

and

‖w‖
W

1,p
α (CR )

É C ||div(µϕ)||
W

0,p
α (CR )

É C
(
||divϕ||

W
0,p
α (CR )

+||ϕ||Lp (BR+1\BR )

)
.
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Let ψ=µϕ−w−∇z(λ), where z(λ) ∈A
∆

α−1,p (CR ). Then

divψ= 0 in CR , ψ×n = 0 on ∂CR .

Set v = curlψ, then v =µcurlϕ+∇µ×ϕ−curl w belongs to W
0,p
α (CR ), and

‖v‖
W

0,p
α (CR )

ÉC
(
‖w‖

W
1,p
α (CR )

+||curlϕ||
W

0,p
α (CR )

+||ϕ||Lp (BR+1\BR )

)
.

In addition, the function v satisfies

divv = 0 in CR and v ·n = 0 on ∂CR .

Then the uniqueness of the vector potential defined by Theorem 4.9 implies that ψ belongs to

W
1,p
α (CR )/Y

p

α−1,N
(CR ) and

||ψ||
W

1,p
α (CR )/Y

p

α−1,N (CR )
ÉC‖v‖

W
1,p
α (CR )

.

In turn, this implies that µϕ belongs to W
1,p
α (CR ) and

||µϕ||
W

1,p
α (CR )

ÉC
(
||divϕ||

W
0,p
α (CR )

+||curlϕ||
W

0,p
α (CR )

+||ϕ||Lp (BR+1\BR )

)
. (5.42)

Finally, consider λϕ. Its domain ΩR+1 is of class C 1,1. Next, λϕ×n = 0 on ∂ΩR+1, because λϕ vanishes on

∂BR+1 and ϕ×n = 0 on ∂Ω. Applying [8], implies that λϕ belongs to W 1,p (ΩR+1) and

||λϕ||W 1,p (ΩR+1) ÉC (||div(λϕ)||Lp (ΩR+1) +||curl(λϕ)||Lp (ΩR+1) +||λϕ||Lp (ΩR+1)). (5.43)

Combining these two results, we derive thatϕbelongs to W
1,p
α (Ω) and (5.41) follows from (5.42) and (5.43). ä

Our second imbedding result is stated in the following theorem:

Theorem 5.2. Let Ω be an exterior domain of R3 with boundary ∂Ω of class C
1,1 if p 6= 2 and Lipschitz-

continuous if p = 2. Assume moreover that α< 1+3/p ′, 3/p+α 6= 2 and 3/p ′−α 6= 0. Then the space X
p

α−1,T
(Ω)

is continuously imbedded in W
1,p
α (Ω). In addition there exists a constant C such that for any ϕ ∈ X

p

α−1,T
(Ω),

||ϕ||
W

1,p
α (Ω)

≤C

{
||ϕ||

p

W
0,p
α−1(Ω)

+||divϕ||
p

W
0,p
α (Ω)

+||curlϕ||
p

W
0,p
α (Ω)

}1/p

. (5.44)

We skip the proof as it is the same as the one of Theorem 5.1. The only diffrence is that here we need the

second type of vector potential proved in Theorem 4.10.

5.2 The Helmholtz decomposition

Another application of the vector potential problem is the Helmholtz decomposition. We start with a result

in the whole space R
3 and we state an extention to exterior domains.
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Theorem 5.3. Let α and p satisfy (H). Assume moreover that α < 3/p ′. Let g ∈ W
0,p
α (R3). Then g has the

unique decomposition

g =∇ϕ+curlψ,

where ϕ ∈W
1,p
α (R3)/P ∆

[1−3/p−α] and ψ ∈V
1,p
α (R3)/G[1−3/p−α]. Moreover, we have the estimate

‖ϕ‖
W

1,p
α (R3)/P ∆

[1−3/p−α]

+‖ψ‖
W

1,p
α (R3)/G[1−3/p−α]

≤C‖g‖
W

0,p
α (R3)

. (5.45)

Proof. Since g ∈W
0,p
α (R3), then divg ∈W

−1,p
α (R3). Next since α< 3/p ′, the polynomial space P [1−3/p ′+α]

contains at most constants. Therefore divg is orthogonal to P [1−3/p ′+α]. Thanks to Theorem 2.2, there exists

a unique ϕ ∈W
1,p
α (R3)/P ∆

[1−3/p−α] such that

∆ϕ= divg in R
3.

