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Aurélien Garivier aurelien.garivier@math.univ-toulouse.fr
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Abstract

The stochastic multi-armed bandit model is a simple abstraction that has proven useful
in many different contexts in statistics and machine learning. Whereas the achievable
limit in terms of regret minimization is now well known, our aim is to contribute to a
better understanding of the performance in terms of identifying the m best arms. We
introduce generic notions of complexity for the two dominant frameworks considered in the
literature: fixed-budget and fixed-confidence settings. In the fixed-confidence setting, we
provide the first known distribution-dependent lower bound on the complexity that involves
information-theoretic quantities and holds when m ≥ 1 under general assumptions. In
the specific case of two armed-bandits, we derive refined lower bounds in both the fixed-
confidence and fixed-budget settings, along with matching algorithms for Gaussian and
Bernoulli bandit models. These results show in particular that the complexity of the
fixed-budget setting may be smaller than the complexity of the fixed-confidence setting,
contradicting the familiar behavior observed when testing fully specified alternatives. In
addition, we also provide improved sequential stopping rules that have guaranteed error
probabilities and shorter average running times. The proofs rely on two technical results
that are of independent interest : a deviation lemma for self-normalized sums (Lemma 19)
and a novel change of measure inequality for bandit models (Lemma 1).

Keywords: Multi-armed bandit. Best arm identification. Pure exploration. Information-
theoretic divergences. Sequential testing.

1. Introduction

We investigate in this paper the complexity of finding the m best arms in a stochastic
multi-armed bandit model. A bandit model ν is a collection of K arms, where each arm
νa (1 ≤ a ≤ K) is a probability distribution on R with expectation µa. At each time
t = 1, 2, . . . , an agent chooses an option At ∈ {1, . . . ,K} and receives an independent draw
Zt from the corresponding arm νAt . We denote by Pν (resp. Eν) the probability law (resp.
expectation) of the process (Zt). The agent’s goal is to identify the m best arms, that is,
the set S∗m of indices of the m arms with highest expectation. Letting (µ[1], . . . , µ[K]) be the
K-tuple of expectations (µ1, . . . , µK) sorted in decreasing order, we assume that the bandit
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model ν belongs to a classMm such that for every ν ∈ Mm, µ[m] > µ[m+1], so that S∗m is
unambiguously defined.

In order to identify S∗m, the agent must use a strategy defining which arms to sample
from, when to stop sampling, and which set Ŝm to choose. The sampling rule determines,
based on past observations, which arm At is chosen at time t; in other words, At is Ft−1-
measurable, with Ft = σ(A1, Z1, . . . , At, Zt). The stopping rule τ controls the end of the
data acquisition phase and is a stopping time with respect to (Ft)t∈N satisfying P(τ <
+∞) = 1. The recommendation rule, which provides the arm selection is a Fτ -measurable
random subset Ŝm of {1, . . . ,K} of size m. The triple ((At), τ, Ŝm) entirely determines the
strategy, which we denote in the sequel by A.

In the bandit literature, two different settings have been considered. In the fixed-
confidence setting, a risk parameter δ is fixed. A strategy A is called δ-PAC if, for every
choice of ν ∈ Mm, Pν(Ŝm = S∗m) ≥ 1 − δ. Among the δ-PAC strategies, it is natural to
minimize the expected number of draws Eν [τ ], called the sample complexity. Alternatively,
in the fixed-budget setting, the number of draws τ is fixed in advance (τ = t almost surely)
and the goal is to choose the sampling and recommendation rules so as to minimize the
probability of error (or failure probability) pt(ν) := Pν(Ŝm 6= S∗

m). In the fixed-budget
setting, a strategy A is called consistent if, for every choice of ν ∈Mm, pt(ν) tends to zero
when t increases to infinity.

In order to unify these approaches, we define the complexity κC(ν) (resp. κB(ν)) of best
arm identification in the fixed-confidence (resp. fixed-budget) setting, as follows:

κC(ν) = inf
A δ−PAC

lim sup
δ→0

Eν [τ ]

log 1
δ

, κB(ν) = inf
A consistent

(

lim sup
t→∞

−1

t
log pt(ν)

)−1

. (1)

Heuristically, for a given bandit model ν and a small enough value of δ, a fixed-confidence
optimal strategy needs an average number of samples of order κC(ν) log

1
δ to identify the m

best arms, whereas a fixed-budget optimal strategy requires approximately t = κB(ν) log
1
δ

draws in order to ensure a probability of error of order δ. Most of the existing performance
bounds for the fixed confidence and fixed budget settings can be expressed using these
complexity measures.

In this paper, we aim at evaluating and comparing these two complexities. To achieves
this, two ingredients are needed: a lower bound on the sample complexity of any δ-PAC
algorithm (resp. on the failure probability of any consistent algorithm) and a δ-PAC (resp.
consistent) strategy whose sample complexity (resp. failure probability) attains the lower
bound (often referred to as a ’matching’ strategy). We present below new lower bounds
on κC(ν) and κB(ν) that feature information-theoretic quantities as well as strategies that
match these lower bounds in two-armed bandit models.

A particular class of algorithms will be considered in the following: those using a uniform
sampling strategy, that sample the arms in a round-robin fashion. Whereas it is well known
that when K > 2 uniform sampling is not desirable, it will prove efficient in some examples
of two-armed bandits. This specific setting, relevant in practical applications discussed in
Section 3, is studied in greater details along the paper. In this case, an algorithm using
uniform sampling can be regarded as a statistical test of the hypothesis H0 : (µ1 ≤ µ2)
against H1 : (µ1 > µ2) based on paired samples (Xs, Ys) of ν1, ν2; namely a test based on
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a fixed number of samples in the fixed-budget setting, and, a sequential test in the fixed-
confidence setting, in which a randomized stopping rule determines when the experiment is
to be terminated.

Classical sequential testing theory provides a first element of comparison between the
fixed-budget and fixed-confidence settings, in the simpler case of fully specified alternatives.
Consider for instance the case where ν1 and ν2 are Gaussian laws with the same known
variance σ2, the means µ1 and µ2 being known up to a permutation. Denoting by P the joint
distribution of the paired samples (Xs, Ys), one must choose between the hypotheses H0 :
P = N

(
µ1, σ

2
)
⊗N

(
µ2, σ

2
)
and H1 : P = N

(
µ2, σ

2
)
⊗N

(
µ1, σ

2
)
. It is known since Wald

(1945) that among the sequential tests such that type I and type II error probabilities are
both smaller than δ, the Sequential Probability Ratio Test (SPRT) minimizes the expected
number of required samples, and is such that Eν [τ ] = 2σ2/(µ1 − µ2)

2 log(1/δ). However,
the batch test that minimizes both probabilities of error is the Likelihood Ratio test; it can
be shown to require a sample size of order 8σ2/(µ1 − µ2)

2 log(1/δ) in order to ensure that
both type I and type II error probabilities are smaller than δ. Thus, when the sampling
strategy is uniform and the parameters are known, there is a clear gain in using randomized
stopping strategies. We will show below that this conclusion is not valid anymore when the
values of µ1 and µ2 are not assumed to be known. Indeed, for two-armed Gaussian bandit
models we show that κB(ν) = κC(ν) and for two-armed Bernoulli bandit models we show
that κC(ν) > κB(ν).

1.1 Related works

Bandit models have received a considerable interest since their introduction by Thompson
(1933) in the context of medical trials. An important focus was set on a different perspec-
tive, in which each observation is considered as a reward: the agent aims at maximizing its
cumulative rewards. Equivalently, his goal is to minimize the expected regret up to horizon
t ≥ 1 defined as Rt(ν) = tµ[1] − Eν

[∑t
s=1 Zs

]
. Regret minimization, which is paradig-

matic of the so-called exploration versus exploitation dilemma, was introduced by Robbins
(1952) and its complexity is well understood for simple families of parametric bandits. In
generic one-parameter models, Lai and Robbins (1985) prove that, with a proper notion of
consistency adapted to regret minimization,

inf
A consistent

lim inf
t→∞

Rt(ν)

log t
≥

∑

a:µa<µ[1]

(µ[1] − µa)

KL(νa, ν[1])
,

where KL(νi, νj) denotes the Kullback-Leibler divergence between distributions νi and νj .
This bound was later generalized by Burnetas and Katehakis (1996) to distributions that
depend on several parameters. Since then, non-asymptotic analyses of efficient algorithms
matching this bound have been proposed. Optimal algorithms include the KL-UCB algo-
rithm of Cappé et al. (2013)—a variant of UCB1 (Auer et al. (2002)) using informational
upper bounds, Thompson Sampling (Kaufmann et al. (2012b); Agrawal and Goyal (2013)),
the DMED algorithm (Honda and Takemura, 2011) and Bayes-UCB (Kaufmann et al.,
2012a). This paper is a contribution towards similarly characterizing the complexity of
pure exploration, where the goal is to determine the best arms without trying to maximize
the cumulative observations.
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The problem of best arm identification has been studied since the 1950s under the name
’ranking and identification problems’. The first advances on this topic are summarized in
the monograph by Bechhofer et al. (1968) who consider the fixed-confidence setting and
strategies based on uniform sampling. In the fixed confidence setting, Paulson (1964) first
introduces a sampling strategy based on eliminations for single best arm identification: the
arms are successively discarded, the remaining arms being sampled uniformly. This idea was
later used for example by Jennison et al. (1982); Maron and Moore (1997) or by Even-Dar
et al. (2006) in the context of bounded bandit models, in which each arm νa is a probability
distribution on [0, 1]. m best arm identification with m > 1 was considered for example by
Heidrich-Meisner and Igel (2009), in the context of reinforcement learning. Kalyanakrishnan
et al. (2012) later proposed the LUCB (for Lower and Upper Confidence Bounds) algorithm,
whose sampling strategy is no longer based on eliminations, still for bounded bandit models.
Bounded distributions are in fact particular examples of distributions with subgaussian tails,
to which the proposed algorithms can be easily generalized. A relevant quantity introduced
in the analysis of algorithms for bounded (or subgaussian) bandit models is the ’complexity
term’

H(ν) =
∑

a∈{1,2,...K}

1

∆2
a

with ∆a =

{

µa − µ[m+1] for a ∈ S∗m,

µ[m] − µa for a ∈ (S∗m)c.
(2)

The upper bound on the sample complexity of the LUCB algorithm of Kalyanakrishnan
et al. (2012) implies in particular that κC(ν) ≤ 292H(ν). Some of the existing works on
the fixed-confidence setting do not bound τ in expectation but rather show that Pν(Ŝm =
S∗m, τ = O (H(ν))) ≥ 1− δ. These results are not directly comparable with the complexity
κC(ν), although no significant gap is to be observed yet.

Recent works have focused on obtaining upper bounds on the number of samples whose
dependency in terms of the squared-gaps ∆a (for subgaussian arms) is optimal when the
∆a’s go to zero, and δ remains fixed. Karnin et al. (2013) and Jamieson et al. (2014)) exhibit
δ-PAC algorithms for which there exists a constant C such that, with high probability, the
number of samples used satisfies

τ ≤ C
∑

a 6=a∗

1

∆2
a

log

(
1

δ
log

1

∆a

)

,

and Jamieson et al. (2014) show that the dependency in ∆−2
a log(log(∆−1

a )) is optimal when
∆a goes to zero. However, the constant C is large and does not lead to improved upper
bounds on the complexity term κC(ν).

For m = 1, the work of Mannor and Tsitsiklis (2004) provides a lower bound on κC(ν) in
the case of Bernoulli bandit models, under the following ǫ-relaxation sometimes considered
in the literature. For some tolerance parameter ǫ ≥ 0 the agent has to ensure that Ŝm is
included in the set of (ǫ,m) optimal arms S∗m,ǫ = {a : µa ≥ µ[m] − ǫ} with probability at
least 1− δ. In this paper, we rather focus on the case ǫ = 0 since it allows to compare the
fixed-confidence setting and the fixed-budget setting, in which no relaxation is considered.
Mannor and Tsitsiklis (2004) show that if an algorithm is δ-PAC, then in the bandit model
ν = (B(µ1), . . . ,B(µK)) such that ∀a, µa ∈ [0, α] for some α ∈]0, 1[, there exists two sets
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Mα(ν) ⊂ S∗1 and Nα(ν) ⊂ {1, . . . ,K}\S∗1 and a positive constant Cα such that

Eν [τ ] ≥ Cα




∑

a∈Mα(ν)

1

ǫ2
+

∑

a∈Nα(ν)

1

(µ[1] − µa)2



 log

(
1

8δ

)

.

This bound is non asymptotic (as emphasized by the authors), although not completely
explicit. In particular, the subsetMα and Nα do not always form a partition of the arms
(it can happen that Mα ∪ Nα 6= {1, . . . ,K}), hence the complexity term does not involve
a sum over all the arms. For m > 1, the only lower bound available in the literature
is the worst-case result of Kalyanakrishnan et al. (2012). It states that for every δ-PAC
algorithm there exists a bandit model ν such that Eν [τ ] ≥ K/(18375ǫ2) log (m/8δ). This
yields, however, no lower bound on the complexity κC(ν).

The fixed-budget setting has been studied by Audibert et al. (2010); Bubeck et al. (2011)
for single best-arm identification in bounded bandit models. For multiple arm identification
(m > 1), still in bounded bandit models, Bubeck et al. (2013b) introduce the SAR (for
Successive Accepts and Rejects) algorithm. An upper bound on the failure probability of
the SAR algorithm yields κB(ν) ≤ 8 log(K)H (ν).

