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ABSTRACT

The classical super-resolution (SR) setting starts with a set

of low-resolution (LR) images related by subpixel shifts and

tries to reconstruct a single high-resolution (HR) image. In

some cases, partial observations about the HR image are also

available. Trying to complete the missing HR data without

any reference to LR ones is an inpainting (or completion)

problem. In this paper, we consider the problem of recov-

ering a single HR image from a pair consisting of a complete

LR and incomplete HR image pair. This setting arises in par-

ticular when one wants to fuse image data captured at two

different resolutions. We propose an efficient algorithm that

allows to take advantage of both image data by first learning

nonlocal interactions from an interpolated version of the LR

image using patches. Those interactions are then used by a

convex energy function whose minimization yields a super-

resolved complete image.

Index Terms— super-resolution; inpainting; nonlocal

patch-based methods; graph-regularization; total variation;

Douglas-Rachford algorithm.

1. INTRODUCTION

We consider in this paper the problem of recovering a high-

resolution (HR) image from a pair consisting of a complete

low-resolution (LR) image and an incomplete HR one. Before

entering technical details, we first describe the context of our

work as well as some related works.

1.1. Motivations and Context

The application that motivates our work concerns the esti-

mation of petrophysical parameters of petroleum reservoirs

through image processing techniques. In this context, a cylin-

drical sample of a rock is extracted from a reservoir and

then imaged through computed tomography (CT) scanning in
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order to produce a three-dimensional digital representation.

This 3D acquisition is further analyzed by an image analy-

sis software in order to automatically segment and classify

different regions according to visual cues related to some

underlying petrophysical parameters. A typical example

concerns the automatic classification of different textured re-

gions, which in turn relates to different porosity levels of the

underlying material.

In a practical setting, the limited resolution provided by

the non invasive 3D reconstruction from CT acquisition does

not allow for automatic inspection. Thus a need for higher

resolution image data emerges. In the context we are inter-

ested in, this need is alleviated by performing a second ac-

quisition, this time focusing on a specific part of the volume.

This second acquisition thus provides incomplete but higher

resolution slices of the extracted cylindrical object. Now, the

goal is to combine the image data coming from both acquisi-

tions in order to obtain a complete high-resolution volume.

1.2. Modeling

In this work, we put aside the 3D aspect and focus on the case

of 2D images. Furthermore, we adopt a simplified framework

where we assume that the forward model for the HR/LR pair

is completely known. In particular, we do not discuss possible

registration issues. Letting y1 ∈ R
p and y2 ∈ R

n respectively

denote the lexicographical ordering of the complete LR and

partial HR images, we adopt the following discrete forward

model:
{

y1 = SHf0 + η1 ∈ R
p,

y2 = M(f0 + η2) ∈ R
n,

(1)

where 0 < p < n; f0 ∈ R
n denotes the unknown HR image;

S ∈ R
p×n stands for spatial downsampling by a dyadic fac-

tor r = 2k in each direction; H ∈ R
n×n accounts for spatial

blurring of the image, modelled in our case by a circular con-

volution with a known point spread function h: Hx = h⊛ x;

M = diag(m1, . . . ,mn) ∈ R
n×n accounts for some sort of

occlusion in the image in the form of a binary mask: mi = 1,

if pixel i is observed, and mi = 0 otherwise; the vectors

η1 ∈ R
p and η2 ∈ R

n are white Gaussian noise.



1.3. Related Work

Considering the reconstruction of f0 from y1 alone is a zoom-

ing problem, often also called magnification, interpolation,

upsampling or single-image super-resolution. This problem

has been the subject of many investigations and it would be

difficult within this note to sketch the different trends devel-

oped. We instead refer the interested reader to the recent

works [1, 2, 3] and to references therein.

The reconstruction of f0 from y2 alone is an inpainting

problem. As for the zooming problem, inpainting has been

extensively studied; the interested reader can consult [5] as a

starting point for this large research theme. Broadly speaking,

inpainting algorithms can be categorized as either geometry-

oriented [6, 7] or texture-oriented [8, 9]; the latter class be-

ing also termed examplar-based (see [10, 11] and references

therein).

