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Abstract: We focus on the parametric estimation of the distribution of a
Markov reversible environment from the observation of a single trajectory
of a one-dimensional nearest-neighbor path evolving in this random envi-
ronment. In the ballistic case, as the length of the path increases, we prove
consistency, asymptotic normality and efficiency of the maximum likelihood
estimator. Our contribution is two-fold: we cast the problem into the one
of parameter estimation in a hidden Markov model (HMM) and establish
that the bivariate Markov chain underlying this HMM is positive Harris re-
current. We provide different examples of setups in which our results apply,
in particular that of DNA unzipping model, and we give a simple synthetic
experiment to illustrate those results.
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1. Introduction

Random walks in random environments (RWRE) form a subclass of canonical
models in the more general framework of random motions in random media that
is widely used in physics. These models go back to the pioneer works of Chernov
(1967), who introduced them to describe DNA replication and of Temkin (1972)
who used them in the field of metallurgy. A more complete list of application
fields may be found in the introduction of Bogachev (2006) as well as in the
references therein. These models have been intensively studied in the last four
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decades, mostly in the physics and probability theory literature. Some surveys
on the topic include Hughes (1996); Shi (2001); Zeitouni (2004); Révész (2005).

Statistical issues raised by those processes have been overlooked in the liter-
ature until very recently, when new biophysics experiments produced data that
can be modeled (at least in an ideal-case setup) by RWRE (Baldazzi et al., 2006).
Consequently, a new series of works appeared on statistical procedures aiming at
estimating parameters from RWRE data. Another motivation to these studies
comes from the fact that RWRE are closely linked to branching processes with
immigration in random environments (BPIRE) and that the statistical issues
raised in one context may potentially have an impact in the other.

Andreoletti (2011) investigates the local time of the one dimensional recurrent
RWRE in order to estimate the trajectories of the underlying random poten-
tial. In Andreoletti and Diel (2012), the ideal-case model from Baldazzi et al.
(2006) is considered: a (finite length) DNA molecule is unzipped several times
and some device translates these unzippings into random walks along the DNA
molecule, whose sequence of bases is the random environment. Here, the goal
is to reconstruct this environment and thus achieve sequencing of the molecule.
Andreoletti and Diel (2012) prove that a Bayesian estimator (maximum a poste-
riori) of this sequence of bases is consistent as the number of unzippings increases
and they characterize the probability of reconstruction error. In a different set-
ting, several authors have considered the information on the environment that
is contained in one single trajectory of the walk with infinite length. In their
pioneer work, Adelman and Enriquez (2004) consider a very general RWRE and
provide equations linking the distribution of some statistics of the trajectory to
some moments of the environment distribution. In the specific case of a one-
dimensional nearest neighbor path, those equations give moment estimators for
the environment distribution parameters. More recently, Comets et al. (2014a)
studied a maximum likelihood estimator (MLE) in the specific context of a
one-dimensional nearest neighbor path in transient ballistic regime. They prove
the consistency of this estimator (as the length of the trajectory increases).
From a numerical point of view, this MLE outperforms the moment estimator
constructed from the work of Adelman and Enriquez (2004). In a companion
article (Falconnet, Loukianova and Matias, 2014), they have further studied
the asymptotic normality of the MLE (still in the ballistic regime), showed its
asymptotic efficiency and constructed confidence intervals for the parameters.
This work has been extended to the transient sub-ballistic regime in Falconnet,
Gloter and Loukianova (2014). In this body of work on maximum likelihood
procedures, the results rely on the branching structure of the sequence of the
number of left steps performed by the walk, which was originally observed by
Kesten, Kozlov and Spitzer (1975). In the recurrent case, as the walk visits ev-
ery sites infinitely often, this branching process of left steps explodes and the
same approach is useless there. In theory, it is possible in this case to estimate
the environment itself at each site, and then show that the empirical measure
converges to its distribution. The problem with such a "naive" approach is the
localization phenomena of recurrent RWRE, discovered by Sinai (1982): most
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of the sites visited by the RWRE will be extremely few visited, because the
walk spends a majority of its time in the valleys of the potential (Andreoletti,
2006, 2007). This non uniformity is automatically handled with the approach
followed by Comets et al. (2014b) and the authors establish consistency of two
estimators, a MLE and a maximum pseudo-likelihood estimator.

We now stress the fact that all the previously mentioned statistical works
but the one from Andreoletti and Diel (2012) are valid in the case of an en-
vironment composed of independent and identically distributed (i.i.d.) random
variables. While very convenient, this assumption might be restrictive in some
contexts, e.g. DNA modeling. In the present work, we investigate the statistical
estimation of a parametric Markov environment from a single trajectory of a
one-dimensional nearest-neighbor path, when its length increases to infinity. We
consider the case of a transient walk in the ballistic regime. Our contribution is
twofold: first, we show how the problem is cast into the one of estimating the
parameter of a hidden Markov model (HMM), or more specifically of a first-
order autoregressive process with Markov regime. Indeed, the RWRE itself is
not a HMM but the branching process of the sequence of left steps performed
by the walk, is. Second, we prove that the bivariate Markov chain that defines
the underlying autoregressive process is Harris positive and we exhibit its sta-
tionary distribution. As a consequence, we can rely on previously established
results for these autoregressive processes with Markov regime (Douc, Moulines
and Rydén, 2004) and thus obtain the consistency and asymptotic normality of
the MLE for the original nearest-neighbor path in Markov environment.

Roughly speaking, an autoregressive model with Markov regime is a bivariate
process where the first component forms a latent (unobserved) Markov chain
while conditionally on this first component, the second one has the structure
of an autoregressive process. These processes form a generalization of hidden
Markov models (HMM), in which the first component remains a latent Markov
chain, while the second forms a sequence of independent observations, condition-
ally on the first. HMM have been introduced by Baum and Petrie (1966) with
finite - latent and observed - state spaces. Statistical properties of the MLE in
HMM forms a rich literature; a non exhaustive list would start with the seminal
work of Baum and Petrie (1966), include the developments of Leroux (1992);
Bickel and Ritov (1996); Bickel, Ritov and Rydén (1998); Jensen and Petersen
(1999); Le Gland and Mevel (2000); Douc and Matias (2001); Douc, Moulines
and Rydén (2004); Genon-Catalot and Laredo (2006) and finish with the latest
results from Douc et al. (2011). A general introduction to HMM may be found
in the survey by Ephraim and Merhav (2002) and the book by Cappé, Moulines
and Rydén (2005).

While it is often believed that autoregressive processes with Markov regime
are straightforward generalizations of HMM (and this is indeed the case con-
cerning e.g. algorithmic procedures), the statistical properties of these models
are slightly more difficult to obtain, (see e.g. Chambaz and Matias, 2009, for
model selection issues). As for the convergence properties of the MLE, only the
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article by Douc, Moulines and Rydén (2004) considers the autoregressive case
(instead of HMM) explaining why we focus on their results in our context. It is
also worth noticing that many of the previous results (with exception of Douc
et al., 2011) require uniform positivity of the transition density of the latent
Markov chain, which might not be satisfied in some applications (particularly
in the case of an unbounded latent state space). As in our case, the latent state
space corresponds to the environment state space and is included in (0, 1), we do
not face such problems. Moreover, we stress that the results in Douc, Moulines
and Rydén (2004) rely on rather weak assumptions (compared to previous re-
sults in Bickel, Ritov and Rydén, 1998; Jensen and Petersen, 1999, on which
they are partly built). As a consequence, the assumptions that we obtain on
RWRE are also rather weak and will be satisfied in many contexts.