For m = 1, Audibert et al. (2010) prove an asymptotic lower bound on the probability
of error for Bernoulli bandit models. They state that for every algorithm and every bandit
problem ν such that ∀a, µ1 ∈ [α, 1−α], there exists a permutation of the arms ν ′ such that

pt(ν
′) ≥ exp(−t/CαH2(ν

′))), with H2(ν) = max
i:µ[i]<µ[1]

i
(
µ[1] − µ[i]

)2

and Cα = α(1− α)/(5 + o(1)). This result does not imply a lower bound on κB(ν) and for
m > 1, no such lower bound exists either.

Gabillon et al. (2012) propose the UGapE algorithm for m best arm identification for
m > 1. By changing only one parameter in some confidence regions, this algorithm can
be adapted either to the fixed-budget or to the fixed-confidence setting. However, a care-
ful inspection shows that UGapE cannot be used in the fixed-budget setting without the
knowledge of the complexity term H(ν). This drawback is shared by other algorithms de-
signed for the fixed-budget setting, like the UCB-E algorithm of Audibert et al. (2010) or
the KL-LUCB-E algorithm of Kaufmann and Kalyanakrishnan (2013).

1.2 Content of the paper

The gap between lower and upper bounds known so far does not permit to identify exactly
the complexity terms κB(ν) and κC(ν) defined in (1). Not only do they involve imprecise
multiplicative constants but by analogy with the Lai and Robbins’ bound for the expected
regret, the quantities H(ν), H2(ν) presented above are only expected to be relevant in the
Gaussian case.

The improvements of this paper mainly concern the fixed-confidence setting, which will
be considered in the next three Sections. We first propose in Section 2 a distribution-
dependent lower bound on κC(ν) that holds for m > 1 and for general classes of bandit
models (Theorem 2). This information-theoretic lower bound permits to interpret the quan-
tity H(ν) defined in (2) as a subgaussian approximation.

5



Kaufmann, Cappé and Garivier

Theorem 4 in Section 3 proposes a tighter lower bound on κC(ν) for general classes of
two-armed bandit models, as well as a lower bound on the sample complexity of δ-PAC
algorithms using uniform sampling. In Section 4 we propose, for Gaussian bandits with
known —but possibly different— variances, an algorithm exactly matching this bound.
We also consider the case of Bernoulli distributed arms, for which we show that uniform
sampling is nearly optimal in most cases. We propose a new algorithm using uniform
sampling and a non-trivial stopping strategy that is close to matching the lower bound.

Section 5 gathers our contributions to the fixed-budget setting. For two-armed bandits,
Theorem 9 provides a lower bound on κB(ν) that is in general different from the lower bound
obtained for κC(ν) in the fixed-confidence setting. Then we propose matching algorithms for
the fixed-budget setting that allow for a comparison between the two settings. For Gaussian
bandits, we show that κC(ν) = κB(ν), whereas for Bernoulli bandits κC(ν) > κB(ν), proving
that the two complexities are not necessarily equal. As a first step towards a lower bound
on κB(ν) when m > 1, we also give in Section 5 new lower bounds on the probability of
error pt(ν) of any consistent algorithm, for Gaussian bandit models.

Section 6 contains numerical experiments that illustrate the performance of matching
algorithms for Gaussian and Bernoulli two-armed bandits, comparing the fixed-confidence
and fixed-budget settings.

Our contributions follow from two main mathematical results of more general interest.
Lemma 1 provides a general relation between the expected number of draws and Kullback-
Leibler divergences of the arms’ distributions, which is the key element to derive the lower
bounds (it also permits, for example, to derive Lai and Robbin’s lower bound on the regret
in a few lines). Lemma 19 is a tight deviation inequality for martingales with sub-Gaussian
increments, in the spirit of the Law of Iterated Logarithm, that permits here to derive
efficient matching algorithms for two-armed bandits.

2. Generic lower bound in the fixed-confidence setting

Introducing the Kullback-Leibler divergence of any two probability distributions p and q:

KL(p, q) =

{ ∫
log
[
dp
dq (x)

]

dp(x) if q ≪ p,

+∞ otherwise,

we make the assumption that there exists a set P of probability measures such that for all
ν = (ν1, . . . , νK) ∈Mm, for a ∈ {1, . . . ,K}, νa ∈ P and that P satisfies

∀p, q ∈ P, p 6= q ⇒ 0 < KL(p, q) < +∞.

A classMm of bandit models satisfying this property is called identifiable.
All the distribution-dependent lower bounds derived in the bandit literature (e.g. Lai

and Robbins (1985); Mannor and Tsitsiklis (2004); Audibert et al. (2010)) rely on changes
of distribution, and so do ours. A change of distribution relates the probabilities of the
same event under two different bandit models ν and ν ′. The following lemma provides a
new, synthetic, inequality from which lower bounds are directly derived. In other words,
this result, proved in Appendix A, encapsulates the technical aspects of the change of
distribution. To illustrate the interest of this result even beyond the pure exploration
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framework, we give in Appendix B a new simple proof of Burnetas and Katehakis (1996)’s
generalization of Lai and Robbins’ lower bound in the regret minimization framework based
on Lemma 1.

Let Na(t) denote the number of draws of arm a up to round t and Na = Na(τ) be the
total number of draws of arm a by some algorithm A = ((At), τ, Ŝm).

Lemma 1 Let ν and ν ′ be two bandit models. Let σ be a stopping time with respect to (Ft)
and let A ∈ Fσ be an event such that 0 < Pν(A) < 1.

K∑

a=1

Eν [Na(σ)]KL(νa, ν
′
a) ≥ d(Pν(A),Pν′(A)),

where d(x, y) := x log(x/y) + (1− x) log((1− x)/(1− y)) is the binary relative entropy.

2.1 Lower bound on the sample complexity of a δ-PAC algorithm

We now propose a non asymptotic lower bound on the expected number of samples needed
to identify the m best arms in the fixed confidence setting, which straightforwardly yields
a lower bound on κC(ν).

Theorem 2 holds for an identifiable class of bandit models of the form:

Mm = {ν = (ν1, . . . , νK) : νi ∈ P, µ[m] > µ[m+1]} (3)

such that the set of probability measures P satisfies assumption 1 below.

Assumption 1 For all ν, ν ′ ∈ P2 such that ν 6= ν ′, for all α > 0,
there exists ν1 ∈ P: KL(ν, ν ′) < KL(ν, ν1) < KL(ν, ν ′) + α and EX∼ν1 [X] > EX∼ν′ [X],
there exists ν2 ∈ P: KL(ν, ν ′) < KL(ν, ν2) < KL(ν, ν ′) + α and EX∼ν2 [X] < EX∼ν′ [X].

These conditions are reminiscent of assumptions made by Lai and Robbins (1985); they
include families of parametric bandits continuously parametrized by their means.

Theorem 2 Let ν ∈ Mm, where Mm is defined by (3), and assume that P satisfies As-
sumption 1; any algorithm that is δ-PAC onMm satisfies, for δ ≤ 0.15,

Eν [τ ] ≥




∑

a∈S∗

m

1

KL(νa, ν[m+1])
+
∑

a/∈S∗

m

1

KL(νa, ν[m])



 log

(
1

2δ

)

.

Proof Without loss of generality, one may assume that the arms are ordered such that
µ1 ≥ · · · ≥ µK . Thus S∗m = {1, ...,m}. Let A = ((At), τ, Ŝm) be a δ-PAC algorithm and fix
α > 0. For all a ∈ {1, . . . ,K}, from Assumption 1 there exists an alternative model

ν ′ = (ν1, . . . , νa−1, ν
′
a, νa+1, . . . , νK)

in which the only arm modified is arm a, and ν ′a is such that:

• KL(νa, νm+1) < KL(νa, ν
′
a) < KL(νa, νm+1) + α and µ′

a < µm+1 if a ∈ {1, . . . ,m},

• KL(νa, νm) < KL(νa, ν
′
a) < KL(νa, νm) + α and µ′

a > µm if a ∈ {m+ 1, . . . ,K}.
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In particular, on the bandit model ν ′ the set of optimal arms is no longer {1, . . . ,m}.
Thus, introducing the event A = (Ŝm = {1, . . . ,m}) ∈ Fτ , any δ-PAC algorithm satisfies
Pν(A) ≥ 1 − δ and Pν′(A) ≤ δ. Lemma 1 applied to the stopping time τ (such that
Na(τ) = Na is the total number of draws of arm a) and the monotonicity properties of
d(x, y) (x 7→ d(x, y) is increasing when x > y and decreasing when x < y) yield

KL(νa, ν
′)Eν [Na] ≥ d(1− δ, δ).

From the definition of the alternative model, one obtains for a ∈ {1, . . . ,m} or b ∈ {m +
1, . . . ,K} respectively, for every α > 0,

Eν [Na] ≥
d(1− δ, δ)

KL(νa, νm+1) + α
and Eν [Nb] ≥

d(1− δ, δ)

KL(νb, νm) + α
.

For δ ≤ 0.15, it can be shown that d(1 − δ, δ) ≥ log(1/(2δ)). Thus, letting α tend to zero
and summing over the arms leads to the lower bound on Eν [τ ] =

∑K
a=1 Eν [Na].

�

Remark 3 Lemma 1 can also be used to improve the result of Mannor and Tsitsiklis (2004)
that holds for m = 1 under the ǫ-relaxation described before. Combining the changes of
distribution of this paper with Lemma 1 yields, for every ǫ > 0 and δ ≤ 0.15,

Eν [τ ] ≥




|{a : µa ≥ µ[1] − ǫ}| − 1

KL
(
B(µ[1]),B(µ[1] − ǫ)

) +
∑

a:µa≤µ[1]−ǫ

1

KL
(
B(µa),B(µ[1] + ǫ)

)



 log
1

2δ
,

where |X | denotes the cardinal of the set X and B(µ) the Bernoulli distribution of mean µ.

2.2 Bounds on the complexity for exponential bandit models

Theorem 2 yields the following lower bound on the complexity term:

κC(ν) ≥
∑

a∈S∗

m

1

KL(νa, ν[m+1])
+
∑

a/∈S∗

m

1

KL(νa, ν[m])
.

Thus, one may want to obtain strategies whose sample complexity can be proved to be of
the same magnitude. The only algorithm that has been analyzed so far with an information-
theoretic perspective is the KL-LUCB algorithm of Kaufmann and Kalyanakrishnan (2013),
designed for exponential bandit models : that is

Mm =
{
ν = (νθ1 , . . . , νθK ) : (θ1, . . . , θK) ∈ ΘK , θ[m] > θ[m+1]

}
,

where νθ belongs to a canonical one-parameter exponential family. This means that there
exists a twice differentiable strictly convex function b such that νθ has a density with respect
to some reference measure given by

fθ(x) = exp(θx− b(θ)), for θ ∈ Θ ⊂ R. (4)
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Distributions from a canonical one-parameter exponential family can be parametrized
either by their natural parameter θ or by their mean. Indeed ḃ(θ) = µ(θ), the mean of the
distribution νθ and b̈(θ) = Var[νθ] > 0. The mapping θ 7→ µ(θ) is strictly increasing, and the
means are ordered in the same way as the natural parameters. Exponential families include
in particular Bernoulli distributions, or Gaussian distributions with common variances (see
Cappé et al. (2013) for more details about exponential families).

We introduce the following shorthand to denote the Kullback-Leibler divergence in ex-
ponential families: K(θ, θ′) = KL(νθ, νθ′) for (θ, θ′) ∈ Θ2. Combining the upper bound on
the sample complexity of the KL-LUCB algorithm obtained by Kaufmann and Kalyanakr-
ishnan (2013) and the lower bound of Theorem 2, the complexity κC(ν) can be bounded
as

∑

a∈S∗

m

1

K(θa, θ[m+1])
+
∑

a/∈S∗

m

1

K(θa, θ[m])
≤ κC(ν) ≤ 24 min

θ∈[θ[m+1],θ[m]]

K∑

a=1

1

K∗(θa, θ)
, (5)

where K∗(θ, θ′) is the Chernoff information between the distributions νθ and νθ′ , defined as

K∗(θ, θ′) = K(θ∗, θ), where θ∗ is such that K(θ∗, θ) = K(θ∗, θ′).

3. Improved lower bounds for two-armed bandits

Two armed-bandits are of particular interest as they offer a theoretical framework for se-
quential A/B Testing. A/B Testing is a popular procedure used, for instance, for website
optimization: two versions of a webpage, say A and B, are empirically compared by being
presented to users. Each user is shown only one version At ∈ {1, 2} and provides a real-
valued index of the quality of the page, Zt, which is modeled as a sample of a probability
distribution ν1 or ν2. For example, a standard objective is to determine which webpage
has the highest conversion rate (probability that a user actually becomes a customer) by
receiving binary feedback from the users. In standard A/B Testing algorithms, the two
versions are presented equally often. It is thus of particular interest to investigate whether
uniform sampling is optimal or not.

Even for two-armed bandits, the upper and lower bounds on the complexity κC(ν)
given in (5) do not match. We propose in this section a refined lower bound on κC(ν) based
on a different change of distribution. This lower bound features a quantity reminiscent of
Chernoff information, and we will exhibit algorithms matching (or approximately matching)
this new bound in Section 4. Theorem 4 provides a non-asymptotic lower bound on the
sample complexity Eν [τ ] of any δ-PAC algorithm. It also provides a lower bound on the
performance of algorithms using a uniform sampling strategy, which will turn out to be
efficient in some cases.