Then by construction g−∇ϕ ∈W
0,p
α (R3) and div(g−∇ϕ) = 0 in R

3. Therefore from Theorem 4.2, there exists

a unique vector potential ψ ∈V
1,p
α (Ω)/G[1−3/p−α] such that g−∇ϕ= curlψ. ä

Theorem 5.4. Let Ω be an exterior domain of R3 with boundary ∂Ω of class C
1,1 if p 6= 2 and Lipschitz-

continuous if p = 2. Let α and p satisfy (H). Assume moreover that α< 3/p ′ and let g ∈ W
0,p
α (Ω). Then g has

the decomposition

g =∇ϕ+curlψ,

where ϕ ∈W
1,p
α (Ω) and ψ ∈V

1,p
α (Ω), such that ψ×n = 0.

In addition, we have

||∇ϕ||
W

0,p
α (Ω)

≤C ||g ||
W

0,p
α (Ω)

,

with a constant C that is independent of g and ϕ.

Proof. Let us extend g by zero in Ω
′ and let g̃ denotes the extended function. Then g̃ ∈ W

0,p
α (R3)

and div g̃ ∈ W
−1,p
α (R3). Since α < 3/p ′, then Theorem 2.2 implies that there exists a unique function ṽ ∈

W
1,p
α (R3)/P ∆

[1−α−3/p] such that

∆ṽ = div g̃ in R
3,

||ṽ ||
W

1,p
α (R3)/P [1−α−3/p]

≤C ||g̃ ||
W

0,p
α (R3)

=C ||g ||
W

0,p
α (Ω)

.

Then g̃ −∇ṽ ∈W
0,p
α (R3) and div

(
g̃ −∇ṽ

)
= 0 in R

3. Therefore
(
g̃ −∇ṽ

)
·n belongs to W −1/p,p (∂Ω). Now let us

solve the following problem

∆w = 0 in Ω,
∂w

∂n
=

(
g̃ −∇ṽ

)
·n on ∂Ω. (5.46)

The proof now is splitted into two cases.

(i) The case α<−1+3/p ′. With this assumption,
(
g̃ −∇ṽ

)
·n has no compatibility condition to satisfy
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since N
∆

−α,p ′(Ω) is reduced to {0}. Therefore applying Theorem 3.11 problem (5.46) has a solution w

in W
1,p
α (Ω).

(ii) The case −1+3/p ′ ≤α< 3/p ′. It follows from Proposition 3.10 that N
∆

−α,p ′(Ω) = R and proceeding as

in the proof of Theorem 4.10, we can prove that

〈
(
g̃ −∇ṽ

)
·n,1〉∂Ω = 0.

Therefore applying Theorem 3.12 there exists w ∈W
1,p
α (Ω) solution of problem (5.46).

In both cases we have

‖∇w ||
W

0,p
α (Ω)

≤C‖g ‖
W

0,p
α (Ω)

.

Let v be the restriction of ṽ to Ω, then setting ϕ = v +w and z = g −∇ϕ then z belongs to W
0,p
α (Ω), divz =

0 in Ω and z ·n = 0 on ∂Ω. It follows from Theorem 4.9 that there exists a unique vector potential ψ in

W
1,p
α (Ω)/Y

p

α−1,N
(Ω) such that

z = curlψ, divψ= 0 in Ω, and ψ×n = 0 on ∂Ω. ä

Appendices

A Proof of Proposition 2.1

Let us assume 3/p +α 6= 1 and 3/q +β 6= 1. The proofs of the other cases are similar. Next without loss of

generality we may assume that q > p. Now let λ be a polynomial in W
1,p
α (Ω)+W

1,q

β
(Ω). Then there exist

u ∈W
1,p
α (Ω) and v ∈W

1,q

β
(Ω) such that λ= u + v . Let R > 1 be a real number such that Ω′ ⊂ BR . Using (2.7)

we can write

‖λ(R, .)‖Lp (∂BR ) ≤ ‖u(R, .)‖Lp (∂BR ) +‖v(R, .)‖Lp (∂BR )

≤ ‖u(R, .)‖Lp (∂BR ) +C‖v(R, .)‖Lq (∂BR )

≤C
(
R1−3/p−α

+R1−3/p−β
)

≤C Rγ,

where γ= max
(
1−3/p −α,1−3/q −β

)
. The second inequality holds due to the fact that q > p. Let us now

denote j the degree of λ. Using the following spherical coordinates

x1 = R sinθcosϕ, x2 = R sinθ sinϕ, x3 = R cosθ,
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where θ ∈]0,π[ and ϕ ∈]0,2π[, we have

‖λ(R, .)‖Lp (∂BR ) ≥C

(∫π

0
R j p R2 sinθdθ

)1/p

≥C R j+2/p .