This article is organized as follows. Our one-dimensional nearest-neighbor
path in Markov environment is described in Section 2.1. Then we explain why
the direct likelihood approach may not be followed (Section 2.2) and cast the es-
timation problem as the one of parameter estimation in a hidden Markov model
(Section 2.3). After having set the scene, we state the assumptions (on the
RWRE) and results in Section 3. We prove that (under classical assumptions)
the MLE is consistent and asymptotically normal. Section 4 illustrates our re-
sults: we start by explaining how the likelihood may be computed (Section 4.1),
then we explore different examples and describe our assumptions in these cases
(Section 4.2) and close the section with synthetic experiments on a simple ex-
ample (Section 4.3). The proofs of our results are presented in Section 5. The
main point is to establish that the bivariate Markov chain that underlies the
HMM is positive Harris recurrent (Section 5.1). Then consistency, asymptotic
normality and efficiency (i.e. the asymptotic variance is the inverse of the Fisher
information) follow from Douc, Moulines and Rydén (2004) by proving that our
assumptions on the RWRE imply theirs on the HMM (Sections 5.2 and 5.3,
respectively).

2. Model description

2.1. Ballistic random walk in a Markov environment

We start this section by describing the random environment. Let S be a closed
subset of (0, 1) either finite, discrete or continuous, and B(S) the associated
Borel σ-field. The environment is given by ω = (ωx)x∈Z ∈ SZ, a positive Harris
recurrent, aperiodic and stationary Markov chain with values in S and transition
kernel Q : S ×B(S)→ [0, 1]. We suppose that the transition kernel Q = Qθ de-
pends on some unknown parameter θ and that θ belongs to some compact space
Θ ⊂ Rq. Moreover, Qθ is absolutely continuous either with respect to (w.r.t.)
the Lebesgue measure on (0, 1) when S is continuous or w.r.t. the counting
measure when S is discrete, with density denoted by qθ. We denote by µθ the
density of its associated stationary distribution and moreover assume that the
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chain is reversible with respect to µθ, so that the detailed balance equation is
satisfied

∀(a, b) ∈ S2, µθ(a)qθ(a, b) = µθ(b)qθ(b, a).

Let us denote by Pθ the law of the environment ω on (SZ,B(SZ)) and Eθ the
corresponding expectation.

Now, conditionally on the environment, the law of the random walk X =
(Xt)t∈N is the one of the time homogeneous Markov chain on Z starting at
X0 = 0 and with transition probabilities

∀(x, y) ∈ Z2, Pω(Xt+1 = y|Xt = x) =

 ωx if y = x+ 1,
1− ωx if y = x− 1,

0 otherwise.

The measure Pω on (ZN,B(ZN)) is usually referred to as the quenched law of
walk X. Note that this conditional law does not depend on the parameter θ but
only on the environment ω at the current site x. We also denote by pa(x, y) the
corresponding transition density (w.r.t. to counting measure), namely

∀(x, y) ∈ Z2,∀a ∈ S, pa(x, y) = a1{y = x+ 1}+ (1− a)1{y = x− 1},

where 1{·} denotes the indicator function. Next we define the measure Pθ on
SZ × ZN through

∀F ∈ B(SZ),∀G ∈ B(ZN), Pθ(F ×G) =

∫
F

Pω(G)dPθ(ω). (1)

The second marginal of Pθ (that on ZN), denoted also Pθ when no confusion
occurs, is called the annealed law of walk X. We denote by Eθ the corresponding
expectation. Note that the first marginal of Pθ is the law of the Markov chain
ω, denoted by Pθ.

For all k ∈ Z, we let

ω̃k =
1− ωk
ωk

.

In the case of an i.i.d. environment ω, Solomon (1975) gives the classification
of X between transient or recurrent cases according to whether Eθ(log ω̃0) is
different or not from zero. For stationary ergodic environments, which is the
case here, Alili (1999) establishes that this characterization remains valid. Thus,
if Eθ(log ω̃0) < 0, then the walk is transient to the right, namely

lim
t→∞

Xt = +∞, Pθ − a.s.

Let Tn be the first hitting time of the positive integer n,

Tn = inf{t ∈ N : Xt = n}

and define
R = (1 + ω̃1 + ω̃1ω̃2 + . . . ). (2)
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Theorem 4.1 in Alili (1999) shows that if the environment satisfies the condition

Eθ(R) < +∞, (3)

then the speed of the walk is strictly positive. Namely, Pθ-almost surely, the
ratio Tn/n converges to a finite limit as n increases. Thus (3) gives the so-
called ballistic condition on the random walk with Markov environment. Note
that in the i.i.d. case, this condition reduces to Eθ(ω̃0) < 1. Moreover, in the
non independent case, when the distribution of the environment is uniquely
ergodic, namely ω is not i.i.d. and admits a unique invariant distribution, Alili
(1999) establishes that transience (namelyEθ(log ω̃0) < 0) automatically implies
ballistic regime (see Lemma 6.1 in Alili, 1999). Since in our context we assume
that the Markov environment ω admits a unique invariant distribution, the
ballistic assumption thus reduces to{

Eθ(ω̃0) < 1 if ω i.i.d,
Eθ(log ω̃0) < 0 if ω non independent. (4)

In the following, we consider a transient to the right ballistic process X.

2.2. Problem and motivation

We consider a finite trajectory Xn = (Xt)t≤Tn
from the process X, stopped at

the first hitting time of a positive integer n ≥ 1. We assume that this sequence
of observations is generated under Pθ? := P? for a true parameter value θ?
belonging to the interior Θ̊ of Θ. Our goal is to estimate this parameter value
θ? from the sequence of observations Xn using a maximum likelihood approach.
To motivate the following developments, we will first explain why we can not
directly rely on the likelihood of these observations. Indeed, let Vn be the set of
sites x ∈ Z visited by the process up to time Tn, namely

Vn = {x ∈ Z; ∃0 ≤ s ≤ Tn, Xs = x}.

Under the assumption of a transient (to the right) process, the random set Vn
is equal to [[ξn, n]], where ξn ∈ Z− and [[a, b]] denotes the set of integers between
a and b for any a ≤ b in Z. Here, ξn is the smallest integer value visited by
the process Xn. We also introduce ω(Xn) := (ωξn , . . . , ωn) which is the random
environment restricted to the set of sites visited by Xn. Now, the likelihood of
Xn is given by the following expression

Pθ(Xn) =

∫
S

. . .

∫
S

Pθ(ω(Xn) = (aξn , . . . , an),Xn)daξn . . . dan

=

∫
S

. . .

∫
S

µθ(aξn)

n−1∏
i=ξn

qθ(ai, ai+1)

Tn−1∏
s=0

paXs
(Xs, Xs+1)daξn . . . dan.

(5)
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Computing the likelihood from the above expression would require to com-
pute |Vn| integral terms (where | · | denotes cardinality). As |Vn| ≥ n, this means
that using a discretization method over N points for each integral (or letting
N be the cardinality of S) would result in summing over at least Nn different
terms. This is unfeasible but for small values of n. Moreover, the above expres-
sion is not well suited for studying the convergence properties of this likelihood.
Following Comets et al. (2014a), instead of focusing on the observed process
Xn, we will rather consider the underlying sequence Lnn, Lnn−1, . . . , L

n
0 of the

number of left steps of the process Xn at the sequence of sites (n, n− 1, . . . , 0)
and construct our estimator from this latter sequence. Though we do not need
it, note that it is argued in Comets et al. (2014a) that the latter is in fact an
exhaustive statistic (at least asymptotically) for the parameter θ. In the next
section, we show that in the case of a Markov environment, this process ex-
hibits a hidden Markov structure. Moreover for transient RWRE, this process
is recurrent, allowing us to study the convergence properties of MLE.

2.3. The underlying hidden Markov chain

We define the sequence of left steps at each visited site from the (positive part
of the) trajectory Xn as follows. Let

Lnx :=

Tn−1∑
s=0

1{Xs = x; Xs+1 = x− 1}, ∀x ∈ {0, . . . , n}.