Theorem 4 LetM be an identifiable class of two-armed bandit models and let ν = (ν1, ν2) ∈
M be such that µ1 > µ2. Any algorithm that is δ-PAC onM satisfies, for all δ ≤ 0.15,

Eν [τ ] ≥
1

c∗(ν)
log

(
1

2δ

)

, where c∗(ν) := inf
(ν′1,ν

′

2)∈M:µ′

1<µ′

2

max
{
KL(ν1, ν

′
1),KL(ν2, ν

′
2)
}
.

9
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Moreover, any δ-PAC algorithm using a uniform sampling strategy satisfies, for δ ≤ 0.15,

Eν [τ ] ≥
1

I∗(ν)
log

(
1

2δ

)

, where I∗(ν) := inf
(ν′1,ν

′

2)∈M:µ′

1<µ′

2

KL (ν1, ν
′
1) + KL (ν2, ν

′
2)

2
.

(6)

In particular, Theorem 4 implies that κC(ν) ≥ 1/c∗(ν). Obviously, I∗(ν) ≤ c∗(ν): this
suggests that uniform sampling can be sub-optimal.

The case of exponential families. It is possible to give explicit expressions for the
quantities c∗(ν) and I∗(ν) for important classes of parametric bandit models that will be
considered in the next section.

The class of Gaussian bandits with known variances σ2
1 and σ2

2, further considered in
Section 4.1, is

M = {ν =
(
N
(
µ1, σ

2
1

)
,N
(
µ2, σ

2
2

))
: (µ1, µ2) ∈ R

2, µ1 6= µ2}. (7)

For this class,

KL(N (µ1, σ1) ,N (µ2, σ2)) =
(µ1 − µ2)

2

2σ2
2

+
1

2

[
σ2
1

σ2
2

− 1− log
σ2
1

σ2
2

]

(8)

and direct computations yield

c∗(ν) =
(µ1 − µ2)

2

2(σ1 + σ2)2
and I∗(ν) =

(µ1 − µ2)
2

4(σ2
1 + σ2

2)
.

The observation that, when the variances are different c∗(ν) > I∗(ν), will be shown to imply
that strategies based on uniform sampling are sub-optimal (by a factor 1 ≤ 2(σ2

1+σ2
2)/(σ1+

σ2)
2 ≤ 2).
The more general class of two-armed exponential bandit models, further considered in

Section 4.2, is
M = {ν = (νθ1 , νθ2) : (θ1, θ2) ∈ Θ2, θ1 6= θ2}

where νθa has density fθa given by (4). There

c∗(ν) = inf
θ∈Θ

max (K(θ1, θ),K(θ2, θ)) = K∗(θ1, θ2),

where K∗(θ1, θ2) = K(θ1, θ∗), with θ∗ is defined by K(θ1, θ∗) = K(θ2, θ∗). This quantity is
analogous to the Chernoff information K∗(θ1, θ2) introduced in Section 2 but with ’reversed’
roles for the arguments. I∗(ν) may also be expressed more explicitly as

I∗(ν) =
K
(
θ1, θ

)
+K

(
θ2, θ

)

2
, where µ(θ) =

µ1 + µ2

2
.

Appendix C provides further useful properties of these quantities and in particular
Figure 6 illustrates the property that for two-armed exponential bandit models, the lower
bound on κC(ν) provided by Theorem 4,

κC(ν) ≥
(

1

K∗(θ1, θ2)

)

, (9)

10
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is indeed always tighter than the lower bound of Theorem 2,

κC(ν) ≥
(

1

K(θ1, θ2)
+

1

K(θ2, θ1)

)

. (10)

Interestingly, the changes of distribution used to derive the two results are not the same.
On the one hand, for inequality (10), the changes of distribution involved modify a single
arm at a time: one of the arms is moved just below (or just above) the other (see Figure 1,
left). This is the idea also used, for example, to obtain the lower bound of Lai and Robbins
(1985) on the cumulative regret. On the other hand, for inequality (9), both arms are
modified at the same time: they are moved close to the common intermediate value θ∗ but
with a reversed ordering (see Figure 1, right).

θ2 θ1 θ1+α θ2 θ1θ* θ*+α

Figure 1: Alternative bandit models considered to obtain the lower bounds of Theorem 2
(left) and Theorem 4 (right).

We now give the proof of Theorem 4, in order to show how easily it follows from Lemma 1.

Proof of Theorem 4. Without loss of generality, one may assume that the bandit model
ν = (ν1, ν2) is such that the best arm is a∗ = 1. Consider any alternative bandit model
ν ′ = (ν ′1, ν

′
2) in which a∗ = 2. Let A be the event A = (Ŝ1 = 1), which belongs to Fτ .

Let A = ((At), τ, Ŝ1) be a δ-PAC algorithm: by assumptions, Pν(A) ≥ 1 − δ and
Pν′(A) ≤ δ. Applying Lemma 1 (with the stopping time τ) and using again the monotonicity
properties of d(x, y), one obtains that

Eν [N1]KL(ν1, ν
′
1) + Eν [N2]KL(ν2, ν

′
2) ≥ d(δ, 1− δ). (11)

For δ ≤ 0.15, as already used in the proof of Theorem 2, one has d(1− δ, δ) ≥ log(1/(2δ)).
Using moreover that τ = N1 +N2, one has

Eν [τ ] ≥
log
(

1
2δ

)

maxa=1,2KL(νa, ν ′a)
.

The result follows by optimizing over the possible model ν ′ satisfying µ′
1 < µ′

2 to make the
right hand side of the inequality as large as possible.

WhenA uses uniform sampling, using the fact that Eν [N1] = E[N2] = E[τ ]/2 in Equation
(11) similarly gives the second statement of Theorem 4.

4. Matching algorithms for two-armed bandits

For specific instances of two-armed bandit models, we now present algorithms with perfor-
mance guarantees that closely match the lower bounds of Theorem 4. For Gaussian bandits

11
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with known (and possibly different) variances, we describe in Section 4.1 an algorithm
termed α-Elimination that is optimal and thus makes it possible to determine the complex-
ity κC(ν). For Bernoulli bandit models, we present in Section 4.2 the SGLRT algorithm
that uses uniform sampling and is close to optimal.

4.1 Gaussian bandit models

We focus here on the class of two-armed Gaussian bandit models with known variances
presented in (7), where σ1 and σ2 are fixed. We prove that

κC(ν) =
2(σ1 + σ2)

2

(µ1 − µ2)2

by exhibiting a strategy that reaches the performance bound of Theorem 4. This strategy
uses non-uniform sampling in case where σ1 and σ2 differ. When σ1 = σ2, we provide in
Theorem 5 an improved stopping rule that is δ-PAC and results in a significant reduction
of the expected number of samples used.

The α-Elimination algorithm introduced in this Section can also be used in more general
two-armed bandit models, where the distribution νa is σ2

a-subgaussian. This means that
the probability distribution νa satisfies

∀λ ∈ R, EX∼νa

[

eλX
]

≤ λ2σ2
a

2
.

This covers in particular the cases of bounded distributions with support in [0, 1] (that are
1/4-subgaussian). In these more general cases, the algorithm enjoys the same theoretical
properties: it is δ-PAC and its sample complexity is bounded as in Theorem 6 below. Note
however that general subgaussian bandit models do not form an identifiable class of bandit
models (as defined in Section 2) and Theorem 4 is no more valid in this case.

4.1.1 Equal Variances

We start with the simpler case σ1 = σ2 = σ. Thus, the quantity I∗(ν) introduced in
Theorem 4 coincides with c∗(ν), which suggests that uniform sampling could be optimal.
A uniform sampling strategy equivalently collects paired samples (Xs, Ys) from both arms.
The differenceXs−Ys is normally distributed with mean µ = µ1−µ2 and a δ-PAC algorithm
is equivalent to a sequential test of H0 : (µ < 0) versus H1 : (µ > 0) such that both type
I and type II error probabilities are bounded by δ. Robbins (1970) proposes the stopping
rule

τ = inf

{

t ∈ 2N∗ :
∣
∣
∣

t/2
∑

s=1

(Xs−Ys)
∣
∣
∣ >

√

2σ2tβ(t, δ)

}

,with β(t, δ) =
t+ 1

t
log

(
t+ 1

2δ

)

. (12)

The recommendation rule chooses the empirically best arm at time τ . This procedure can
be seen as an elimination strategy, in the sense of Jennison et al. (1982). The authors of this
paper derive a lower bound on the sample complexity of any δ-PAC elimination strategy
(whereas our lower bound applies to any δ-PAC algorithm) which is matched by Robbins’

12



Complexity of Best Arm Identification in Multi-Armed Bandits

algorithm: the above stopping rule τ satisfies

lim
δ→0

Eν [τ ]

log(1/δ)
=

8σ2

(µ1 − µ2)2
.

This value coincide with the lower bound on κC(ν) of Theorem 4 in the case of two-armed
Gaussian distributions with similar known variance σ2. This proves that in this case,
Robbins’ rule (12) is not only optimal among the class of elimination strategies, but also
among the class of δ-PAC algorithm.

Any δ-PAC elimination strategy that uses a threshold function (or exploration rate)
β(t, δ) smaller than Robbins’ also matches our asymptotic lower bound, while stopping
earlier than the latter. From a practical point of view, it is therefore interesting to exhibit
smaller exploration rates that preserve the δ-PAC property. The failure probability of such
an algorithm is upper bounded, for example when µ1 < µ2, by

Pν

(

∃k ∈ N :

k∑

s=1

Xs − Ys − (µ1 − µ2)√
2σ2

>
√

2kβ(2k, δ)

)

= P

(

∃k ∈ N : Sk >
√

2kβ(2k, δ)
)

(13)
where Sk is a sum of k i.i.d. variables of distribution N (0, 1). Robbins (1970) obtains
a non-explicit confidence region of risk at most δ by choosing β(2k, δ) = log (log(k)/δ) +
o(log log(k)). The dependency in k is in some sense optimal, because the Law of Iterated
Logarithm (LIL) states that lim supk→∞ Sk/

√

2k log log(k) = 1 almost surely. Recently,
Jamieson et al. (2014) proposed an explicit confidence region inspired by the LIL. However,
Lemma 1 of Jamieson et al. (2014) cannot be used to upper bound (13) by δ and we propose
here a result derived independently (Lemma 19, presented in Appendix E) that achieves
this goal and yields the following result, proved in Appendix E.

Theorem 5 For δ small enough, with

β(t, δ) = log
1

δ
+

3

4
log log

1

δ
+

3

2
log(1 + log(t/2)), (14)

the elimination strategy is δ-PAC.

We refer to Section 6 for numerical simulations that illustrate the significant savings (in
the average number of samples needed to reach a decision) resulting from the use of the less
conservative exploration rate allowed by Theorem 5.

4.1.2 Mismatched Variances

In the case where σ1 6= σ2, we rely on the α-Elimination strategy, described in Algorithm 1
below. For a = 1, 2, µ̂a(t) denotes the empirical mean of the samples gathered from arm
a up to time t. The algorithm is based on a non-uniform sampling strategy governed by
the parameter α ∈ (0, 1) which ensures that, at the end of every round t, N1(t) = ⌈αt⌉,
N2(t) = t − ⌈αt⌉ and µ̂1(t) − µ̂2(t) ∼ N

(
µ1 − µ2, σ

2
t (α)

)
(where σ2

t (α) is defined at line 6
of Algorithm 1). The sampling schedule used here is thus deterministic.

Theorem 6 shows that the σ1/(σ1+σ2)-elimination algorithm, with a suitable exploration
rate, is δ-PAC and matches the lower bound on Eν [τ ], at least asymptotically when δ → 0.
Its proof can be found in Appendix D.
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Algorithm 1 α-Elimination

Require: Exploration function β(t, δ), parameter α.
1: Initialization: µ̂1(0) = µ̂2(0) = 0, σ2

0(α) = 1, t = 0
2: while |µ̂1(t)− µ̂2(t)| ≤

√

2σ2
t (α)β(t, δ) do

3: t← t+ 1.
4: If ⌈αt⌉ = ⌈α(t− 1)⌉, At ← 2, else At ← 1
5: Observe Zt ∼ νAt and compute the empirical means µ̂1(t) and µ̂2(t)
6: Compute σ2

t (α) = σ2
1/⌈αt⌉+ σ2

2/(t− ⌈αt⌉)
7: end while

8: return argmax
a=1,2

µ̂a(t)

Theorem 6 If α = σ1/(σ1 + σ2), the α-elimination strategy using the exploration rate
β(t, δ) = log t

δ + 2 log log(6t) is δ-PAC on M and satisfies, for every ν ∈ M, for every
ǫ > 0,

Eν [τ ] ≤ (1 + ǫ)
2(σ1 + σ2)

2

(µ1 − µ2)2
log

(
1

δ

)

+ oǫ
δ→0

(

log

(
1

δ

))

.

Remark 7 When σ1 = σ2, 1/2-elimination reduces, up to rounding effects, to the elimina-
tion procedure described in Section 4.1.1, for which Theorem 5 suggests an exploration rate
of order log(log(t)/δ). As the feasibility of this exploration rate when σ1 6= σ2 is yet to be
established, we focus on Gaussian bandits with equal variances in the numerical experiments
of Section 6.

4.2 Bernoulli bandit models

We consider in this section the class of Bernoulli bandit models

M = {ν = (B(µ1),B(µ2)) : (µ1, µ2) ∈]0; 1[2, µ1 6= µ2},

where each arm can be alternatively parametrized by the natural parameter of the expo-
nential family, θa = log(µa/(1− µa)). Observing that in this particular case little can be
gained by departing from uniform sampling, we consider the SGLRT algorithm (to be de-
fined below) that uses uniform sampling together with a stopping rule that is not based on
the mere difference of the empirical means.

