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ABSTRACT

In this paper we introduce a new unified framework for multi-

scale detail manipulation of graph signals. The key to this

unification is to model any kind of data as signals defined on

appropriate weighted graphs. Graph signals are represented

as the sum of successive layers, each capturing a given scale

of detail. Detail layers are obtained through a series of reg-

ularization procedures based on total variation penalization

over graphs. Layers are then processed separately before be-

ing recombined, thus achieving detail manipulation. The ben-

efit of the approach is shown on images, 3D meshes and 3D

colored point clouds.

Index Terms— Graph signals, multi-scale decomposi-

tion, detail manipulation.

1. INTRODUCTION

Edge-preserving image filtering has recently emerged as a

key tool in image processing and computational photogra-

phy. Most of the existing methods decompose an image into

a piecewise smooth base layer and a detail layer. The ob-

tained decomposition can then be used in a large variety of

applications including sharpening, HDR tone-mapping, im-

age editing [1, 2, 3]. Since it is essential to have control over

details at a variety of scales rather than on a single scale,

multi-scale decompositions have received much interest [4].

Multi-scale image representations usually take the form of de-

compositions of the form f = sk + dk + . . . d1 where sk is

a coarse approximation of the original image f and the di’s
are images capturing details at specific spatial scales. Mod-

ern approaches for obtaining multi-scale decompositions re-

tain the principle of the Laplacian pyramid but use nonlinear

filters [5, 6, 7] in order to avoid edge blurring. Images are

not the only data for which detail manipulation is of interest.

For instance, with the recent availability of cheap 3D sen-

sors, the acquisition of 3D colored point cloud is now com-

monplace. As for images, disposing of a hierarchical decom-

position of 3D data can be very useful for their editing. If

such models have recently been proposed for 3D point clouds

[8], there exists actually no unified way of obtaining multi-

scale decompositions whatever the considered data (images,

3D meshes, 3D colored points clouds, etc.). Therefore, there

is a huge need towards the conception of methods that en-

able to process, under the same framework, all these different

types of data. In the same time there is actually much inter-

est in the development of algorithms that enable to process

high-dimensional data that reside on the vertices or edges of

a graph, referred to as graph signals [9]. Indeed, graphs are

a very natural and convenient way to represent any data [10].

In this paper we propose a common framework allowing to

obtain multi-scale decompositions of graphs signals (e.g., im-

ages and 3D points clouds). To this aim, we propose multi-

scale decompositions of any graph signal by iterative applica-

tion of regularization procedures, in the spirit of [11, 12].

2. MULTILAYERED REPRESENTATION OF

SIGNALS ON GRAPHS

2.1. Graphs signals

We begin by premising the definitions and notations we use.

A weighted graph G is a triple (V,E,w) where V is a finite

nonempty set of vertices, E ⊂ V × V is the set of edges, and

w : E → R is a weight function. We restrict ourselves to

undirected graphs, meaning that for all x, y ∈ V , (x, y) ∈ E
if and only if (y, x) ∈ E. We further exclude self-loops,

that is edges of the type (x, x), and consider only positive

symmetric weight functions w. In all this paper, we interpret

w(x, y) as a measure of similarity between vertices x and y.

This measure of similarity is usually obtained as a decreas-

ing transformation of a prior distance measure. We will come

back to this point in subsequent sections. Without loss of gen-

erality, we let V = {1, . . . , N} for N ≥ 1. The graph G
can now be characterized by its weighted adjacency matrix

W ∈ R
N×N given by

wi,j =

{

w(i, j) if (i, j) ∈ E,

0 otherwise.

We denote by X = R
N the set of real-valued functions

defined on V (i.e., graph signals). Each f ∈ X assigns a

real value fi to each vertex i. The set X is endowed with

the usual inner product: 〈u, v〉X =
∑N

i=1 uivi for u, v ∈
X . We denote the associated norm by ‖.‖X . We will also

consider the space Y = R
N×N endowed with the following



inner product: 〈p, q〉Y =
∑N

i,j=1 pi,jqi,j for p, q ∈ Y . We

denote the associated norm by ‖.‖Y . We further consider on

Y the following dual mixed norms defined for all p ∈ Y by:

‖p‖1,2 =

N
∑

i=1

‖p⊺i,.‖X =
N
∑

i=1





N
∑

j=1

p2i,j





1/2

, (1)

‖p‖∞,2 = max
1≤i≤N

‖p⊺i,.‖X = max
1≤i≤N





N
∑

j=1

p2i,j





1/2

. (2)

We consider the following first order weighted difference

operator ∇w : X → Y defined for all u ∈ X and i, j ∈ V by

(∇wu)i,j =
√
wi,j(uj − ui). (3)

Being linear on finite-dimensional spaces, ∇w admits a

unique adjoint ∇∗
w : Y → X with respect to the in-

ner products 〈., .〉X and 〈., .〉Y . The divergence operator

divw : Y → X is defined as divw = −∇∗
w and its expression

is given for all p ∈ Y by (divwp)i =
∑N

j=1

√
wi,j(pi,j−pj,i).