It is observed by Kesten, Kozlov and Spitzer (1975) in the case of an i.i.d.
random environment that the sequence (Lnn, L

n
n−1, . . . , L

n
0 ) is distributed as a

branching process with immigration in a random environment (BPIRE). We will
first show that this remains true in the case of a Markov environment. To this
aim, let us introduce a sequence of random variables (Zk)k≥0. We let Z0 = 0
and define recursively

∀k ≥ 0, Zk+1 =

Zk∑
i=0

ξk+1,i, (6)

where for all k ≥ 1, the random variables (ξk,i)i∈N, are defined on the same prob-
ability space as previously, are independent and their conditional distribution,
given the environment ω is

∀m ∈ N, Pω(ξk,i = m) = (1− ωk)mωk. (7)

Then, conditionally on ω, the sequence (Zk)k∈N is an inhomogeneous branching
process with immigration, with identical offspring and immigration law, given
by a geometric distribution (whose parameter depends on the random environ-
ment). Moreover, under the assumption that ω is a reversible Markov chain, it
is easily seen that the annealed distribution of the sequence (Lnn, L

n
n−1, . . . , L

n
0 )

and that of (Z0, Z1, . . . , Zn) are the same.
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Lemma 2.1. Assume that ω is a reversible Markov chain. Then for any fixed
integer n ≥ 1, the sequence of left steps (Lnn, L

n
n−1, . . . , L

n
0 ) has same distribution

as (Z0, Z1, . . . , Zn) under Pθ.

Proof. For any fixed integer n ≥ 1, let ω̄n := (ωn, ωn−1, . . . , ω0, ωn+1, . . .) denote
the environment where the first (n+1) variables are time-reversed. Let also Pω̄n

be defined similarly as Pω for the environment ω̄n replacing ω. Then it is known
that for any sequence (z0, . . . , zn) ∈ Nn+1, we have the equality

Pω̄n((Z0, . . . , Zn) = (z0, . . . , zn)) = Pω((Lnn, L
n
n−1, . . . , L

n
0 ) = (z0, . . . , zn))

(see for instance Section 4.1 in Comets et al., 2014a). By using that the above
quantities only depend on the environment through the first (n + 1) variables
(either (ωn, ωn−1, . . . , ω0) for the left-hand side or (ω0, ω1, . . . , ωn) for the right-
hand side), the conclusion follows from the assumption that ω is a reversible
Markov chain combined with definition (1) of distribution Pθ.

When the environment ω is composed of i.i.d. random variables, the resulting
sequence (Zk)k≥0 is a homogeneous Markov chain under Pθ (see e.g. Comets
et al., 2014a). Now, when the environment ω is itself a Markov chain, we observe
that (Zk)k≥0 is distributed as a hidden Markov chain, or more precisely as
the second marginal of a first order autoregressive process with Markov regime
(Douc, Moulines and Rydén, 2004). We state this result as a lemma (namely
Lemma 2.2 below) even though its proof is obvious and thus omitted. Let us
recall that a first order autoregressive process with Markov regime (or Markov-
switching autoregression) is a bivariate process {(ωk, Zk)}k≥0 such that ω =
(ωk)k≥0 is a Markov chain and conditionally on ω, the sequence (Zk)k≥0 is an
inhomogeneous Markov chain whose transition from Zk−1 to Zk only depends
on Zk−1 and ωk.

For any a ∈ S and (x, y) ∈ N2, denote

ga(x, y) =

(
x+ y

x

)
ax+1(1− a)y (8)

and let δx be the Dirac measure at x. Let us recall that the process (Zk)k≥0 is
defined through (6) and (7).

Lemma 2.2. Under Pθ, the process {(ωk, Zk)}k≥0 is a first-order autoregressive
process with Markov regime. The first component ω is an homogenous Markov
chain with transition kernel Qθ and initial distribution µθ. Conditionally on ω,
the process (Zk)k∈N, is an inhomogeneous Markov chain, starting from Z0 = 0
and with transitions

∀(x, y) ∈ N2,∀k ∈ N Pω(Zk+1 = y|Zk = x) = gωk+1
(x, y).

As a consequence, {(ωk, Zk)}k≥0 is a Markov chain with state space S × N,
starting from µθ ⊗ δ0 and with transition kernel density Πθ defined for all
(a, b, x, y) ∈ S2 × N2 by

Πθ((a, x), (b, y)) = qθ(a, b)gb(x, y). (9)
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Remark 2.3. The conditional autoregressive part of the distribution, given
by (8), is usually referred to as emission distribution. Note that in our frame-
work, this law does not depend on the parameter θ.

Under Pθ, the process (ω, Z) has initial distribution µθ ⊗ δ0. In the sequel,
we also need (ω, Z) starting from any initial distribution, and use the canonical
version of this process. Let Ω = (S × N)N. For any probability ν on B(S × N),
denote Pθν the law on (Ω,B(Ω)) of (ω, Z) starting from (ω0, Z0) ∼ ν. Denote Eθν
the corresponding expectation. In particular, for (a, x) ∈ S×N, we let Pθ(a,x) and
Eθ(a,x) be the probability and expectation if (ω0, Z0) = (a, x). Moreover, when
only the first component is concerned and the chain ω starts from its stationary
distribution µθ, we still denote this marginal law by Pθ and the corresponding
expectation by Eθ. If ω starts from another initial law, for example ω0 = a,
we denote the law of ω by Pθa (respectively Eθa). The canonical version of the
chain {(ωk, Zk)}k≥0 is a coordinate process on (Ω,B(Ω),Pθν). For n ∈ N, we let
Fn = σ{(ωk, Zk)k=0,...,n} be the σ-field induced by the (n + 1) first random
variables of this process. Moreover, we denote by ωn = (wn, wn+1, . . .) and
Zn = (Zn, Zn+1, . . .) the shifted sequences. The family of shift operators (τn)n≥1

where τn : Ω→ Ω is defined by

∀(ω,Z) ∈ Ω, τn((ω,Z)) = (ωn,Zn). (10)

In Section 5, we show that under the ballistic assumption, the bivariate ker-
nel Πθ((a, x), (b, y)) is positive Harris recurrent and admits a unique invariant
distribution with density πθ, for which we give an explicit formula (see Proposi-
tion 5.1). In the following, we let Pθ and Eθ be the probability and expectation
induced when considering the chain {(ωk, Zk)}k≥0 under its stationary distri-
bution πθ.

3. Assumptions and results

3.1. Estimator construction

Recall that our aim is to infer the unknown parameter θ? ∈ Θ̊, using the ob-
servation of a finite trajectory Xn up to the first hitting time Tn of site n. The
observed trajectory is transformed into the sequence Lnn, Lnn−1, . . . , L

n
0 of the

number of left steps of the process Xn at the sequence of sites (n, n− 1, . . . , 0).
This trajectory is generated under the law P? (recall that P? is a shorthand
notation of Pθ?). Due to the equality in law given by Lemma 2.1, we can con-
sider that we observe a sequence of random variables (Z0, . . . , Zn) which is the
second component of an autoregressive process with Markov regime described
in Lemma 2.2. Thus under P?, the law of the MLE of these observations is the
same than the law of MLE built from (Z0, . . . , Zn).

As a consequence, we can now rely on a set of well established techniques
developed in the context of autoregressive processes with Markov regime, both
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for computing efficiently the likelihood and for establishing its asymptotic prop-
erties. Following Douc, Moulines and Rydén (2004), we define a conditional
log-likelihood, conditioned on an initial state of the environment ω0 = a0 ∈ S.

Definition 3.1. Fix some a0 ∈ S and consider the conditional log-likelihood of
the observations defined as

`n(θ, a0) := logPθ(a0,0)(Z1, . . . , Zn) = log

∫
Sn

n∏
i=1

qθ(ai−1, ai)gai(Zi−1, Zi)dai.