For Bernoulli bandit models, the quantities I∗(ν) and c∗(ν) introduced in Theorem 4
happen to be practically very close (see Figure 2 in Section 5 below). There is thus a strong
incentive to use uniform sampling and in the rest of this section we consider algorithms that
aim at matching the bound (6) of Theorem 4 —that is, Eν [τ ] ≤ log(1/δ)/I∗(ν), at least for
small values of δ—, which provides an upper bound on κC(ν) that is very close to 1/c∗(ν).
For simplicity, as I∗(ν) is here a function of the means of the arms only, we will denote
I∗(ν) by I∗(µ1, µ2).

When the arms are sampled uniformly, finding an algorithm that matches the bound
of (6) boils down to determining a proper stopping rule. In all the algorithms studied so
far, the stopping rule was based on the difference of the empirical means of the arms. For
Bernoulli arms the 1/2-Elimination procedure described in Algorithm 1 can be used, as
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Algorithm 2 Sequential Generalized Likelihood Ratio Test (SGLRT)

Require: Exploration function β(t, δ).
1: Initialization: µ̂1(0) = µ̂2(0) = 0. t = 0.
2: while (tI∗(µ̂1(t), µ̂2(t)) ≤ β(t, δ))

⋃
(t = 1[2]) do

3: t = t+ 1. At = t[2].
4: Observe Zt ∼ νAt and compute the empirical means µ̂1(t) and µ̂2(t).
5: end while

6: return a = argmax
a=1,2

µ̂a(t).

each distribution νa is bounded and therefore 1/4-subgaussian. More precisely, with β(t, δ)
as in Theorem 5, the algorithm stopping at the first time t such that

µ̂1(t)− µ̂2(t) >
√

2β(t, δ)/t

has its sample complexity bounded by 2/(µ1 − µ2)
2 log(1/δ) + o (log(1/δ)). Yet, Pinsker’s

inequality implies that I∗(µ1, µ2) > (µ1−µ2)
2/2 and this algorithm is thus not optimal with

respect to the bound (6) of Theorem 4. The approximation I∗(µ1, µ2) = (µ1−µ2)
2/(8µ1(1−

µ1)) + o
(
(µ1 − µ2)

2
)
suggests that the loss with respect to the optimal error exponent is

particularly significant when both means are close to 0 or 1.
To circumvent this drawback, we propose the SGLRT (for Sequential Generalized Like-

lihood Ratio Test) stopping rule, described in Algorithm 2. The appearance of I∗ in the
stopping criterion of Algorithm 2 is a consequence of the observation that it is related to the
generalized likelihood ratio statistic for testing the equality of two Bernoulli proportions.
To test H0 : (µ1 = µ2) against H1 : (µ1 6= µ2) based on t/2 paired samples of the arms
Ws = (Xs, Ys), the Generalized Likelihood Ratio Test (GLRT) rejects H0 when

exp(−tI∗(µ̂1,t/2, µ̂2,t/2)) =
maxµ1,µ2:µ1=µ2 L(W1, . . . ,Wt/2;µ1, µ2)

maxµ1,µ2 L(W1, . . . ,Wt/2;µ1, µ2)
< zδ,

where L(W1, . . . ,Wt/2;µ1, µ2) denotes the likelihood of the observations given parameters
µ1 and µ2. The equality in the previous display is a consequence of the rewriting

I∗(x, y) = H

(
x+ y

2

)

− 1

2

[

H
(x

2

)

+H
(y

2

)]

,

where H(x) = −x log(x)−(1−x) log(1−x) denotes the binary entropy function. Hence, Al-
gorithm (2) can be interpreted as a sequential version of the GLRT with (varying) threshold
zt,δ = exp(−β(t, δ)).
Elements of analysis of the SGLRT. The SGLRT algorithm is also related to the
KL-LUCB algorithm of Kaufmann and Kalyanakrishnan (2013). A closer examination of
the KL-LUCB stopping criterion reveals that, in the specific case of two-armed bandits, it
is equivalent to stopping when tKL∗(B(µ̂1(t)),B(µ̂2(t))) gets larger than some threshold.
We also mentioned the fact that KL∗(B(x),B(y)) and I∗(x, y) are very close (see Figure
2). Using results from Kaufmann and Kalyanakrishnan (2013), one can thus prove (see
Appendix F) the following lemma.
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Lemma 8 With the exploration rate

β(t, δ) = 2 log

(
t(log(3t))2

δ

)

the SGLRT algorithm is δ-PAC.

For this exploration rate, we were able to obtain the following asymptotic guarantee on
the stopping time τ of Algorithm 2:

∀ǫ > 0, lim sup
δ→∞

τ

log(1/δ)
≤ 2(1 + ǫ)

I∗(µ1, µ2)
a.s.

(see Lemma 23 in Appendix F for the proof of this result). By analogy with the result of
Theorem 5 we conjecture that the analysis of Kaufmann and Kalyanakrishnan (2013) —on
which the result of Lemma 8 is based– is too conservative and that the use of and explo-
ration rate of order log(log(t)/δ) should also lead to a δ-PAC algorithm. This conjecture
is supported by the numerical experiments reported in Section 6 below. Besides, for this
choice of exploration rate, Lemma 23 also shows that

∀ǫ > 0, lim sup
δ→∞

τ

log(1/δ)
≤ (1 + ǫ)

I∗(µ1, µ2)
a.s..

5. The fixed budget setting

In this section, we focus on the fixed-budget setting and we provide new upper and lower
bounds on the complexity term κB(ν).

For two-armed bandits, we obtain in Theorem 9 lower bounds analogous to those of
Theorem 4 in the fixed-confidence setting. We present matching algorithms for Gaussian
and Bernoulli bandits. This allows for a comparison between the fixed-budget and fixed-
confidence setting in these specific cases. More specifically, we show that κB(ν) = κC(ν)
for Gaussian bandit models, whereas κC(ν) > κB(ν) for Bernoulli bandit models.

When K > 2 and m ≥ 1, we present a first step towards obtaining more general results,
by providing lower bounds on the probability of error pt(ν) for Gaussian bandits with equal
variances.

5.1 Comparison of the complexities for two-armed bandits

We present here an asymptotic lower bound on pt(ν) that directly yields a lower bound
on κB(ν). Moreover, we provide a lower bound on the failure probability of consistent
algorithms using uniform sampling. The proof of Theorem 9 bears similarities with that
of Theorem 4, and we provide it in Appendix G.1. However, it is important to note that
the informational quantities c∗(ν) and I∗(ν) defined in Theorem 9 are in general different
from the quantities c∗(ν) and I∗(ν) previously defined for the fixed-confidence setting (see
Theorem 4). Appendix C contains a few additional elements of comparison between these
quantities in the case of one-parameter exponential families of distributions.
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Theorem 9 Let ν = (ν1, ν2) be a two-armed bandit model such that µ1 > µ2. In the
fixed-budget setting, any consistent algorithm satisfies

lim sup
t→∞

−1

t
log pt(ν) ≤ c∗(ν), where c∗(ν) := inf

(ν′1,ν
′

2)∈M:µ′

1<µ′

2

max
{
KL(ν ′1, ν1),KL(ν ′2, ν2)

}
.

Moreover, any consistent algorithm using a uniform sampling strategy satisfies

lim sup
t→∞

−1

t
log pt(ν) ≤ I∗(ν), where I∗(ν) := inf

(ν′1,ν
′

2)∈M:µ′

1<µ′

2

KL (ν ′1, ν1) + KL (ν ′2, ν2)
2

.

(15)

Gaussian distributions. As the Kullback-Leibler divergence between two Gaussian distributions—
(8)—is symmetric with respect to the means when the variances are held fixed, it holds
that c∗(ν) = c∗(ν). To find a matching algorithm, we introduce the simple family of static
strategies that draw n1 samples from arm 1 followed by n2 = t − n1 samples of arm 2,
and then choose arm 1 if µ̂1,n1 < µ̂2,n2 , where µ̂i,ni

denotes the empirical mean of the ni

samples from arm i. Assume for instance that µ1 > µ2. Since µ̂1,n1 − µ̂2,n2 − µ1 + µ2 ∼
N
(
0, σ2

1/n1 + σ2
2/n2

)
, the probability of error of such a strategy is upper bounded by

P (µ̂1,n1 < µ̂2,n2) ≤ exp

(

−
(
σ2
1

n1
+

σ2
2

n2

)−1
(µ1 − µ2)

2

2

)

.

The right hand side is minimized when n1/(n1+n2) = σ1/(σ1 + σ2), and the static strategy
drawing n1 = ⌈σ1t/(σ1 + σ2)⌉ times arm 1 is such that

lim inf
t→∞

−1

t
log pt(ν) ≥

(µ1 − µ2)
2

2(σ1 + σ2)2
= c∗(ν) .

This shows in particular that for Gaussian distributions the two complexities are equal:

κB(ν) = κC(ν) =
2(σ1 + σ2)

2

(µ1 − µ2)2
.

Exponential families. For exponential family bandit models, it can be observed that

c∗(ν) = inf
θ∈Θ

max (K(θ, θ1),K(θ, θ2)) = K∗(θ1, θ2),

where K∗(θ1, θ2) is the Chernoff information between the distributions νθ1 and νθ2 . We
recall that K∗(θ1, θ2) = K(θ∗, θ1), where θ∗ is defined by K(θ∗, θ1) = K(θ∗, θ2). Moreover,
one has

I∗(ν) =
K
(
θ1+θ2

2 , θ1

)

+K
(
θ1+θ2

2 , θ2

)

2
.

In particular, the quantity c∗(ν) = K∗(θ1, θ2) does not always coincide with the quantity
c∗(ν) = K∗(θ1, θ2) defined in Theorem 4. More precisely, c∗(ν) and c∗(ν) are equal when
the log-partition function b(θ) is (Fenchel) self-conjugate, which is the case for Gaussian
and exponential variables (see Appendix C). However, for Bernoulli distributions, it can
be checked that c∗(ν) > c∗(ν). By exhibiting a matching strategy in the fixed-budget
setting (Proposition 10), we show that this implies that κC(ν) > κB(ν) in the Bernoulli
case (Proposition 11). We also show that in this case, only little can be gained by departing
from uniform sampling.
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Proposition 10 Consider a two-armed exponential bandit model and α(θ1, θ2) be defined
by

α(θ1, θ2) =
θ∗ − θ1
θ2 − θ1

where K(θ∗, θ1) = K(θ∗, θ2).

For all t, the static strategy that allocates ⌈α(θ1, θ2)t⌉ samples to arm 1, and recommends
the empirical best arm, satisfies pt(ν) ≤ exp(−tK∗(θ1, θ2)).

Proposition 10, whose proof can be found in Appendix G.2, shows in particular that for
every exponential family bandit model there exists a consistent static strategy such that

lim inf
t→∞

−1

t
log pt ≥ K∗(θ1, θ2), and hence that κB(ν) =

1

K∗(θ1, θ2)
.

By combining this observation with Theorem 4 and the fact that, K∗(θ1, θ2) < K∗(θ1, θ2)
for Bernoulli distributions, one obtains the following inequality.

Proposition 11 For two-armed Bernoulli bandit models, κC(ν) > κB(ν).

Note that we have determined the complexity of the fixed-budget setting by exhibiting
an algorithm (leading to an upper bound on κB) that is of limited practical interest for
Bernoulli bandit models. Indeed, the optimal static strategy defined in Proposition 10
requires the knowledge of the quantity α(θ1, θ2), that depends on the unknown means of
the arms. So far, it is not known whether there exists a universal strategy, that would
satisfy pt(ν) ≤ exp(−K∗(θ1, θ2)t) on every Bernoulli bandit model.

However, Lemma 24 shows that the strategy that uses uniform sampling and recom-
mends the empirical best arm satisfies pt(ν) ≤ exp(−I∗(ν)t), and matches the bound (15)
of Theorem 9 (see Remark 25 in Appendix G.2). The fact that, just as in the fixed-confidence
setting I∗(ν) is very close to c∗(ν) shows that the problem-dependent optimal strategy de-
scribed above can be approximated by a very simple, universal algorithm that samples the
arms uniformly. Figure 2 represents the different informational functions c∗, I∗, c∗ and I∗

when the mean µ1 varies, for two fixed values of µ2. It can be observed that c∗(ν) and
c∗(ν) are almost indistinguishable from I∗(ν) and I∗(ν), respectively, while there is a gap
between c∗(ν) and c∗(ν).
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Figure 2: Comparison of different informational quantities for Bernoulli bandit models.
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5.2 Lower bound on pt(ν) in more general cases

Theorem 9 provides a direct counterpart to Theorem 4, allowing for a complete comparison
between the fixed confidence and fixed budget settings in the case of two-armed bandits.
However, we were not able to obtain a general lower bound for K-armed bandit that would
be directly comparable to that of Theorem 2 in the fixed budget setting. Using Lemma 12
stated below (a variant of Lemma 1 proved in Appendix A.2), we were nonetheless able to
derive tighter, non asymptotic, lower bounds on pt(ν) in the particular case of Gaussian
bandit models with equal known variance,Mm = {ν = (ν1, . . . , νK) : νa = N

(
µa, σ

2
)
, µa ∈

R, µ[m] 6= µ[m+1]}.

Lemma 12 Let ν and ν ′ be two bandit models such that S∗m(ν) 6= S∗m(ν ′). Then

max
(
Pν(S 6= S∗m(ν)),Pν′(S 6= S∗m(ν ′))

)
≥ 1

4
exp

(

−
K∑

a=1

Eν [Na]KL(νa, ν
′
a)

)

.