Therefore, in view of the previous inequalities, we deduce that j < γ and therefore λ belongs to P [γ].

B Proof of Proposition 3.5

Let z be in A
∆
α,p (Ω). Then for any bounded domain O such that O ⊂Ω, z belongs to W 1,p (O ) and ∆z belongs

to Lp (O ). Moreover, due to inner regularity results z also belongs to W 1,2(O ) and ∆z also belongs to L2(O ).

Thus
∂z

∂n
belongs to W −1/p,p (∂Ω) ∩W −1/2,2(∂Ω). Let us extend z by zero in Ω

′. The extended function,

denoted by z̃ belongs to W
1,p
α (R3) and for any ϕ ∈D(R3), we have

〈∆z̃,ϕ〉 =−

〈
∂z

∂n
,ϕ

〉

∂Ω

,

where 〈., .〉∂Ω not only denotes the duality pairing between W −1/p,p (∂Ω) and W 1/p,p ′

(∂Ω) but also the duality

pairing between W −1/2,2(∂Ω) and W 1/2,2(∂Ω). This shows that ∆z̃ belongs to W
−1,p
α (R3)∩W −1,2

0 (R3) and has

a compact support. Then, thanks to Theorem 2.2, there exists a unique ṽ ∈W 1,2
0 (R3) satisfying

∆ṽ =∆z̃ in R
3.

Hence ṽ − z̃ is a harmonic tempered distribution and we deduce that ṽ = z̃ + q where q is a polynomial of

W 1,2
0 (R3)+W

1,p
α (R3). But since there are no polynomials in the space W 1,2

0 (R3), thanks to Proposition 2.1,

q belongs to P [1−3/p−α] ⊂ W
1,p
α (R3). Thus, ṽ belongs to W 1,2

0 (R3)∩W
1,p
α (R3), its restriction to Ω belongs to

W 1,2
0 (Ω)∩W

1,p
α (Ω) and satisfies (3.16). The fact that A

∆
α,p (Ω) = {0} if α> 1−3/p follows from the fact that in

this case, P
∆

[1−3/p−α] = {0} and from the uniqueness of v .

C Proof of Theorem 3.6

Let R be chosen so that Ω′ is contained in BR . Let v be the lifting function of g satisfying:

∆v = 0 in ΩR , v = g on ∂Ω, v = 0 on ∂BR .

This set of equations defines a unique function v in W 1,p (ΩR ). Extending v by zero outside BR , the extended

function, still denoted by v , belongs to W
1,p

β
(Ω) for any β ∈ R, so in particular, v belong to W

1,p
α (Ω). Then

problem (3.17) is equivalent to

−∆z =∆v in Ω, z = 0 on ∂Ω, (C.47)
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where, using the same arguments as in the proof of Proposition 3.5, ∆v belongs to W
−1,p
α (Ω) and has a

bounded support. The proof now is splitted into two cases.

(i) The case p > 3/2. Owing to the support of ∆v , ∆v is also in W
−1,p

0 (Ω). Applying Theorem 2.10 of [6],

problem (C.47) has a solution z in W
1,p

0 (Ω). Note that in the case p > 3/2, we have A
∆

0,p ′(Ω) = {0} which

implies that ∆z has no compatibility condition to satisfy. We thus deduce that u = z + v ∈ W
1,p

0 (Ω) is

a solution of problem (3.17). Finally since α< 0, then u also belongs to W
1,p
α (Ω).

(ii) The case 1 < p ≤ 3/2. Due to inner regularity results, for any bounded domain O such that O ⊂ΩR ∪

∂BR , v ∈ W 1,2(O ) and ∆v ∈ L2(O ) and consequently
∂v

∂n
belongs to W −1/2,2(∂Ω). Extending v by zero

outside BR and still denoting by v the extended function, then ∆v belongs to W −1,2
0 (Ω) and thus there

exists w in W 1,2
0 (Ω) such that

−∆w =∆v in Ω, w = 0 on ∂Ω.