(11)

Note that the above expression of the (conditional) log-likelihood shares the
computational problems mentioned for expression (5). However, in the present
context of autoregressive processes with Markov regime, efficient computation
of this expression is possible. The key ingredient for this computation (that also
serves to study the convergence properties of `n) is to rely on the following
additive form

`n(θ, a0) =

n∑
k=1

logPθ(a0,0)(Zk|Z0, . . . , Zk−1)

=

n∑
k=1

log

(∫∫
S2

gb(Zk−1, Zk)qθ(a, b)Pθ(a0,0)(ωk−1 = a|Zk−1
0 )dadb

)
,

where Zts denotes Zs, Zs+1, . . . , Zt for any integers s ≤ t. We further develop
this point in Section 4.1 and also refer to Douc, Moulines and Rydén (2004) for
more details.

Definition 3.2. The estimator θ̂n is defined as a measurable choice

θ̂n ∈ Argmax
θ∈Θ

`n(θ, a0).

Note that we omit the dependence of θ̂n on the initial state a0 of the envi-
ronment.

3.2. Assumptions and results

Recall that qθ and µθ are respectively the transition and the invariant probability
of the environment Markov chain ω with values in S. Moreover, S is a closed
subset of (0, 1) so that we can assume that there exists some ε ∈ (0, 1) such that

S ⊆ [ε; 1− ε]. (12)

The above assumption is known as the uniform ellipticity condition.
We also recall that the random variable R is defined by (2).

Assumption (H1). (Ballistic case). For any θ ∈ Θ, Inequality (4) is satisfied.
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Assumption (H2). There exist some constants 0 < σ−, σ+ < +∞ such that

σ− ≤ inf
θ∈Θ

inf
a,b∈S

qθ(a, b) ≤ sup
θ∈Θ

sup
a,b∈S

qθ(a, b) ≤ σ+.

Note that it easily follows from this assumption that the stationary density
µθ also satisfies

σ− ≤ inf
θ∈Θ

inf
a∈S

µθ(a) ≤ sup
θ∈Θ

sup
a∈S

µθ(a) ≤ σ+. (13)

Assumptions (H1) and (H2) are used to establish that the bivariate process
{(ωk, Zk)}k≥0 is positive Harris recurrent. Note in particular that the weakest
assumptions currently ensuring consistency of the MLE in the HMM setting con-
tain positive Harris recurrence of the hidden chain (Douc et al., 2011) and (H2)
is further required in the less simple case of an autoregressive model with Markov
regime (Douc, Moulines and Rydén, 2004). The lower bound in (H2) may be
restrictive in a general HMM setting as it prevents the support S from being
unbounded. However here we have S ⊆ (0, 1) and thus (H2) is satisfied in many
examples (see Section 4).

Next assumption is classical from a statistical perspective and requires smooth-
ness of the underlying model.

Assumption (H3). (Regularity condition). For all (a, b) ∈ S2, the map θ 7→
qθ(a, b) is continuous.

In order to ensure identifiability of the model, we naturally require identifia-
bility of the parameter from the distribution of the environment.

Assumption (H4). (Identifiability condition).

∀θ, θ′ ∈ Θ, θ = θ′ ⇐⇒ qθ = qθ′ .

Theorem 3.3. Under Assumptions (H1) to (H4), the maximum likelihood es-
timator θ̂n converges P?-almost surely to the true parameter value θ? as n tends
to infinity.

We now introduce the conditions that will ensure asymptotic normality of
θ̂n under P?. In the following, for any function g : Θ 7→ R, we let ∂θg and ∂2

θg
denote gradient vector and Hessian matrix, respectively. Moreover, ‖ · ‖ is the
uniform norm (of a vector or a matrix). Again, next condition is classical and
requires regularity of the mapping underlying the statistical model.

Assumption (H5). For all (a, b) ∈ S2, the map θ 7→ qθ(a, b) is twice continu-
ously differentiable on Θ̊. Moreover,

sup
θ∈Θ̊

sup
a,b∈S

‖∂θ log qθ(a, b)‖ < +∞ and sup
θ∈Θ̊

sup
a,b∈S

‖∂2
θ log qθ(a, b)‖ < +∞.

Following the notation from Section 6.1 in Douc, Moulines and Rydén (2004),
we now introduce the asymptotic Fisher information matrix. We start by ex-
tending the chain {(ωk, Zk)}k∈N with indexes in N to a stationary Markov chain
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{(ωk, Zk)}k∈Z indexed by Z. Let us recall that Pθ and Eθ respectively denote
probability and expectation under the stationary distribution πθ of the chain
{(ωk, Zk)}k≥0. For any k ≥ 1,m ≥ 0, we let

∆k,m(θ) =Eθ
( k∑
i=−m+1

∂θ log qθ(ωi−1, ωi)
∣∣Zk−m)

− Eθ
( k−1∑
i=−m+1

∂θ log qθ(ωi−1, ωi)
∣∣Zk−1
−m

)
.

Note that this expression derives from Fisher identity stated in Louis (1982).
Indeed, under general assumptions, the score function equals the conditional
expectation of the complete score, given the observed data. As the emission
distribution g does not depend on the parameter θ, the complete score reduces
to a sum of terms involving qθ only.

Lemma 10 in Douc, Moulines and Rydén (2004) establishes that for any k ≥ 1,
the sequence (∆k,m(θ?))m≥0 converges in L2(P?) to some limit ∆k,∞(θ?). From
this quantity, we may define

I(θ?) = E?(∆0,∞(θ?)ᵀ∆0,∞(θ?)), (14)

where by convention ∆0,∞ is a row vector and uᵀ is the transpose vector of u.
Then, I(θ?) is the Fisher information matrix of the model. We can now state
the asymptotic normality result.

Theorem 3.4. Under Assumptions (H1) to (H5), if the asymptotic Fisher in-
formation matrix I(θ?) defined by (14) is invertible, we have that

n−1/2(θ̂n − θ?) −→
n→+∞

N (0, I(θ?)−1), P?-weakly.

Note that the definition of I(θ?) is not constructive. In particular, asymp-
totic normality of the MLE requires that I(θ?) is invertible but this may not
be ensured through more explicit conditions on the original process. However,
the Fisher information may be approximated through the Hessian of the log-
likelihood. Indeed, Theorem 3 in Douc, Moulines and Rydén (2004) states that
the normalized Hessian of the log-likelihood converges to −I(θ?) under station-
ary distribution P?. Moreover, this result is generalized to obtain convergence
under non stationary distribution P? (see the proof of Theorem 6 in that refer-
ence). Thus we have

1

n
∂2
θ`n(θ̂n) −→

n→+∞
−I(θ?), P? − a.s. (15)

In practice, this may be used to approximate the asymptotic variance of the
estimator θ̂n, as illustrated in Section 4.3.
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4. Illustration: examples and simulations

4.1. Computation of the likelihood

The computation of the log-likelihood relies on the following set of equations.
As already noted, we have

`n(θ, a) =

n∑
k=1

logPθ(a,0)(Zk|Z
k−1
0 ),

=

n∑
k=1

log

(∫∫
S2

gb′(Zk−1, Zk)qθ(b, b
′)Pθ(a,0)(ωk−1 = b|Zk−1

0 )dbdb′
)
.

(16)

In this expression, the quantity

F θ,ak (·) = Pθ(a,0)(ωk = ·|Zk0 ), (17)

is the called the prediction filter. It is a probability distribution on S and it is
computed through recurrence relations. Indeed, we have{

F θ,a0 = δa,

F θ,ak+1(b′) ∝ gb′(Zk, Zk+1)
∫
S
qθ(b, b

′)F θ,ak (b)db, k ≥ 0, b′ ∈ S,
(18)

where ∝ means proportional to (up to a normalizing constant).
When S is discrete, the integral terms over S reduce to sums and comput-

ing the prediction filter recursively enables to compute the log-likelihood of the
observations, and then the MLE. We illustrate these computations in the case
of Example II below as well as in Section 4.3. When S is continuous, approx-
imation methods are required, e.g. particle filters or Monte Carlo expectation-
maximisation (em) algorithms. We refer to Section 8 in Douc, Moulines and
Rydén (2004) for more details.