2.2. Denoising graph signals

We consider the following degradation model f = u0 + η
where f, u0 ∈ R

N and η is random noise perturbation. In

order to construct an estimator for the true signal u0, classical

methods in signal and image processing rely on energy mini-

mization methods [13]. Among these methods, total variation

(TV) minimization [14] has played a prominent role. In the

graph setting of the present paper, the isotropic TV functional

is given for all u in X by [15]

Jw(u) := ‖∇wu‖1,2 =

N
∑

i=1





N
∑

j=1

wi,j(uj − ui)
2





1/2

(4)

The functional Jw can be regarded as a measure of “smooth-

ness” of data living on general graphs. It is the sum of the lo-

cal variations around all the vertices of the graph. The choice

of the ℓ1 norm can be seen as a regularizing prior promoting

the sparsity of the local variations vector. If we assume the

noise term η to be white and Gaussian, the TV-based estima-

tor is obtained by solving the following convex optimization

problem

minimize
u∈X

Ew(u; f, λ) = λJw(u) +
1

2
‖u− f‖2X , (5)

where the parameter λ is related to the noise level. Though

convex, the energy function Ew(u; f, λ) is not differentiable.

Thus, gradient-based methods can not be employed to solve

problem (5). By now, many algorithms based on splitting

techniques are available to tackle this problem [16]. Due to its

excellent performance, we choose in this paper to use the re-

cent primal-dual algorithm proposed by Chambolle and Pock

in [17]. We show in the sequel how this can be used with

weighted graphs. Let us consider the following general opti-

mization problem:

min
x∈X

F (Kx) +G(x), (6)

where F ∈ Γ0(Y ), G ∈ Γ0(X) and K : X → Y a linear

operator. Recently, Chambolle and Pock have proposed the

following iterative algorithm [17] to solve efficiently (6):























x0 = x̄0 = f, y0 = 0

yn+1 = proxσF∗(yn + σKx̄n),

xn+1 = proxτG(x
n − τK∗yn+1),

x̄n+1 = xn+1 + θ(xn+1 − xn),

(7)

where F ∗ is the conjugate of F , K∗ is the adjoint operator of

K, and prox the proximity operator defined as:

proxf (x) = argmin
y∈Y

{

f(y) +
1

2
||y − x||2

}

. (8)

The convergence of algorithm (7) is guaranteed if θ = 1 and

0 < τσL2 < 1 where L = ||K|| = max||x||≤1 ||Kx||. The

optimization problem (5) can be formulated on graphs with

F = ||.||1,2, K = ∇w, K∗ = −divw and G = 1
2λ ||.− f ||2X .

By replacing F , K, K∗ and G, in (7), we can simplify the

algorithm. The norms ‖ · ‖1,2 and ‖ · ‖∞,2 being dual, we

obtain an algorithm that produces three sequences (pn)n ∈
Y N, (un)n ∈ XN and (un)n ∈ XN given by











pn+1 = F(pn + σ∇wu
n),

un+1 = G(un + τdivwpn+1),

un+1 = 2un+1 − un,

(9)

where (∀p ∈ Y ), (F(p))i,j =
pi,j

max(1,‖pi,.‖2)
and (∀u ∈ X),

G(u) = 1
τ+λ (λu + τf). The interested reader can refer to

[17, 12] for details concerning the derivation of (9). This al-

gorithm is parametrized by the structure of the graph (topol-

ogy and weight function w), the functions u, u0, and several

parameters (λ, τ , θ and σ).

2.3. Multilayered Representation of Signals on Graphs

The denoising task described in the previous subsection yields

a decomposition of a noisy signal f into a clean component û
and a residual v̂: f = û+v̂. In this context, the parameter λ in

(5) is related to the noise level. If we relax the requirement of

relating λ to the variance of η, we obtain more general decom-

positions of the form f = u+ v. A prominent family of such

decompositions is the structure-texture decomposition intro-

duced in [18]. In this context, u represents an image contain-

ing the contrasted shapes initially present in the visual scene,

while v contains the texture and repetitive patterns. Such de-

compositions have been employed for image inpainting [19],



contour detection [20] and image segmentation [21]. The

structure-texture decompositions are dependent on a unique

scale. In order to be able to manipulate graph signals at mul-

tiple scales, it is important to turn those decompositions into

multi-scale ones [22]. For images, Tadmor et al. [11] pro-

posed an algorithm to turn such single-scale decompositions

into multiscale ones. When implemented for signals defined

on graphs with the energy Ew, this algorithm is the following















v−1 = f ,

ui = argmin
u∈X

E(u; vi−1;λi), i ≥ 0,

vi = vi−1 − ui, i ≥ 0,

(10)

where (λi)i is a sequence of scales. Starting with an initial pa-

rameter λ0, a first decomposition of f is obtained by applying

(5) with λ = λ0, yielding f = u0 + v0. The layer u0 should

be interpreted as a first sketch of the f , while the residual v0 is

to be understood as a detail coefficient. Modifying the scale

parameter from λ0 to λ1 and applying (5) to v0 with λ = λ1

yields the subsequent decomposition v0 = u1 + v1. Now the

term u1 can be interpreted as a second layer extracted from f
by means of v0. Iterating the same process n times leads to

the following representation

(∀n ≥ 0) f =
n
∑

i=0

ui + vn. (11)