Let us extend w by zero in Ω
′ and let w̃ denote the extended function. Then ∆ w̃ belongs to W −1,2

0 (R3)

and has a bounded support and since 1 < p ≤ 3/2, this implies that ∆ w̃ also belongs to W
−1,p
α (R3).

Next since α< 0, then thanks to Theorem 2.2, there exists z̃ in W
1,p
α (R3) such that

∆z̃ =∆ w̃ in R
3.

Hence z̃−w̃ is a harmonic tempered distribution and therefore a polynomial of P
∆

[1−α−3/p] ⊂W
1,p
α (R3).

Thus w belongs to W
1,p
α (Ω) and u = w + v ∈W

1,p
α (Ω) is the required solution to problem (3.17).

D Proof of Proposition 3.10

The proof uses similar ideas than the proof of the characterization of the kernel A ∆
α,p (Ω). Let z be in N

∆
α,p (Ω)

and let z ′ ∈W 1,p (Ω′) be the unique solution of

∆z ′
= 0 in Ω

′, z ′
= z on ∂Ω.

Note that
∂z ′

∂n
belongs to W −1/p,p (∂Ω). Next due to inner regularity results, for any open set O such that

O ⊂Ω
′, we have in particular z ′ ∈W 1,2(O ) and ∆z ′ ∈ L2(O ). This shows that

∂z ′

∂n
also belongs to W −1/2,2(∂Ω).

Set now

z̃ =





z in Ω

z ′ in Ω
′

.
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Then z̃ belongs to W
1,p
α (R3) and due to the previous arguments, ∆z̃ belongs to W −1,2

0 (R3)∩W
−1,p
α (R3) and

has a compact support. Therefore there exists a unique ω̃ ∈W 1,2
0 (R3) satisfying

∆ω̃=∆z̃ in R
3.

Since there are no polynomials in W 1,2
0 (R3), thanks to Proposition 2.1, w̃ = z̃ +q where q ∈P

∆

[1−3/p−α]. This

shows that ω̃ also belongs to W
1,p
α (R3) and its restriction to Ω denoted by ω belongs to W

1,p
α (Ω) and satisfies

(3.22).

Now if α> 1−3/p, then P [1−3/p−α] = {0} and as a result of the uniqueness of ω, N
∆
α,p (Ω) = {0}. By the same

way, if −3/p <α≤ 1−3/p, then P [1−3/p−α] =R and as a result N
∆
α,p (Ω) =R.

E Proof of Theorem 3.11

The proof is splitted into two cases.

(i) The case p > 2. Applying Proposition 3.5 of [6], Problem (3.21) has a solution u in W 1,2
0 (Ω)∩W

1,p
0 (Ω).

It remains now to prove that u belongs to W
1,p
α (Ω). Let u′ ∈W 1,2(Ω′)∩W 1,p (Ω′) be the unique solution

of

∆u′
= 0 in Ω

′, u′
= u on ∂Ω. (E.48)

Set now

ũ =





u in Ω,

u′ in Ω
′.

(E.49)

Then ũ belongs to W 1,2
0 (R3)∩W

1,p
0 (R3), ∆ũ belongs to W −1,2

0 (R3)∩W
−1,p

0 (R3) and has a compact sup-

port. Therefore, ∆ũ also belongs to W
−1,p
α (R3). Since α<−1+3/p ′, then thanks to Theorem 2.2, there

exists z̃ ∈W
1,p
α (R3) such that

∆z̃ =∆ũ in R
3.

This shows that z̃ − ũ is a harmonic tempered distribution and therefore it is a polynomial that be-

longs in particular to W 1,2
0 (R3)+W

1,p
α (R3). Thanks to Proposition 2.1, z̃−ũ belongs to W

1,p
α (R3) which

implies that u belongs W
1,p
α (Ω).

(ii) The case case 1 < p ≤ 2. Let R be chosen so that Ω′ is contained in BR . Let v be the lifting function of

g satisfying:

∆v = 0 in ΩR ,
∂v

∂n
= g on ∂Ω, v = 0 on ∂BR .