Note that in any case, optimisation of the log-likelihood is either done through
em algorithm (Baum et al., 1970; Dempster, Laird and Rubin, 1977) or by direct
optimisation procedures, as there is no analytical expression for its maximiser.
Thus, the computation of the gradient of this log-likelihood is often used (e.g. in
descent gradient optimisation methods). As soon as we can differentiate under
the integral sign (which is valid under Assumption (H5)), the gradient function
∂θ`n(θ, a) writes

∂θ`n(θ, a) =
(∫∫

S2

gb′(Zk−1, Zk)qθ(b, b
′)F θ,ak−1(b)dbdb′

)−1

×
n∑
k=1

(∫∫
S2

gb′(Zk−1, Zk)[∂θqθ(b, b
′)F θ,ak−1(b) + qθ(b, b

′)∂θF
θ,a
k−1(b)]dbdb′

)
.

(19)
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Note that the gradient of the prediction filter ∂θF
θ,a
k−1 may be obtained through

recurrence relations similar to (18). However, these relations are more involved
since the normalizing constant in (18) depends on θ and can not be neglected.

To conclude this section, we mention that computing the Hessian of the log-
likelihood can be done in a similar way.

4.2. Examples

In this section, we provide some examples of environments ω and check the
assumptions needed for consistency and asymptotic normality of the MLE.

Example I. (Simple i.i.d. environment on two values.) Let qθ(a, b) = µθ(b)
and µθ(·) = µp(·) = pδa1(·) + (1− p)δa2(·) with known values a1, a2 ∈ (0, 1) and
unknown parameter p ∈ [γ, 1− γ] ⊆ (0, 1).

The support of the environment is reduced to S = {a1, a2}. Moreover, we
assume that a1, a2 and Θ are such that the process is transient to the right and
ballistic. In the i.i.d. case, the ballistic assumption (that also implies transience)
reduces to Eθ(ω̃0) < 1 and thus to

p
1− a1

a1
+ (1− p)1− a2

a2
< 1.

The log-likelihood of the observations has a very simple form in this setup

`n(p) =

n∑
k=1

log
[
pa
Zk−1+1
1 (1− a1)Zk + (1− p)aZk−1+1

2 (1− a2)Zk
]
,

and its maximiser θ̂n = p̂n is obtained through numerical optimisation. We refer
to Comets et al. (2014a); Falconnet, Loukianova and Matias (2014) for previous
results obtained in this setup.

Assumptions (H2) and (H4) are satisfied as soon as Θ ⊆ [γ, 1−γ] and a1 6= a2,
respectively. Moreover, Assumptions (H3) and (H5) are automatically satisfied.
Indeed, for any p ∈ Θ and any a ∈ S, we have

|∂p logµp(a)| = 1

p1{a = a1}+ (1− p)1{a = a2}
,

|∂2
p logµp(a)| = 1

p21{a = a1}+ (1− p)21{a = a2}
.

As a consequence, Theorems 3.3 and 3.4 are valid in this setup.

Example II. (Finite Markov chain environment.) Let us assume that S =
{a1, a2} is fixed and known and the stationary Markov chain ω is defined through
its transition matrix

Qθ =

(
α 1− α

1− β β

)
,

where the parameter is θ = (α, β) ∈ [γ, 1− γ]2 for some γ > 0



Andreoletti et al./HMM for random walk in Markov environment 15

Note that Assumption (H2) is satisfied as soon as γ > 0. The stationary
measure of the Markov chain is given by

µθ =
( 1− β

2− α− β
,

1− α
2− α− β

)
.

Note that this is automatically a reversible Markov chain. The transience con-
dition writes

(1− β) log

(
1− a1

a1

)
+ (1− α) log

(
1− a2

a2

)
< 0.

Moreover, as soon as α 6= 1 − β the sequence ω is non independent and the
existence of a unique stationary measure for ω ensures the ballistic regime from
transience assumption (Lemma 6.1 in Alili, 1999). Let us now consider the log-
likelihood expression in this setup. As already explained, the key point for com-
puting the log-likelihood in the setup of an autoregressive process with Markov
regime is to rely on the following additive form

`n(θ, a1) =

n∑
k=1

logPθ(Zk|Zk−1
0 , ω0 = a1)

=

n∑
k=1

log

 ∑
b,b′∈S2

gb′(Zk−1, Zk)qθ(b, b
′)F θ,a1k−1 (b)

 ,

where F θ,ak is the prediction filter defined by (17). Relying on matrix notation,
we let F θ,ak be the row vector (F θ,ak (a1), F θ,ak (a2)) while Gk is the row vector
(ga1(Zk−1, Zk), ga2(Zk−1, Zk)) and uᵀ the transpose vector of u. Then we obtain

`n(θ, a1) =

n∑
k=1

log
[
F θ,a1k−1QθG

ᵀ
k

]
.

Moreover, the sequence of prediction filters {F θ,a1k }0≤k≤n−1 is obtained through
the recurrence relations (18) that in our context, write as{

F θ,a10 = (1, 0)

F θ,a1k+1 ∝ F
θ,a
k QθDiag(Gk+1).

Now, the gradient function ∂θ`n(θ, a) given by (19) satisfies the following equa-
tions ∂α`n(θ, a) =

∑n
k=1

[
(∂αF

θ,a1
k−1Qθ + F θ,a1k−1Q

′
1)Gᵀ

k

](
F θ,a1k−1QθG

ᵀ
k

)−1

,

∂β`n(θ, a) =
∑n
k=1

[
(∂βF

θ,a1
k−1Qθ + F θ,a1k−1Q

′
2)Gᵀ

k

](
F θ,a1k−1QθG

ᵀ
k

)−1

,

where ∂iF
θ,a1
k−1 is the row vector with entries (∂iF

θ,a1
k−1 (a1), ∂iF

θ,a1
k−1 (a2)) and

Q′1 =

(
1 −1
0 0

)
, Q′2 =

(
0 0
−1 1

)
.
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Let us denote by 1 the row vector (1, 1). In the current setup, the derivative of
the prediction filter is obtained through ∂αF

θ,a1
0 = ∂βF

θ,a1
0 = (0, 0) and for any

k ≥ 0,

∂αF
θ,a1
k+1 =

(
F θ,a1k QθDiag(Gk+1)1ᵀ

)−1

×
(
∂αF

θ,a1
k Qθ + F θ,a1k Q′1

)
Diag(Gk+1)

−

[(
∂αF

θ,a1
k Qθ + F θ,a1k Q′1

)
Diag(Gk+1)1ᵀ

]
(
F θ,a1k QθDiag(Gk+1)1ᵀ

)2 × F θ,a1k QθDiag(Gk+1),

and a similar equation holds for ∂βF
θ,a1
k+1 .

In Section 4.3, we provide an illustration of the numerical performances of the
maximum likelihood estimator in this setup. Note that second order derivatives
of the prediction filter and thus the log-likelihood are obtained similarly. These
are used to estimate the asymptotic covariance matrix of the MLE in Section 4.3.

To conclude this section, note that the regularity assumptions (H3) and (H5)
are satisfied, as well as the identifiability condition (H4), as soon as a1 6= a2 and
α 6= β. As a consequence, Theorems 3.3 and 3.4 are valid in this setup.

Example III. (DNA unzipping.) We consider the context of DNA unzipping
studied in Baldazzi et al. (2006) where the goal is the sequencing of a molecule
(see also Andreoletti and Diel, 2012). The physical experiment consists in ob-
serving many different unzippings of a DNA molecule which, due to its physical
properties, may naturally (re)-zip. In this context, the random walk X repre-
sents the position of the fork at each time t of the experiment, or equivalently
the number of currently unzipped bases of the molecule. In the previous works,
the authors are interested in the observation of many finite trajectories of the
random walk in this random environment. Here, we consider the different prob-
lem of a single unzipping of a sufficiently long molecule.