For m = 1, Proposition 13 gives a lower bound in the spirit of the result of Audibert
et al. (2010), but with a simpler proof. For m > 1, building on the same ideas, Proposition
14 provides a first lower bound, which we believe leaves room for improvements.

Proposition 13 Let ν be a Gaussian bandit model such that µ1 > µ2 ≥ · · · ≥ µK and let

H ′(ν) =
K∑

a=2

2σ2

(µ1 − µa)2
.

There exists a bandit model ν [a], a ∈ {2, . . . ,K}, (see Figure 3) which satisfies H ′(ν[a]) ≤
H ′(ν) and is such that

max
(

pt(ν), pt(ν
[a])
)

≥ exp

(

− 4t

H ′(ν)

)

.

Proposition 14 Let ν be such that µ1 > . . . µm > µm+1 > · · · > µK and let

H+(ν) =
m∑

a=1

2σ2

(µa − µm+1)2
, H−(ν) =

K∑

a=m+1

2σ2

(µm − µa)2
, and H(ν) = H+(ν)+H−(ν).

There exists a ∈ {1, . . . ,m} and b ∈ {m+1, . . .K} such that the bandit model ν [a,b] described
on Figure 3 satisfies H(ν[a,b]) < H(ν) and is such that

max
(

pt(ν), pt(ν
[a,b])

)

≥ 1

4
exp

(

− 4t

H̃(ν)

)

, where H̃(ν) =
H(ν)min(H+(ν), H−(ν))

H(ν) + min(H+(ν), H−(ν))
.

The proofs of Proposition 13 and Proposition 14 are very similar. For this reason, we
provide in Appendix G.3 only the latter. Introducing the gaps ∆a defined in (2), the precise
definition of the modified problems ν[a] and ν[a,b] in the statement of the two results is:

ν[a] :

{
µ′
k = µk for all k 6= a

µ′
a = µa + 2∆a

and ν[a,b] :







µ′
k = µk for all k /∈ {a, b}

µ′
a = µa − 2∆b

µ′
b = µb + 2∆a

.
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Figure 3: Left: bandit models ν, in red, and ν [2], in blue (Proposition 13). Right: bandit
models ν, in red, and ν[i,j], in blue (Proposition 14).

6. Numerical experiments

In this section, we focus on two-armed models and provide experimental experiments de-
signed to compare the fixed-budget and fixed-confidence settings (in the Gaussian and
Bernoulli cases) and to illustrate the improvement resulting from the adoption of the re-
duced exploration rate of Theorem 5.

In Figure 4, we consider two Gaussian bandit models with known common variance: the
’easy’ one is {N (0.5, 0.25) ,N (0, 0.25)}, corresponding to κC = κB = κ = 8, on the left;
and the ’difficult’ one is {N (0.01, 0.25) ,N (0, 0.25)}, that is κ = 2×104, on the right. In the
fixed-budget setting, stars (’*’) report the probability of error pn(ν) as a function of n. In
the fixed-confidence setting, we plot both the empirical probability of error by circles (’O’)
and the specified maximal error probability δ by crosses (’X’) as a function of the empirical
average of the running times. Note the logarithmic scale used for the probabilities on the
y-axis. All results are averaged over N = 106 independent Monte Carlo replications. For
comparison purposes, a plain line represents the theoretical rate t 7→ exp(−t(1/κ)) which
is a straight line on the log scale.

In the fixed-confidence setting, we report results for elimination algorithms of the form
(12) for three different exploration rates β(t, δ). The exploration rate we consider are: the
provably-PAC rate of Robbins’ algorithm log(t/δ) (large blue symbols), the conjectured
optimal exploration rate log((log(t) + 1)/δ), almost provably δ-PAC according to Theorem
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Figure 4: Experimental results for Gaussian bandit models
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Figure 5: Results for Bernoulli bandit models: 0.2− 0.1 (left) and 0.51− 0.5 (right).

5 (bold green symbols), and the rate log(1/δ), which would be appropriate if we were to
perform the stopping test only at a single pre-specified time (orange symbols). For each
algorithm, the log probability of error is approximately a linear function of the number of
samples, with a slope close to −1/κ, where κ is the complexity. A first observation is that
the ’traditional’ rate of log(t/δ) is much too conservative, with running times for the difficult
problem (right plot) which are about three times longer than those of other methods for
comparable error rates. As expected, the rate log((log(t) + 1)/δ) significantly reduces the
running times while maintaining proper control of the probability of failure, with empirical
error rates (’O’ symbols) below the corresponding confidence parameters δ (represented by
’X’ symbols). Conversely, the use of the non-sequential testing threshold log(1/δ) seems
too risky, as one can observe that the empirical probability of error may be larger than δ on
difficult problems. To illustrate the gain in sample complexity resulting from the knowledge
of the means, we also represented in red the performance of the SPRT algorithm mentioned
in the introduction of Section 5 along with the theoretical relation between the probability
of error and the expected number of samples, materialized as a dashed line. The SPRT
stops for t such that |(µ1 − µ2)(S1,t/2 − S2,t/2)| > log(1/δ).

Robbins’ algorithm is δ-PAC and matches the complexity (which is illustrated by the
slope of the measures), though in practice the use of the exploration rate log((log(t)+1)/δ)
leads to huge gain in terms of number of samples used. It is important to keep in mind
that running times play the same role as error exponents and hence the threefold increase
of average running times observed on the rightmost plot of Figure 4 when using β(t, δ) =
log(t/δ) is really prohibitive.

On Figure 5, we compare on two Bernoulli bandit models the performance of the SGLRT
algorithm described in Section 4.2 (Algorithm 2) using two different exploration rates,
log(1/δ) and log((log(t) + 1)/δ), to the 1/2-elimination stopping rule (Algorithm 1) that
stops when the difference of empirical means exceeds the threshold

√

2β(t, δ)/t (for the
same exploration rates). Plain lines also materialize the theoretical optimal rate t 7→
exp(−t/κC(ν)) and the rate attained by the 1/2-Elimination algorithm t 7→ exp(−t/κ′),
where κ′ = 2/(µ1 − µ2)

2. On the bandit model 0.51 − 0.5 (right) these two rates are very
close and SGLRT mostly coincides with Elimination, but on the bandit model 0.2−0.1 (left)
the practical gain of the use of a more sophisticated stopping strategy is well illustrated.
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Besides, our experiments show that SGLRT using log((log(t) + 1)/δ) is δ-PAC on both the
(relatively) easy and difficult problems we consider, unlike the other algorithms considered.

If one compares the results for the fixed-budget setting (in purple) to those for the best
δ-PAC algorithm (or conjectured δ-PAC for SGLRT in the Bernoulli case), in green, one can
observe that to obtain the same probability of error, the fixed-confidence algorithm usually
needs an average number of samples that is about twice larger than the deterministic number
of samples required by the fixed-budget setting algorithm. This remark should be related
to the fact that a δ-PAC algorithm is designed to be uniformly good across all problems,
whereas consistency is a weak requirement in the fixed-budget setting: any strategy that
draws both arm infinitely often and recommends the empirical best is consistent. Figure 4
also shows that when the values of µ1 and µ2 are unknown, the sequential version of the
test is no more preferable to its batch counterpart and can even become much worse if the
exploration rate β(t, δ) is chosen too conservatively. This observation should be mitigated
by the fact that the sequential (or fixed-confidence) approach is adaptive with respect to
the difficulty of the problem whereas it is impossible to predict the efficiency of a batch
(or fixed-budget) experiment without some prior knowledge regarding the difficulty of the
problem under consideration.

7. Conclusion

Our aim with this paper has been to provide a framework for evaluating, in a principled
way, the performance of fixed-confidence and fixed-budget algorithms designed to identify
the best arm(s) in stochastic environments.

For two-armed bandits, we obtained very complete results, identifying the complexity
of both settings in important parametric families of distributions. In doing so, we observed
that standard testing strategies based on uniform sampling are optimal or close to optimal
for Gaussian distributions with matched variance or Bernoulli distributions but can be
improved (by non-uniform sampling) for Gaussian distributions with distinct variances.
This latter observation can certainly be generalized to other models, starting with the case
of Gaussian distributions whose variances are a priori unknown. In the case of Bernoulli
distributions, we have also shown that fixed-confidence algorithms that use the difference of
the empirical means as a stopping criterion are bound to be sub-optimal. Finally, we have
shown, through the comparison of the complexities κC(ν) and κB(ν), that the behavior
observed when testing fully specified alternatives where fixed confidence (or sequential)
algorithms may be ’faster on average’ than the fixed budget (or batch) ones is not true
anymore when the parameters of the models are unknown.

For models with more than two arms, we obtained the first generic (ie. not based on
the sub-Gaussian tail assumption) distribution-dependent lower bound on the complexity
of m best arms identification in the fixed-confidence setting (Theorem 2). Currently avail-
able performance bounds for algorithms performing m best arms identification —those of
Kaufmann and Kalyanakrishnan (2013) notably— show a small gap with this result and it
is certainly of interest to investigate whether those analyses and/or the bound of Theorem 2
may be improved to bridge the gap. For the fixed-budget setting we made only a small step
towards the understanding of the complexity of m best arms identification and our results
can certainly be greatly improved.
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Appendix A. Changes of distributions

Under the identifiability assumption, there exists a common measure λ such that for all
ν = (ν1, . . . , νK), for all a ∈ {1, . . . ,K} νa has a density fa with respect to λ.

Let ν ∈ Mm be a bandit model, and consider an alternative bandit model ν ′ ∈ Mm.
For all a ∈ {1, . . . ,K}, fa, f ′

a are the densities of νa, ν
′
a respectively and one can introduce

the log-likelihood ratio of the observations up to time t under an algorithm A:

Lt :=

K∑

a=1

t∑

s=1

1(As=a) log

(
fa(Zs)

f ′
a(Zs)

)

.

The key element in a change of distribution is the following classical lemma that relates
the probabilities of an event under Pν and Pν′ through the log-likelihood ratio of the obser-
vations. Such a result has often been used in the bandit literature for ν and ν ′ that differ
just from one arm, for which the expression of the log-likelihood ratio is simpler. In this
paper, we consider more general changes of distributions, and we therefore provide a full
proof of Lemma 15 in Appendix A.3.

Lemma 15 Let σ be any stopping time with respect to Ft. For every event A ∈ Fσ (i.e. A
such that A ∩ (σ = t) ∈ Ft),

Pν′(A) = Eν [1A exp(−Lσ)]

A.1 proof of Lemma 1

Let σ be a stopping time with respect to (Ft). We start by showing that for all A ∈ Fσ,
Pν(A) = 0 if and only if Pν′(A) = 0. Thus, if 0 < Pν(A) < 1 one also has 0 < Pν′(A) < 1
and the quantity d(Pν(A),Pν′(A)) in Lemma 1 is well defined. Let A ∈ Fσ. Lemma 15
yields Pν′(A) = Eν [1A exp(−Lσ)]. Thus Pν′(A) = 0 implies 1A exp(−Lσ) = 0 Pν − a.s. As
Pν(σ < +∞) = 1, Pν(exp(Lσ) > 0) = 1 and Pν′(A) = 0⇒ Pν(A) = 0. A similar reasoning
yields Pν(A) = 0⇒ Pν′(A) = 0.

Let A ∈ Fσ be such that 0 < Pν(A) < 1 (then 0 < Pν′(A) < 1). Lemma 15 and the
conditional Jensen inequality lead to

Pν′(A) = Eν [exp(−Lσ)1A] = Eν [Eν [exp(−Lσ)|1A]1A]

≥ Eν [exp (−Eν [Lσ|1A])1A] = Eν [exp (−Eν [Lσ|A])1A]

= exp (−Eν [Lσ|A])Pν(A),

Writing the same for the event A yields Pν′(A) ≥ exp
(
−Eν [Lσ|A]

)
Pν(A), hence

Eν [Lσ|A] ≥ log
Pν(A)

Pν′(A)
and Eν [Lσ|A] ≥ log

Pν(A)

Pν′(A)
. (16)

Therefore one can write

Eν [Lσ] = Eν [Lσ|A]Pν(A) + Eν [Lσ|A]Pν(A)

≥ Pν(A) log
Pν(A)

Pν′(A)
+ Pν(A) log

Pν(A)

Pν′(A)
= d(Pν(A),Pν′(A)). (17)
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Introducing (Ya,t), the sequence of i.i.d. samples successively observed from arm a, the
log-likelihood ratio Lt can be rewritten

Lt =
K∑

a=1

Na(t)∑

t=1

log

(
fa(Ya,t)

f ′
a(Ya,t)

)

; and Eν

[

log

(
fa(Ya,t)

f ′
a(Ya,t)

)]

= KL(νa, ν
′
a).

Applying Wald’s Lemma (see e.g. Siegmund (1985)) to Lσ =
∑K

a=1

∑Na(σ)
t=1 log

(
fa(Ya,t)
f ′

a(Ya,t)

)

yields

Eν [Lσ] =
K∑

a=1

Eν [Na(σ)]KL(νa, ν
′
a). (18)

Combining this equality with inequality (17) gives Lemma 1.

A.2 Proof of Lemma 12

The proof bears strong similarities with that of Lemma 1, but an extra ingredient is needed:
Lemma 4 of Bubeck et al. (2013a), that provides a lower bound on the sum of type I and
type II probabilities of error in a statistical test.

Lemma 16 Let ρ0,ρ1 be two probability distributions supported on some set X , with ρ1
absolutely continuous with respect to ρ0. Then for any measurable function φ : X → {0, 1},
one has

PX∼ρ0(φ(X) = 1) + PX∼ρ1(φ(X) = 0) ≥ 1

2
exp(−KL(ρ0, ρ1)).