This set of equations defines a unique function v in W 1,p (ΩR ) (see for example [17]). Extending v by

zero outside BR , the extended function, still denoted by v , belongs to W
1,p
α (Ω). Then problem (3.21)

is equivalent to

−∆w =∆v in Ω,
∂w

∂n
= 0 on ∂Ω, (E.50)
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where ∆v belongs to W
−1,p
α (Ω) and has a bounded support. Using inner regularity results, for any

bounded domain O such that O ⊂ ΩR ∪∂BR , v ∈ W 1,2(O ) and ∆v ∈ L2(O ). Then using an adequate

partition of unity of Ω, one can show that ∆v belongs to L2(Ω) and since the support of ∆v is bounded,

∆v also belongs to W 0,2
1 (Ω). Therefore, there exists w in W 1,2

0 (Ω) satisfying (E.50) (see [16] or [14]). Let

w̃ ∈ W 1,2
0 (R3) denote the extended function constructed in (E.49), where ω′ ∈ W 1,2(Ω′) is the unique

solution of (E.48). Then ∆ w̃ belongs to W −1,2
0 (R3), has a bounded support and since 1 < p ≤ 2, it

follows that ∆ w̃ also belongs to W
−1,p
α (R3). Since α < −1+ 3/p ′, then thanks to Theorem 2.2, there

exists z̃ in W
1,p
α (R3) such that

∆z̃ =∆ w̃ in R
3.

Hence z̃−w̃ is a harmonic tempered distribution and therefore a polynomial of P
∆

[1−3/p−α] ⊂W
1,p
α (R3).

Thus w belongs to W
1,p
α (Ω) and u = w + v ∈W

1,p
α (Ω) is the required solution of problem (3.17).

F Proof of Theorem 3.12

To prove that condition (3.23) is necessary, one can proceed as in the proof of Theorem 3.7. Let us prove that

condition (3.23) is suffcient. The proof follows the same line as in Theorem 3.11. The only difference here is

that in order to use Theorem 2.2, the distributions ∆ũ and ∆ω̃ defined in Theorem 3.11 must be orthogonal

to the polynomials of P
∆

[1−3/p ′+α]
. We shall prove this for ∆ũ. So let us prove that for any q ∈P

∆

[1−3/p ′+α]
, we

have

〈∆ũ, q〉
W

−1,p
α (R3)×W

1,p′

−α (R3)
= 0.

Using Green formula, this amounts to prove that for any q ∈P
∆

[1−3/p ′+α]

〈
∂u′

∂n
− g , q

〉

∂Ω

= 0.

• On the one hand, in Ω
′, for any q ∈P

∆

[1−3/p ′+α]
, we can write

∫

Ω′

∆u′ q dx = 0 =

∫

Ω′

u′
∆q dx+

〈
∂u′

∂n
, q

〉

∂Ω

−

〈
ũ,

∂q

∂n

〉

W 1/p,p (∂Ω)×W −1/p,p′ (∂Ω)

.

Since ∆q = 0, we get 〈
∂u′

∂n
, q

〉

∂Ω

=

〈
ũ,

∂q

∂n

〉

W 1/p,p (∂Ω)×W −1/p,p′ (∂Ω)

. (F.51)

• On the other hand, in Ω, for any v ∈W
1,p ′

−α (Ω) such that ∆v = 0 in Ω, we can write

∫

Ω

∆u w dx = 0 =

〈
∂u

∂n
, v

〉

∂Ω

−

〈
ũ,

∂v

∂n

〉

W 1/p,p (∂Ω)×W −1/p,p′ (∂Ω)

,
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which implies

〈g , v〉∂Ω =

〈
ũ,

∂v

∂n

〉

W 1/p,p (∂Ω)×W −1/p,p′ (∂Ω)

. (F.52)

Now, for any q ∈P
∆

[1−3/p ′+α]
, we can write

〈
∂u′

∂n
− g , q

〉

∂Ω

=

〈
∂u′

∂n
, q

〉

∂Ω

−
〈

g , q
〉
∂Ω

=

〈
∂u′

∂n
, q

〉

∂Ω

+〈g , v(q)−q〉∂Ω−〈g , v(q)〉∂Ω,

where v(q) ∈ W 1,2
0 (Ω)∩W

1,p ′

−α (Ω) is the unique solution of (3.22). Since by definition v(q)− q belongs to

N
∆

−α,p ′(Ω), then thanks to condition (3.23), we have 〈g , v(q)− q〉∂Ω = 0. Therefore, using (F.51), (F.52) and

the fact that
∂v(q)

∂n
=

∂q

∂n
, we get

〈
∂u′

∂n
− g , q

〉

∂Ω

=

〈
∂u′

∂n
, q

〉

∂Ω

−〈g , v(q)〉∂Ω,

=

〈
ũ,

∂q

∂n

〉

W 1/p,p (∂Ω)×W −1/p,p′ (∂Ω)

−

〈
ũ,

∂v(q)

∂n

〉

W 1/p,p (∂Ω)×W −1/p,p′ (∂Ω)

= 0.