Let A = {A,C,G, T} denote the finite nucleotide alphabet. The sequence of
bases {bx}1≤x≤n ∈ An of the (finite length) molecule are unknown and induce
a specific environment that will be considered as random. More precisely, the
conditional transitions of the random walk are given by

ωx =
1

1 + exp(βg(x, x+ 1))
.

where g(x, x+ 1) := g0(bx, bx+1) − g1(f). The known parameter g1(f) is the
work to stretch under a force f the open part of the two strands, it can be
adjusted but is constant during the unzipping. Parameter β > 0 is also known
and proportional to the inverse of temperature. The quantity g0(bx, bx+1) is the
binding energy that takes into account additional stacking effects and therefore
depends on the base values at the (x + 1)-th and also at the x-th positions.
Table 1 gives these binding energies at room temperature (see Baldazzi et al.,
2006). To take into account this dependence between energies, we assume that
{g0(x) := g0(bx, bx+1)}x≥1 is a Markov chain. With this assumption and since
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g0 A T C G
A 1.78 1.55 2.52 2.22
T 1.06 1.78 2.28 2.54
C 2.54 2.22 3.14 3.85
G 2.28 2.52 3.90 3.14

Table 1
Binding free energies (units of kBT ).

the mapping g0(x) 7→ ωx is one-to-one, ω = (ωx)x≥1 is Markov as well. The
parameter of the model is thus the transition matrix Qθ between the binding
energies. Note that while the set of dinucleotides has cardinality 16, function
g0 takes only 10 different values. So random environment ω takes values in S
with cardinality 10 and the underlying transition matrix Qθ (for the binding
energies) is of size 10× 10 but has many zero entries

We also assume that the distribution Pb of the sequence (bx)x≥1 satisfies the
following identity: for any m ≥ 1, and α1, α2, · · · , αm ∈ Am,

Pb(b1 = α1, b2 = α2 · · · , bm−1 = αm−1, bm = αm)

= Pb(b1 = ᾱm, b2 = ᾱm−1, · · · , · · · , bm−1 = ᾱ2, bm = ᾱ1), (20)

where ᾱi is the complementary base of αi (namely Ā = T, T̄ = A, C̄ = G, Ḡ =
C). This hypothesis implies reversibility of the Markov chain {g0(x)}x≥1. To
prove that, first notice that the values of Table 1 satisfy for every couple of
bases (b1, b2) ∈ A2,

g0(b1, b2) = g0(b̄2, b̄1). (21)

The reversibility for g0 (and therefore ω), then comes from

Pb(g0(b1, b2) = a1, · · · , g0(bm−2, bm−1) = am−2, g0(bm−1, bm) = a1)

=
∑

αi,g0(αi−1,αi)=ai−1,i<m,g0(αm−1,αm)=a1

Pb(b1 = α1, b2 = α2, · · · , bm = αm)

=
∑

αi,g0(αi−1,αi)=ai−1,i<m,g0(αm−1,αm)=a1

Pb(b1 = ᾱm, b2 = ᾱm−1, · · · , bm = ᾱ1)

=
∑

ᾱi,g0(ᾱi,ᾱi−1)=ai−1,i<m,g0(ᾱm,ᾱm−1)=a1

Pb(b1 = ᾱm, b2 = ᾱm−1, · · · , bm = ᾱ1)

= Pb(g0(b1, b2) = a1, g0(b2, b3) = am−2, · · · , g0(bm−1, bm) = a1),

where we used (20) for the second and (21) for the third equality. The ballistic
condition is not difficult to satisfy. Indeed, we have

ω̃x = exp(β(g0(x)− g1(f)))

and g1 is increasing with f . Thus we may choose f such that g1 is large enough
to ensure either Eθ(ω̃0) < 1 if the sequence {g0(x)}x≥1 is only i.i.d. or to ensure
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Eθ(log ω̃0) < 0 when the sequence {g0(x)}x≥1 is not independent. In both cases,
this ensures the ballistic regime.

In this context and for a long enough sequence, we can estimate the matrix
Qθ of the transitions between the different binding energies, as well as µθ which
gives the frequencies of appearance of the binding energies. In turn, this also
gives the frequencies of appearance of certain base pairs thanks to Table 1. Since
both parameter space Θ and state space S are finite, Assumptions (H2), (H3)
and (H5) are satisfied. This is also the case for identifiability assumption (H4).
As a consequence, Theorems 3.3 and 3.4 are valid in this setup.

Example IV. (Auto-regressive environment.) Let y0 ∼ µθ and for any n ≥ 0,
we let yn+1 = αyn + un where α ∈ R and (un)n≥0 is an i.i.d. sequence. Fix
some ε > 0. The environment ω is defined on S = [ε, 1− ε] through a truncated
logistic function

ωn = φε(yn) :=

 eyn(1 + eyn)−1 if eyn(1 + eyn)−1 ∈ S,
ε if eyn(1 + eyn)−1 ≤ ε,
1− ε if eyn(1 + eyn)−1 ≥ 1− ε.

The reversibility condition on first-order autoregressive processes is studied
in Ōsawa (1988). If we assume that un has Gaussian distribution, say un ∼
N (µ, σ2), then for any value |α| < 1, it is easily seen that there exists a stationary
density µθ for (yn)n≥0 given by

∀y ∈ R, µθ(y) =

(
1− α2

2πσ2

)1/2

exp

[
−1− α2

2σ2

{
y − µ

1− α

}2
]
,

where θ = (α, µ, σ2) is the model parameter. Moreover, the process (yn)n≥0 is
reversible w.r.t. this stationary distribution. Then (ωn)n≥0 is also stationary
and reversible.

Note that the inverse function φ−1
ε : S → [log(ε/(1 − ε)), log((1 − ε)/ε)] is

well defined and given by

∀a ∈ S, φ−1
ε (a) = log

(
a

1− a

)
.

The transience condition writes Eθ(y0) > 0 or equivalently µ > 0. As soon as
α 6= 0, the sequences (yn)n≥0 and thus also (ωn)n≥0 are non independent and
the existence of a unique stationary distribution implies the ballistic regime from
transience assumption (Lemma 6.1 in Alili, 1999). Now, the transition density
of ω is given by

qθ(a, b) =
1√

2πσb(1− b)
exp

(
− 1

2σ2
(φ−1
ε (b)− αφ−1

ε (a)− µ)2
)
.

As a consequence, Assumption (H2) is satisfied as soon as σ2 and µ are bounded.
Thus we assume that the parameter space satisfies

Θ = A× [µmin, µmax]× [σmin, σmax],
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where A is a compact subset of (−1, 1) and the constants satisfy µmin >
C(ε) + σ2

max/2 and σmin > 0. Moreover, regularity assumptions (H3) and (H5)
are also satisfied, as well as identifiability condition (H4). As a consequence,
Theorems 3.3 and 3.4 are valid in this setup.

4.3. Numerical performance

In this section, we illustrate our results in the simple case of Example II. We
start by describing the experiment. The support of the environment is fixed
to S = {0.4, 0.8}. The true parameter value is chosen as (α?, β?) = (0.2, 0.9).
These choices ensure transience of the walk as well as ballistic regime. Next, we
repeat 100 times the following procedure. We simulate a RWRE under the model
described in Example II with parameter values (α?, β?) and stop it successively
at the hitting times Tn, with n ∈ {103k; 1 ≤ k ≤ 10}. For each value of n, the
likelihood is computed as detailed in the previous section and we compute the
MLE (α̂n, β̂n) through numerical optimisation of this likelihood. The likelihood
optimisation procedure is performed according to the “L-BFGS-B” method of
Byrd et al. (1995). It is worth mentioning that the length of the random walk is
not n but rather Tn, a quantity that is much larger in practice, see e.g Section
5.2 in Comets et al. (2014a). Figure 1 shows the boxplots of the MLE obtained
from M =100 iterations of the procedure and increasing values of n. The red
horizontal dotted line shows the true parameter value. As expected, the MLE
converges to the true value as n increases.