Considering the reconstruction of f0 from both y1 and y2
is a super-resolution problem that can be seen either as an in-

painting problem with additional LR consistency constraints

or as a zooming problem with HR (soft) constraints. While

the traditional super-resolution setting consists in the recon-

struction of f0 from multiple LR images related by subpixel

shifts, we note that this setting becomes appropriate when we

consider the full 3D problem sketched earlier. We refer the

interested reader to [12] for a review article and to [13] for a

recent monograph.

1.4. Plan of the paper

Our contributions are presented in Section 2 where we in-

troduce a strategy for exploiting both the available HR and

LR data for the super-resolution task. Therein, we instanti-

ate a nonlocal variational problem whose solution gives an

estimation of the HR image. Links to total variation regular-

ization [14] are discussed and a minimization using Douglas-

Rachford algorithm is presented. We perform a set of nu-

merical experiments in Section 3, and show that it allows to

recover fine detail structures. We conclude in Section 4.

1.5. Notations

In all this paper, a standard LR image is denoted y1 ∈ R
p

while y2 ∈ R
n denotes a standard HR image, p < n.

The matrices M,S,H are the ones defined above. Let

Ω = {1, . . . , n} denote the set of HR pixels, D ⊂ Ω de-

note the set of pixels where the HR information is missing, so

that Dc denotes the set of pixels where the HR information is

available (see Figure1). For an image f and a pixel i, pi(f)
denotes an image patch extracted from f and centered at i.

For a matrix A and a vector y, we write {A . = y} for the

set {x,Ax = y}. For a set C, ιC denotes the indicator func-

tion: ιC(x) = 1 if x ∈ C, and ιC(x) = +∞ otherwise. We

denote by Γ0(R
n) the set of all convex lower semi-continuous

(a) (b)

Fig. 1: Example of a partial HR (a) and complete LR (b)

image pair. Our goal is to complete (a) using information

from (b), or equivalently, to super-resolve (b) using informa-

tion from (a).

and proper functions on R
n. Further notations will be intro-

duced as needed.

2. NONLOCAL VARIATIONAL FRAMEWORK

The recovery of an estimate f̂ of f0 from the measurements y1
and y2 according to the forward model (1) is an ill-posed in-

verse problem. As is usual for such inverse problems in imag-

ing, we formulate the estimation task in a variational setting

leading to the minimization an energy function of the form

F (f) = F1(f) + F2(f). The function F1 is a regulariza-

tion term forcing the solutions to have pre-specified proper-

ties, while the term F2(f) penalizes the discrepancy between

f and y1, y2, according to the forward model (1). In the pres-

ence of Gaussian noise, the latter term is usually taken, in its

penalized form, as the squared ℓ2 distance and can be written

in our case as F2(f) = λ1‖SHf −y1‖2+λ2‖Mf −y1‖2. If

the noise level in the HR image can be neglected, we will in-

stead consider the following form: F2(f) = λ‖SHf−y1‖2+
ι{M .=y2}(f).

2.1. LR/HR-Driven Graph Regularizer

To obtain an estimate f̂ of f0 we need to define a sensi-

ble prior F1. The regularizer we propose in this paper tries

to enforce the coherence of patches in a way similar to the

NL-Means algorithm [15]. The first step is to interpolate the

LR image y1 ∈ R
p to match the domain of the incomplete

HR image y2 ∈ R
n. To this end, we use bicubic interpola-

tion and get ỹ1 ∈ R
n. The image ỹ1 is used to build simi-

larities between patches whose centers lie in D and patches

whose centers lie outside D. In practice, we form a directed

graph G whose vertices are the (locations of the) pixels of

y2 and whose weighted adjacency matrix W ∈ R
n×n satis-

fies wi,j 6= 0 if and only if (i, j) ∈ D × Dc and the patch

pj(ỹ1) belongs the k-nearest neighbors of pi(ỹ1) according

to the Euclidean distance. In the experiments we performed,

we opted for binary weights wi,j ∈ {0, 1}.

Equipped with the graph encoded by the weighted adja-

cency matrix W , we propose the following regularizer, in-



spired by [16, 17]: F1(f) =
∑n

i=1(
∑n

j=1 wi,j(fi−fj)
2)1/2.

Note that, due to the discussed properties of W , the outer sum

actually runs over D, while for i ∈ D, the inner sum runs only

over a subset of Dc consisting of the neighbors of i. This is

in contrast with the works in [16, 17], where the matrix W is

assumed symmetric.