Similar arguments hold to prove that ∆w̃ is orthogonal to P
∆

[1−3/p ′+α]
.

G Proof of Lemma 4.4

(i) Let us prove that (
V

−1,p ′

−α (R3
)′
=W

1,p
α (R3)/G

1,p
α .

The first point is to prove that G
1,p
α is a closed subspace of W

1,p
α (R3). To that end, let us show that the

divergence operator defined by

div : W
−1,p ′

−α (R3)/V
−1,p ′

−α (R3) 7→W
−2,p ′

−α (R3)

is an isomorphism. The above div operator is clearly linear and injective. To prove that it is onto

take z in W
−2,p ′

−α (R3). Observe next that under the assumptions on α and p, we have 3/p +α 6= 2 and

3/p ′−α 6= 0. Then thanks to Theorem 2.2 (isomorphism (2.10)), the Laplace operator defined by

∆ : W
0,p ′

−α (R3)/P ∆

[−3/p ′+α] 7→W
−2,p ′

−α (R3)⊥P
∆

[2−3/p−α] (G.53)
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is an isomorphism. The fact that α ≥ 1+ 3/p ′ implies that 2− 3/p −α ≤ −2 < 0. Hence there exists

v ∈W
0,p ′

−α (R3) such that

∆v = z in R
3.

Then u =∇v ∈W
−1,p ′

−α (R3) satisfies

div u = z in R
3.

Thus the div operator defined above is indeed an isomorphism. Now by duality, the gradient operator

defined by

∇ : W
2,p
α (R3) 7→W

1,p
α (R3)⊥V

−1,p ′

−α (R3)

is an isomorphism. This shows that G
1,p
α is a closed subspace of W

1,p
α (R3). It follows that we can write

V
−1,p ′

−α (R3) =W
−1,p ′

−α (R3)⊥G
1,p
α

which implies that (
V

−1,p ′

−α (R3)
)′
=

(
W

−1,p ′

−α (R3)⊥G
1,p
α

)′
=W

1,p
α (R3)/G

1,p
α .

(ii) Let us prove that (
V

0,p ′

−α (R3)/G[−3/p ′+α]

)′
=V

0,p
α (R3).

Thanks to Theorem 2.2, the Laplace operator defined by

∆ : W
1,p ′

−α (R3)/P ∆

[1−3/p ′+α] 7→W
−1,p ′

−α (R3)⊥P
∆

[1−3/p−α]

is an isomorphism. Therefore, under the assumption on α and p and proceeding as in (i), we can

prove that G
0,p
α is a closed subspace of W

0,p
α (R3). Then we can write

W
0,p ′

−α (R3)⊥G
0,p
α =V

0,p ′

−α (R3)

which implies that (
V

0,p ′

−α (R3)
)′
=

(
W

0,p ′

−α (R3)⊥G
0,p
α

)′
=W

0,p
α (R3)/G

0,p
α .

Now for any v ∈W
0,p
α (R3)⊥G[−3/p ′+α], div v ∈W

−1,p
α (R3)⊥P [1−3/p ′+α], then according to Theorem 2.2,

there exists w ∈W
1,p
α (R3) such that

∆w = div v in R
3.

This shows that one can identify the space (W
0,p
α (R3)⊥G[−3/p ′+α])/G

0,p
α with V

0,p
α (R3) on the space

V
0,p ′

−α (R3). Moreover thanks again to Theorem 2.2, the space G
0,p
α is orthogonal to G[−3/p ′+α] and by
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definition the space V
0,p
α (R3) is also orthogonal to G[−3/p ′+α]. Therefore, summarizing, we can write

(
V

0,p ′

−α (R3)/G[−3/p ′+α]

)′
=

(
V

0,p ′

−α (R3)
)′
⊥G[−3/p ′+α]

=

(
W

0,p
α (R3)/G

0,p
α

)
⊥G[−3/p ′+α]

=

(
W

0,p
α (R3)⊥G[−3/p ′+α]

)
/G

0,p
α

=V
0,p
α (R3).
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