We further explore estimation of the asymptotic covariance matrix through
the Hessian of the log-likelihood according to (15). Note that the true value
I(θ?)−1 is unknown as there is no constructive form of the Fisher information
for this model. However, this true value may be approximated by the empirical
covariance matrix obtained from running the above experiment with M =100
iterations. Figure 2 shows the boxplots of the entries of the opposite normalized
Hessian of the log-likelihood at the estimated parameter value, namely

Σ̂n := − 1

n
∂2
θ`n(θ̂),

obtained by iterating the procedure M =100 times. The red horizontal dotted
line does not represent the entries of I(θ?)−1 (which remain unknown even if θ?
is known) but rather the entries of the empirical covariance estimate matrix

Ĉov(θ̂n) :=
1

M

M∑
i=1

(
θ̂(i)
n −

1

M

M∑
i=1

θ̂(i)
n

)ᵀ(
θ̂(i)
n −

1

M

M∑
i=1

θ̂(i)
n

)
,

where θ̂(i)
n is the estimator obtained at i-th iteration. We choose the most accu-

rate estimator obtained with n = 10, 000. The results obtained are quite good.
To conclude this section, we consider the construction of confidence regions

for (α?, β?). The asymptotic normality of the estimator θ̂n together with the
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Fig 1. Boxplots of MLE obtained from M =100 iterations and for values n ranging in
{103k; 1 ≤ k ≤ 10} (x-axis indicates the value k). First and second panel display estima-
tion of α? and β?, respectively. The true values are indicated by horizontal lines.

estimation of the asymptotic variance I(θ?)−1 leads to the following confidence
region

Rγ,n := {θ ∈ Θ, n(θ̂n − θ)ᵀΣ̂n(θ̂n − θ) ≤ χ1−γ},

where 1− γ is the asymptotic confidence level and χz is the z-th quantile of the
chi-square distribution with 2 degrees of freedom. Table 2 presents the empirical
coverages obtained from these confidence regions Rγ,n with M = 100 iterations
and for γ ∈ {0.01, 0.05, 0.1} and n ranging in {103k; 1 ≤ k ≤ 10}. For the values
n ≤ 6, 000 we observe that the confidence regions are too wide. However, for the
large values n ≥ 9, 000 the empirical coverages are quite good.

n 0.01 0.05 0.1
1000 1.00 1.00 1.00
2000 1.00 1.00 1.00
3000 1.00 1.00 1.00
4000 1.00 1.00 1.00
5000 1.00 1.00 0.99
6000 1.00 0.99 0.98
7000 1.00 0.98 0.97
8000 0.99 0.98 0.95
9000 0.98 0.97 0.96
10000 0.99 0.95 0.92

Table 2
Empirical coverage of (1− γ) asymptotic level confidence regions, with γ ∈ {0.01, 0.05, 0.1}.
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Fig 2. Boxplots of the entries of Σ̂n obtained from M = 100 iterations and for values n
ranging in {103k; 1 ≤ k ≤ 10} (x-axis indicates the value k). From top to bottom: second
derivative with respect to α, second derivative with respect to β and second derivative with
respect to α and β. The red dotted line is the empirical estimate of the covariance matrix
entries obtained from M = 100 iterations for the largest value n = 10, 000. From top to
bottom: V̂ ar(α̂n), V̂ ar(β̂n), Ĉov(α̂n, β̂n).

5. Proofs

5.1. Properties of the underlying HMM

In this section, we investigate the properties of the bivariate process {(ωk, Zk)}k≥0,
namely we show that it is positive Harris recurrent and we exhibit its invariant
distribution. Let us first remark that under Assumptions (H1) and (H2), we
obtain the following uniform ballistic condition

1 ≤ inf
a∈S

Eθa(R) ≤ sup
a∈S

Eθa(R) ≤ c+ <∞, (22)

for some positive and finite constant c+. Indeed, the lower bound follows from
R ≥ 1, by definition of R. Now, for any a ∈ (0, 1), we let ã = (1 − a)/a. The
upper bound is obtained through

Eθa(R) = 1 + Eθa[ω̃1E
θ
ω1

(R)] = 1 +

∫
S

b̃Eθb(R)qθ(a, b)db

≤ 1 +
(1− ε)σ+

εσ−
Eθ(R),
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where the first equality above is the strong Markov property and the inequality
uses both (12) and the lower bound (13) on the stationary distribution µθ.

The following proposition states the recurrence result on the Markov chain
{(ωk, Zk)}k≥0 and gives an expression for the density πθ of the corresponding
invariant distribution.

Proposition 5.1. Under Assumptions (H1) and (H2), the Markov chain {(ωk, Zk)}k≥0

whose transition kernel is given by (9) is positive Harris recurrent and aperiodic
with invariant density distribution πθ given by

∀(a, x) ∈ S × N, πθ(a, x) = µθ(a)Eθa(R−1(1−R−1)x).

Proof. Note that πθ is indeed a density. We first prove that it is the density of
an invariant distribution. Thus we want to establish that for any (b, y) ∈ S×N,
we have

πθ(b, y) =
∑
x∈N

∫
S

πθ(a, x)Πθ((a, x), (b, y))da. (23)

We start by considering the right-hand side of the above equation where we
input the expressions for density πθ and kernel Πθ. We let

T =
∑
x∈N

∫
S

πθ(a, x)Πθ((a, x), (b, y))da

=
∑
x∈N

∫
S

µθ(a)Eθa[R−1(1−R−1)x]

(
x+ y

x

)
qθ(a, b)b

x+1(1− b)yda.

From the reversibility of the chain ω and using Fubini’s theorem for positive
functions, we get

T = µθ(b)

∫
S

qθ(b, a)(1− b)y
∑
x∈N

(
x+ y

x

)
Eθa[R−1(1−R−1)x]bx+1da

= µθ(b)

∫
S

qθ(b, a)(1− b)yEθa
[

R−1b

[1− b(1−R−1)]y+1

]
da

= µθ(b)

∫
S

qθ(b, a)Eθa

[
1

1 + b̃R
×
(

1− b
1− b+ bR−1

)y]
da.

Now, applying Markov’s property and the definition of the shift operator, we
obtain

T = µθ(b)E
θ
b

(
Eθω1

[
1

1 + b̃R
×
(

1− b
1− b+ bR−1

)y])
= µθ(b)E

θ
b

(
Eθb

[
1

1 + b̃R
×

(
b̃R

1 + b̃R

)y
◦ τ1

∣∣∣F1

])

= µθ(b)E
θ
b

(
Eθb

[
1

1 + b̃+ b̃ω1 + . . .
×

(
b̃+ b̃ω̃1 + . . .

1 + b̃+ b̃ω̃1 + . . .

)y ∣∣∣F1

])
= µθ(b)E

θ
b(R

−1(1−R−1)y).
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This concludes the validity of (23).
Since the marginal process {ωk}k≥0 is aperiodic, this is also the case for the

bivariate process {(ωk, Zk)}k≥0. Following Theorem 9.1.8 in Meyn and Tweedie
(2009), we want to prove that the Markov chain {(ωk, Zk)}k≥0 is ψ-irreducible
for some probability measure ψ and that there exists a petite set C ∈ S × N
and a function V : S × N→ R+, such that

1. ∆V (a, x) := ΠθV (a, x)− V (a, x) ≤ 0, ∀(a, x) /∈ C;
2. ∀N ∈ N, VN := {(a, x) ∈ S × N; V (a, x) ≤ N} is a petite set.

For all B ∈ B(S × N) and i ∈ {1, 2} let pri(B) be the projection of B onto S
when i = 1 and onto N when i = 2. We also let TB be the first hitting time of
the set B by the chain {(ωk, Zk)}k≥0 . Thanks to Assumptions (H2) and (12),
we can write

Pθ(a,x)(TB <∞) ≥
∫
pr1(B)

∑
y∈pr2(B)

(
x+ y

x

)
bx+1(1− b)yqθ(a, b)db

≥ σ−εx
∫
pr1(B)

∑
y∈pr2(B)

b(1− b)ydb.