Let ν and ν ′ be two bandit models that do not have the same set of optimal arms. We
denote by S1, . . . ,SM the M =

(
K
m

)
subsets of m, ordered so that S1 (resp. S2) is the set of

m best arms in problem ν (resp. ν ′). One has

max
(

Pν(Ŝm 6= S1),Pν′(Ŝm 6= S2)
)

≥ 1

2

(

Pν(Ŝm 6= S1) + Pν′(Ŝm 6= S2)
)

≥ 1

2

(

Pν(Ŝm 6= S1) + Pν′(Ŝm = S1)
)

.

Let ρ0 = L(Ŝm) and ρ1 = L′(Ŝm) be the distribution of Ŝm for algorithm A under problems
ν and ν ′ respectively. ρ1 is absolutely continuous with respect to ρ0, since as mentioned
above, for any event in Ft, Pν(A) = 0 ⇔ Pν′(A) = 0. Therefore one can apply Lemma 16
with ρ0,ρ1 and φ(x) = 1(x 6=S1) and write

max
(

Pν(Ŝm 6= S1),Pν′(Ŝm 6= S2)
)

≥ 1

4
exp

(

−KL(L(Ŝm),L′(Ŝm))
)

.

To conclude the proof, it remains to show that KL(L(Ŝm),L′(Ŝm)) is upper bounded by
∑K

a=1 Eν [Na(t)]KL(νa, ν
′
a), which is equal to Eν [Lt], as shown above (equation (18)).

The rest of the proof boils down to prove a lower bound on Eν [Lt] slightly different
from the one used to obtain Lemma 1. For k ∈ {1, . . . ,M}, applying inequality (16) to
(Ŝm = Sk) ∈ Fτ yields

Eν [Lt|Ŝm = Sk] ≥ log

(

Pν(Ŝm = Sk)
Pν′(Ŝm = Sk)

)

.
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Thus one can write, letting I = {k ∈ {1, . . . ,M} : Pν(Ŝm = Sk) 6= 0},

Eν [Lt] =
∑

k∈I
Eν [Lt|Ŝm = Sk]P(Ŝm = Sk)

≥
∑

k∈I
log

(

Pν(Ŝm = Sk)
Pν′(Ŝm = Sk)

)

Pν(Ŝm = Sk) = KL(L(Ŝm),L′(Ŝm)),

which concludes the proof.

A.3 Proof of Lemma 15

Assume that there exists a measure λ such that νa has density fa with respect to λ. For all
a ∈ {1, . . . ,K}, let (Ya,t)t∈N be an i.i.d. sequence such that if At = a, Zt = Ya,t.

We start by showing by induction that for all n ∈ N the following statement is true: for
every function g : Rn → R measurable,

Eν′ [g(Z1, . . . , Zn)] = Eν [g(Z1, . . . , Zn) exp(−Ln(Z1, . . . , Zn))] .

The result for n = 1 follows from the following calculation:

Eν′ [g(X1)] = Eν′

[
K∑

a=1

1A1=ag(Ya,1)

]

=

K∑

a=1

Eν′ [1A1=aEν′ [g(Ya,1)|F0]]

=

K∑

a=1

Pν′(A1 = a)Eν′ [g(Ya,1)] =

K∑

a=1

Pν(A1 = a)Eν

[

g(Ya,1)
f ′
a(Ya,1)

fa(Ya,1)

]

= Eν

[
K∑

a=1

1A1=ag(Ya,1)
f ′
a(Ya,1)

fa(Ya,1)

]

= Eν

[

g(Z1)

K∑

a=1

1A1=a exp

(

− log
f ′
a(Z1)

fa(Z1)

)]

= Eν

[

g(Z1) exp

(

−
K∑

a=1

1A1=a log
f ′
a(Z1)

fa(Z1)

)]

= Eν [g(Z1) exp(−L1(Z1))] .

We use that the initial choice of action satisfies Pν(A1 = a) = Pν′(A1 = a).

We now assume that the statement holds for some integer n, and show it holds for n+1.
Let g : Rn+1 → R be a measurable function.

Eν′ [g(Z1, . . . , Zn, Zn+1)] = Eν′ [Eν′ [g(Z1, . . . , Zn, Zn+1)|Fn]]

(∗)
= Eν [Eν′ [g(Z1, . . . , Zn, Zn+1)|Fn] exp (−Ln(Z1, . . . , Zn))]

= Eν

[
K∑

a=1

1An+1=aEν′ [g(Z1, . . . , Zn, Ya,n+1)|Fn] exp (−Ln(Z1, . . . , Zn))

]

= Eν

[
K∑

a=1

1An+1=a

∫

g(Z1, . . . , Zn, z)
f ′
a(z)

fa(z)
fa(z)dz exp (−Ln(Z1, . . . , Zn))

]

.
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Observing that on the event (An+1 = a), Ln+1(Z1, . . . , Zn, z) = Ln(Z1, . . . , Zn) + log fa(z)
f ′

a(z)
leads to:

Eν′ [g(Z1, . . . , Zn, Zn+1)]

= Eν

[
K∑

a=1

1An+1=a

∫

g(Z1, . . . , Zn, z) exp(−Ln+1(Z1, . . . , Zn, z))fa(z)dz

]

= Eν

[
K∑

a=1

1An+1=aEν [g(Z1, . . . , Zn, Ya,n+1) exp(−Ln+1(Z1, . . . , Zn, Ya,n+1))|Fn]

]

= Eν [Eν [g(Z1, . . . , Zn, Zn+1) exp(−Ln+1(Z1, . . . , Zn, Zn+1))|Fn]]

= Eν [g(Z1, . . . , Zn, Zn+1) exp(−Ln+1(Z1, . . . , Zn, Zn+1)] .

Hence, the statement is true for all n, and we have shown that for every A ∈ Fn,

Pν′(A) = Eν [1A exp(−Ln)].

Let σ be a stopping time w.r.t. (Fn) and A ∈ Fσ.

Pν′(A) = Eν′ [1A] =

∞∑

n=0

Eν′ [1A1(σ=n)
︸ ︷︷ ︸

∈Fn

] =

∞∑

n=0

Eν [1A1(σ=n) exp(−Ln)] = Eν [1A exp(−Lσ)].

Appendix B. A short proof of Burnetas and Katehakis’ lower bound on

the regret

In the regret minimization framework, briefly described in the Introduction, a bandit algo-
rithm only consists in a sampling rule (there is no stopping rule nor recommendation rule).
The arms must be chosen sequentially so as to minimize the regret, that is strongly related
to the number of draws of the sub-optimal arms (using the notation µ∗ = µ[1]):

RT (ν) = µ∗T − Eν

[
T∑

t=1

Zt

]

=
∑

a:µa<µ∗

(µ∗ − µa)Eν

[
Na(T )

]
(19)

The lower bound given by Lai and Robbins (1985) on the regret holds for families of dis-
tributions parametrized by a (single) real parameter. Their result has been generalized by
Burnetas and Katehakis (1996) to larger classes of parametric distributions. The version
we give here deals with identifiable classes of the form M = (P)K , where P is a set of
probability measures satisfying

∀νa, νb ∈ P, νa 6= νb ⇒ 0 < KL(νa, νb) < +∞.

Theorem 17 LetM be an identifiable class of bandit models. Consider a bandit algorithm
such that for all ν ∈ M having a unique optimal arm, for all α ∈]0, 1], RT (ν) = o(Tα).
Then, for all ν ∈M,

µa < µ∗ ⇒ lim inf
T→∞

Eν [Na(T )]

log(T )
≥ 1

Kinf (νa;µ∗)
, (20)

where
Kinf (p;µ) = inf {KL(p, q) : q ∈ P and EX∼q[X] > µ} .
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Proof Let ν = (ν1, . . . , νK) be a bandit model such that arm 1 is the unique optimal
arm. Without loss of generality, we show that inequality (20) holds for the sub-optimal arm
a = 2. Consider the alternative bandit model ν ′ such that ν ′a = νa for all a 6= 2 and ν ′2 ∈ P
is such that EX∼ν′2

[X] > µ1. Arm 1 is thus the unique optimal arm under the model ν,
whereas arm 2 is the unique optimal arm under the model ν ′. For every integer T , let AT

be the event defined by

AT =
(

N1(T ) ≤ T −
√
T
)

.

Clearly, AT ∈ FT . From Lemma 1, applied to the stopping time σ = T a.s.,

Eν [N2(T )]KL(ν2, ν
′
2) ≥ d(Pν(AT ),Pν′(AT )). (21)

The event AT is not very likely to hold under the model ν, in which the optimal arm should
be drawn of order T −C log(T ) times, whereas it is very likely to happen under ν ′, in which
arm 1 is sub-optimal and thus only drawn little. More precisely, Markov inequality yields

Pν(AT ) = Pν(T −N1(T ) ≥
√
T ) ≤

∑

a 6=1 Eν [Na(T )]√
T

Pν′(A
c
T ) = Pν′(N1(T ) ≥ T −

√
T ) ≤ Eν′ [N1(T )]

T −
√
T
≤
∑

a 6=2 Eν′ [Na(T )]

T −
√
T

From the formulation (19), every algorithm that is uniformly efficient in the above sense
satisfies

∑

a 6=1

Eν [Na(T )] = o(Tα) and
∑

a 6=2

Eν′ [Na(T )] = o(Tα)

for all α ∈]0, 1]. Hence Pν(AT ) →
n→∞

0 and Pν′(AT ) →
n→∞

1. Therefore, we get

d(Pν(AT ),Pν′(AT ))

log(T )
∼

T→∞
1

log(T )
log

(
1

Pλ(A
c
T )

)

≥ 1

log(T )
log

(

T −
√
T

∑

a 6=2 Eν′ [Na(T )]

)

.

The right hand side rewrites

1 +
log
(

1− 1√
T

)

log(T )
−

log
(
∑

a 6=2 Eν′ [Na(T )]
)

log(T )
→

T→∞
1

using the fact that
∑

a 6=2 Eν′ [Na(T )] = o(Tα) for all α ∈]0, 1]. Finally, for every ν ′2 ∈ P
such that EX∼ν′2

[X] > µ1 on obtains, using inequality (21)

lim inf
T→∞

E[N2(T )]

log(T )
≥ 1

KL(ν2, ν ′2)
.

For all ǫ ∈]0, 11[, ν ′2 can then be chosen such that KL(ν2, ν
′
2) ≤ Kinf(ν2, µ1)/(1− ǫ), and the

conclusion follows when ǫ goes to zero.
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Kaufmann, Cappé and Garivier

Appendix C. Properties of K∗ and K
∗ in exponential families

In this section, we review properties of K∗ defined in Section 3 as well as those of K∗ defined
in Section 5 in the case of one-parameter exponential family distributions.

Figure 6 displays the geometric constructions corresponding to the complexity terms
of Theorems 2 and 4, respectively. As seen on the picture, the convexity of the function
θ 7→ K(θi, θ), for any value of θi, implies that

1

K∗(θ1, θ2)
≥ 1

K(θ1, θ2)
+

1

K(θ2, θ1)
.

K∗(θ1, θ2)

K(θ2, ·)

θ1 θ2

K(θ1, ·)

1
K−1(θ1,θ2)+K−1(θ2,θ1)

Figure 6: Comparison of the complexity terms featured in Theorems 2 and 4.

It is well known that in exponential families, the Kullback-Leibler divergence between
distributions parametrized by their natural parameter, θ, may be related to the Bregman
divergence associated with the log-partition function b:

K(θ1, θ2) = b(θ2)− b(θ1)− ḃ(θ1)(θ2 − θ1) = Bregmanb(θ2, θ1).

From this representation, its is straightforward to show that

• K(θ1, θ2) is a twice differentiable strictly convex function of its second argument,

• θ∗ corresponds to the dual parameter µ∗ := ḃ(θ∗) = (b(θ2)− b(θ1))/(θ2 − θ1),

• K∗(θ1, θ2) admits the following variational representation

K∗(θ1, θ2) = max
θ∈(θ1,θ2)

{

b(θ1) +
b(θ2)− b(θ1)

θ2 − θ1
(θ − θ1)− b(θ),

}

,

corresponding to the maximal gap shown on Figure 7 (achieved in θ∗ for which ḃ(θ∗) =
µ∗). The quantity I∗(θ1, θ2) related to the use of uniform sampling, is equal to the
value of the gap in θ = (θ1 + θ2)/2, which confirms that it is indeed smaller than
K∗(θ1, θ2).
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θ2

b(θ)

θ1

K∗(θ1, θ2)

Figure 7: Interpretation of K∗(θ1, θ2).

Indexing the distributions in the exponential family by their mean µ = ḃ(θ) rather than
their natural parameter θ and using the dual representation

K(µ1, µ2) = b⋆(µ1)− b⋆(µ2)− ḃ⋆(µ2)(µ1 − µ2) = Bregmanb⋆(µ1, µ2),

where b⋆(µ) := supθ(θµ− b(θ)) is the Fenchel conjugate of b, similarly yields

• K(µ1, µ2) is a twice differentiable strictly convex function of its first argument,

• θ∗ = ḃ⋆(µ∗) = (b⋆(µ2)− b⋆(µ1))/(µ2 − µ1);

• K∗(θ1, θ2) is defined by

K∗(θ1, θ2) = max
µ∈(µ1,µ2)

{

b⋆(µ1) +
b⋆(µ2)− b⋆(µ1)

µ2 − µ1
(µ− µ1)− b⋆(µ),

}

.