To summarize, we use an interpolated version ỹ1 of the

LR image y2 to infer a non-symmetric binary relation be-

tween the occluded patches and the visible HR patches and

use this relation to infer the values of missing pixels by adopt-

ing F1 as a prior and F2 as a data fidelity measure.

Let us note that if we allow to define edges in Ω × Ω
instead of restricting to D × Dc, then one can recover the

isotropic total variation (TV) regularizer [14] by connecting

each pixel to its right and bottom neighbors. Works using the

TV prior for image interpolation and super-resolution can be

found in [18, 19, 20].

2.2. Douglas-Rachford Algorithm in a Product-Space

From the previous section we are led to consider the following

convex optimization problem:

minimize
f∈Rn

F1(f) +
λ

2
‖SHf − y1‖2 + ι{M .=y2}(f). (2)

To proceed with the derivation of the algorithm, we

rewrite the penalizer F1 in the form F1(f) = ‖∇w(f)‖1,2,

where ∇w : Rn 7→ R
n×n is given, for i, j ∈ {1, . . . , n}, by

(∇wf)i,j =
√
wi,j(fj − fi) and ‖.‖1,2 is the mixed-norm

given, for p ∈ R
n×n, by ‖p‖1,2 =

∑n
i=1

√

∑n
j=1 p

2
i,j .

As the energy in (2) is not differentiable, we use proximal

splitting algorithms [21] in order to tackle the optimization.

The base operation in this class of algorithms is the compu-

tation of the proximity operator of a function F ∈ Γ0(R
n):

proxF z = argmin
x∈Rn

1
2‖x− z‖2 + F (x).

The energy in (2) is composite (mixing the operators

M,S,H) and contains two nonsmooth terms. The direct

application of the forward-backward or the primal-dual al-

gorithm of Chambolle and Pock [22] would lead to iter-

ative algorithms with difficult optimization sub-problems

at each iteration. In order to take advantage of the prop-

erties of the involved operators, and to allow partial split-

ting, we adopt the strategy suggested in [23] by transcript-

ing the Douglas-Rachford algorithm in a product space.

More precisely, letting X = R
n×n × R

n×n × R
n×n and

C = {(∇wf
′

, Hf
′

, f
′

), f
′ ∈ R

n}, we rewrite (2) in the form

minimize
(p,g,f)∈X

‖p‖1,2+
λ

2
‖Sg−y1‖2+ι{M .=y2}(f)+ιC(p, g, f).

(3)

We solve problem (3) by applying the Douglas-Rachford

algorithm [21]. Letting F1(p, g, f) = ‖p‖1,2 + λ
2 ‖Sg −

y1‖2 + ι{M .=y2}(f) and F2(p, g, f) = ιC(p, g, f), we re-

call that in each iteration of the Douglas-Rachford algorithm

we need to compute proxF1
and proxF2

. Let us start with

the evaluation of proxF1
. Since F1 is separable, the evalua-

tion of proxF1
(p, g, f) amounts to evaluating each part sep-

arately. The first component, prox‖.‖1,2
, corresponds to the

matrix form of soft-thresholding [24]. The matrix S being di-

agonal, the evaluation of prox‖S.−y1‖2 amounts to solving a

diagonal linear system of equations. Finally, the evaluation

of the third proximity operator is immediate since its cor-

responds to projecting on the set {M . = y2}. The eval-

uation of proxF2
leads to a linear system whose matrix is

A = ∇t
w∇w + HtH + I , where ∇t

w denotes the adjoint

of ∇w, with respect to the standard Euclidean inner product.