Hence the Markov chain is ϕ-irreducible (see Section 4.2 in Meyn and Tweedie,
2009), where the measure ϕ defined on B(S × N) by

B 7→ ϕ(B) :=

∫
pr1(B)

∑
y∈pr2(B)

b(1− b)ydb

is a probability measure. From Proposition 4.2.2 in Meyn and Tweedie (2009),
the chain is also ψ-irreducible. Thanks to Assumption (H2) again, we can easily
see that for all N ∈ N, the set S × [[1, N ]] is a small set and as a consequence a
petite set. Indeed, for any (a, x) ∈ S × [[1, N ]] we have

Πθ((a, x), (b, y)) ≥ σ−bN+1(1− b)y ≥ σ−εNb(1− b)y.

Let
V (a, x) = xEθa(R) = xEθa(1 + ω̃1 + ω̃1ω̃2 + . . . ).

By using (22), function V is finite. Moreover, we get that if (a, x) ∈ VN , then
x ≤ N, which proves that for all N ∈ N, the set VN is a petite set. Now, we
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consider

ΠθV (a, x) =

∫
S

∑
y∈N

yEθb(R)Πθ((a, x); (b, y))db

=

∫
S

∑
y∈N

yEθb(R)

(
x+ y

x

)
bx+1(1− b)yqθ(a, b)db

= (x+ 1)

∫
S

qθ(a, b)

(
1− b
b

)
Eθb(R)db

= (x+ 1)Eθa[ω̃1E
θ
ω1

(R)]

= (x+ 1)Eθa[ω̃1E
θ
a[R ◦ τ1|F1]]

= (x+ 1)Eθa[ω̃1(1 + ω̃2 + ω̃2ω̃3 + . . . )]

= (x+ 1)Eθa(R− 1).

Note also that (c+ − 1) ≥ Eθa(R − 1) > 0. As a consequence, for all (a, x) /∈
S × [[0, c+ − 1]] we have ΠθV (a, x) ≤ V (a, x). This concludes the proof of the
proposition.

5.2. Proof of consistency

Consistency of the maximum likelihood estimator is given by Theorem 1 in
Douc, Moulines and Rydén (2004) for the observations generated under sta-
tionary distribution and then extended by Theorem 5 in the same reference
for a general initial distribution case. Both results are established under some
assumptions that we now investigate in our context. Note that our process is
not stationary since it starts from (ω0, Z0) ∼ µθ? ⊗ δ0. Thus, we rely on The-
orem 5 from Douc, Moulines and Rydén (2004) to establish the properties of
our estimator. We show that our assumptions on the RWRE ensure the general
assumptions on the autoregressive process with Markov regime needed to estab-
lish the consistency of the MLE (Assumptions (A1) to (A5) in Douc, Moulines
and Rydén, 2004).

First, Assumption (H2) is sufficient to ensure Assumption (A1) from Douc,
Moulines and Rydén (2004). Indeed, the i) of its statement corresponds exactly
to part (a) of (A1). Moreover, statement (b) of (A1) writes in our case as

∀(x, y) ∈ N2,

∫
S

ga(x, y)da =

(
x+ y

x

)∫
S

ax+1(1− a)yda

positive and finite, which is automatically satisfied here.

Assumption (A2) from Douc, Moulines and Rydén (2004) requires that the
transition kernel density Πθ of the Markov chain {(ωk, Zk)}k≥0 defined by (9)
is positive Harris recurrent and aperiodic. In Proposition 5.1, we proved that
this is satisfied as soon as this is the case for the environment kernel qθ (namely
Assumption (H2)) and under the ballistic assumption (H1) on the RWRE. Let
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us recall that Pθ and Eθ are the probability and expectation induced when
considering the chain {(ωk, Zk)}k≥0 under its stationary distribution πθ.

With the ballistic condition, we obtain Assumption (A3) from Douc, Moulines
and Rydén (2004), as stated in the following proposition.

Proposition 5.2. Under Assumptions (H1) and (H2), we have

sup
(x,y)∈N2

sup
a∈S

ga(x, y) < +∞ and Eθ[log

∫
S

ga(Z0, Z1)da] < +∞.

Proof. The first condition is satisfied according to the definition of g given in (8).
Moreover, we have

log

∫
S

ga(Z0, Z1)da = log

(
Z0 + Z1

Z0

)
+ log

∫
S

aZ0+1(1− a)Z1da.

Relying on Stirling’s approximation, we have

log

(
Z0 + Z1

Z0

)
= Z0 log

(
1 +

Z1

Z0

)
+ Z1 log

(
1 +

Z0

Z1

)
+OP (log(Z0 + Z1)),

where OP (1) stands for a sequence that is bounded in probability. Thus we can
write

log

(
Z0 + Z1

Z0

)
≤ Z0 + Z1 +OP (log(Z0 + Z1)).

Moreover, under assumption (12), we have

|S| × [(Z0 + 1) log ε+ Z1 log ε] ≤ log

∫
S

aZ0+1(1− a)Z1da

≤ (Z0 + 1) log(1− ε) + Z1 log(1− ε),

where |S| denotes either the Lebesgue measure of S or its cardinality when S is
discrete. As a conclusion, as soon as Eθ(Z0) < +∞, the second statement in the
proposition is satisfied. Now, from the definition of πθ given in Proposition 5.1,
we get

Eθ(Z0) =
∑
x∈N

∫
S

xµθ(a)Eθa(R−1(1−R−1)x)da

=

∫
S

µθ(a)Eθa(R− 1)da

= Eθ(R)− 1,

which is finite thanks to (H1).

Assumption (H3) is sufficient to ensure (A4) from Douc, Moulines and Rydén
(2004).
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Now, we let Pθ,Z denote the marginal of the distribution Pθ on the set NN

(corresponding to the second marginal). In order to ensure identifiability of
the model (Assumption (A5) in Douc, Moulines and Rydén, 2004), we require
identifiability of the parameter from the distribution of the environment (As-
sumption (H4) in our work).

Lemma 5.3. Under Assumption (H4), the autoregressive process with Markov
regime has identifiable parameter, i.e.

∀θ, θ′ ∈ Θ, θ = θ′ ⇐⇒ Pθ,Z = Pθ
′,Z
.

Proof. We prove that θ is uniquely defined from Pθ,Z . The knowledge of the
distribution Pθ,Z means that for any n ∈ N, any sequence z0, . . . , zn ∈ Nn+1, we
know the quantity

Pθ((Z0, . . . , Zn) = (z0, . . . , zn))

=

∫
S

. . .

∫
S

πθ(a0, z0)

n∏
i=1

qθ(ai−1, ai)

n∏
i=1

gai(zi−1, zi)da0 . . . dan.

Since g does not depend on θ and is positive, if we assume that Pθ,Z = Pθ
′,Z

we
obtain from the above expression that

πθ(a0, z0)

n∏
i=1

qθ(ai−1, ai) = πθ′(a0, z0)

n∏
i=1

qθ′(ai−1, ai),

almost surely (w.r.t. the underlying measure on Sn+1). From Assumption (H4),
this implies θ = θ′.

Now a direct application from Theorem 5 in Douc, Moulines and Rydén
(2004) combined with our previous developments establishes that under As-
sumptions (H2) to (H4), the maximum likelihood estimator θ̂n converges P?-
almost surely to the true parameter value θ? as n tends to infinity.

5.3. Proof of asymptotic normality

Applying Theorem 6 from Douc, Moulines and Rydén (2004) and using that
in our case, their assumptions (A6) to (A8) are satisfied under our Assump-
tion (H5), we obtain the weak convergence of the conditional score to a Gaus-
sian distribution, as soon as the asymptotic variance is defined, which means as
soon as the Fisher information matrix is invertible.
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