From what precedes, equality between K∗ and K∗ for all values of the parameters is only
achievable when the log-partition function b is self-conjugate.

Appendix D. Proof of Theorem 6

Let α = σ1/(σ1 + σ2). We first prove that with the exploration rate β(t, δ) = log(t/δ) +
2 log log(6t) the algorithm is δ-PAC. Assume that µ1 > µ2 and recall τ = inf{t ∈ N : |dt| >√

2σ2
t (α)β(t, δ)}, where dt := µ̂1(t) − µ̂2(t). The probability of error of the α-elimination

strategy is upper bounded by

Pν

(

dτ ≤ −
√

2σ2
τ (α)β(τ, δ)

)

≤ Pν

(

dτ − (µ1 − µ2) ≤ −
√

2σ2
τ (α)β(τ, δ)

)

≤ Pν

(

∃t ∈ N
∗ : dt − (µ1 − µ2) < −

√

2σ2
t (α)β(t, δ)

)

≤
∞∑

t=1

exp (−β(t, δ)) ,

by an union bound and Chernoff bound applied to dt−(µ1−µ2) ∼ N
(
0, σ2

t (α)
)
. The choice

of β(t, δ) mentioned above ensures that the series in the right hand side is upper bounded
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by δ, which shows the algorithm is δ-PAC:

∞∑

t=1

e−β(t,δ) ≤ δ

∞∑

t=1

1

t(log(6t))2
≤ δ

(
1

(log 6)2
+

∫ ∞

1

dt

t(log(6t))2

)

= δ

(
1

(log 6)2
+

1

log(6)

)

≤ δ.

To upper bound the expected sample complexity, we start by upper bounding the prob-
ability that τ exceeds some deterministic time T :

Pν(τ ≥ T ) ≤ Pν

(

∀t = 1 . . . T, dt ≤
√

2σ2
t (α)β(t, δ)

)

≤ Pν

(

dT ≤
√

2σ2
T (α)β(T, δ)

)

= Pν

(

dT − (µ1 − µ2) ≤ −
[

(µ1 − µ2)−
√

2σ2
T (α)β(T, δ)

])

≤ exp

(

− 1

2σ2
T (α)

[

(µ1 − µ2)−
√

2σ2
T (α)β(T, δ)

]2
)

.

The last inequality follows from Chernoff bound and holds for T such that (µ1 − µ2) >
√

2σ2
T (α)β(T, δ). Now, for γ ∈]0, 1[ we introduce

T ∗
γ := inf

{

t0 ∈ N : ∀t ≥ t0, (µ1 − µ2)−
√

2σ2
t (α)β(t, δ) > γ(µ1 − µ2)

}

.

This quantity is well defined as σ2
t (α)β(t, δ) go to zero when t goes to infinity. Then,

Eν [τ ] ≤ T ∗
γ +

∑

T=T ∗

γ+1

P (τ ≥ T )

≤ T ∗
γ +

∑

T=T ∗

γ+1

exp

(

− 1

2σ2
T (α)

[

(µ1 − µ2)−
√

2σ2
T (α)β(T, δ)

]2
)

≤ T ∗
γ +

∞∑

T=T ∗

γ+1

exp

(

− 1

2σ2
T (α)

γ2(µ1 − µ2)
2

)

.

For all t ∈ N
∗, it is easy to show that the following upper bound on σ2

t (α) holds:

∀t ∈ N, σ2
t (α) ≤

(σ1 + σ2)
2

t
×

t− σ1
σ2

t− σ1
σ2
− 1

. (22)

Using the bound (22), one has

Eν [τ ] ≤ T ∗
γ +

∫ ∞

0
exp

(

− t

2(σ1 + σ2)2
t− σ1

σ2
− 1

t− σ1
σ2

γ2(µ1 − µ2)
2

)

dt

≤ T ∗
γ +

2(σ1 + σ2)
2

γ2(µ1 − µ2)2
exp

(
γ2(µ1 − µ2)

2

2(σ1 + σ2)2

)

.

We now give an upper bound on T ∗
γ . Let r ∈ [0, e/2− 1]. There exists N0(r) such that for

t ≥ N0(r), β(t, δ) ≤ log(t1+r/δ). Using also (22), one gets T ∗
γ = max(N0(t), T̃γ), where

T̃γ = inf

{

t0 ∈ N : ∀t ≥ t0,
(µ1 − µ2)

2

2(σ1 + σ2)2
(1− γ)2t >

t− σ1
σ2
− 1

t− σ1
σ2

log
t1+r

δ

}

.
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If t > (1+γ σ1
σ2
)/γ one has (t− σ1

σ2
−1)/(t− σ1

σ2
) ≤ (1− γ)−1. Thus T̃γ = max((1+γ σ1

σ2
)/γ, T ′

γ),
with

T ′
γ = inf

{

t0 ∈ N : ∀t ≥ t0, exp

(
(µ1 − µ2)

2

2(σ1 + σ2)2
(1− γ)3t

)

≥ t1+r

δ

}

.

The following Lemma, whose proof can be found below, helps us bound this last quantity.

Lemma 18 For every β, η > 0 and s ∈ [0, e/2], the following implication is true:

x0 =
s

β
log

(
e log (1/(βsη))

βsη

)

⇒ ∀x ≥ x0, eβx ≥ xs

η
.

Applying Lemma 18 with η = δ, s = 1 + r and β = (1− γ)3(µ1 − µ2)
2/(2(σ1 + σ2)

2) leads
to

T ′
γ ≤

(1 + r)

(1− γ)3
× 2(σ1 + σ2)

2

(µ1 − µ2)2

[

log
1

δ
+ log log

1

δ

]

+R(µ1, µ2, σ1, σ2, γ, r),

with

R(µ1, µ2, σ1, σ2, γ, r) =
1 + r

(1− γ)3
2(σ1 + σ2)

2

(µ1 − µ2)2

[

1 + (1 + r) log

(
2(σ1 + σ2)

2

(1− γ)3(µ1 − µ2)2

)]

.

Now for ǫ > 0 fixed, choosing r and γ small enough leads to

Eν [τ ] ≤ (1 + ǫ)
2(σ1 + σ2)

2

(µ1 − µ2)2

[

log
1

δ
+ log log

1

δ

]

+ C(µ1, µ2, σ1, σ2, ǫ),

where C is a constant independent of δ. This concludes the proof.

Proof of Lemma 18 Lemma 18 easily follows from the fact that for any s, η > 0,

x0 = s log




e log

(
1
η

)

η



 ⇒ ∀x ≥ x0, ex ≥ xs

η

Indeed, it suffices to apply this statement to x = xβ and η = ηβs. The mapping x 7→
ex − xs/η is increasing when x ≥ s. As x0 ≥ s, it suffices to prove that x0 defined above
satisfies ex0 ≥ xs0/η.

log

(
xs0
η

)

= s log

(

s log

(
e log 1

η

η

))

+ log
1

η
= s

(

log(s) + log

[

log
1

η
+ log

(

e log
1

η

)])

+ log
1

η

≤ s

(

log(s) + log

[

2 log
1

η

])

+ log
1

η

where we use that for all y, log(y) ≤ 1
ey. Then

log

(
xs0
η

)

≤ s

(

log(s) + log(2) + log log
1

η
+ log

1

η

)

.

For s ≤ e
2 , log(s) + log(2) ≤ 1, hence

log

(
xs0
η

)

≤ s

(

1 + log log
1

η
+ log

1

η

)

= s log




e log

(
1
η

)

η



 = x0,

which is equivalent to ex0 ≥ xs
0
η and concludes the proof.
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Appendix E. Proof of Theorem 5: An Optimal Confidence Region

According to (13), to prove Theorem 5, it boils down to finding an exploration rate such
that P(∃t ∈ N

∗ : St >
√

2σ2tβ(t, δ)) ≤ δ, where St = X1+ · · ·+Xt is a sum of i.i.d. normal
random variable. Lemma 19 provides such a confidence region.

Lemma 19 Let ζ(u) =
∑

k≥1 k
−u. Let X1, X2, . . . be independent random variables such

that, for all λ ∈ R, φ(λ) := logE[exp(λX1)] ≤ λ2σ2/2. For every positive integer t let
St = X1 + · · ·+Xt. Then, for all β > 1 and x ≥ 8

(e−1)2
,

P

(

∃t ∈ N
∗ : St >

√

2σ2t(x+ β log log(et))
)

≤ √e ζ
(

β
(
1− 1

2x

))(
√
x

2
√
2
+ 1
)β

exp(−x).

Let β(t, δ) be of the form β(t, δ) = log 1
δ + c log log 1

δ + d log log(et), for some constants
c > 0 and d > 1. Lemma 19 yields

P

(

∃t ∈ N : St >
√

2σ2tβ(t, δ)
)

≤ ζ
(

d
(
1− 1

2(z + c log z)

))
√
e

(2
√
2)d

(
√
z + c log z +

√
8)d

zc
δ,

where z := log 1
δ > 0. To upper bound the above probability by δ, at least for large values

of z (which corresponds to small values of δ), it suffices to choose the parameters c and d
such that

√
e ζ
(

d
(
1− 1

2(z + c log z)

)) 1

(2
√
2)d

(
√
z + c log z + 2

√
2)d

zc
≤ 1.

For c = d/2, the left hand side tends to
√
eζ (d)/(2

√
2)d when z goes to infinity, which is

smaller than 1 for d ≥ 1.47. Thus, for δ small enough, the desired inequality holds for
d = 3/2 and c = 3/4, which corresponds to the exploration rate of Theorem 5.

�

Proof of Lemma 19 We start by stating three technical lemmas, whose proofs are partly
omitted.

Lemma 20 For every η > 0, every positive integer k, and every integer t such that (1 +
η)k−1 ≤ t ≤ (1 + η)k,

√

(1 + η)k−1/2

t
+

√

t

(1 + η)k−1/2
≤ (1 + η)1/4 + (1 + η)−1/4 .

Lemma 21 For every η > 0,

A(η) :=
4

(
(1 + η)1/4 + (1 + η)−1/4

)2 ≥ 1− η2

16
.

Lemma 22 Let t be such that (1+η)k−1 ≤ t ≤ (1+η)k. Then, if λ = σ−1
√

2zA(η)/(1 + η)k−1/2,

σ
√
2z ≥ A(η)z

λ
√
t

+
λσ2
√
t

2
.
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Proof:

A(η)z

λ
√
t

+
λσ2
√
t

2
=

σ
√

2zA(η)

2

(√

(1 + η)k−1/2

t
+

√

t

(1 + η)k−1/2

)

≤ σ
√
2z

according to Lemma 20.

�

An important fact is that for every λ ∈ R, because the Xi are σ-subgaussian, Wt =
exp(λSt − tλ

2σ2

2 )) is a super-martingale, and thus, for every positive u,

P




⋃

t≥1

{

λSt − t
λ2σ2

2
> u

}


 ≤ exp(−u). (23)

Let η ∈]0, e− 1] to be defined later, and let Tk = N ∩
[
(1 + η)k−1, (1 + η)k

[
.

P




⋃

t≥1

{
St

σ
√
2t

>
√

x+ β log log(et)

}


 ≤
∞∑

k=1

P




⋃

t∈Tk

{
St

σ
√
2t

>
√

x+ β log log(et)

}




≤
∞∑

k=1

P




⋃

t∈Tk

{
St

σ
√
2t

>
√

x+ β log (k log(1 + η))

}


 .

We use that η ≤ e− 1 to obtain the last inequality since this condition implies

log(log(e(1 + η)k−1) ≥ log(k log(1 + η)).

For a positive integer k, let zk = x+β log (k log(1 + η)) and λk = σ−1
√

2zkA(η)/(1 + η)k−1/2.
Lemma 22 shows that for every t ∈ Tk,

{
St

σ
√
2t

>
√
zk

}

⊂
{
St√
t
>

A(η)zk

λk

√
t

+
σ2λk

√
t

2

}

.

Thus, by inequality (23),

P




⋃

t∈Tk

{
St

σ
√
2t

>
√
zk

}


 ≤ P




⋃

t∈Tk

{
St√
t
>

A(η)zk

λk

√
t

+
σ2λk

√
t

2

}




= P




⋃

t∈Tk

{

λkSt −
σ2λ2

kt

2
> A(η)zk

}




≤ exp (−A(η)zk) =
exp(−A(η)x)

(k log(1 + η))βA(η)
.

One chooses η2 = 8/x for x such that x ≥ 8
(e−1)2

(which ensures η ≤ e − 1). Using

Lemma 21, one obtains that exp(−A(η)x) ≤ √e exp(−x). Moreover,

1

log(1 + η)
≤ 1 + η

η
=

√
x

2
√
2
+ 1 .
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Thus,

P




⋃

t∈Tk

{
St

σ
√
2t

>
√
zk

}


 ≤
√
e

kβA(η)

( √
x

2
√
2
+ 1

)βA(η)

exp(−x) ≤
√
e

kβA(η)

( √
x

2
√
2
+ 1

)β

exp(−x)

and hence,

P




⋃

t≥1

{
St

σ
√
2t

>
√

x+ β log log(et)

}


 ≤ √eζ (βA(η))
( √

x

2
√
2
+ 1

)βA(η)

exp (−x)

≤ √eζ
(

β

(

1− 1

2x

))( √
x

2
√
2
+ 1

)β

exp (−x) ,

using the lower bound on A(η) given in Lemma 21 and the fact that A(η) is upper bounded
by 1.