We solve this inner system with a conjugate gradient method,

using a ‘warm start’ strategy, meaning that we start the conju-

gate gradient solver at iteration k+1 with the result it yielded

at iteration k. The algorithm we use can now be summarized

as follows:

1: γ > 0, β ∈]0, 2[
2: p1,0 ∈ R

n×n, g1,0 ∈ R
n, f1,0 ∈ R

n

3: p2,n = STα(p1,n) (matrix soft-thresholding)

4: g2,n = (γλStS + I)−1(g1,n + γλSty1)
5: f2,n = projM .=y2

(f1,n) (Euclidean projection)

6: an = A−1(∇t(2p2,n−p1,n)+Ht(2g2,n−g1,n)+2f2,n−
f1,n) (using conjugate gradient)

7: p1,n+1 = p1,n + β(∇an − p2,n)
8: g1,n+1 = g1,n + β(Han − g2,n)
9: f1,n+1 = f1,n + β(an − f2,n)

As remarked at the end of the previous section, if we al-

low to define edges in {1, . . . , N} × {1, . . . , N} instead of

D×Dc only, then one can recover the isotropic total variation

regularizer. Then, by adopting circular boundary conditions,

the operator ∇t
w∇w corresponds to the 4-stencil discretiza-

tion of the Euclidean Laplacian operator. Hence, the matrix

A in step 6 becomes diagonal in the discrete Fourier domain

and thus the system can be solved by applying the discrete

Fourier transform, modulating, and applying the inverse dis-

crete Fourier transform. This is the version we use when we

compare in the next section our regularization scheme with

TV-based regularization.

3. EXPERIMENTS

We illustrate in this section the behaviour of our method on a

set of 3 images. The first and second images are part of two

standard test images; the last image is an image of a slice of a

rock captured by an electronic microscope 1.

In each case we start with the ground truth full HR im-

age f0 and simulate the incomplete image y2 by masking part

of f0. Similarly, we simulate the complete LR image y1 by

applying a Gaussian convolution kernel of bandwidth σ fol-

lowed by spatial downsampling of factor r in each direction.

1The authors would like to thank the team ”Sismage” from the Group

TOTAL for providing CT data.



(a) (b) (c)

(d) (e) (f)

Fig. 2: (a) ground-truth image 128 × 128; (b) LR image

(σ = 1 and r = 2); (c) masked HR (50%percent missing);

(d) bicubic interpolation of missing part (psnr=31.3);(e) TV

(psnr=34.69); (f) our result (psnr=37.66 ).

The parameters used are given in the caption of correspond-

ing figure. We then interpolate y1 to the size of y2 and get ỹ1.

Then, we construct a weighted graph as explained in Section

2, based on 5 × 5 patches extracted from ỹ1. We choose 15
nearest neighbors in each case. Once the corresponding graph

has been estimated, we minimize the energy (2) using the al-

gorithm of Section 2. We finally compare the solution we

get with the one obtained by adopting the total variation as a

prior. The corresponding energy is minimized again using the

algorithm of Section 2, the difference being that the inner sys-

tem of linear equation can be solved by Fourier transform as

explained above. We also compare those two solutions with

a simple recopy of ỹ1 (see, e.g., image (d) in Figure 2). Re-

garding the regularization parameter λ, it has been chosen by

trial and error, each time seeking to optimize the peak signal

to noise ration between the solution and the ground truth.

From the Figures 2, 3 and 4 we see that our approach in-

variably performs better than the bicubic interpolation and the

TV-based super-resolution both in term of PSNR and visual

inspection. In particular, for the textured area of the slice rock

image, our method allows to recreate the textured part in a

faithful manner.

4. CONCLUSION

We have studied in this paper an inverse problem which

combines the single-image super-resolution and the inpaint-

ing/completion problems. We have motivated the importance

of this problem and one of its possible applications. Then we

developed a method capable of taking advantage of both the

HR and LR image data in order to perform super-resolution.

The proposed method consists in minimizing a convex but

(a) (b) (c)

(d) (e) (f)

Fig. 3: (a) ground-truth image 128 × 128; (b) LR image

(σ = 2 and r = 2); (c) masked HR (50%percent missing);

(d) bicubic interpolation of missing part (psnr=29.27);(e) TV

(psnr=33.39); (f) our result (psnr=34.91).

not differentiable energy defined over a directed graph. We

have shown how the Douglas-Rachford algorithm can be

used to solve the problem. Finally we performed a series of

numerical simulations showing the benefit of our method.

(a) (b) (c)

(d) (e) (f)

Fig. 4: (a) ground-truth image 256 × 256; (b) LR image

(σ = 2 and r = 4); (c) masked HR (50%percent missing);

(d) bicubic interpolation of missing part (psnr=24.43);(e) TV

(psnr=29.52); (f) our result (psnr=30.16).
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