The ui’s thus represent different layers of f captured at differ-

ent scales. These layers are parametrized by three variables:

the graph topology through the adjacency matrix W , the en-

ergy function E , and the sequence λ0, . . . , λn involved in the

successive minimizations. It is clear that in order to extract the

successive layers in a coherent manner, the sequence of scales

(λi)i≥0 should be decreasing. In terms of image decomposi-

tion, this assumption has the following simple interpretation:

as the process (10) evolves, the successive minimizers extract

more details from the original graph signal [11, 12].

3. EXAMPLES

First, to illustrate how the proposed decomposition works on

different graph signals, we consider images and 3D meshes.

For each graph signal, a specific graph topology is consid-

ered. For images, a 8-adjacency grid graph with Gaussian

weights wi,j = e−
‖fi−fj‖

2

2

2σ2 is considered. For 3D meshes, the

graph corresponds to the triangulation topology defined by

the 3D mesh and is weighted by wi,j = 1
ǫ+‖fi−fj‖2

2

. The

graphs signal fi is a color vector for images and a vector

of 3D coordinates for 3D meshes. The weight function de-

pends on the input image and allows to introduce adaptability

into the decomposition process. The initial scale λ0 is cho-

sen by hand so that the first layer u0 corresponds to a first

sketch of the original image. We adopt a dyadic progression

of scales: λi+1 = λi/2 for the extraction of the next layers.

Top row of Figure 1 shows sums of layers extracted from the

image of a woman having several acne marks and freckles,

that can be considered as very subtle detail layers of the skin.

One can see clearly the reconstruction being performed as the

successive layers are summed up. This example shows how

well our method is able to separate details according to their

scale. Bottom row of Figure 1 shows the sum of successive

extracted layers for a 3D mesh of a head. One can see the re-

construction being performed as the successive layers are ex-

tracted and summed up. This example also shows the ability

of our method to separate details according to their geometri-

cal scale. Second, to manipulate details of graphs signals, we

first decompose the original graph signal f into n layers. Let

ui, i ∈ {0, . . . , n − 1} denote the obtained layers. Then, we

edit the graph signal by weighting each layer and adding the

layers back together. We consider three levels of detail ma-

nipulation (coarse, intermediate and fine, denoted as gi with

i ∈ [1, 3]) depending on which weighted layers are summed

up (specified by parameters li). They are obtained with g1 =
i=l1
∑

i=0

(1 + iδ1)ui, g2 = g1 +
i=l2
∑

i=l1+1

(δ2 + (i − l1 − 1)δ1δ2)ui,

g3 = g2+
i=n−1
∑

i=l2+1

(δ22 +(i− l2−1)δ1δ2)ui. We consider three

different types of graphs signals: images, 3D meshes and 3D

point clouds. The last type of graph signal associates a color

vector to vertices and the graph is constructed from the 3D

coordinates with a k nearest neighbor graph. For images, we

set δ1 = 2.5 and δ2 = 0.25, δ1 = 0.15 and δ2 = 1 for 3D

meshes and point clouds. Figure 2 shows the results. As it

can be seen each level of detail manipulation enables to boost

details on multiple scales. For 3D meshes, this enables to ma-

nipulate the mesh to sharpen it without any computation of

the normals of the faces. Finally, it is important to note that,

to the best of our knowledge, it is the first time that a method

is proposed to sharpen 3D colored point clouds and this shows

the innovation of our proposal. The potential of this method

is huge since many 3D scanners now also acquire a color per

vertex, but this information is never used to manipulate the

details of the point cloud.

4. CONCLUSION

We have proposed a new framework for detail manipulation

of graph signals. Our method represents an image or a 3D

model as a graph signal and generates successive layers, each

capturing a given level of detail. The obtained layers are then

processed separately before being recombined, achieving de-

tail sharpening or attenuation. The proposed method is very

general and can be used for any type of graph signals and we

have presented an innovative detail manipulation of colored

3D meshes.



f u0

∑2
i=0 ui

∑3
i=0 ui

∑4
i=0 ui

f u0

∑3
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∑6
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∑10
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Fig. 1. Sum of successive layers from an image (top row) and a 3D mesh (bottom row) hierarchical decomposition.

Original Coarse scale details Medium scale details Fine scale details

Fig. 2. From top to bottom rows: detail manipulation for an image, a 3D mesh and a 3D colored point cloud. Each column

provides a scale of detail manipulation.
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