Appendix F. Bernoulli bandit models

F.1 Proof of Lemma 8

Assume that µ1 < µ2. Recall the KL-LUCB algorithm of Kaufmann and Kalyanakrishnan
(2013). For two-armed bandit models, this algorithm samples the arms uniformly and builds
for both arms a confidence interval based on KL-divergence Ia(t) = [la,t/2, ua,t/2], with

ua,s = sup{q > µ̂a,s : sd(µ̂a,s, q) ≤ β̃(s, δ)}, where d(x, y) = KL(B(x),B(y))
la,s = inf {q < µ̂a,s : sd(µ̂a,s, q) ≤ β̃(s, δ)},

for some exploration rate that we denote by β̃(t, δ). The algorithm stops when the confidence
intervals are separated; that is either l1,t/2 > u2,t/2 or l2,t/2 > u1,t/2, and recommends the
empirical best arm. A picture helps to convince oneself that

(l1,s > u2,s) ⇔ (µ̂1,s > µ̂2,s) ∩ (sd∗(µ̂1,s, µ̂2,s) > β(s, δ)) (24)

Additionally, as mentioned before, I∗(x, y) is very close to the quantity d∗(x, y) and one has
more precisely I∗(x, y) < d∗(x, y). Using all this, we can upper bound the probability of
error of Algorithm 2 in the following way.

Pν

(
∃t ∈ 2N∗ : µ̂1,t/2 > µ̂2,t/2, tI∗(µ̂1,t/2, µ̂2,t/2) > β(t, δ)

)

≤ Pν

(
∃t ∈ 2N∗ : µ̂1,t/2 > µ̂2,t/2, (t/2)d∗(µ̂1,t/2, µ̂2,t/2) > (β(t, δ)/2)

)

= Pν (∃s ∈ N
∗ : µ̂1,s > µ̂2,s, sd∗(µ̂1,s, µ̂2,s) > (β(2s, δ)/2))

= Pν(∃s ∈ N
∗ : l1,s > u2,s) ≤ Pν(∃s ∈ N

∗ : (µ1 < l1,s) ∪ (µ2 > u2,s))

≤ 2
∞∑

s=1

exp(−β(2s, δ)/2)

where the last inequality follows from an union bound and for example Lemma 4 of Kauf-
mann and Kalyanakrishnan (2013). Note that the indices l1,s and u2,s involved here use
the exploration rate β̃(s, δ) = β(2s, δ)/2. The choice β(t, δ) in the statement of the Lemma
shows the last series is upper bounded by δ, which concludes the proofs.
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F.2 An asymptotic bound for the stopping time

Lemma 23 Consider a strategy that uses uniform sampling and a stopping rule of the form

τ = inf

{

t ∈ 2N∗ : tf(µ̂1,t/2, µ̂2,t/2) ≥ log

(
g(t)

δ

)}

where f is a continuous function such that f(µ1, µ2) 6= 0 and g(t) = o(tr) for all r > 0.
Then for all ǫ > 0,

Pν

(

lim sup
δ→0

τ

log(1/δ)
≤ 1 + ǫ

f(µ1, µ2)

)

= 1.

Proof We fix ǫ > 0 and introduce

σ = max

{

t ∈ 2N∗ : f(µ̂1,t/2, µ̂2,t/2) ≤
f(µ1, µ2)

1 + ǫ/2

}

.

By the law of large numbers, P(σ < +∞) = 1. Hence, limn→∞ P(σ ≤ n) = 1 and for every
α ∈]0, 1[ there exists N(ǫ, α, µ1, µ2) such that P(σ ≤ N(ǫ, α, µ1, µ2)) ≥ 1 − α. Therefore,
introducing the event

Eα =

(

∀t ≥ N(ǫ, α, µ1, µ2), f(µ̂1,t/2, µ̂2,t/2) >
f(µ1, µ2)

1 + ǫ/2

)

, one has P(Eα) ≥ 1− α.

On the event Eα,

τ ≤ max

(

N(ǫ, α, µ1, µ2); inf

{

t ∈ N : t
f(µ1, µ2)

1 + ǫ/2
≥ log

(
g(t)

δ

)})

τ ≤ N(ǫ, α, µ1, µ2) + inf

{

t ∈ N : t
f(µ1, µ2)

1 + ǫ/2
≥ log

(
g(t)

δ

)}

We can use Lemma 18 to bound the right term in the right hand side, which shows that
there exists a constant C(ǫ, µ1, µ2) independent of δ such that

τ ≤ N(ǫ, α, µ1, µ2) +
1 + ǫ

f(µ1, µ2)

[

log
1

δ
+ log log

1

δ

]

+ C(ǫ, µ1, µ2)

Thus we proved that for all α > 0,

P

(

lim sup
δ→0

τ

log(1/δ)
≤ 1 + ǫ

f(µ1, µ2)

)

≥ 1− α.

This concludes the proof.

Appendix G. Upper and lower bounds in the fixed-budget setting

G.1 Proof of Theorem 9

Without loss of generality, assume that the bandit model ν = (ν1, ν2) is such that a∗ = 1.
Consider any alternative bandit model ν ′ = (ν ′1, ν

′
2) in which a∗ = 2. Let A be a consistent

algorithm such that τ = t and consider the event A = (Ŝ1 = 1). Clearly A ∈ Ft = Fτ .
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Kaufmann, Cappé and Garivier

Lemma 1 applied to the stopping time σ = t a.s. and the event A gives

Eν′ [N1(t)]KL(ν ′1, ν1) + Eν′ [N2(t)]KL(ν ′2, ν2) ≥ d(Pν′(A),Pν(A)).

Note that pt(ν) = 1− Pν(A) and pt(ν
′) = Pν′(A). As algorithm A is correct on both ν and

ν ′, for every ǫ > 0 there exists t0(ǫ) such that for all t ≥ t0(ǫ), Pν′(A) ≤ ǫ ≤ Pν(A). For
t ≥ t0(ǫ),

Eν′ [N1(t)]KL(ν ′1, ν1) + Eν′ [N2(t)]KL(ν ′2, ν2) ≥ d(ǫ, 1− pt(ν)) ≥ (1− ǫ) log
1− ǫ

pt(ν)
+ ǫ log ǫ.

Taking the limsup and letting ǫ go to zero, one can show that

lim sup
t→∞

−1

t
log pt(ν) ≤ lim sup

t→∞

2∑

a=1

Eν′ [Na(t)]

t
KL(ν ′a, νa) ≤ max

a=1,2
KL(ν ′a, νa).

Optimizing over the possible model ν ′ satisfying µ′
1 < µ′

2 to make the right hand side of the
inequality as small as possible gives the result.

For algorithms using uniform sampling, lim sup−1
t log pt(ν) is upper bounded by (KL(ν ′1, ν1)+

KL(ν ′2, ν2))/2, which yields the second statement of the Theorem.

G.2 An optimal static strategy for exponential families

Bounding the probability of error of a static strategy using n1 samples from arm 1 and n2

samples from arm 2 relies on the following lemma.

Lemma 24 Let (X1,t)t∈N and (X2,t)t∈N be two independent i.i.d sequences, such that X1,1 ∼
νθ1 and X2,1 ∼ νθ2 belong to an exponential family. Assume that µ(θ1) > µ(θ2). Then

P

(

1

n1

n1∑

t=1

X1,t <
1

n2

n2∑

t=1

X2,t

)

≤ exp(−(n1 + n2)gα(θ1, θ2)), (25)

where α = n1
n1+n2

and gα(θ1, θ2) := αK(αθ1 + (1− α)θ2, θ1) + (1− α)K(αθ1 + (1− α)θ2, θ2).

The function α 7→ gα(θ1, θ2), can be maximized analytically, and the value α∗ that realizes
the maximum is given by

K(α∗θ1 + (1− α∗)θ2, θ1) = K(α∗θ1 + (1− α∗)θ2, θ2)

α∗θ1 + (1− α∗)θ1 = θ∗

α∗ =
θ∗ − θ2
θ1 − θ2

where θ∗ is defined by K(θ∗, θ1) = K(θ∗, θ2) = K∗(θ1, θ2). More interestingly, the associated
rate is such that

gα∗(θ1, θ2) = α∗K(θ∗, θ1) + (1− α∗)K(θ∗, θ2) = K∗(θ1, θ2),

which leads to Proposition 10.
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Remark 25 When µ1 > µ2, applying Lemma 24 with n1 = n2 = t/2 yields

P
(
µ̂1,t/2 < µ2,t/2

)
≤ exp



−
K
(

θ1,
θ1+θ2

2

)

+K
(

θ2,
θ1+θ2

2

)

2
t



 = exp
(
− I∗(ν)t

)
,

which shows that the strategy using uniform sampling and recommending the empirical best
arm matches the lower bound (15) in Theorem 9.

Proof of Lemma 24 The i.i.d. sequences (X1,t)t∈N and (X2,t)t∈N have respective densi-
ties fθ1 and fθ2 where fθ(x) = exp(θx − b(θ)) and µ(θ1) = µ1, µ(θ2) = µ2. α is such that
n1 = αn and n2 = (1− α)n. One can write

P

(

1

n1

n1∑

t=1

X1,t −
1

n2

n2∑

t=1

X2,t < 0

)

= P

(

α

n2∑

t=1

X2,t − (1− α)

n1∑

t=1

X1,t ≥ 0

)

.

For every λ > 0, multiplying by λ, taking the exponential of the two sides and using
Markov’s inequality (this technique is often referred to as Chernoff’s method), one gets

P

(

1

n1

n1∑

t=1

X1,t −
1

n2

n2∑

t=1

X2,t < 0

)

≤
(

Eν [e
λαX2,1 ]

)(1−α)n (

Eν [e
λ(1−α)X1,1 ]

)αn

= exp

(

n
[
(1− α)φX2,1(λα) + αφX1,1(−(1− α)λ)

]

︸ ︷︷ ︸

Gα(λ)

)

with φX(λ) = logEν [e
λX ] for any random variable X. If X ∼ fθ a direct computation gives

φX(λ) = b(λ+ θ)− b(θ). Therefore the function Gα(λ) introduced above rewrites

Gα(λ) = (1− α)(b(λα+ θ2)− b(θ2)) + α(b(θ1 − (1− α)λ)− b(θ1)).

Using that b′(x) = µ(x), we can compute the derivative of G and see that this function as
a unique minimum in λ∗ given by

µ(θ1 − (1− α)λ∗) = µ(θ2 + αλ∗) ⇔ θ1 − (1− α)λ∗ = θ2 + αλ∗ ⇔ λ∗ = θ1 − θ2,

using that θ 7→ µ(θ) is one-to-one. One can also show that

G(λ∗) = (1− α)[b(αθ1 + (1− α)θ2)− b(θ2)] + α[b(αθ1 + (1− α)θ2)− b(θ1)].

Using the expression of the KL-divergence between νθ1 and νθ2 as a function of the natural
parameters: K(θ1, θ2) = µ(θ1)(θ1 − θ2)− b(θ1) + b(θ2), one can also show that

αK(αθ1 + (1− α)θ2, θ1)

= −α(1− α)µ(αθ1 + (1− α)θ2)(θ1 − θ2) + α[−b(αθ1 + (1− α)θ2) + b(θ1)]

(1− α)K(αθ1 + (1− α)θ2, θ2)

= α(1− α)µ(αθ1 + (1− α)θ2)(θ1 − θ2) + (1− α)[−b(αθ1 + (1− α)θ2) + b(θ2)]

Summing these two equalities leads to

G(λ∗) = − [αK(αθ1 + (1− α)θ2, θ1) + (1− α)K(αθ1 + (1− α)θ2, θ2)] = −gα(θ1, θ2).

Hence the inequality P

(
1
n1

∑n1
t=1X1,t <

1
n2

∑n2
t=1X2,t

)

≤ exp(nG(λ∗)) concludes the proof.
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G.3 Proof of Proposition 14

First, with ∆a as defined in the introduction, there exists one arm a ∈ {1, . . . ,K} such that
Eν [Na(t)] ≤ 2σ2t/(H(ν)∆2

a). Otherwise, a contradiction is easily obtained.

Case 1 If a ∈ {1, . . .m} there exists b ∈ {m+ 1, . . .K} such that Eν [Nb(t)] ≤ 2σ2t
H−(ν)∆2

b

.

Case 2 If a ∈ {m+ 1, . . .K} there exists b ∈ {1, . . . ,m} such that Eν [Nb(t)] ≤ 2σ2t
H+(ν)∆2

b

.

This two cases are very similar, and the idea is to propose an easier alternative model
in which we change only arm a and b, the arms that are less drawn among the set of good
and the set of bad arms. Assume that we are in Case 1. We introduce ν[a,b] a Gaussian
bandit model such that: 





µ′
k = µk for all k /∈ {a, b}

µ′
a = µa − 2∆b

µ′
b = µb + 2∆a

In ν[a,b] good arm a becomes a bad arm and bad arm b becomes a good arm. One can easily
check (or convince oneself with Figure 3) that H(ν [a,b]) ≤ H(ν) and as already explained,
ν and ν[a,b] do not share their optimal arms. Thus Lemma 12 yields

max
(

pt(ν), pt(ν
[a,b])

)

≥ 1

4
exp

(
−
[
Eν [Na(t)]KL(νa, ν

′
a)) + Eν [Nb(t)]KL(νb, ν

′
b)
])

=
1

4
exp

(

−
[

Eν [Na(t)]
(2∆a)

2

2σ2
+ Eν [Nb(t)]

(2∆b)
2

2σ2

])

≥ 1

4
exp

(

−
[
2σ2t

H∆2
a

4∆2
a

2σ2
+

2σ2t

H−∆2
b

4∆2
b

2σ2

])

=
1

4
exp

(

−4t

H̃

)

with H̃ =
HH−

H +H− .
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